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We demonstrate and evaluate the importance of an intrinsic chirp inherent to attosecond pulse creation
accompanying high-order harmonic generation in recently published experimental data by Dinuet al. [Phys.
Rev. Lett.91, 063901(2003)]. We present an analytical model, from which the atomic origin of the harmonic
chirp is clearly understood. Moreover, the behavior of the chirp as a function of experimental parameters such
as laser intensity is inferred. The comparison between our model and the experimental data provides us with
useful information about the conditions in which the high-order harmonics is generated.
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I. INTRODUCTION

The ability to create and measure light pulses in the at-
tosecond(as) range is one of the recent exciting develop-
ments of extreme nonlinear optics, occurring when atoms
and molecules are submitted to strong laser fields. Theoreti-
cal predictions of attosecond pulses were presented by Far-
kas and Toth[1], and Antoineet al. [2]. Experimentally, a
few methods have been pursued in parallel to create and
measure such attosecond pulses: Harriset al. [3] take advan-
tage of high-order Raman processes in molecular gases; dif-
ferent experiments performed by Haentschelet al. in Vienna
have indicated the existence of isolated pulses of 650 as,
resulting from high-order harmonic generation in neon in a
particular, carrier-phase-dependent harmonic generation re-
gime [4].

An important breakthrough for the study of attosecond
physics in high-order harmonic generation(HHG) was per-
formed in Ref.[5] by the first measurement based on the
so-called RABBITT method(Resolution of Attosecond Beat-
ing By Interference of Two-photon Transitions) [6] of the
relative phases between five harmonic orders generated in an
argon gas jet by a 30-fs laser pulse(11-optical-cycle
FWHM). It allowed the conclusion that the interference of
harmonics 11 to 19 would lead to the generation of a train of
attosecond pulses occurring twice per optical cycle of the
fundamental infrared radiations2.6 fsd and whose duration is
equal to 250 as.

Up to now, characterization studies of attosecond pulses
have concentrated on the measurement of the duration of
each pulse, based, e.g., on autocorrelation techniques[7],
such as the recent work by Tzallaset al. that led to the
characterization of 780-as duration pulses for the interfer-
ence of 5 harmonic orders[8]. However, a major advantage
of the RABBITT method is the ability to recover the full
temporal profile of the attosecond pulses. In particular, any
chirp effect could be characterized.

From a theoretical point of view, high-order harmonic
generation is well understood in the three-step model para-

digm [9,10]. A simplified view of the phase behavior of high-
order harmonic is often derived from this model; however, as
was emphasized by Salièreset al. [11] and Kim et al. [12],
each high-order harmonic actually has a complicated phase
behavior, leading for instance to a chirp on the time scale of
the laser pulse duration. A different kind of chirp may be
expected to occur on each attosecond burst generated at a
laser half-cycle. This attosecond chirp will be related to the
phases of several harmonics relative to one another.

The aim of this paper is to revisit recent experimental data
that show the existence of an intrinsic chirp of high-order
harmonics, and to explain it in the simple approach of the
semiclassical, three-step model. Quite simple analytical for-
mulas can be derived, that will be used to discuss the data.
The predictions that can be made using this model are in
good agreement with the results obtained recently both ex-
perimentally and theoretically by Mairesseet al. (CEA
Saclay group) [13] and Kim et al. (KAIST group) [14].

II. ATTOSECOND PULSE CHIRP MEASUREMENT WITH
THE RABBITT METHOD

A. Attosecond chirp definitions

The RABBITT method[6] is a powerful way to evaluate
the value of the spectral phase for a set of consecutive har-
monics by measuring the electronic spectra obtained by the
ionization of a rare gas in the presence of harmonic radiation
and a small part of the fundamental infrared laser. The elec-
tronic spectra show important peaks for the kinetic energies
corresponding to the absorption of energy of one harmonic
photon. Sidebands also exist that correspond to the simulta-
neous absorption of one harmonic photon plus the absorption
or emission of one infrared photon. A given electronic energy
in a sideband may be the result of different processes: first,
the absorption of one infrared photon and oneqth-order har-
monic photon, second the emission of one infrared photon
and the absorption of onesq+2dth-order harmonic photon.
The sideband amplitude is thus the result of the quantum
interference between those two quantum paths that lead to
the same final state. By studying the sideband amplitude as a
function of the delay between the infrared and harmonic pho-
ton beams, the RABBITT method provides the harmonic
phase values desired.
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A recent Letter[15] extended the RABBITT method by
performing a thorough analysis of all experimental phases
incurred by high-order harmonics. The authors were able to
determine the subcycle timing of attosecond XUV bursts re-
garding the infrared optical cycle. The major result was that
the attosecond pulse is emitted 1410 as after one maximum
of the laser field. The attosecond burst duration was the re-
sult of the interference of the five harmonics 11 to 19 and
was found to be 266 as, which is close to the Fourier trans-
form value given bydt=T/2N, whereN is the number of
interfering harmonic orders andT the infrared optical period
(2.67 fs for an 800-nm laser beam).

This limit is only obtained in the case when the attosec-
ond pulse is not chirped, implying that all harmonic orders
are emitted at the same timet, as was assumed in Refs.
[5,15]. An attosecond pulse will be chirped if the various
frequency components are delayed linearly in time. The most
convenient definition to characterize the chirp in the single-
atom process of high harmonic generation is therefore

C =
] t

] vHHG
=

]2f

] vHHG
2 , s1d

wherevHHG is the harmonic pulsation andf is the harmonic
phase. Following this definition,C=0 means a perfectly lin-
ear behavior of the harmonic phases as a function of the
order, thus no chirp for the attosecond bursts.C will be ex-
pressed in as/eV so that the difference in recombination
times between two harmonic ordersq1 andq2 will simply be
given by

Dtsasd = 1.5Csq1 − q2d, s2d

where 1.5 eV is the energy of one infrared photon of the
pump lasersl=800 nmd. Moreover, the maximum recombi-
nation time difference betweenN interfering harmonic orders
will be

Dtsasd = 3CsN − 1d. s3d

The influence of this chirp on the attosecond burst duration
can be evaluated by comparing the former value todt
=T/2N, which is the ultimate limit of attosecond burst dura-
tion in a nonchirped case. As a consequence, the following
condition onC must be fulfilled in order to neglect the chirp
effect:

Csas/eVd !
400sas/eVd
NsN − 1d

. s4d

Note that the commonly used definition of the chirp in
laser physics especially for CPA(chirped pulse amplifica-
tion) high-power laser systems isG=]v/]t and is expressed
in fs−2. ]t/]v in that case is called “group delay dispersion.”

The link between those two definitions of chirp is

Gsfs−2d =
1516

Csas/eVd
. s5d

B. Method of chirp analysis

We performed a deeper analysis of the phase behavior
published in Ref.[15]. The time analysis in this work was
performed with a linear fit of the harmonic phases as a func-
tion of frequency. In order to extract higher orders of the
dispersion, and in particular the chirp, it is necessary to resort
to fits of higher polynomial orders. We thus present in Fig. 1
the comparison between a linear fit(dotted line) and a
second- or third-order polynomial regression(thick line).
The phase behavior is clearly not linear, indicating a com-
plex chirp behavior. Graphically, the difference between the
second- and third-order fits is quite small with respect to the
experimental error bars. The chirp coefficient extracted from
those differing fits is identical to within a few percent for the
center band harmonic, and reaches maximum values of 50%
for the high-order harmonics at the edges of the plateau re-
gion in the experimental conditions considered here.

Figure 2 presents the recombination times inferred from
the three polynomial fits of increasing order: from linear
(dotted line) to second-order(black squares) and third-order
(thick line) ones. The quadratic phase fit leads to a constant
chirp C equal to 20 as/eVsG=76 fs−2d. The recombination
time difference between H11 and H19, that corresponds to a
12-eV photon energy difference, is thus 236 as. This experi-
mental value of the chirp has to be compared to the total
burst duration, whose estimated value is only slightly higher

FIG. 1. Full diamonds: relative harmonic phases generated in
argon with a 1014-W/cm2 laser intensity for orders 11 to 19 mea-
sured experimentally in Ref.[2]; dotted line: linear fit; full line:
polynomial third-order fit from which the second order fit cannot be
graphically distinguished here.

FIG. 2. Recombination times for harmonic orders 11 to 19 in-
ferred from Fig. 1; dotted line: linear fit; full squares: second-order
polynomial fit; thick line: third order.
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s266 asd. This result shows that the importance of the chirp
for the generation of attosecond bursts must not be neglected
in that experimental case.

We now present a simple theoretical model that allows
one to understand the origin of the chirp and to numerically
evaluate its influence.

III. ATTOSECOND CHIRP ANALYSIS IN THE
SEMICLASSICAL THREE-STEP MODEL

A. Origin of the chirp

The most efficient way to describe the process of high-
order harmonic generation(HHG) in rare gases by an intense
laser field is the semiclassical “three-step model”[9,10]. In
this model, the electron is first tunnel ionized by the strong
electric field of the linearly polarized fundamental laser. It is
then accelerated by the electric field and may at last recom-
bine with its parent ion and emit a harmonic photon, whose
energy is the sum of the ionization potential of the generating
gas and the electron kinetic energy gain.

This first model was generalized in a full quantum theo-
retical frame by Lewensteinet al. in Ref. [16] and was later
confirmed by the use of the Feynman’s path-integral ap-
proach that allows one to understand the interaction between
a strong laser field and an atom[17]. A key result of the
quantum Lewenstein model is the semiclassical interpreta-
tion: a saddle-point analysis shows that the dominant quan-
tum paths follow the classical trajectories in the continuum.
It was shown that the electron trajectories that contribute the
most to the harmonic emission are those for which the elec-
tron is emitted in the continuum without any initial velocity.
The second important feature was the existence of two dif-
ferent quantum paths(electron trajectories) that lead to the
same kinetic energy gain[18]: the shorter one is also called
the first quantum path, the longer one the second.

The saddle-point method allows one to discuss many
physical features from a classical standpoint. It is in particu-
lar possible to compute the electron position and velocity
along a given trajectory. In the following, we will denote
t8the time at which the electron is emitted in the continuum.
The laser field is defined asEstd=E0 cossvtd, wherev is the
laser pulsations2.3531015 rad s−1d. The electron motion
equations can be analytically solved and give for the velocity
v=0and distancex=0 to the parent ion

vstd =
qE0

mv
fsinsvtd − sinsvt8dg, s6d

xstd = −
qE0

mv2fcossvtd − cossvt8dg −
qE0

mv
sinsvt8dst − t8d,

s7d

whereq and m are the electronic charge and mass, respec-
tively. Note that we used the initial conditionsvst8d=0 [16]
andxst8d=0.

If the electron recombines at a timet (conditionx=0), the
harmonic photon energy will be

q"v = Ip + 2Upfsinsvtd − sinsvt8dg2, s8d

whereIp is the ionization potential andUp the laser pondero-
motive energy proportional to the laser intensityfUp

=sqE0d2/4mv2g.
A harmonic trajectory analysis is easier to perform in an

oscillating referential designed so that the electron trajectory
is reduced to a linear motionsxelecstd=sqE0/mv2dfcossvt8dg
−sqE0/mvdsinsvt8dst− t8dd and for which the parent ion is no
more the static referencesx=0d but periodically oscillates
sxionstd=sqE0/mv2dfcossvtdgd [19]. The conditionvst8d=0 is
represented here by the fact that the ionic and electronic
trajectories are tangential at the ionization time. As can be
deduced from Eqs.(7) and (8), the kinetic energy gain will
then be proportional to the square of the slope difference
between the two trajectories at the recombination time.

Those trajectories are represented in Fig. 3. We chose
three different cases typical of the high-order harmonic gen-
eration process: the black squares represent the trajectory
that leads to the maximum kinetic energy gain and thus the
highest harmonic orderq, also called “cutoff order.” The
latter is given by the well-known law: qmax=sIp

+3.17Upd /"v that can be deduced from the above formulas.
For smaller harmonic orders, there exist two recombination
times that lead to the same gain. The first one corresponds to
later ionization but earlier recombination times than the sec-
ond one. It is logically called the short quantum path or “path
1.” Dotted and full lines represent the first and second quan-
tum path, respectively, both corresponding to a 10-eV ki-
netic energy gain if we consider a 1014-W/cm2 laser inten-
sity. It is graphically visible that the kinetic energy gain
increases with the recombination time along the first quan-
tum path, and decreases after the cutoff point for the second
quantum path(upper part of the curve).

Figure 4 represents the recombination timet computed
from the three-step model as a function of the harmonic or-
der and for different laser intensities. The rising part of each
curve corresponds to the first quantum path; then, the cutoff
order is clearly visible and depends on the laser intensity.
The decreasing part corresponds to the second quantum path
for which the chirp becomes negative. As was shown in Ref.

FIG. 3. Ion(thick gray line) and electron trajectories for the first
and second quantum path corresponding to a 10-eV kinetic energy
gain (dotted line and full line, respectively). The cutoff trajectory is
represented by the full squares.
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[15] and within the experimental uncertainty on the time
evaluation of about 100 as, the experimental values of the
phases are typical of the first quantum path. This result con-
firms the work of Ref.[20] that showed that the first quan-
tum path was the best candidate for a proper phase locking
for the generation of attosecond bursts. The experimental
chirp sign there is another confirmation of this prediction.

B. Analytical computation of the chirp value

Within the framework of the semiclassical model detailed
above, the harmonic chirp can be evaluated through the com-
bination of Eqs.(7) and (8).

In order to determine the harmonic chirp defined as
]t /]DE, whereDE is the kinetic energy gain, we introduce
an auxiliary functionFst ,DEd

Fst,DEd = cossvtd −Î1 −Ssinsvtd +Î DE

2Up
D2

+ Svt − sin−1Ssinsvtd +Î DE

2Up
DD

3Ssinsvtd +Î DE

2Up
D , s9d

that corresponds to the ion /electron separation and has to
obey Fst ,DEd=0 at the recombination time, as can be seen
from Eqs.(7) and (8).

Using the fact that]t /]DE=−s]F /]DEd/s]F /]td, the chirp
C can be calculated and finally expressed as the following:

CsDEd =
− st − t8d

Î8UpDESÎ DE

2Up
+ v cossvtdst − t8dD . s10d

The chirp value is represented in Fig. 5 for different laser
intensities. It appears clear that the chirp decreases with the
intensity: it is approximately equal to 30 as/eV for

1014 W/cm2 and is reduced to 15 as/eV for 3
31014 W/cm2. We also note from Fig. 5 that the chirp value
is quite constant in the plateau region defined as the har-
monic orders between the perturbative regimesq"vø Ipd
and the cutoff region. At the edges of that domain the chirp
and harmonic phases strongly diverge and the simple ap-
proach is no longer valid, implying the need for higher or-
ders in the description of the phase frequency behavior.

IV. SPATIAL INTENSITY EFFECT ON THE
CHIRP

The most interesting information about the harmonic
emissive zone is obtained by the comparison between experi-
mental values(black diamonds in Fig. 4) and those from the
calculations at various laser intensities. The effective laser
intensity at focus is indeed very difficult to estimate experi-
mentally [21], and 1014 W/cm2 could appear to be slightly
overestimated for the generation conditions of Ref.[15]:
considering H19 alone, the agreement between the experi-
mental and theoretical recombination times would be better
if I =831013 W/cm2, and for H15 if I =631013 W/cm2.
Moreover, the experimental chirp value turns out to be much
smaller than what is inferred at any fixed laser intensity for
all harmonic orders.

This is illustrated in Fig. 6, which displays the recombi-
nation times as a function of the laser intensity for the har-
monic orders 11 to 19. The direct comparison with experi-
mental points(full circles) already shows that the effective

FIG. 4. Recombination time as a function of the harmonic order
generated in argon for different laser intensities(gray line: 6
31013 W/cm2, black line: 1014 W/cm2); full circles: experimental
points inferred using a third-order fit with 100-as error bars; black
squares: the same but considering the second-order fit; dotted gray
line: theoretical calculation from a spatial integration.

FIG. 5. Harmonic chirp as a function of the harmonic order for
different laser intensities(gray line: 631013 W/cm2; black line:
1014 W/cm2; dotted line: 331014 W/cm2).

FIG. 6. Recombination time as a function of the laser intensity
for the harmonic orders between 11 and 19 calculated from the
three-step model(various lines). The experimental values are rep-
resented by the full circles; the estimated uncertainty is 100 as.
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intensity required by each harmonic to fit the experimental
data increases with the order. We suggest that this effect
arises from macroscopic volume effects, akin to those ana-
lyzed by Gaarde and Schafer in their phase-locking studies
depending on the quantum paths[20].

In a simple approach, we model the experimental recom-
bination time(frequency derivative of the measured phase)
that is bound to arise from a RABBITT measurement, as the
recombination time averaged over the laser beam section in
the emission region.

We assume a Gaussian form for the laser focus intensityI
as a function of the distancer to the axis

Isrd = I0e
s−2r2/w0

2d. s11d

The maximum intensity on axis is calledI0 and w0 is the
laser waist.

The intensity decreases withr down to a radial cutoff
value, noted asrcutoff, for which the intensity experienced by
the atoms far from the axis is exactly the cutoff intensity at a
given harmonic order

rcutoff
2 =

w0
2

2
lnS I0

Icutoff
D . s12d

The averaged recombination time for a given harmonic order
will then be

tav =

E
r=0

rcutoff

tsI0e
s−2r2/w0

2d,qd2pr dr

prcutoff
2 . s13d

This expression can be considerably simplified by making a
change of variable, that leads to

tav =
1

lnS I0

Icutoff
DEIcutoff

I0

tsIddI/I . s14d

The last equation indicates that the spatial region that
plays a major role for each harmonic order is the zone for
which the intensity is as small as possiblesI . Icutoffd, corre-
sponding to a large cross-sectional area. As an illustration, a
reasonable agreement between theory and the experimental
points is roughly obtained by considering the recombination
time for each harmonic order at the intensity for which the
next order enters the plateau regionfIcutoffsq+1dg. More pre-
cisely, the dotted gray line in Fig. 4 represents the full cal-
culation from Eq.(14). The agreement between experimental
and theoretical points in that case is very good with respect

to experimental uncertainty, better than 100 as. We empha-
size that the current simple model involves no adjustable
parameter.

It is striking that the spatial intensity effect in the experi-
mental case of Ref.[15] tends to reduce the harmonic chirp
and favor the generation of shorter attosecond bursts, as mea-
sured with the RABBITT method. Propagation effects may
therefore play a beneficial role in the characteristics of at-
tosecond pulses generated in a macroscopic medium, in the
specific case when the attosecond bursts are used or mea-
sured in the far field of the harmonic beam.

The macroscopic effects discussed here should play a
lesser role in other experimental conditions, especially when
the intensity is higher, so that the span of high-order harmon-
ics considered is a much smaller fraction of the total plateau
extent. The recombination time variation with intensity tends
to zero at high intensities(as can be seen in Fig. 6) so that
predictions of the single-atom model provide a better ap-
proximation to the measured chirp value[13].

V. CONCLUSION

In summary, we have shown that the attosecond bursts
inherent to the process of high-order harmonic generation at
the atomic scale should display important chirp values. The
contribution of the first quantum path should have a positive
chirp, while that of the second one should be negative. These
characteristics do not strongly depend on the nature of the
generating gas, but are directly related to the laser intensity.
Those single-atom predictions are in qualitative agreement
with the data published in Ref.[15], and more precisely al-
low discrimination between the first and second quantum
paths. The values inferred from the calculations are never-
theless higher than those measured. This is most probably
related to a three-dimensional intensity smoothing in the ex-
perimental case, as indicated by the much better quantitative
agreement with the data, when the chirp values are computed
for each harmonic as an average on all intensities experi-
enced on axis but also far from the axis. Our single-atom
model should therefore be complementary to a full coupled
atomic and propagation study along the lines proposed by
Milosevic et al. [22]. This could help to explain why such
ultrashort attosecond pulses are actually observed experi-
mentally, in spite of the temporal and spatial blurring effects.
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