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A complete calculation of the nuclear excitation by electronic trans{{MEET) rate of the first excited state
of 23U in a local thermodynamic equilibriuLTE) plasma is presented. The microscopic dynamics of the
NEET probability are described allowing a clear description of the coupling between the atomic and nuclear
transitions for the NEET effect. The atomic properties are estimated in the framework of a relativistic average-
atom model. The statistical nature of the electronic transition spectrum is described by the mean of a Gaussian
distribution around the average-atom configuration. The analysis of characteristic times occurring in the NEET
probability allows one to calculate an equivalent excitation rate in a E¥E plasma. In the density-
temperature plane, the NEET rate is strongly structured, showing the most relevant hydrodynamic conditions
for the NEET process. The number3fU nuclei, excited up to the 76.8 eV isomeric level in a high-intensity
laser shot, has also been estimated.
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INTRODUCTION atomic electron system depends crucially on the degree of
ionization of the atom, and more generally on its environ-
Nuclear excitation by electronic transitighlEET) [1,2]  ment. Hot dense plasmas offer the possibility to study the
designates a mechanism of nuclear excitation induced by BEET process in various situations where the atoms are ion-
transition between two bound states of the atomic systenized and distributed over a great variety of electronic con-
The mechanism is very similar in nature to the inverse interfigurations. In this paper, we investigate the behavior of the
nal conversion where an electron in the continuum is capNEET probability as a function of the temperature and den-
tured with a subsequent excitation of the nucleus. Experisity characterizing &% plasma at local thermodynamic
mental works on'®’Au [3] and *8%Os [4,5] reveal that the equilibrium (LTE).
probability for a NEET event to occur is very small. Such a plasma can be reached by using a high-power
Theoretical considerations indicate that an optimization olaser. Various attempts have been made to measure the exci-
the NEET process depends on two essential parameters. Otgtion rate of 225"U(76.8 eV J"=1/2",t,,,~26 min) in a
of these is the so-called mismatch in energy, defined as thaser-generated plasma. The first attempt, due to |zsveh
difference between the energy of the atomic and nuclear traf412], used a plasma heated by a £@ser. The authors
sitions. Clearly the mismatch has to be as small as possibigaimed they excited the first isomeric state.
in order to be close to a resonant coupling. The other paramet al. [13] tried to reproduce the experiment unsuccessfully,
eter is related to the size of a matrix element characterizingven though they used a puf®U sample. More recent ex-
the electromagnetic interaction between the initial and finaperiments have used a Nd laser to heat the plagmdg,
states of the nucleus-atom system. A nonvanishing, large m@ut were also unsuccessful in populating the isomer.
trix element requires that the nuclear and electronic transi- Harston and Chemifi16] have considered the different
tions share a common multipolarity, which must be as low asnechanisms that could be responsible for nuclear excitation
possible. In normal situations, where the electronic transitionin a plasma of the first isomeric state?3fU, namely, NEET,
involves simple configurations of the isolated atom, theseuclear excitation by electron captu®EEC) from the con-
two conditions are generally not satisfied simultaneouslftinuum, photoexcitation, and inelastic electron scattering.
with great accuracy. For instance, for the two nuclei of RefsThe authors in Ref.16] calculated the NEET rate for isomer
[3-5, ¥Au (with mismatch 6=74.18 ey and '#0s(5  excitation and showed thap§,-5ds, and &ls;,— 6p,, elec-
=1261.5 eV, the theory[6] predicts small NEET probabili- tronic transitions are resonant with the nuclear transition at,
ties of 3.57< 1078 and 1.13< 1071, respectively. If the ener- respectively, 20 eV and 100 eV. The lower temperature as-
gies of the atomic and nuclear transitions had been perfectlyociated with the p,,,—5ds;, transition leads to a lower
matched, these probabilities would have been of the order dfIEET rate. Harston and Chemin concluded that the NEET
1.06x 107 and 1.8< 1077, respectively. These results give a rate of the @ls,,—6p;,, atomic transition can be maximized
measure of the sensitivity of the NEET probability to the under plasma conditions. The main difficulty in such a cal-
mismatch condition. culation lies in developing a good description of the atomic
Theoretical arguments and a number of experimentaproperties and an accurate representation of the statistical
studies[7-11] indicate that the coupling of the nucleus to the nature of the electronic spectrum. In plasma, the atomic con-
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figuration number may be very large. Taking into account [. MICROSCOPIC PROBABILITY OF NEET

this large number of configurations requires that approxima- . L . .
tions be made in the atomic description. In RE6], the This section is devoted to the calculation of the probabil-

calculation was made in the multiconfiguration Dirac-FocklY Of populating a long-lived nuclear excited state through
formalism with a limited number of configurations. A its coupling Wlth electrom(_: transitions. The formgllsm pre-
collisional-radiative mode]17], describing the laser-induced Sented here is an adaptation of the approach defined in Ref.
plasma, was used to get the population density in different18] to study the properties of decaying states as a function
charge states. We present here a calculation of excitatioff time. In this whole section, we will assune=1.
rates under the hypothesis of LTE. Such an approach allows The point of departure here is the relation which exists
a description of the statistical nature of the plasma. between the time-dependent Schrodinger wave function
This paper will describe the NEET process in the frame{¥(t)) and the Fourier transforfiE+ie—H] ™ of the retarded

work of the formal theory of reactions. This approach isGreen’s function. This relation has the simple form
essentially based on a formal theory developed by Gold- -
berger and Watsofil8] and Cohen-Tannoudgt al. [19] to (1) = - i”mf
describe the properties of decaying states. The formalism is 2ime-0)_, E+ie—H
time dependent and consequently describes the time evolu-
tion of the coupling between the atom and the nucleus. Thigvhere the ket in the right-hand side corresponds to some
aspect is important in the present situation because an undenitial condition at timet=0.
standing of the NEET phenomenon in plasmas requires the The probability amplitudd;;(t) of a statd¥;) in the total
comparison of different characteristic times. One time scalgvave function at time is given by the scalar product
is that of the NEET process itself, and the others are associ-
ated with the hydrodynamic evolution of the plasma and the  Jsi(t) = (W[ ¥ (1))
time duration of the LTE regime. Finally, such an approach 1 +o0 1
has the added advantage of defining, in a consistent way, the =— '_"mf (V| ———e | ¥))dE.
widths and the atom-nucleus coupling in terms of the el- 2ime-0J _, E+ie-H
ementary interaction between the charged particles and the . L .
electromagnetic field. A more formal approach has beerd N€ ProbabilityPy(t) that the system is in the final staté
achieved[20,21. This theoretical thermodynamic analysis, at timet is then defined as
considering the nucleus in contact with a thermal reservoir,
allows us to describe as a whole the interaction of the Pf(t):f|Jﬂ(t)|26pf(e)de,
nucleus with its environment. Our approach separates this

lobal calculation into a microscopic interaction, betwee . .
tghe nucleus and its electronic cloudp, and the thermodynamr;\(':\’heregpf(e) IS the.number of statefsper energy _umt.
aspect ruled by the plasma. That allows us to obtain a NEET Let us now Qeflne the total Hamiltonian which governs
rate more easily usable for applications in a laser experiment!® {ime evolution of our system composed of the nucleus-

We will investigate the most relevant hydrodynamic pa_atom system and the photon field. We write it in the form

rameters, such as charge state, density, and temperature, to H=H®O +V(f)
obtain a good matching energy between the atomic and ’
nuclear transitions for the excitation of the first isomeric statayhere
of 22%U. As mentioned above, this calculation needs to take
into account the complexity of the atomic spectra. When the
spectrum becomes complex with many thermally available
excited states, the number of configurations rises dramati-
cally and statistical approaches must be used. In this case, an HO = HO + HO 4 H©
average-atom description may be attractive because of its N A v
simplicity. Nevertheless, it does not provide an accurate de- The three Hamiltonians itH® provide three complete
scription of the atomic problem because the large number dfets of states describing separately the nud|biyisthe atom
configurations tends to split the average-atom transition int§A}, and the photon field{y}. The tensor product
many components. Because each electron transition depenfg}  {A} ® {y} is assumed to be the product of eigenstates of
on the whole configuration, which may be very different the three systems in the absence of the coupling represented
from the average configuration, the average-atom formulapy the second term in the expressiontdf The interaction
tion may fail to describe the atomic spectrum. However, iny(f) is the residual Coulomb interactiov between the
some cases, when the number of transitions is so high th@lectrons and the nucleus plus a radiation coupling term. In

t_he energy difference beywegn two consecutive configurag, o latter, the currenf(f) is the sum of the electronic and
tions is smaller than their widths, a strong overlap takes

place. Then, a statistical approach using the distribution ofiuclear currents denoted agr) andjq(f), respectively, and
the configurations around the average transitmistained in ~ A(r) is the photon field associated with these two currents.
the frame of the average-atom modisl a good approxima- For our purpose, it is convenient to split the complete
tion. From this approach, we will derive NEET rates as abasis introduced above into two subsets by means of the
function of density and temperature. At last, we will estimatewell-known projector method. Denoting B/andQ the pro-

the 2""J number created in a laser plasma. jectors in the spacefP} and {Q}, the identity operatoi

e B )dE,

VI(F) = Ve - f j(F) - A(PdF,
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becomes =P+Q. It is straightforward to introduce these op- gies of the statel;)=| ;) and define the mismatch be-
erators in the formalism developed in REE8] and we will  tween the nuclear and atomic transitions through the simple
only quote the results here. relation

After some manipulations using standard operator alge- A
bra, we are led to the following expression: o=E;-E;=Ae-AE. (2

s ity Now, since we are interested in the probability of populating
‘JQP(t):_-i”mf e+E<Wq|%P(E+i€) a long-lived nuclear isomeric staiglenoted here by,),
2ime-0) ., E+ie-Eqg starting from the initial conditiof¥';)=|¢¢,), we must cal-
culate the amplitude given by E@l) with any final state in

X Gppl(E +ie)|¥y), @) Q containingy,. It is denoted byW )=, where the index
. . . c characterizes all open channels into which the Stditg
representing the probability amplitude of any state, =|yre,) may decay through the matrix element

_e_{_Q} in the total wave func_tion_ at timg starting from any (4n:R(E)[W,). Thus, the probability amplitude defined by Eq.
initial W; € {P}. This expression involves the so-called “reac- (1) is given, in this case, by the integral

tion matrix” R(z) defined by

1. (™ dE ,
1 sz(t):Tllmf Eries o (dRE+iONT)
R(2=V+VQ—QR(2), Te—0J —0 €— €y
z—Hgyq

X{(W,|Gpp(E)| T 1)e (3

and a Greeg’s operat@epp(2) which is the inverse of opera- \yhere ¢,. denotes the energy of the final state. The total
tor P[z-H”-R@JP. In this formalism, the operator probability of populating the nuclear excited state is then
P[HO+R(2)]P can be interpreted as an effective Hamil- given by summing over all possible final states:
tonian governing the propagation of the initial condition in-
side the spacéP}. From the definition oR(2) it is clear that
it takes into account the coupling with all the degrees of Py(t) =2 J |326,1(1)*Sp( €20) dege. (4)
freedom in spac€Q}. The analytic properties of the Green’s ¢
function and ofR(z) have been studied in details by the As mentioned above, the matrix elements of the Green's
authors of Ref[18]. These properties are not only of great function Gpp(E) are given by the inversion of the matrix
importance for the evaluation of the integrals as defined bylefined by
Eq. (1) but they also provide valuable information on global _
physical quantities whose role is essential in the theory. The (ilz=Hlj)=(z- E) & —(ViR@)|¥)).
arguments of the authors in R¢1L8] are directly applicable
to our case, and consequently we are content to summari
their findings.

Under general conditions on the potential, the matrix ele- (= 1)+
ments ofGpp(z) andR(z) are analytic functions in the entire  G;;(2) = " -
z plane, except for real values afin the continuous spec- [z-E'@]z-E(2]
trum of H. Their domain of analyticity is defined here by the (5
conditions O<argz) <2, assuming for simplicity that the
continuum starts at zero. Another property concerns the an
lytic continuation ofGpp(z) for —27<arg'z) <0. This func-

Ja this simple modeP is a two-dimensional space and, con-
sequently, the inversion is straightforward. The result is

[(z-E) & - (¥|R@[¥)].

g_quation(S) can be expressed conveniently in term of physi-
cal quantities by means of the relation given in Rdfg],

tion is expected to have singularities in the lower half planenamely’
which suggests that integral in EQL) may be most easily I\(E)
evaluated by deforming the contour as described in Ré&l. IimOR”(E +ie) = A/(E) - iT'

The new contour is composed of small circles enclosing the

poles and a contour, denoted By, whose contribution can  The real and imaginary parts reflect the fact that states in
be neglected under reasonable assumptions. The evaluatiPnare perturbed by their coupling with spag@}. The quan-

of Eq. (1) is then reduced to a simple calculation of residuestity A;(E) is their energy shift andl;(E) provides the rate of
This formal theory of decaying states is exploited in thegecay into the spacf}. With these definitions, the quanti-

simple model that we describe now. ties EX(2) in Eq. (5) are given by
The spaceP introduced above is spanned by the two
states that are supposed to be coupled in the NEET process. E*(2) = 2[En(2) £ VE3(2) + 4Rio(2)7]

We denote them a3F,)=|iyn¢,) and|W,)=|ie,). They are
built with the two atomic excitationgp,), with energye;,  with
and |@,), with energy e;(e;>¢,), and the two statefj),

with energyE;, and|y), with energyE,, corresponding to Ev(2) = 2 [Eqy + A4(2) + A5(2)] —i[I'1(2) + To(2)],
the ground state and an isomeric state of the nucleus, respec-
tively. For convenience, we designate By=E; +¢; the ener- Ep(2) =2[6+A1(2) —Ax(2)] -i[I'1(2) —T'x(2)],
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_Ei+E
av 2 .

After inserting into Eq.(3) the matrix elements of the
Green’s function, given by E@5), the probability amplitude

finally takes the form

Joea) = =i f“ dE  (dnJRE+ie|V))
2c,1 ‘2im'f3) _, E+ie-ex[E-E(E)[E-E(E)]

X (W RE) W e

According to our general discussion, this integral is ap-
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Ry r
Pneer(dt) = | 12| > 1-elt+ ]“_2(1 - e—I‘lt)
1

Fl_FZ)
(5

Iy +15)

I +T5,\2
52+< 2 )

2F2e‘wcos{5+ b)

+ (6)

Vo)
2

proximated by the residues at the poles located in the negayith

tive imaginary half plane. One pole is obviously. and the
others are solutions of the equatior%in(z;) with
27 < arg(z;)<0. In this application, the conditions

2RudEa)l _ |
|ED(Eau)|

are satisfied. As a result, the two polgsclosest to the real

axis are given by

+~E .|__5_i1_‘_i

%_ au—2 21
F+=F1,
F_:Fz.

Only the contribution of these three polésy,z;,7) is

20
ry+T,

This expression reaches an asymptotic value with a charac-
teristic time given by the exponentials

tan¢ =

1 1
TNEET™ [ Or  TNEeT™ F_z (7)
1

This asymptotic value reduces to the usual expresidpn
Ry r
IRz 2(1 +_2>_
24 (rl + r2> Iy
2

Pneet(6,t = %) = PR d) =

(8

Itis a Lorentzian shape as a function of the mismaicith
a half-width

_F1+F2
_—2 .

In this expressioi’; andI’, are the widths of the electronic
configurations which in this formalism are given by

9

Iy :2772 J|R20,i(ec)|25pc(ec)d6c- (10)
Cc
In the case of an isolated atom the main contribution to
the widths comes from the radiative decay of the electron
configurations, corresponding to the first-order term in the
expansion of the reaction matrix, or more complicated pro-
cesses such as the Auger effés¢cond ordgrfor instance.

kept in the evaluation of the probability amplitude. After In plasmas the situation may be quite different. There is an-

introducing this contribution into Eg4), we obtain the prob-
ability of exciting the isomeric level by NEET after tinte

other source of decay of the electron configurations due to
their collisions with free electrons. As the density in the

Although not essential, we make the reasonable assumptioplasma is quite high, the widths associated with such colli-

)
Rio| Eo £ 5= Ri2(Eqy)

in order to simplify the calculations. The final result is

sions are much larger than those previously mentioned. Fur-
ther expressions for these widths will be found below in Sec.
IV.

It remains to derive the expression for the nondiagonal
matrix element oR(E+ie), which characterizes the coupling
between the atomic and nuclear transitions. This is achieved
by expanding the reaction matrix up to second order:
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(W,R(E +i6)|W,) = (W,|V|W,) Il. ATOMIC CALCULATIONS
1 One of the most critical issues in the study of the NEET
+<‘1’1|VQmQV|‘I’2>- process is the mismatch defined in Eq.(2) above, which
aq

characterizes the resonance. This quantity may vary greatly
(1) with the density and temperature of the plasma. An estimate

Only the Coulomb interaction between the atom and the?f 1S average value can be obtained with a relativistic
nucleus contributes to the first-order term. In the second@verage-atom model. This model, first proposed by Rozsnyai

order term, only the radiation coupling contributes. For real23l; is based on an iterative method and assumes thermody-
sons given above, this matrix element is evaluatedEat namic equilibrium. The model solves the Dirac-Fock equa-
=E,, and, consequently, Eql1) reduces to tion fo_r bound _elect_rons, assuming the_ atomisin a sph_encal
box with a radius dictated by the density. The self-consistent
treatment starts with the relativistic Thomas-Fermi-Dirac

(V1|R(E, +i€)[ W) = (W3 Ve[ V) model in the iterative procedure. The free electrons are

wdow L Mo LM treated statistically by means of the Fermi-Dirac distribution.
* J mL v Tea2Thzy The average-atom description is attractive because of its
T computational simplicity and because it provides a good rep-
1 1 resentation of the plasma properties.
X S "5 ' The average-atom model is the first step in extracting the
> toy-o > toytow region of interest in terms of density and temperature. For a

given density and temperature, and for each electronic shell,
(12 the atomic calculations produce a binding energy, an ioniza-
tion number, a population, and the associated electronic
where bound-state wave functions. These electronic wave functions
are then used to build the many-electron wave function in the
Mo ] - . form of Slater determinants describing the average configu-
Te,<12>:f (@alie(NAL(D)]@2)dT, ration. In such a configuration, the occupation numbers of
electronic orbitals may be noninteger.
In the framework of the average-atom model, the expres-
M _ - - sion for a transition energy is not straightforward: it can be
TN(2D :f (aliNOAT (D p)dr”, obtained from the total energy of a real configuration con-
structed from a set of degenerate shells, wWithbeing inte-
ger electrons in each shell, such as in R&2],

wN:EZ_El-

1

It is worth mentioning that in the point-nucleus approxi- E(C) = E UiNi + 52 VieN(Ne = o),
mation, the Coulomb term is exactly canceled by a static k K
contribution coming from the second term. Notice also thatwhere U, contains the averaged kinetic energy and the
due to the presence of the energy mismafcexpressioni6)  electron-nucleus interaction in theh orbital andV,, con-
for Pygerdiffers from the usual one obtained from the theorytains the direct and the exchange coulomb interaction be-
of internal conversion. To our knowledge, this aspect has nogiyeen an electron in orbitdt and an electron in orbitaf.
been accounted for in a." preViOUS Calculations of the NEETThe % Coefﬁcient prevents doub'e Counting of the Corre|a_
process. A short appendix devoted to expresel@is atthe  tions, and§, ensures the correct correlation between an
end of this paper. electron in shelk with the N,—1 others in the same shell.

The probability given by Eq6) is relevant to a plasma at | et us now consider the transition in which an electron
LTE, characterized by its temperatufeand densityp. The  from shelli is transferred to shelf. To get the transition
quantitieS OCCUI‘ring in the definition of the NEET probablllty energy, we define a Spectator Conﬁguratm*nwhich iS the
are well defined and depend upprandT. Furthermore, by  total configuration less the two states in shietind f in-
means of a statistical model one can estimate the number Qbved in the transition. Then, by expressing the total con-
atoms which contain the electronic configurations of interestigyration energy as a function of the spectator configuration
for the NEET process. By taking this number as the initialenergy, it is straightforward to estimate the energy difference

Condition, one obtains directly the number of excited nUCIeibetween the Configuration after and before the transition:
at any later timgthat does not exceed the time duration of

the plasma It is worth recalling that the atom-nucleus cou- Ae=&~@+Vi(p = pp) + 2 (Vik= Vi) (N - ﬁ;),
pling is weak compared to the electronic and radiative pro- K

cesses and consequently has no significant influence on the _

equilibrium. We postpone the discussion to Sec. V where it isrvhereNf( (and N*k) is the populationand its mean value in
shown how this probability is used to derive an equivalenthe average atom modebf the k shell in the spectator’s
excitation rate in plasma, in spite of the fact that the expreseonfiguration,e” and€? are the level andf energy in the
sion for Pygetin EQ. (6) contains an oscillatory term. average-atom model, amgl is the occupation probability of
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FIG. 1. Mismatchs for the 6ls/-6py/, (left) and ;,-50s, FIG. 2. Average charge state of LTE uranium plasma across the
(right) transitions. (p,T) plane.
the k orbital given by the Fermi-Dirac statistics: the other one. Furthermore, the occupation number increases
with density, thus implying that the NEET rate may vary
1 along the zero mismatch valley.
Pk = o
1+ exp( k T )
. THE ATOM-NUCLEUS MATRIX ELEMENT

where u is the chemical potential.

In the case of the average-atom model, the deviation frorp/o
the mean value in the summation is zero and the expressiog(/
of Ae reduces to

The coupled atom-nucleus matrix elemeni,?> in-
Ived in Eq.(8) are also calculated in the framework of the
erage-atom model. For a nuclear transititln between
nuclear states with spirjg andj,, we have(a more detailed

— development is given in the Appenglix
Ae="¢) =&+ Vis(p; = py).-

Following the definition(2), the average atom mismatch be- ) 5 5\ 2jet+1
tween the atomic and nuclear transitions is then obviously IR12(8)|° = 4mrawy wN+§ L(2L+1)!11)2
defined by .

X( jg je L>2|Rn N |2B(EL),
1/2 -1/2 0 1122

5=Ae- AE. (13)

We investigate relevant energy-matching atomic transi-
tions in the case of the isomeric level &°U, located at where @ is the fine-structure constant am) . n,«, IS the

76.8 eV. We have plotted in Fig. 1 the isovaluessdh the  radial electronic matrix element for an electric transition of
density-temperature map for thel,-6p;,, and €,,,-5ds,  Multipolarity L defined by

atomic transitions of a uranium ion. Two valleys relative to a

set of density-temperature points, corresponding to the

§d5,2-6_pl,2 and §v,,,-5ds), transitiqns under matching condi- Ry, = f (L(g10, + f1f )N, () + [(k1 = K — L)gsf»

tions (8~ 0), can be extracted. It is clear that the best match-

ing can be realized under different conditions of temperature + (k1= Ko+ L) F1Go]N g (wpr)}dr

density. Figure 2 represents the isovalues of uranium charge

state in the density-temperature map. The best matchings for

the @ds;»-6p1», and @4/,-5ds), transitions are, respectively, Here x; and «, represent the relativistic quantum numbers,
aroundZ"=21" and Z'=11". However, optimizing the mis- g, g, f;, andf, are the large and small radial components of
match is not the only criterion for NEET transitions. One the initial and final atomic wave functions, atg is the
must also look at the probability to find at least one electrorHankel function of the first kind.

in the initial electronic shell and one hole in the final elec- B(EL) is the reduced nuclear matrix element rate, in Weis-
tronic shell. Figure 3 shows the occupation number of theskopf units(W.u.). For the?*U transition, fromj,=7/2" to
6ds/,, 6p1/2, and s, atomic shells, as a function of density, j.=1/2", we deduced from the internal coefficiemt; given
along both valleys of minimum mismatch in the, T) map. by Band and Trzhaskovskaya4] and from the lifetime of
The @d5,,-6py, transition seems to be more favorable thanthe isomerty,
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1 a
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D 57}
g § FIG. 3. Average atom occupa-
< . = tion numbers vs density along the
S 00 ¢ E 110 2 minimum mismatch valleys of
g I iameeed g 6py1/2-5ds/, (left) and @ls/2-5py2
g _______________ g (right) transitions in the(p,T)
— 5d,, —— BPy map.
~— - Bpy == By,
—1 | . N . -2
10167 107" 10° 10" 107 107 10° 1010
Density (g/em™ Density {g/em™)
1 ) ) obtained in the impact approximation assuming that the col-
B(E?’):2j—+1|<]e”MN(E3)HJg>|2 lision time is much smaller than the time required for an
g atomic transition. In addition, the collisional width uses a
—15x% 1019( 197 )7 In2 Maxwellian electron distribution. As the electronic collision
' E(MeV)/ ty5(1 + ags) is the fastest process involved in the equilibration of the
_ electronic populations, this leads to a collision time ex-
=0.069 W.u. pressed as

The coupled atom-nucleus matrix element is a slowly
varying function of the density along the resonance valley.
Its value is=1.9x 10718 eV? for the &s,-6p,/, transition

and=0.6x 10718 e\? for the @,/,-5ds/, One. . - . .
The matrix elementR,,? is larger when the initial and For the two atomic transitions of uranium, Fig. 4 shows

final levels are in the same lay@s defined by the electronic the variatiqns of the colli;ion width along the valley of per-
principal quantum numben) because the wave function fect matching. These widths correspond to characteristic

overlap is larger. Moreover, Fig. 3 shows that occupatiorfMes always smaller than s,

numbers are more favorable for thelsp-6p,,, transition _ _

than for the §,,,-5ds, one. Therefore, we will concentrate B. Hydrodynamic calculations

on the &l5/,—6p,, transition. The main advantage in studying the NEET effect in a
IV. WIDTHS AND CHARACTERISTIC TIMES plasma is the large number of readily formed atomic con-

figurations with an electron in the upper level and a hole in
Different widths and characteristic times are of paramounto |ower one withé~0 in the appropriate temperature-

importance when dealing with the NEET process. Accordingyensity regimes. This condition can only be obtained for long
to the above calculations, the evolution of a nucleus-atony,rations in a laser-heated plasma. Therefore, we will restrict

system with an initial electronic configuration favorable to  iselves to these types of plasmas as they are the most
the NEET process takes place within a very short time frame.qnvenient for the desired range of temperatures.

The NEET probability reaches an asymptotic maximum  the main drawback is the highly nonstationary nature of

w_ithin a characteristic tim_e given by the coII_ision Widt_hs_, aSthose plasmas. Therefore, we need to follow the time depen-
given by Eq.(7). Another important feature is the variation gence of different parameters. We have made such calcula-

of the transition energy mismatch. Indeed, we have to checkqng ysing a radiative hydrodynamic Lagrangian bidimen-
that the mismatch does not change significantly during the

evolution of the system leading to the excitation of the o
nucleus by the NEET process. 10 ' '

h
Tcol = F_I
co

A. Collision time

The general expression for the electronic configuration
width (10) may be expressed in the particular case of con-
tinuum electron collisions with the help of the general work
of Baranger[25], and the more detailed applications de-
scribed in Refs[26,27. The collision width of the atomic
configuration may be written as

~ e 1 1
442 MeC? 107, = i a i
— 2p~ V2 _3/2 2 + 2 10 10 10 10
Feo=a ﬁCS\EW Ne KT, [(balr?l ) + (Bl h)], Density (g/c)
whereN, is the electron density, ang, and ¢, are the wave FIG. 4. Collision width as a function of density along the valley

functions of the two atomic shells involved. This formula is §=0.
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102 ' ' ' ' ] 10° of events occurrin_g in the absorption-reemission area. How-
N ever, thg reemission zone has a much Iargef mass t_han the
o [T 110 = conversion layer and that is _vvhy. it is of more interest in our
< “___ Density 3 study. The:- laser characteristics, in terms of energy, spot size,
g . — Temperaturd | 10" 2 and duration, have been chosen to optimize the size of the
- RN a LTE area, where most NEET eff_ects occur.
g 10 Y I é These hydrodynamic calculations allow us to follow the
A Y o variation of plasma temperature and density. As Fh(_a mis-
102 N 1 107 matqh depends on the tem'perature anq denS|ty3 it is then
TNl possible to know the evolution of the mismatch in the re-
107 , ) , L Tmeeal N emission zone as a function of time.

4 20 40 B0 80 100 12010
Radius (pm)
C. Mismatch variations

1014':'\/(\5/'/C;'2 Temperature and density profiles in uranium at The main parameter influencing the microscopic NEET

: probability is the energy mismatch. The validity of the

whole calculation performed in Sec. |, especially the NEET

sional code simulating the laser matter interaction. Th%robability as a function of time given by E¢6), implies
plasma is simulated by a single fluid with nonhomogeneoughat the mismatch variation is small during the timgeeT
ionic and electronic temperatures. These need not be at thefeeded to reach the asymptotic value. This variation is
modynamic equilibrium with the radiation. In addition to the
mass, momentum, ionic, and electronic energy conservation do _déh
laws, the code solves the radiative intensity transport equa- dt NEETT gt

tions, with a coupling term linking radiative and electronic . -
equations, to simulate photon absorption and emission in The amplitude of these variations must be less than the

matter. The electron heat flux is calculated using the hedi@l-widthI" of the Lorentzian oPyegrgiven by the Eq(9)
conductivity given by Spitzei28]. This flux must not exceed for the asymptotic value to be stationary. Therefore the fol-
the free-streaming limit lowing condition must be met:

/ —— <[ e —<—. 14
f“mneTe E, atr dt h ( )
Me

The atomic evolution is controlled by the plasma expan-

where f;,, is an adjustable parameter taken at 0.13 in oussion. In a laser plasma, the mismatch variations are induced
calculations. The calculation presented here corresponds toly the variations of the density and the temperature. We use
laser intensity of 18 W/cn?, with a wavelength A a hydrodynamic calculation to get the mismatch variation.
=1.06 um, a pulse duration of 1 ns, a spot size of 1 mm inThe derivative of the mismatch over time is

diameter, and a very sharp shapearly similar to a square ds 989 9507

pulse. The intensity was optimized to get the LTE area in g0_c299 .
favorable conditions for the NEET process associated with dt dpdt aTat

the @s/,-6py, transition. _ _ _ The derivatives of the mismatch over density or tempera-
The temperature and total density profiles relative to the?Qure have been obtained with the average-atom model. Den-

maximum beam power are plotted in Fig. 5, as a function Oy, ang temperature derivatives over time are calculated by

target materia erth. The laser beam penetrates into the 13 hydrodynamic model described in Sec. IV B. The time

get from the right, where the matter is hotter. The Iaser'v,iariation of the derivative of the mismatch is shown in Fig.

matter interaction occurs deeper and deeper in the target ungll |, 16 region of interest, the derivative of the mismatch

critical density has been reached. The critical density, af o the time satisfies the relation

which the laser light is reflected, is inversely proportional to

the square of the laser wavelength. For the low density in

this area, electrons, ions, and radiation are in a nonthermo-

dynamic equilibrium state with three different temperatures.

At higher density and lower temperature, the LTE regimeS0 We can deduce from E@l4) a condition on the half-

takes place in the absorption-reemission aieat beyond ~ width:

the critical density. This reemission zone is heated by the I'>103 eV

successive absorptions and reemissions, inside the reemis- '

sion zone, of the soft x rays first emitted in the conversion For both transitions of interest, Fig. 4 shows that this con-

layer where the laser energy is absorbed. Usually, most of théition is always fully met. This implies that the stationary

studied laser plasmas are in the nonlocal thermodynamiconditions required by the calculations of Sec. | are verified.

equilibrium regime. The high opacity of the LTE area due toThus, the microscopic NEET probability given by E®)

its high density precludes accurate or detailed observationmay be used. Figure 7 shows the evolution in time of the

dé
—| <1 eV/ns.
dt
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80 05 r
Ny = e
80 0.0
T From the asymptotic NEET probabilit), the NEET rate
40 Z of isomer creation may be written as a sum over all initial
5 05 3 and final configurations:
"  ap % NEET, o0
u A (PuTe) = 2 Pa(p!Te))\aPNEET((saﬁ) .
-1.0 ap
0
whereP, is the initial configuration probability.
_gp L : . 15 At LTE P, is given by
15 20 25 3.0
Time {ns) Kmax
Ea - /-LE Pai
FIG. 6. Mismatch and its derivative as a function of time for P (p.T)= iD _ i=1
6ds,,-6p1, transitions in the region of interest. op,T) = Zs ex kT ’

microscopic NEET probability under stationary thermody-WNereép.i is the population of the bound shell of the ion
namic conditions. Moreover, the asymptotic value has beel{/ith the configurationa. D,, is the degeneracy of the con-
reached before the mismatch and other atomic physics rdiguration,E, its energyknayis the total number of occupied
lated quantities have changed. Therefore, we are able to uSE€!IS; andZg is the normalization factor. If we substitute the
the asymptotic expressia8) in our evaluations of the NEET NEET transition probability of Eq(8), the NEET rate be-
rate in the plasma. comes

V. NEET EXCITATION RATE IN A PLASMA
A. The NEET rate

The different characteristic times described in Sec. IV al- In this last expression, every single real configuration is
low us to express a NEET rate in the plasma. Since théaken into account. The huge number of different configura-
microscopic NEET time is much less than the mismatcHions precludes any exact calculation and so only a statistical
variation characteristic time, it is possible to use theapproach can be used to describe the complexity of the
asymptotic value of the microscopic NEET probability given atomic - spectrum. Under LTE conditions, the atomic-
by Eq.(8). Furthermore, the hydrodynamic conditions vary configuration distribution around the average atom configu-
even more slowly, so that the NEET rate can be evaluatefption corresponds to a mismatch distributigy around the
using stationary thermodynamic conditions. average atom mismatahgiven by Eq.(13). As the number

The probability of transition by the NEET process, from of configurations is very large, the transitions are closely
an initial atomic configuratiom to a final atomic configura- spaced and a strong overlap takes place. So, we can replace

r R,4(8)? r
}\NEET(p1Te):E Pa(vae)_a | 'B( )| 2<1+_§>
wp h 52B+<Mé> L
2

Q,

tion B, can be expressed as the discrete summation over the real configurations by an
integral over a statistically broadened averaged transition ap-
NoPreet(6ap) proximated by a Gaussian distributi)f9-33. The varia-

tions of the matrix element and the widths as a function of
where\ , is the initial configuration decay rate, which, at the mismatch are assumed to be small and their values are
LTE, is also its creation rate. It is directly related to the width calculated within the framework of the average-atom model
of the initial configuration by for an electronic transition, from shell 1 to shell(8py»

el |

FIG. 7. Microscopic NEET
probability vs time for the reso-
nant @,,,-5ds,, (left) and @l

: B 1049&"15 . oy
-6py, (right) transitions.
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150

10 ' '
10* 107" 10° 10'
Density (g/em’)

ia0 | evolution of the mismatch shown in Fig. 1. The intensity of
130 | the A\NEETis then given by the probability to find an electron
120 ¢ ——— on the upper shell and a hole in lower shell.
£ 110 £ —— Mg =108 ;
2 100 £ == gﬁ,ig:gjs: Ina p'lasma, other processes may compete Wlth' the NEET
2 g - t:;muj:': mechanism: resonant photon absorption, inelastic electron
g V0 it::;:]g..:ﬁ. scattering, and inverse internal conversi@iso known as
E gg Froois = - ] nuclear excitation by electron captur&e have made esti-
400 _ - Pt mates of these different processes in the thermodynamic re-
o kit : gion where the NEET calculation was performed.
The first mechanism, resonant photon absorption, strongly

depends on the radiation temperature. At the resonance, for a
photon energy of 76.8 eV, the cross section is about
FIG. 8. Rate of NEET across thg,T) plane. 10733 cn?. With a Maxwellian photon distribution around
100 eV, the resulting photoexcitation rate is extremely low,

25 &1
—5ds, or 6ds,—6py,). Finally, we assume that the statisti- 200Ut 810> s™.

cally averaged transition lies between two atomic shells The_ second mechanism, the so-called inelastic electron
whose populations are given by the average-atom model. excitation, depends on the electron energy and, thus, on the
Thus we can write plasma temperature. In RgflL6], the inelastic electron rate

was estimated, in the framework of the Born approximation,

NEET ~ B 1 as 10 s for an electron temperature of 100 eV. However,
A (p:Te) =D1p1(1 =) 4 T +T.\2 in a laser-created plasma, the electric field of the laser beam
BV (1—2) may cause electrons in the target plasma to oscillate and the
2 laser beam can couple to collective modes. The thermaliza-
)\ |R (g)|2 - tion of this absorbed energy is far from being complete and
X (1 + —2),12——6(” =9 /2"2du, the creation of suprathermic electrons is possible. A tempera-
Iy/ v2m ture may be associated with that electronic component, de-
whereD; is thei shell degeneracy an its occupation prob- P€nding on the intensity and the wavelength of tthe laser
ability. light. An emplr_lcal expression for this temperatu‘l‘gP was
The energy variance, defined in Ref[31], describes the Proposed by different authof84,33:
dispersion of the electronic transition energy of real configu- Tgotz 10—5(|L7\E)0'4,

rations around the average-atom value:
_ _ whereTQOt is expressed in keVl, is the laser intensity in
2= (0_5) (a_5> (ApAp) W/cn?, and\, its wavelength inum.
B = \op /o \apj/, Piap;7- These suprathermic electrons can excite energy levels be-
! Pi i yond the isomeric state. With an intensity of'4@V/cn?

The order of magnitude of the energy variance is around and a wavelength of 1.06m, the suprathermic electronic
few eV, much larger than the collision widtis andI',.  temperature lies around 4 keV. 10% of these electrons have
Therefore, the integral above can be approximated by iten energy greater than 13 keV allowing the excitation of the
value atu=0. The final NEET rate is level located at 13 ke\(with spin and parity 3/2). This
level decays down to the isomer with a 100% branching
. _ ratio. However, the excitation of the 13 keV level by lsi2
\2ma? transition is also difficult and its contribution to the excita-

(15) tion rate of the isomer is very low.
The last excitation mechanism, NEEC, is the most effi-

This rate does not depend on the collision widthsand  cient of these other excitation mechanisms. By using the mi-
I',. It can be easily understood if one considers that theseroreversibility at LTE, it is possible to extract a NEEC rate
widths are those of the individual atomic transitions. Theyfrom the internal conversion rate. This last rate needs to be
are completely merged within the statistical average transimodified by using the electron occupation probabilities on
tion characterized by the single width each atomic shell allowing internal conversion. A more de-

Figure 8 shows the map of the NEET rate of the excitationtailed treatment of this process will be given in a later pub-
of the first isomeric state of*®U. We clearly see the two lication [36]. On the whole density-temperature map of in-
favorable zones for the NEET effect corresponding pg;6 terest, the NEEC rate never exceeds®10!, which is
-5ds5, and @l5,,-6p,,» electronic transitions in agreement smaller than our calculated NEET rate.
with Ref.[16]. For a given density, the variation ai'EET as
a function of the temperature shows important fluctuations.
For instance, at 1 g/cfrthe NEET rate goes from 1®to
2x10* st depending on the temperature. For a given tem- As mentioned above, our NEET rates are valid at the ther-
perature, the variation versus the density of the NEET ratenodynamic equilibrium. A question arises regarding the va-
may be as important. These variations closely follow thelidity of the LTE hypothesis in the plasma region of such

277 . l _(32/202
ANEET(p,T) = 7D1p1(1 - p2)|RiA O

B. Validity of the NEET rates in a plasma
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densities and temperature. During laser-plasma interaction, 10"
atoms in the reemission zone are heated by thermal x rays
coming from the conversion area where the laser energy is
absorbed. This reemission zone is optically thick for x rays
and therefore radiates blackbody radiation. The temperature
evolves slowly inside the reemission zone which can be con-
sidered in equilibrium with a thermostat whose temperature
is given by the absorbed laser energy. To delimitate this area,
a LTE criterion was proposed by Grief38,39, using the
ionization energyE, of charge(:

E.\5/2 . _. _.
neB(lxlolélcm—s)Tg(TJ) ] -40 -30 -20 -10 0 10 20 30 40
e

8 (eV)

It shows that for a temperature greater than 30 eV and a FIG. 9. Number of?3®U per mismatch unit vsS for one laser
density greater than 0.1 g/énthe LTE hypothesis is valid beam.
over the whole density-temperature map covered in the

Fig. 8. sponds as-mismatch value. Therefore, we can replace the

The Thomas-Fermi approximation used to calculate th?/anabler by S under the integral. So, we can write
free electron density in the averaged atom model may be no

accurate for temperatures below 40 eV. This error is difficult
to quantify. However, it is irrelevant in our study because the dNiso
maximum of the NEET rate occurs at a temperature higher dt
than 40 eV. o
The comparison of the calculated NEET rates with experiif we defineNys(t, 5) as the number of*®U per mismatch
mental data is difficult because in each case we need to demit in the whole plasma volume. The number is shown in
scribe the plasma dynamics with a good accuracy. The exc":ig_ 9 as a function of the mismatah The number of ura-
tation rate greater than I's obtained by a Japanese group . . . A
[12], is clearly too high to be reproduced by our calculations.N'UM atoms per mismatch unit, aroud0, is nearly con-
However, studies done in Refkl3,40 show that the mea- stant within ao range of few eV and amounts to about
sured electrons in such an experiment may originate from 40'° eV .. This sdependent law suggests that the use of the
purely solid-state physics effect. On the other hand, the exaverage-atom model is justified. A%s(t, 9) is independent

1
perimental limit on the excitation rate s, obtained in of & around 8= 0, we can integrate equation ovéty fac-

Refs.[14,1T, is con§|stent with our calculatlons s torizing Nys out of the integral. So we can write:
The NEET rate is low and never greater tharn1€™.

The number of isomers produced in such an experiment is N o

difficult to predict because it depends on the description of d'SO = —Dlpl(l D2)|Ryo(5= 0)[?Nys(t, 6= 0).
the temperature and density of the plasma a long time after t

the laser pulse. In hydrodynamic codes, the cooling down of
the plasma is hard to descrilp@7], and precise calculations
are currently out of reach. However, we can estimate the
number of isomers created in the thermodynamic conditions Nigo= 10257 X At,
described in Sec. IV B.

= f Aneer(p, T)Nys(t, 9)do

Using D1p;(1-p,)|Rig?= 1071 eV?, we get

where At is the duration of the plasma, assumed be around
10 ns, for a laser duration of 1 ns. This gives a number of
isomers created during the plasma expansion which never
The global rate of isomer creation per time unit is ob-exceeds 1f) and a uranium isomer activity lower than 4 Bq
tained by integrating the local NEET isomer creation rateat the beginning of the measurement. A successful measure-

C. Isomer production

over the whole plasma volume: ment requires an isomer number two or three orders of mag-

nitude higher. Even by modifying the experimental condi-
dNiSO:j dniSO(F)dF tions, such as the size of laser spot or the laser intensity,

dt dt reaching such a number seems unlikely.

with All this work has been done assuming a direct laser attack
on a uranium target. We can also imagine an indirect drive,

dnig,(1) in a uranium-gold cavity, to make the radiative temperature

T dt = Mneet(p, T)Nys(r) confined in thehohlraumfor a time long enough to produce

the NEET process. A temperature of a few hundred eV can
andnys(r) is the uranium density. easily be reached with a laser power lower than for a direct

Each point in the plasma is well characterized by a denattack. Such a calculation can be performed to improve the
sity p and a temperaturg. For a(p,T) couple there corre- understanding further of NEET.
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Whatever the experimental technics used, % NEET  description. The NEET rate varies sensitively with thermo-
rate is very low. This is mainly due to the nuclear part of thedynamic conditions. We have presented a study of the exci-
matrix element. To test our model, we need to find a canditation of the first isomeric state #"U by the NEET effect.
date with a more favorable nuclear transition. In this context,The maximum isomer production areas are around 110 eV
we considered the excitation of the first staté ¥Pt located and 35 eV for a density of 0.1 g/émThey correspond to
at 1.642 keV. It decays down to the ground state byMEIh  the resonant atomic transitionsl,-6p;,, and 4,,-5ds),.
transition(t;,,=9.7 n3. We found that the §,—4s,,, atomic  However, the excitation rates fé#*U are too low to perform
transition is resonant for a LTE plasma temperature aroundn experiment and we propose to carry on this study with
1 keV or 2 keV, giving a NEET rate greater than®®0'.  1%%t, which seems to be a more promising candidate.
However, the difficulty lies in detecting the excited platinum
nucleus as it decays through a strongly converted transition
whose lifetime is nearly the same as the plasma. Moreover,
we need to create a LTE plasma at about 1 keV. In the fu- This work was performed in part under the auspices of
ture, with the advent of the intense lasers, the creation of) S, Department of Energy by the University of California,
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We have described the microscopic dynamics of the‘J' Becker and A. Decoster.

NEET probability and shown, for the first time, to our

knowledge, that the vertex describing the coupling between APPENDIX

the atomic and nuclear transition for the NEET effect is dif- ) )

ferent from that of internal conversion. For a dense plasma, According to Eq.(12), the atom-nucleus coupling can be
this microscopic NEET probability reaches an asymptoticeXPressed as

value after a very short time, which is the characteristic tim ;

associated with the free electrons collisions with the atome@ﬂR(Ea” +Hiol¥o)

This asymptotic probability is exactly the NEET probability -_8| dow? S M7 LM’ 1
usually found in a more simple model. This NEET probabil- wo AL P 2
ity is then used to derive an excitation rate in the plasma, o W= §+wN

calculated on ap,T) map, under the hypothesis of local
thermodynamic equilibrium. This is made possible by theOnly electric transitions are considered in the present appli-
slowly varying thermodynamic conditions and atom physicscation and consequently this matrix element becomes

> | (alie(NARD) edF | (@il In(F AR (7)) dF

-8 f dow? T . (A1)
=[5+
[
The coefficientAR,, (/) are the electric components in the R ) ’
multipole expansion of the potential vector: fo w2 ﬁZJL(wr)JL((Or )dw
AE(F) = ———— x Lj () You(@) i (Brohy(Br) - oo
M L+ 1) LD TR g T T S ol g
Inserting this expression in Egxl), the integration over whereS=wy+ 6/2,r_ is the smaller of andr’, andr- the
o can be performed using the identity given in ReX]: larger.
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Now, if we make the point-nucleus approximation, the I:II ii L i,
integrations over the volumes of the nucleus and atom canbe  (kymy|Y y|xkomy) = (- )ml"l’z#( 1 1 )
performed separately. Furthermore, as previously mentioned, Vam\z 0 -3
the second term of Eq11) cancels exactly the static contri- i L i

. . . oy 1 I2
bution of the coulomb interaction. Thus within such an ap- _ M .
proximation we obtain my m;

In order to calculate the probability of the NEET we also
(W, R(E,, +iO|Wy) = - di—— define the quantityrs, as
BL(L +1)

Ra= 2 (W R(Eg +ie)| ¥y,

My,Ma,my,mp

where the average is taken over the magnetic degeneracy of
the initial and final configurations of the nucleus-atom sys-

> | (eilielP) - V X Lhy(Br)Y ()| pp)dF
LM

N s | "' (O ~ tem. This summation is readily expressed by means of the
XJ Calin()V X LB Yim(@)]g)dr orthogonality relations satisfied by the 8oefficients. The
result is
The long-wavelength limit yields the following expres- !
sion for the nuclear part: , wﬁlﬁzL _ _
o ) Ro. = 477&% W(Zh+ D(2j2+1)
f<¢l|jN(F)'V X LiL(BNY m(Q)|ih)dr L, \2
1 2
(; _ ;) |Rn1K1n2K2|2|<I1||rLYL|||2>|2’
__L+1 L(- 1)I1—M2( 4 L |2) 2 0 -3
SaLepu -M; -M M,
L wherea is the fine-structure constant ahgl, are the angu-
X([Iryf1z)

lar momenta of the nuclear ground state and isomeric state,
As for the electronic contribution it is calculated with so- respectively. On the other harjd, j, stand for the angular

lutions of Dirac’s equation. Since the electronic orbits con-momenta of the electronic hole states. By introducing the

sidered here are bound, an additional radial quantum numbetsual definition

“n” is needed to specify the electron configuratiomam). 1

The _total angular momenturpis related tox through the B(EL,1, — I,) = KI4IrY 12

relation 20,+1

from the formula above, one finally obtains the following
j=|xl - % expression:

2 n2L
Using the results in Ref2], one defines = N8BT ;
9 12] RS, 4770‘% [L2L+1)! !]2(211"' D(2j,+1)(20,+1)
(alie(P) - V x Lhy (BN Y m(Q)] p)dF i Lo\
f ¢alje L(BNYm(Q)] 2 (7, Roysgnye PBEL I, — 1).
2 2
= (resmy| Yl 62M) BRy e e (EL) -

The quantitanlKlnsz(EL) is a radial integral whose defi-
nition is given by formulg10.129 of Ref.[22]. One obtains

Note that in order to compare with other formulas given
elsewhere one must use

finally the atom-nucleus coupling in the form 21,+1
) B(EL,I2—>|1):2|2+1B(EL,|1—>|2).
. . w\B r~e
(ViIREg +ig)¥) = IV47TL(2L+ 1)1 Lz, To our knowledge, when other authors have considered
the NEET transition from an initial statel;,Mq)(j;,m)]
| Lo i L] they did not average as we did over the magnetic quantum
> (_)'1—M2+m1+1/2( 1 2 )( 11 21> number of the initial state. Consequently one must also di-
LM -M; -M My/\3; 0 -3 vide the above expression §21,+1)(2j,+1) hence the re-
L s ] sult is
(e R T T
o RS, = 4wam<l 0 - ;) |Rn1K1n2K2|2
with the shorthand notatiop=+2j+1. Also, we have used e t2 2
the following expression for the electronic angular integral: XB(EL, 11— 1,).
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