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A complete calculation of the nuclear excitation by electronic transition(NEET) rate of the first excited state
of 235U in a local thermodynamic equilibrium(LTE) plasma is presented. The microscopic dynamics of the
NEET probability are described allowing a clear description of the coupling between the atomic and nuclear
transitions for the NEET effect. The atomic properties are estimated in the framework of a relativistic average-
atom model. The statistical nature of the electronic transition spectrum is described by the mean of a Gaussian
distribution around the average-atom configuration. The analysis of characteristic times occurring in the NEET
probability allows one to calculate an equivalent excitation rate in a LTE235U plasma. In the density-
temperature plane, the NEET rate is strongly structured, showing the most relevant hydrodynamic conditions
for the NEET process. The number of235U nuclei, excited up to the 76.8 eV isomeric level in a high-intensity
laser shot, has also been estimated.
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INTRODUCTION

Nuclear excitation by electronic transition(NEET) [1,2]
designates a mechanism of nuclear excitation induced by a
transition between two bound states of the atomic system.
The mechanism is very similar in nature to the inverse inter-
nal conversion where an electron in the continuum is cap-
tured with a subsequent excitation of the nucleus. Experi-
mental works on197Au [3] and 189Os [4,5] reveal that the
probability for a NEET event to occur is very small.

Theoretical considerations indicate that an optimization of
the NEET process depends on two essential parameters. One
of these is the so-called mismatch in energy, defined as the
difference between the energy of the atomic and nuclear tran-
sitions. Clearly the mismatch has to be as small as possible
in order to be close to a resonant coupling. The other param-
eter is related to the size of a matrix element characterizing
the electromagnetic interaction between the initial and final
states of the nucleus-atom system. A nonvanishing, large ma-
trix element requires that the nuclear and electronic transi-
tions share a common multipolarity, which must be as low as
possible. In normal situations, where the electronic transition
involves simple configurations of the isolated atom, these
two conditions are generally not satisfied simultaneously
with great accuracy. For instance, for the two nuclei of Refs.
[3–5], 197Au (with mismatch d=74.18 eV) and 189Os sd
=1261.5 eVd, the theory[6] predicts small NEET probabili-
ties of 3.57310−8 and 1.13310−10, respectively. If the ener-
gies of the atomic and nuclear transitions had been perfectly
matched, these probabilities would have been of the order of
1.06310−7 and 1.8310−7, respectively. These results give a
measure of the sensitivity of the NEET probability to the
mismatch condition.

Theoretical arguments and a number of experimental
studies[7–11] indicate that the coupling of the nucleus to the

atomic electron system depends crucially on the degree of
ionization of the atom, and more generally on its environ-
ment. Hot dense plasmas offer the possibility to study the
NEET process in various situations where the atoms are ion-
ized and distributed over a great variety of electronic con-
figurations. In this paper, we investigate the behavior of the
NEET probability as a function of the temperature and den-
sity characterizing a235U plasma at local thermodynamic
equilibrium (LTE).

Such a plasma can be reached by using a high-power
laser. Various attempts have been made to measure the exci-
tation rate of 235mUs76.8 eV,Jp=1/2+,t1/2<26 mind in a
laser-generated plasma. The first attempt, due to Izawaet al.
[12], used a plasma heated by a CO2 laser. The authors
claimed they excited the first isomeric state.
et al. [13] tried to reproduce the experiment unsuccessfully,
even though they used a pure235U sample. More recent ex-
periments have used a Nd laser to heat the plasma[14,15],
but were also unsuccessful in populating the isomer.

Harston and Chemin[16] have considered the different
mechanisms that could be responsible for nuclear excitation
in a plasma of the first isomeric state of235U, namely, NEET,
nuclear excitation by electron capture(NEEC) from the con-
tinuum, photoexcitation, and inelastic electron scattering.
The authors in Ref.[16] calculated the NEET rate for isomer
excitation and showed that 6p1/2-5d5/2 and 6d5/2−6p1/2 elec-
tronic transitions are resonant with the nuclear transition at,
respectively, 20 eV and 100 eV. The lower temperature as-
sociated with the 6p1/2−5d5/2 transition leads to a lower
NEET rate. Harston and Chemin concluded that the NEET
rate of the 6d5/2−6p1/2 atomic transition can be maximized
under plasma conditions. The main difficulty in such a cal-
culation lies in developing a good description of the atomic
properties and an accurate representation of the statistical
nature of the electronic spectrum. In plasma, the atomic con-
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figuration number may be very large. Taking into account
this large number of configurations requires that approxima-
tions be made in the atomic description. In Ref.[16], the
calculation was made in the multiconfiguration Dirac-Fock
formalism with a limited number of configurations. A
collisional-radiative model[17], describing the laser-induced
plasma, was used to get the population density in different
charge states. We present here a calculation of excitation
rates under the hypothesis of LTE. Such an approach allows
a description of the statistical nature of the plasma.

This paper will describe the NEET process in the frame-
work of the formal theory of reactions. This approach is
essentially based on a formal theory developed by Gold-
berger and Watson[18] and Cohen-Tannoudjiet al. [19] to
describe the properties of decaying states. The formalism is
time dependent and consequently describes the time evolu-
tion of the coupling between the atom and the nucleus. This
aspect is important in the present situation because an under-
standing of the NEET phenomenon in plasmas requires the
comparison of different characteristic times. One time scale
is that of the NEET process itself, and the others are associ-
ated with the hydrodynamic evolution of the plasma and the
time duration of the LTE regime. Finally, such an approach
has the added advantage of defining, in a consistent way, the
widths and the atom-nucleus coupling in terms of the el-
ementary interaction between the charged particles and the
electromagnetic field. A more formal approach has been
achieved[20,21]. This theoretical thermodynamic analysis,
considering the nucleus in contact with a thermal reservoir,
allows us to describe as a whole the interaction of the
nucleus with its environment. Our approach separates this
global calculation into a microscopic interaction, between
the nucleus and its electronic cloud, and the thermodynamic
aspect ruled by the plasma. That allows us to obtain a NEET
rate more easily usable for applications in a laser experiment.

We will investigate the most relevant hydrodynamic pa-
rameters, such as charge state, density, and temperature, to
obtain a good matching energy between the atomic and
nuclear transitions for the excitation of the first isomeric state
of 235U. As mentioned above, this calculation needs to take
into account the complexity of the atomic spectra. When the
spectrum becomes complex with many thermally available
excited states, the number of configurations rises dramati-
cally and statistical approaches must be used. In this case, an
average-atom description may be attractive because of its
simplicity. Nevertheless, it does not provide an accurate de-
scription of the atomic problem because the large number of
configurations tends to split the average-atom transition into
many components. Because each electron transition depends
on the whole configuration, which may be very different
from the average configuration, the average-atom formula-
tion may fail to describe the atomic spectrum. However, in
some cases, when the number of transitions is so high that
the energy difference between two consecutive configura-
tions is smaller than their widths, a strong overlap takes
place. Then, a statistical approach using the distribution of
the configurations around the average transition(obtained in
the frame of the average-atom model) is a good approxima-
tion. From this approach, we will derive NEET rates as a
function of density and temperature. At last, we will estimate
the 235mU number created in a laser plasma.

I. MICROSCOPIC PROBABILITY OF NEET

This section is devoted to the calculation of the probabil-
ity of populating a long-lived nuclear excited state through
its coupling with electronic transitions. The formalism pre-
sented here is an adaptation of the approach defined in Ref.
[18] to study the properties of decaying states as a function
of time. In this whole section, we will assume"=1.

The point of departure here is the relation which exists
between the time-dependent Schrödinger wave function
uCstdl and the Fourier transformfE+ ie−Hg−1 of the retarded
Green’s function. This relation has the simple form

uCstdl = −
1

2ip
lim
e→0
E

−`

+` 1

E + ie − H
e−iEtuCildE,

where the ket in the right-hand side corresponds to some
initial condition at timet=0.

The probability amplitudeJfistd of a stateuC fl in the total
wave function at timet is given by the scalar product

Jfistd = kC fuCstdl

= −
1

2ip
lim
e→0
E

−`

+`

kC fu
1

E + ie − H
e−iEtuCildE.

The probabilityPfstd that the system is in the final state “f”
at time t is then defined as

Pfstd =E uJfistdu2dr fsedde,

wheredr fsed is the number of statesf per energy unit.
Let us now define the total Hamiltonian which governs

the time evolution of our system composed of the nucleus-
atom system and the photon field. We write it in the form

H = Hs0d + VsrWd,

where

VsrWd = VC −E jWsrWd ·AW srWddrW,

Hs0d = HN
s0d + HA

s0d + Hg
s0d.

The three Hamiltonians inHs0d provide three complete
sets of states describing separately the nucleushNj, the atom
hAj, and the photon field hgj. The tensor product
hNj ^ hAj ^ hgj is assumed to be the product of eigenstates of
the three systems in the absence of the coupling represented
by the second term in the expression ofH. The interaction
VsrWd is the residual Coulomb interactionVC between the
electrons and the nucleus plus a radiation coupling term. In
the latter, the currentjWsrWd is the sum of the electronic and

nuclear currents denoted asjWesrWd and jWnsrWd, respectively, and

AW srWd is the photon field associated with these two currents.
For our purpose, it is convenient to split the complete

basis introduced above into two subsets by means of the
well-known projector method. Denoting byP andQ the pro-
jectors in the spaceshPj and hQj, the identity operatorI
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becomesI =P+Q. It is straightforward to introduce these op-
erators in the formalism developed in Ref.[18] and we will
only quote the results here.

After some manipulations using standard operator alge-
bra, we are led to the following expression:

JQPstd = −
1

2ip
lim
e→0
E

−`

+` e−iEtdE

E + ie − EQ
kCquRQPsE + ied

3GPPsE + ieduCil, s1d

representing the probability amplitude of any stateCq
P hQj in the total wave function at timet, starting from any
initial Ci P hPj. This expression involves the so-called “reac-
tion matrix” Rszd defined by

Rszd = V + VQ
1

z− Hqq
0 QRszd,

and a Green’s operatorGPPszd which is the inverse of opera-
tor Pfz−Hs0d−RszdgP. In this formalism, the operator
PfHs0d+RszdgP can be interpreted as an effective Hamil-
tonian governing the propagation of the initial condition in-
side the spacehPj. From the definition ofRszd it is clear that
it takes into account the coupling with all the degrees of
freedom in spacehQj. The analytic properties of the Green’s
function and ofRszd have been studied in details by the
authors of Ref.[18]. These properties are not only of great
importance for the evaluation of the integrals as defined by
Eq. (1) but they also provide valuable information on global
physical quantities whose role is essential in the theory. The
arguments of the authors in Ref.[18] are directly applicable
to our case, and consequently we are content to summarize
their findings.

Under general conditions on the potential, the matrix ele-
ments ofGPPszd andRszd are analytic functions in the entire
z plane, except for real values ofz in the continuous spec-
trum of H. Their domain of analyticity is defined here by the
conditions 0,argszd,2p, assuming for simplicity that the
continuum starts at zero. Another property concerns the ana-
lytic continuation ofGPPszd for −2p,argszd,0. This func-
tion is expected to have singularities in the lower half plane
which suggests that integral in Eq.(1) may be most easily
evaluated by deforming the contour as described in Ref.[18].
The new contour is composed of small circles enclosing the
poles and a contour, denoted byC3, whose contribution can
be neglected under reasonable assumptions. The evaluation
of Eq. (1) is then reduced to a simple calculation of residues.
This formal theory of decaying states is exploited in the
simple model that we describe now.

The spaceP introduced above is spanned by the two
states that are supposed to be coupled in the NEET process.
We denote them asuC1l= uc1w1l and uC2l= uc2w2l. They are
built with the two atomic excitationsuw1l, with energye1,
and uw2l, with energye2se1.e2d, and the two statesuc1l,
with energyE1, and uc2l, with energyE2, corresponding to
the ground state and an isomeric state of the nucleus, respec-
tively. For convenience, we designate byEi

i =Ei +ei the ener-

gies of the statesuCil= uciwil and define the mismatchd be-
tween the nuclear and atomic transitions through the simple
relation

d = E1
1 − E2

2 = De − DE. s2d

Now, since we are interested in the probability of populating
a long-lived nuclear isomeric state(denoted here byc2),
starting from the initial conditionuC1l= uc1w1l, we must cal-
culate the amplitude given by Eq.(1) with any final state in
Q containingc2. It is denoted byuCql= uc2cl where the index
c characterizes all open channels into which the stateuC2l
= uc2w2l may decay through the matrix element
kc2cRsEduC2l. Thus, the probability amplitude defined by Eq.
(1) is given, in this case, by the integral

J2c,1std =
1

2ip
lim
e→0
E

−`

+` dE

E + ie − e2c
kc2cuRsE + ieduC2l

3kC2uGPPsEduC1le−iEt, s3d

where e2c denotes the energy of the final state. The total
probability of populating the nuclear excited state is then
given by summing over all possible final states:

P2std = o
c
E uJ2c,1stdu2drcse2cdde2c. s4d

As mentioned above, the matrix elements of the Green’s
function GPPsEd are given by the inversion of the matrix
defined by

ki uz− Hu jl = sz− Ei
id di j − kCiRszduC jl.

In this simple modelP is a two-dimensional space and, con-
sequently, the inversion is straightforward. The result is

Gijszd =
s− 1di+j

fz− E+szdgfz− E−szdg
fsz− Ei

id di j − kCiuRszduC jlg.

s5d

Equation(5) can be expressed conveniently in term of physi-
cal quantities by means of the relation given in Ref.[18],
namely,

lim
«→0

RiisE + ied = DisEd − i
GisEd

2
.

The real and imaginary parts reflect the fact that states in
P are perturbed by their coupling with spacehQj. The quan-
tity DisEd is their energy shift andGisEd provides the rate of
decay into the spacehQj. With these definitions, the quanti-
ties E±szd in Eq. (5) are given by

E±szd = 1
2fEMszd ± ÎED

2 szd + 4uR12szdu2g

with

EMszd = 2 fEav + D1szd + D2szdg − ifG1szd + G2szdg,

EDszd = 2 fd + D1szd − D2szdg − ifG1szd − G2szdg,
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Eav =
E1

1 + E2
2

2
.

After inserting into Eq.(3) the matrix elements of the
Green’s function, given by Eq.(5), the probability amplitude
finally takes the form

J2c,1std =
1

2ip
lim
e→0
E

−`

+` dE

E + ie − e2c

kc2cuRsE + ieduC2l
fE − E+sEdgfE − E−sEdg

3kC2uRsEduC1le−iEt.

According to our general discussion, this integral is ap-
proximated by the residues at the poles located in the nega-
tive imaginary half plane. One pole is obviouslye2c and the
others are solutions of the equationszp

±=E±szp
±d with

−2p,argszp
±d,0. In this application, the conditions

Di

Eav
! 1,

Gi

Eav
! 1,

2uR12sEavdu
uEDsEavdu

! 1,

are satisfied. As a result, the two polesz0
± closest to the real

axis are given by

z0
± . Eav ±

d

2
− i

G±

2
,

G+ = G1,

G− = G2.

Only the contribution of these three polesse2c,z0
+,z0

−d is
kept in the evaluation of the probability amplitude. After
introducing this contribution into Eq.(4), we obtain the prob-
ability of exciting the isomeric level by NEET after timet.
Although not essential, we make the reasonable assumption

R12SEav ±
d

2
D . R12sEavd

in order to simplify the calculations. The final result is

PNEETsd,td =
uR12u2

d2 + SG1 − G2

2
D231 − e−G2t +

G2

G1
s1 − e−G1td

−
G2sG1 + G2d

d2 + SG1 + G2

2
D2

+

2G2e
−sG1 + G2dt

2
cossd + fd

Îd2 + SG1 + G2

2
D2 4 s6d

with

tanf =
2d

G1 + G2
.

This expression reaches an asymptotic value with a charac-
teristic time given by the exponentials

tNEET=
1

G1
or tNEET=

1

G2
. s7d

This asymptotic value reduces to the usual expression[2]

PNEETsd,t = `d = PNEET
` sdd =

uR12u2

d2 + SG1 + G2

2
D2S1 +

G2

G1
D .

s8d

It is a Lorentzian shape as a function of the mismatchd, with
a half-width

G =
G1 + G2

2
. s9d

In this expressionG1 andG2 are the widths of the electronic
configurations which in this formalism are given by

Gi = 2po
c
E uR2c,isecdu2drcsecddec. s10d

In the case of an isolated atom the main contribution to
the widths comes from the radiative decay of the electron
configurations, corresponding to the first-order term in the
expansion of the reaction matrix, or more complicated pro-
cesses such as the Auger effect(second order) for instance.
In plasmas the situation may be quite different. There is an-
other source of decay of the electron configurations due to
their collisions with free electrons. As the density in the
plasma is quite high, the widths associated with such colli-
sions are much larger than those previously mentioned. Fur-
ther expressions for these widths will be found below in Sec.
IV.

It remains to derive the expression for the nondiagonal
matrix element ofRsE+ ied, which characterizes the coupling
between the atomic and nuclear transitions. This is achieved
by expanding the reaction matrix up to second order:
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kC1uRsE + ieduC2l = kC1uVuC2l

+ kC1uVQ
1

E + ie − Hqq
s0dQVuC2l.

s11d

Only the Coulomb interaction between the atom and the
nucleus contributes to the first-order term. In the second-
order term, only the radiation coupling contributes. For rea-
sons given above, this matrix element is evaluated atE
=Eav and, consequently, Eq.(11) reduces to

kC1uRsEav + ieduC2l = kC1uVCuC2l

+E vdv

4pR
o

L,M,p
Te,s12d

LMp TN,s21d
LMp*

33 1

d

2
+ vN − v

−
1

d

2
+ vN + v4 ,

s12d

where

Te,s12d
LMp =E kw1u jesrWdALM

p srWduw2ldrW,

TN,s21d
LMp =E kc1u jNsrWdALM

p*
srWduc2ldr8W ,

vN = E2 − E1.

It is worth mentioning that in the point-nucleus approxi-
mation, the Coulomb term is exactly canceled by a static
contribution coming from the second term. Notice also that,
due to the presence of the energy mismatchd, expression(6)
for PNEETdiffers from the usual one obtained from the theory
of internal conversion. To our knowledge, this aspect has not
been accounted for in all previous calculations of the NEET
process. A short appendix devoted to expression(12) is at the
end of this paper.

The probability given by Eq.(6) is relevant to a plasma at
LTE, characterized by its temperatureT and densityr. The
quantities occurring in the definition of the NEET probability
are well defined and depend uponr andT. Furthermore, by
means of a statistical model one can estimate the number of
atoms which contain the electronic configurations of interest
for the NEET process. By taking this number as the initial
condition, one obtains directly the number of excited nuclei
at any later time(that does not exceed the time duration of
the plasma). It is worth recalling that the atom-nucleus cou-
pling is weak compared to the electronic and radiative pro-
cesses and consequently has no significant influence on the
equilibrium. We postpone the discussion to Sec. V where it is
shown how this probability is used to derive an equivalent
excitation rate in plasma, in spite of the fact that the expres-
sion for PNEET in Eq. (6) contains an oscillatory term.

II. ATOMIC CALCULATIONS

One of the most critical issues in the study of the NEET
process is the mismatchd defined in Eq.(2) above, which
characterizes the resonance. This quantity may vary greatly
with the density and temperature of the plasma. An estimate
of its average value can be obtained with a relativistic
average-atom model. This model, first proposed by Rozsnyai
[23], is based on an iterative method and assumes thermody-
namic equilibrium. The model solves the Dirac-Fock equa-
tion for bound electrons, assuming the atom is in a spherical
box with a radius dictated by the density. The self-consistent
treatment starts with the relativistic Thomas-Fermi-Dirac
model in the iterative procedure. The free electrons are
treated statistically by means of the Fermi-Dirac distribution.
The average-atom description is attractive because of its
computational simplicity and because it provides a good rep-
resentation of the plasma properties.

The average-atom model is the first step in extracting the
region of interest in terms of density and temperature. For a
given density and temperature, and for each electronic shell,
the atomic calculations produce a binding energy, an ioniza-
tion number, a population, and the associated electronic
bound-state wave functions. These electronic wave functions
are then used to build the many-electron wave function in the
form of Slater determinants describing the average configu-
ration. In such a configuration, the occupation numbers of
electronic orbitals may be noninteger.

In the framework of the average-atom model, the expres-
sion for a transition energy is not straightforward: it can be
obtained from the total energy of a real configuration con-
structed from a set of degenerate shells, withNk being inte-
ger electrons in each shell, such as in Ref.[32],

EsCd = o
k

UkNk +
1

2o
k,

Vk,NksN, − dk,d,

where Uk contains the averaged kinetic energy and the
electron-nucleus interaction in thekth orbital andVk, con-
tains the direct and the exchange coulomb interaction be-
tween an electron in orbitalk and an electron in orbital,.
The 1

2 coefficient prevents double counting of the correla-
tions, anddk, ensures the correct correlation between an
electron in shellk with the Nk−1 others in the same shell.

Let us now consider the transition in which an electron
from shell i is transferred to shellf. To get the transition
energy, we define a spectator configurationC* which is the
total configuration less the two states in shelli and f in-
volved in the transition. Then, by expressing the total con-
figuration energy as a function of the spectator configuration
energy, it is straightforward to estimate the energy difference
between the configuration after and before the transition:

De = ēi
0 − ē f

0 + Vifspi − pfd + o
k

sVik − VfkdsNk
* − N̄k

*d,

whereNk
* (and N̄k

*) is the population(and its mean value in
the average atom model) of the k shell in the spectator’s
configuration,ēi

0 and ē f
0 are the leveli and f energy in the

average-atom model, andpk is the occupation probability of
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the k orbital given by the Fermi-Dirac statistics:

pk =
1

1 + expS ēk
0 − m

kT
D ,

wherem is the chemical potential.
In the case of the average-atom model, the deviation from

the mean value in the summation is zero and the expression
of De reduces to

Dē = ēi
0 − ē f

0 + Vifspi − pfd.

Following the definition(2), the average atom mismatch be-
tween the atomic and nuclear transitions is then obviously
defined by

d̄ = Dē − DE. s13d

We investigate relevant energy-matching atomic transi-
tions in the case of the isomeric level of235U, located at

76.8 eV. We have plotted in Fig. 1 the isovalues ofd̄ in the
density-temperature map for the 6d5/2-6p1/2 and 6p1/2-5d5/2
atomic transitions of a uranium ion. Two valleys relative to a
set of density-temperature points, corresponding to the
6d5/2-6p1/2 and 6p1/2-5d5/2 transitions under matching condi-

tions sd̄,0d, can be extracted. It is clear that the best match-
ing can be realized under different conditions of temperature
density. Figure 2 represents the isovalues of uranium charge
state in the density-temperature map. The best matchings for
the 6d5/2-6p1/2 and 6p1/2-5d5/2 transitions are, respectively,
aroundZ* =21+ and Z* =11+. However, optimizing the mis-
match is not the only criterion for NEET transitions. One
must also look at the probability to find at least one electron
in the initial electronic shell and one hole in the final elec-
tronic shell. Figure 3 shows the occupation number of the
6d5/2, 6p1/2, and 5d5/2 atomic shells, as a function of density,
along both valleys of minimum mismatch in thesr ,Td map.
The 6d5/2-6p1/2 transition seems to be more favorable than

the other one. Furthermore, the occupation number increases
with density, thus implying that the NEET rate may vary
along the zero mismatch valley.

III. THE ATOM-NUCLEUS MATRIX ELEMENT

The coupled atom-nucleus matrix elementsuR12u2 in-
volved in Eq.(8) are also calculated in the framework of the
average-atom model. For a nuclear transitionEL, between
nuclear states with spinsjg and je, we have(a more detailed
development is given in the Appendix)

uR12sddu2 = 4pavN
2SvN +

d

2
D2L 2je + 1

L2f„2L + 1d ! ! …2

3S jg je L

1/2 − 1/2 0
D2

uRn1k1n2k2
u2BsELd,

where a is the fine-structure constant andRn1k1n2k2
is the

radial electronic matrix element for an electric transition of
multipolarity L defined by

Rn1k1n2k2
=E hLsg1g2 + f1f2dhLsvNrd + fsk1 − k2 − Ldg1f2

+ sk1 − k2 + Ldf1g2ghL−1svNrdjdr

Here k1 and k2 represent the relativistic quantum numbers,
g1, g2, f1, andf2 are the large and small radial components of
the initial and final atomic wave functions, andhL is the
Hankel function of the first kind.

BsELd is the reduced nuclear matrix element rate, in Weis-
skopf units(W.u.). For the235U transition, fromjg=7/2− to
je=1/2+, we deduced from the internal coefficientaE3 given
by Band and Trzhaskovskaya[24] and from the lifetime of
the isomert1/2

FIG. 1. Mismatchd̄ for the 6d5/2-6p1/2 (left) and 6p1/2-5d5/2

(right) transitions.

FIG. 2. Average charge state of LTE uranium plasma across the
sr ,Td plane.
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BsE3d =
1

2jg + 1
uk jeiMNsE3di jglu2

= 1.53 10−19S 197

EsMeVdD
7 ln 2

t1/2s1 + aE3d

= 0.069 W.u.

The coupled atom-nucleus matrix element is a slowly
varying function of the density along the resonance valley.
Its value is<1.9310−18 eV2 for the 6d5/2-6p1/2 transition
and<0.6310−18 eV2 for the 6p1/2-5d5/2 one.

The matrix elementuR12u2 is larger when the initial and
final levels are in the same layer(as defined by the electronic
principal quantum numbern) because the wave function
overlap is larger. Moreover, Fig. 3 shows that occupation
numbers are more favorable for the 6d5/2-6p1/2 transition
than for the 6p1/2-5d5/2 one. Therefore, we will concentrate
on the 6d5/2−6p1/2 transition.

IV. WIDTHS AND CHARACTERISTIC TIMES

Different widths and characteristic times are of paramount
importance when dealing with the NEET process. According
to the above calculations, the evolution of a nucleus-atom
system with an initial electronic configuration favorable to
the NEET process takes place within a very short time frame.
The NEET probability reaches an asymptotic maximum
within a characteristic time given by the collision widths, as
given by Eq.(7). Another important feature is the variation
of the transition energy mismatch. Indeed, we have to check
that the mismatch does not change significantly during the
evolution of the system leading to the excitation of the
nucleus by the NEET process.

A. Collision time

The general expression for the electronic configuration
width (10) may be expressed in the particular case of con-
tinuum electron collisions with the help of the general work
of Baranger[25], and the more detailed applications de-
scribed in Refs.[26,27]. The collision width of the atomic
configuration may be written as

Gcol = a2"c
4Î2

3Î3
p3/ 2NeÎmec

2

kTe
fkf1ur2uf1l + kf2ur2uf2lg,

whereNe is the electron density, andf1 andf2 are the wave
functions of the two atomic shells involved. This formula is

obtained in the impact approximation assuming that the col-
lision time is much smaller than the time required for an
atomic transition. In addition, the collisional width uses a
Maxwellian electron distribution. As the electronic collision
is the fastest process involved in the equilibration of the
electronic populations, this leads to a collision time ex-
pressed as

tcol =
"

Gcol
.

For the two atomic transitions of uranium, Fig. 4 shows
the variations of the collision width along the valley of per-
fect matching. These widths correspond to characteristic
times always smaller than 10−13 s.

B. Hydrodynamic calculations

The main advantage in studying the NEET effect in a
plasma is the large number of readily formed atomic con-
figurations with an electron in the upper level and a hole in

the lower one withd̄<0 in the appropriate temperature-
density regimes. This condition can only be obtained for long
durations in a laser-heated plasma. Therefore, we will restrict
ourselves to these types of plasmas as they are the most
convenient for the desired range of temperatures.

The main drawback is the highly nonstationary nature of
those plasmas. Therefore, we need to follow the time depen-
dence of different parameters. We have made such calcula-
tions using a radiative hydrodynamic Lagrangian bidimen-

FIG. 3. Average atom occupa-
tion numbers vs density along the
minimum mismatch valleys of
6p1/2-5d5/2 (left) and 6d5/2-5p1/2

(right) transitions in the sr ,Td
map.

FIG. 4. Collision width as a function of density along the valley
d=0.
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sional code simulating the laser matter interaction. The
plasma is simulated by a single fluid with nonhomogeneous
ionic and electronic temperatures. These need not be at ther-
modynamic equilibrium with the radiation. In addition to the
mass, momentum, ionic, and electronic energy conservation
laws, the code solves the radiative intensity transport equa-
tions, with a coupling term linking radiative and electronic
equations, to simulate photon absorption and emission in
matter. The electron heat flux is calculated using the heat
conductivity given by Spitzer[28]. This flux must not exceed
the free-streaming limit

f limneTeÎTe

me
,

where f lim is an adjustable parameter taken at 0.13 in our
calculations. The calculation presented here corresponds to a
laser intensity of 1014 W/cm2, with a wavelength l
=1.06mm, a pulse duration of 1 ns, a spot size of 1 mm in
diameter, and a very sharp shape(nearly similar to a square
pulse). The intensity was optimized to get the LTE area in
favorable conditions for the NEET process associated with
the 6d5/2-6p1/2 transition.

The temperature and total density profiles relative to the
maximum beam power are plotted in Fig. 5, as a function of
target materia depth. The laser beam penetrates into the tar-
get from the right, where the matter is hotter. The laser-
matter interaction occurs deeper and deeper in the target until
critical density has been reached. The critical density, at
which the laser light is reflected, is inversely proportional to
the square of the laser wavelength. For the low density in
this area, electrons, ions, and radiation are in a nonthermo-
dynamic equilibrium state with three different temperatures.
At higher density and lower temperature, the LTE regime
takes place in the absorption-reemission area(just beyond
the critical density). This reemission zone is heated by the
successive absorptions and reemissions, inside the reemis-
sion zone, of the soft x rays first emitted in the conversion
layer where the laser energy is absorbed. Usually, most of the
studied laser plasmas are in the nonlocal thermodynamic
equilibrium regime. The high opacity of the LTE area due to
its high density precludes accurate or detailed observations

of events occurring in the absorption-reemission area. How-
ever, the reemission zone has a much larger mass than the
conversion layer and that is why it is of more interest in our
study. The laser characteristics, in terms of energy, spot size,
and duration, have been chosen to optimize the size of the
LTE area, where most NEET effects occur.

These hydrodynamic calculations allow us to follow the
variation of plasma temperature and density. As the mis-
match depends on the temperature and density, it is then
possible to know the evolution of the mismatch in the re-
emission zone as a function of time.

C. Mismatch variations

The main parameter influencing the microscopic NEET
probability is the energy mismatchd. The validity of the
whole calculation performed in Sec. I, especially the NEET
probability as a function of time given by Eq.(6), implies
that the mismatch variation is small during the timetNEET
needed to reach the asymptotic value. This variation is

dd

dt
tNEET=

dd

dt

"

G
.

The amplitude of these variations must be less than the
half-width G of the Lorentzian ofPNEET

` given by the Eq.(9)
for the asymptotic value to be stationary. Therefore the fol-
lowing condition must be met:

dd

dt

"

G
! G ⇔

dd

dt
!

G2

"
. s14d

The atomic evolution is controlled by the plasma expan-
sion. In a laser plasma, the mismatch variations are induced
by the variations of the density and the temperature. We use
a hydrodynamic calculation to get the mismatch variation.
The derivative of the mismatch over time is

dd

dt
=

] d

] r

] r

] t
+

] d

] T

] T

] t
.

The derivatives of the mismatch over density or tempera-
ture have been obtained with the average-atom model. Den-
sity and temperature derivatives over time are calculated by
the hydrodynamic model described in Sec. IV B. The time
variation of the derivative of the mismatch is shown in Fig.
6. In the region of interest, the derivative of the mismatch
over the time satisfies the relation

Udd

dt
U ø 1 eV/ns.

So we can deduce from Eq.(14) a condition on the half-
width:

G . 10−3 eV.

For both transitions of interest, Fig. 4 shows that this con-
dition is always fully met. This implies that the stationary
conditions required by the calculations of Sec. I are verified.
Thus, the microscopic NEET probability given by Eq.(6)
may be used. Figure 7 shows the evolution in time of the

FIG. 5. Temperature and density profiles in uranium at
1014 W/cm2.
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microscopic NEET probability under stationary thermody-
namic conditions. Moreover, the asymptotic value has been
reached before the mismatch and other atomic physics re-
lated quantities have changed. Therefore, we are able to use
the asymptotic expression(8) in our evaluations of the NEET
rate in the plasma.

V. NEET EXCITATION RATE IN A PLASMA

A. The NEET rate

The different characteristic times described in Sec. IV al-
low us to express a NEET rate in the plasma. Since the
microscopic NEET time is much less than the mismatch
variation characteristic time, it is possible to use the
asymptotic value of the microscopic NEET probability given
by Eq. (8). Furthermore, the hydrodynamic conditions vary
even more slowly, so that the NEET rate can be evaluated
using stationary thermodynamic conditions.

The probability of transition by the NEET process, from
an initial atomic configurationa to a final atomic configura-
tion b, can be expressed as

laPNEET
` sdabd,

where l a is the initial configuration decay rate, which, at
LTE, is also its creation rate. It is directly related to the width
of the initial configuration by

la =
Ga

"
.

From the asymptotic NEET probability(8), the NEET rate
of isomer creation may be written as a sum over all initial
and final configurations:

lNEETsr,Ted = o
a,b

Pasr,TedlaPNEET
` sdabd.

wherePa is the initial configuration probability.
At LTE Pa is given by

Pasr,Td =
1

ZG
Da exp1−

Ea − m o
i=1

kmax

pai

kT
2 ,

wherepai is the population of thei bound shell of the ion
with the configurationa. Da is the degeneracy of the con-
figuration,Ea its energy,kmax is the total number of occupied
shells, andZG is the normalization factor. If we substitute the
NEET transition probability of Eq.(8), the NEET rate be-
comes

lNEETsr,Ted = o
a,b

Pasr,Ted
Ga

"

uRabsddu2

dab
2 + SGa + Gb

2
D2S1 +

Gb

Ga
D .

In this last expression, every single real configuration is
taken into account. The huge number of different configura-
tions precludes any exact calculation and so only a statistical
approach can be used to describe the complexity of the
atomic spectrum. Under LTE conditions, the atomic-
configuration distribution around the average atom configu-
ration corresponds to a mismatch distributiondab around the

average atom mismatchd̄ given by Eq.(13). As the number
of configurations is very large, the transitions are closely
spaced and a strong overlap takes place. So, we can replace
the discrete summation over the real configurations by an
integral over a statistically broadened averaged transition ap-
proximated by a Gaussian distribution[29–33]. The varia-
tions of the matrix element and the widths as a function of
the mismatch are assumed to be small and their values are
calculated within the framework of the average-atom model
for an electronic transition, from shell 1 to shell 2(6p1/2

FIG. 6. Mismatch and its derivative as a function of time for
6d5/2-6p1/2 transitions in the region of interest.

FIG. 7. Microscopic NEET
probability vs time for the reso-
nant 6p1/2-5d5/2 (left) and 6d5/2

-6p1/2 (right) transitions.
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−5d5/2 or 6d5/2−6p1/2). Finally, we assume that the statisti-
cally averaged transition lies between two atomic shells
whose populations are given by the average-atom model.

Thus we can write

lNEETsr,Ted = D1p1s1 − p2dE
−`

+` G1

"

1

u2 + SG1 + G2

2
D2

3S1 +
G2

G1
D uR12sd̄du2

Î2ps2
e−su − d̄d2/ 2s2

du,

whereDi is thei shell degeneracy andpi its occupation prob-
ability.

The energy variances, defined in Ref.[31], describes the
dispersion of the electronic transition energy of real configu-
rations around the average-atom value:

s2 = o
i,j

S ] d̄

] pi
D

pj

S ] d̄

] pj
D

pi

kDpiDpjl.

The order of magnitude of the energy variance is around a
few eV, much larger than the collision widthsG1 and G2.
Therefore, the integral above can be approximated by its
value atu=0. The final NEET rate is

lNEETsr,Ted =
2p

"
D1p1s1 − p2duR12sd̄du2

1
Î2ps2

e−d2/2s2

.

s15d

This rate does not depend on the collision widthsG1 and
G2. It can be easily understood if one considers that these
widths are those of the individual atomic transitions. They
are completely merged within the statistical average transi-
tion characterized by the single widths.

Figure 8 shows the map of the NEET rate of the excitation
of the first isomeric state of235U. We clearly see the two
favorable zones for the NEET effect corresponding to 6p1/2
-5d5/2 and 6d5/2-6p1/2 electronic transitions in agreement
with Ref. [16]. For a given density, the variation oflNEET as
a function of the temperature shows important fluctuations.
For instance, at 1 g/cm3 the NEET rate goes from 10−6 to
2310−4 s−1 depending on the temperature. For a given tem-
perature, the variation versus the density of the NEET rate
may be as important. These variations closely follow the

evolution of the mismatch shown in Fig. 1. The intensity of
the lNEET is then given by the probability to find an electron
on the upper shell and a hole in lower shell.

In a plasma, other processes may compete with the NEET
mechanism: resonant photon absorption, inelastic electron
scattering, and inverse internal conversion(also known as
nuclear excitation by electron capture). We have made esti-
mates of these different processes in the thermodynamic re-
gion where the NEET calculation was performed.

The first mechanism, resonant photon absorption, strongly
depends on the radiation temperature. At the resonance, for a
photon energy of 76.8 eV, the cross section is about
10−33 cm2. With a Maxwellian photon distribution around
100 eV, the resulting photoexcitation rate is extremely low,
about 6310−25 s−1.

The second mechanism, the so-called inelastic electron
excitation, depends on the electron energy and, thus, on the
plasma temperature. In Ref.[16], the inelastic electron rate
was estimated, in the framework of the Born approximation,
as 10−16 s−1 for an electron temperature of 100 eV. However,
in a laser-created plasma, the electric field of the laser beam
may cause electrons in the target plasma to oscillate and the
laser beam can couple to collective modes. The thermaliza-
tion of this absorbed energy is far from being complete and
the creation of suprathermic electrons is possible. A tempera-
ture may be associated with that electronic component, de-
pending on the intensity and the wavelength of the laser
light. An empirical expression for this temperatureTe

hot was
proposed by different authors[34,35]:

Te
hot < 10−5sILlL

2d0.4,

where Te
hot is expressed in keV,IL is the laser intensity in

W/cm2, andlL its wavelength inmm.
These suprathermic electrons can excite energy levels be-

yond the isomeric state. With an intensity of 1014 W/cm2

and a wavelength of 1.06mm, the suprathermic electronic
temperature lies around 4 keV. 10% of these electrons have
an energy greater than 13 keV allowing the excitation of the
level located at 13 keV(with spin and parity 3/2+). This
level decays down to the isomer with a 100% branching
ratio. However, the excitation of the 13 keV level by anM2
transition is also difficult and its contribution to the excita-
tion rate of the isomer is very low.

The last excitation mechanism, NEEC, is the most effi-
cient of these other excitation mechanisms. By using the mi-
croreversibility at LTE, it is possible to extract a NEEC rate
from the internal conversion rate. This last rate needs to be
modified by using the electron occupation probabilities on
each atomic shell allowing internal conversion. A more de-
tailed treatment of this process will be given in a later pub-
lication [36]. On the whole density-temperature map of in-
terest, the NEEC rate never exceeds 10−6 s−1, which is
smaller than our calculated NEET rate.

B. Validity of the NEET rates in a plasma

As mentioned above, our NEET rates are valid at the ther-
modynamic equilibrium. A question arises regarding the va-
lidity of the LTE hypothesis in the plasma region of such

FIG. 8. Rate of NEET across thesr ,Td plane.
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densities and temperature. During laser-plasma interaction,
atoms in the reemission zone are heated by thermal x rays
coming from the conversion area where the laser energy is
absorbed. This reemission zone is optically thick for x rays
and therefore radiates blackbody radiation. The temperature
evolves slowly inside the reemission zone which can be con-
sidered in equilibrium with a thermostat whose temperature
is given by the absorbed laser energy. To delimitate this area,
a LTE criterion was proposed by Griem[38,39], using the
ionization energyEz of chargez:

ne ù s1 3 1014 cm−3dTe
3SEz

Te
D5/2

.

It shows that for a temperature greater than 30 eV and a
density greater than 0.1 g/cm3, the LTE hypothesis is valid
over the whole density-temperature map covered in the
Fig. 8.

The Thomas-Fermi approximation used to calculate the
free electron density in the averaged atom model may be not
accurate for temperatures below 40 eV. This error is difficult
to quantify. However, it is irrelevant in our study because the
maximum of the NEET rate occurs at a temperature higher
than 40 eV.

The comparison of the calculated NEET rates with experi-
mental data is difficult because in each case we need to de-
scribe the plasma dynamics with a good accuracy. The exci-
tation rate greater than 1 s−1, obtained by a Japanese group
[12], is clearly too high to be reproduced by our calculations.
However, studies done in Refs.[13,40] show that the mea-
sured electrons in such an experiment may originate from a
purely solid-state physics effect. On the other hand, the ex-
perimental limit on the excitation rate 10−3 s−1, obtained in
Refs.[14,15], is consistent with our calculations.

The NEET rate is low and never greater than 10−3 s−1.
The number of isomers produced in such an experiment is
difficult to predict because it depends on the description of
the temperature and density of the plasma a long time after
the laser pulse. In hydrodynamic codes, the cooling down of
the plasma is hard to describe[37], and precise calculations
are currently out of reach. However, we can estimate the
number of isomers created in the thermodynamic conditions
described in Sec. IV B.

C. Isomer production

The global rate of isomer creation per time unit is ob-
tained by integrating the local NEET isomer creation rate
over the whole plasma volume:

dNiso

dt
=E dnisosrWd

dt
drW

with

dnisosrWd
dt

= lNEETsr,TdnU5srWd

andnU5srWd is the uranium density.
Each point in the plasma is well characterized by a den-

sity r and a temperatureT. For a sr ,Td couple there corre-

sponds ad-mismatch value. Therefore, we can replace the

variablerW by d̄ under the integral. So, we can write

dNiso

dt
=E lNEETsr,TdNU5st,d̄ddd̄

if we defineNU5st , d̄d as the number of235U per mismatch
unit in the whole plasma volume. The number is shown in

Fig. 9 as a function of the mismatchd̄. The number of ura-

nium atoms per mismatch unit, aroundd̄=0, is nearly con-
stant within as range of few eV and amounts to about

1015 eV−1. This d̄-dependent law suggests that the use of the

average-atom model is justified. AsNU5st , d̄d is independent

of d̄ aroundd̄=0, we can integrate equation overd̄ by fac-
torizing NU5 out of the integral. So we can write:

dNiso

dt
=

2p

"
D1p1s1 − p2duR12sd̄ = 0du2NU5st,d̄ = 0d.

Using D1p1s1−p2duR12u2<10−19 eV2, we get

Niso < 1012 s−1 3 Dt,

whereDt is the duration of the plasma, assumed be around
10 ns, for a laser duration of 1 ns. This gives a number of
isomers created during the plasma expansion which never
exceeds 104, and a uranium isomer activity lower than 4 Bq
at the beginning of the measurement. A successful measure-
ment requires an isomer number two or three orders of mag-
nitude higher. Even by modifying the experimental condi-
tions, such as the size of laser spot or the laser intensity,
reaching such a number seems unlikely.

All this work has been done assuming a direct laser attack
on a uranium target. We can also imagine an indirect drive,
in a uranium-gold cavity, to make the radiative temperature
confined in thehohlraumfor a time long enough to produce
the NEET process. A temperature of a few hundred eV can
easily be reached with a laser power lower than for a direct
attack. Such a calculation can be performed to improve the
understanding further of NEET.

FIG. 9. Number of235U per mismatch unit vsd for one laser
beam.
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Whatever the experimental technics used, the235U NEET
rate is very low. This is mainly due to the nuclear part of the
matrix element. To test our model, we need to find a candi-
date with a more favorable nuclear transition. In this context,
we considered the excitation of the first state of193Pt located
at 1.642 keV. It decays down to the ground state by anM1
transitionst1/2=9.7 nsd. We found that the 5s1/2−4s1/2 atomic
transition is resonant for a LTE plasma temperature around
1 keV or 2 keV, giving a NEET rate greater than 106 s−1.
However, the difficulty lies in detecting the excited platinum
nucleus as it decays through a strongly converted transition
whose lifetime is nearly the same as the plasma. Moreover,
we need to create a LTE plasma at about 1 keV. In the fu-
ture, with the advent of the intense lasers, the creation of
such a plasma will certainly become feasible.

CONCLUSION

We have described the microscopic dynamics of the
NEET probability and shown, for the first time, to our
knowledge, that the vertex describing the coupling between
the atomic and nuclear transition for the NEET effect is dif-
ferent from that of internal conversion. For a dense plasma,
this microscopic NEET probability reaches an asymptotic
value after a very short time, which is the characteristic time
associated with the free electrons collisions with the atom.
This asymptotic probability is exactly the NEET probability
usually found in a more simple model. This NEET probabil-
ity is then used to derive an excitation rate in the plasma,
calculated on asr ,Td map, under the hypothesis of local
thermodynamic equilibrium. This is made possible by the
slowly varying thermodynamic conditions and atom physics

description. The NEET rate varies sensitively with thermo-
dynamic conditions. We have presented a study of the exci-
tation of the first isomeric state of235mU by the NEET effect.
The maximum isomer production areas are around 110 eV
and 35 eV for a density of 0.1 g/cm3. They correspond to
the resonant atomic transitions 6d5/2-6p1/2 and 6p1/2-5d5/2.
However, the excitation rates for235U are too low to perform
an experiment and we propose to carry on this study with
193Pt, which seems to be a more promising candidate.
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APPENDIX

According to Eq.(12), the atom-nucleus coupling can be
expressed as

kC1uRsEav + ieduC2l

= − 8E dvv2 o
L,M,p

Te,s12d
LMp TN,s21d

LMp*3 1

v2 − Sd

2
+ vND24 .

Only electric transitions are considered in the present appli-
cation and consequently this matrix element becomes

− 8E dvv2

o
L,M
E kw1u jWesrWdALM

E srWduw2ldrWE kw1u jWNsrW8dsALM
E d*srW8duc2ldrW8

v2 − Sd

2
+ vND2 . sA1d

The coefficientsALM
E srWd are the electric components in the

multipole expansion of the potential vector:

ALM
E srWd =

1

vÎLsL + 1d
¹W 3 LW jLsvrdYLMsVW d.

Inserting this expression in Eq-(A1), the integration over
v can be performed using the identity given in Ref.[22]:

E
0

` 1

v2 − b2 jLsvrd jLsvr8ddv

= i
p

2b
jLsbr,dhLsbr.d −

p

2s2L + 1db2

r,
L

r.
L+1 ,

whereb=vN+ d/2, r, is the smaller ofr andr8, andr. the
larger.
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Now, if we make the point-nucleus approximation, the
integrations over the volumes of the nucleus and atom can be
performed separately. Furthermore, as previously mentioned,
the second term of Eq.(11) cancels exactly the static contri-
bution of the coulomb interaction. Thus within such an ap-
proximation we obtain

kC1uRsEav + ieduC2l = − 4i
p

bLsL + 1d
.

o
L,M
E kw1u jWesrWd ·¹W 3 LWhLsbrdYLMsVW duw2ldrW

3E kc1u jWNsr8W d¹W 3 LW jLsbr8dYLM
* sVW duc2ldr8W

The long-wavelength limit yields the following expres-
sion for the nuclear part:

E kc1u jWNsrWd ·¹W 3 LW jLsbrdYLM
* sVW duc2ldrW

=
L + 1

s2L + 1d ! !
vNbLs− 1dI1−M2S I1 L I2

− M1 − M M2
D

3kI1irLYLiI2l

As for the electronic contribution it is calculated with so-
lutions of Dirac’s equation. Since the electronic orbits con-
sidered here are bound, an additional radial quantum number
“n” is needed to specify the electron configurationunkml.
The total angular momentumj is related tok through the
relation

j = uku − 1
2 .

Using the results in Ref.[2], one defines

E kw1u jWesrWd ·¹W 3 LWhLsbrdYLMsVW duw2ldrW

= kk1m1uYLMuk2m2lbRn1k1n2k2
sELd.

The quantityRn1k1n2k2
sELd is a radial integral whose defi-

nition is given by formula(10.129) of Ref. [22]. One obtains
finally the atom-nucleus coupling in the form

kC1uRsEav + ieduC2l = − iÎ4p
vNbL

Ls2L + 1d ! !
L̂ ĵ1 ĵ2,

o
L,M

s− dI1−M2+m1+1/2S I1 L I2

− M1 − M M2
DS j1 L j2

1
2 0 − 1

2
D

3S j1 L j2
− m1 M m2

DkI1irLYLiI2lRn1k1n2k2

with the shorthand notationĵ =Î2j +1. Also, we have used
the following expression for the electronic angular integral:

kk1m1uYLMuk2m2l = s− dm1+1/2L̂ ĵ1 ĵ2
Î4p

S j1 L j2
1
2 0 − 1

2
D

3S j1 L j2
− m1 M m2

D .

In order to calculate the probability of the NEET we also
define the quantityR21

2 as

R21
2 = o

M1,M2,m1,m2

ukC1uRsEav + ieduC2lu2,

where the average is taken over the magnetic degeneracy of
the initial and final configurations of the nucleus-atom sys-
tem. This summation is readily expressed by means of the
orthogonality relations satisfied by the 3j coefficients. The
result is

R21
2 = 4pao

L

vN
2b2L

fLs2L + 1d ! ! g2s2j1 + 1ds2j2 + 1d

3S j1 L j2
1
2 0 − 1

2
D2

uRn1k1n2k2
u2ukI1irLYLiI2lu2,

wherea is the fine-structure constant andI1,I2 are the angu-
lar momenta of the nuclear ground state and isomeric state,
respectively. On the other handj1, j2 stand for the angular
momenta of the electronic hole states. By introducing the
usual definition

BsEL,I2 → I1d =
1

2I2 + 1
ukI1irLYLiI2lu2

from the formula above, one finally obtains the following
expression:

R21
2 = 4pao

L

vN
2b2L

fLs2L + 1d ! ! g2s2j1 + 1ds2j2 + 1ds2I2 + 1d

3S j1 L j2
1
2 0 − 1

2
D2

uRn1k1n2k2
u2BsEL,I2 → I1d.

Note that in order to compare with other formulas given
elsewhere one must use

BsEL,I2 → I1d =
2I1 + 1

2I2 + 1
BsEL,I1 → I2d.

To our knowledge, when other authors have considered
the NEET transition from an initial statefsI1,M1ds j1,m1dg
they did not average as we did over the magnetic quantum
number of the initial state. Consequently one must also di-
vide the above expression bys2I1+1ds2j1+1d hence the re-
sult is

R21
2 = 4pa

vN
2L+2b2L

fLs2L + 1d ! ! g2S j1 L j2
1
2 0 − 1

2
D2

uRn1k1n2k2
u2

3BsEL,I1 → I2d.
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