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General method for complete population transfer in degenerate systems

Jiangbin Gong and Stuart A. Rice
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, lllinois 60637, USA
(Received 20 February 2004; published 15 June 2004

A simple theoretical solution to the design of a control field that generates complete population transfer from
an initial state, viaN nondegenerate intermediate states, to one arbitrary membdr(M <N) degenerate
states is constructed. The full control field exploits(&+N-1)-node null adiabatic state, created by design-
ing the relative phases and amplitudes of the component fields that together make up the full field. The solution
found is universal in the sense that it does not depend on the exact number of the unwanted degenerate states
or their properties. The results obtained suggest that a class of multilevel quantum systems with degenerate
states can be completely controllable, even under extremely strong constraints, e.g., never populating a Hilbert
subspace that is only a few dimensions smaller than the whole Hilbert space.
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I. INTRODUCTION Even more challenging is to establish the complete con-

Coherent control, i.e., controlling atomic and mo|ecu|artrolIabili.ty of a quantum system subject to restrictions on the
processes via quantum interference effects induced by extepopulation transfer pathway along which the system may
nal fields, has attracted great theoretical and experiment&Volve. Shapiro and Brumgd4] have shown that there is
interest[1-3]. In particular, our ability to manipulate atomic Often a loss of controllability if the whole Hilbert space of a
and molecular excitation and therefore drive the microscopigluantum system is partitioned and one wishes to generate an
motion to generate an arbitrarily selected target state is on@volution that does not pass through some particular Hilbert
key prerequisite for quantum information processjdgin ~ Subspace. Solét al. [15] have proposed an optimal control
atoms and molecules. theory to maximize the final population in the target state and

One formal mathematical problem associated with coherminimize a time-integral of the population in all the un-
ent control is determining whether or not complete control-wanted states. Neither of these two previous studies has pro-
lability is achievable. If, for a given system, it can be provedvided conditions for a class of quantum systems subject to
that there exists a control fiel@ossibly composed of a num- strong constraints to be completely controllable.
ber of component fieldsthat can yield complete population ~ Encouraged by recent progress in extending the stimu-
transfer to an arbitrary target state within a finite time, therlated Raman adiabatic passa@TIRAP) [16] method and
the system is called completely controllable. For such sysits variations[13,17-19,21-2for coherent control, we ad-
tems, the primary task of coherent control studies is to desigdress the controllability of population transfer to one\of
methods that are conceptually as simple as possible and aléggenerate states in a system witk- M nondegenerate in-
experimentally feasible. If the formal complete controllabil- termediate states by invoking a general adiabatic passage
ity of a quantum system is not established in general, then #cheme. In particular, we demonstrate that, under certain
is of great theoretical interest to construct specific controconditions, it is possible to realize complete population trans-
fields that can achieve, say, complete population transfer béer from an initial state, viaN nondegenerate intermediate
tween two particular quantum states. states, to one arbitrary member of a seMb{M < N) degen-

Some existence theorems that establish conditions foerate states, without ever populating any states other than the
complete controllability of a quantum system have beerinitial state and the target state. The solution is surprisingly
proved[5-7]. The Huang-Tarn-Clark theoreff] is believed simple and general in the sense that realizing such a popula-
to be the strongest result, but it applies only to systems wittiion transfer pathway may not require our knowledge of the
discrete and nondegenerate states. Ramakriskinaal.  exact number of degeneracies or the properties ofMhe
showed that for a quantum system with a Hilbert space oflegenerate states except for the target state. The solution can
dimensionL, the necessary and sufficient condition for com-also be easily adapted for the creation of an arbitrary super-
plete controllability is that the field-free Hamiltonian and the position of theM degenerate states. The results we have
interaction Hamiltonian induced by a control field generate sobtained strongly suggest that a class of multilevel quantum
Lie algebra of dimensioh? [6]. This criterion is applicable Systems with degenerate states should be completely control-
to multilevel systems that involve degenerate stfed], but  lable. The results also imply that complete controllability in a
the required computations to generate the commutators @lass of quantum systems may still be possible even when
the Lie algebra structure can be demanding for largeary ~ extremely strong constraints are applied, e.g., never populat-
drastically from system to system, and provide no hint as tang a Hilbert subspace that is only dimension-two smaller
how a control field can be designed. As such, the possibilitghan the whole Hilbert space.
for complete controllability in a variety of degenerate sys- The central idea of our approach is to manipulate the
tems is still unknown and it is widely accepted that coherencomponent fields of the full control field to create avi
control in degenerate systems is more difficult than in non+N-1)-node null eigenstate of the system dressed by the
degenerate systenis0—-13. fields. This multinode null eigenstate is designed to fully
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correlate with the initial state at early times and then evolveRabi frequencies denoted bszl, ZQPZ, ,ZQPN, and

to the target state as the component fields that have specifiediditionalN laser fields to resonantly couple the intermediate
relative phases and amplitudes are turned on and off in gtates with theM degenerate states, with the Rabi frequency
particular order. This scheme is a significant extension of ouassociated with staté,) (k=1,2,...N) and state|fj> (j
previous adiabatic passage method for the realization of1,2,... M) represented by Qs . A schematic diagram of
complete control of the population transfer branching ratiohe energy levels and the corresponding parameters for the
between two degenerate stafd®]. In addition, both the Rapj frequencies is shown in Fig. 1. As in the simplest ver-
present study and our previous wofk9] demonstrate a sjon of STIRAP[16], we assume that the laser fields are
powerful marriage between weak-field coherent phase consayssian pulses and that they are counterintuitively ordered.

trol and traditional adiabatic passage techniduég that are  gpecifically, the electric fiel@Ep that couples stat®) with
insensitive to the relative phases of the control fields. stateliy) is given by K

This paper is organized as follows. In Sec. Il we describe
our model system. We then present in Sec. Ill our adiabatic Ep (1) :EP codwp t + ¢p Jexd - (t— T)?T?], (1)
passage scheme for the complete population transfer from an « g « :
initial state to one arbitrary member b degenerate states. and the electric fielcEg that couples statéi) with the M
Simple computational examples that support our theoreticalegenerate states is given by
results are described in Sec. IV. We discuss our results and ~
conclude this paper in Sec. V. Es (1) = Eg codwgt + ¢bs Jexp — t7/T7]. (2

Heret is the time variableT is the pulse Width’Epk andESK

. _ are the peak amplitudes of the electric fields& andwsK are
Consider a multilevel quantum system that has a nondete |aser carrier frequencies, agg and ¢s, are the laser

generate initial statédenoted|0)), and M degenerate or- phases. Note thafpk(t) is delayed kbyT relative to EsK(t)-

thogonal stateedenotedf,), |f,), ..., |fu)). Without loss of The Rabi frequencies are then given by
generality we denote one arbitrary member of thelegen-

erate states that we wish to transfer population tdgs We 20, =20, exf- (t- T)¥T?], (3)
assume that théevl degenerate states cannot be directly . K

coupled with the initial state and that there existhonde- ~

generate intermediate stategenotedi,), i), ..., |iy) that 20, =205, exd - 4717, (4)
can be coupled with the initial state and some of Me ) o~ ~
degenerate states. The question under consideration is tMédere the peak Rabi frequencie®g and 2)g are
following: under what conditions can we, in principle, real-

Il. THE MODEL SYSTEM

ize 100% population transfer from std@ to state!fy,) with- 20p, = uokEp, eXplidp), (5)
out ever populating the intermediate states or any other de-
generate states. From a mathematical point of view, this ZQ%j:”kJE% EXp(id’sK)- (6)

question is formidable becaug@ the extent of controllabil-

ity in degenerate systems without constraints is not yet reHere ug=(0|aliy and w;=i|x/f;) are the transition di-

solved andjii) the extent of controllability in systems subject pole moments.

to strong constraints has barely been studied. In the rotating-wave approximation and in the interaction
One needsN laser fields to resonantly couple the initial representation, the Hamiltonian of the system plus the com-

state to theN intermediate states, with the correspondingponent fields of the full control field is given by

0 Qpl sz QPN 0 0 0
Q;l 0 0 - 0 Oy 85, - O,
Q;’z 0 o - 0 QS21 QS22 o QSZM
H=|Q, 0 0 -+ 0 05, O, - O, ()
0 Qsll QS21 QSNl 0 o - 0
0 O, O, = 85, 0 0 - 0
L 0 QSlM QS2M QSNM 0 0 0 i

063410-2



GENERAL METHOD FOR COMPLETE POPULATION. PHYSICAL REVIEW A 69, 063410(2004)

f f “ee 2 — * * *
I 172 ) [fae) 0y, 0%, - 9\ [\ /o
Sy Qs O QO X 0
Sio S22 Sh2 '2 =l 7| (10)
5, Qs,, Qspr : : : : : :
QSlM QS2M o QSNM N 0
Qsy, [Rsnm
and
Qs,, QSM *
Qs fiw) Qs, OQs, -+ Qg \ [y Qp,
i) fiz) e Q%l Q‘Szz . . Q‘SZM ){2 =—2z Q‘F’2
Q Qp\ Qp, ... *
Py P Py QSNl 93\12 QS\IM Ym QPN
10) (11)

FIG. 1. A schematic diagram of an adiabatic passage scheme f%elow we examine the solution to Eqe)~(11) in three
the realization of complete population transfer from an initial Statedif‘ferent cases, specificaljd =N, M <N, andM >N

|0), via N nondegenerate intermediate statg$,|i2), ... |in), to
state |fy) that is degenerate with othefM-1) states
[f0, [f2), ..., [fu-1). Under certain conditions 100% population A.The M=N case
can be transfe_rred from sta® to state|fy) without ever populat- Let M=N. We denote the MXM matrix S(j (k
ing any of the intermediate states or any of the undesired degenerale:L o
=1,2,...M,j=1,2,...M) by S,
states.
[0 QO N Y)
As suggested by this Hamiltonian, we have assumed that the Su "o S
N nondegenerate intermediate states will not be coupled to S— 9521 9322 QSZM (12)
one another by the external fields. : : : : '
Qs Oy, - O,
Ill. ADIABATIC PASSAGE IN DEGENERATE SYSTEMS
Clearly, if
Our previous work on complete control of the population
transfer from an initial state to one of two degenerate target detS) # 0, (13

states[19] suggests that the desired complete population )

transfer from the initial stat{) to the target statéfy,) may then Eq.(10) has only one solution

be achieved by using an eigenstate dressed by the external

fields that has nodes on all the states that we do not wish to X =X = =Xy =0, (14)

transfer population to. If, by choosing the component fields, . : . _ . .
of the full control field so that a multinode dressed eigenstc";\t%e/vIth this solution fon (k=1,2, ... N), Eq.(9) is automati-

is created that correlates first with stéigand then with the Cillly Salt'fif'?]di Férthi’ u:dr(ra]r Icond|t|on3), one obtains the
target statelfy,) as the fields evolve in time, then in the only solution to Eq(11), namely
adiabatic limit, i.e., in cases where the dynamics of the sys- *

tem can adiabatically follow the evolution of the multinode Y1 QPl

dressed eigenstate, this control field will generate complete Y, ’;

population transfer from stai) to state|f,). A ERr B (15
In particular, we examine here the existence and proper- ’

ties of the null eigenstat@lenoted asA)) of H. By defini- Ym QPN

tion, one has
where the value ofy, is determined by the normalization
H|A)=0. (8)  requirement ané™* denotes the inverse & Note thatS™
can be explicitly written as follows:

In the same representation if |A) can be written in terms A Apr oo A
of its (1+N+M) components, i.e.,(Zy;X1,Xo, ... XN; e M1
V1.V, ....ym)". Then Egs(7) and(8) give Sl= 1 | Az Ax o Aw ' (16)
de(s)| : : : :
N Am Aow 0 Aum
E QPka = 07 (9) .
k=1 whereAy; is the cofactor oK)Sq_,
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A= (= DHIA, (17) 0p, 0,
with A; being the complementary minor cﬂsK_, i.e., the QPz = (1) Q%M (22)
determinant of arfM —1) X (M —1) submatrix ofé obtained : : ’
by deleting thekth row andjth column ofS. Q; QSN
N M

It should be pointed out that whether or not(@tcan be
zero is a time-independent property inherent to the systerwhere&(t) is any function of time, then Eg$15), (21), and

itself. Using Eqs(4) and (6) one obtains (22) yield
1\M 1"_"[~ _— Y1 0
deT(S):(—> Es expligg ) |exp(— Mt/T9) 0
2) L xR 2 =- g . (23
M11 M2 "t Mam Ym 1
X de ’u‘” ,U«‘zz ) ’u'zM (18) That is, by manipulating the component fields of the total
: : control field we can guarantee that the only null eigenvector
Ui M2 0 MMM of H will have additional (M-1) nodes on states
If0),[f2), ..., |fm-1)-. The total number of nodes pk) is then
Thus, provided that given by(M+N-1). It follows that if the dynamics of popu-
lation transfer adiabatically follows the evolution ¢k),
11 M1z MM complete population transfer from std@® to one arbitrary
i o 0 f member of theM degenerate states can be achieved without
de _21 .22 ) _2M # 0, (19 ever populating the othéM -1) degenerate states or the
: : : intermediate states.
MML MM2 T MMM For the specific pulse shape functions given in H&S.

and(4), condition(22) is equivalent to
det(S) will be nonzero at all times. Unless there are some

particular system symmetries, it is rare that condit{@f) 9;1 Qs
will be violated. ~ ~
Thus, under conditio9), H has only one null eigenvec- QPZ =y QSZM (24)
tor with N nodes on the intermediate states and its other : : ’
(M+1) componentszy,ys,Ys,...,yu Satisfying Eg. (15). ~, ~
Due to the ordering of the laser fielfisee Eqs(3) and(4)], QPN Qs

this null eigenvector initially correlates with sta@é) and
then correlates with a superposition of tie degenerate
statesE{l":lkak). So if the system remains in this null eigen-
state, the population will be transferred from st@eto state * = : = .
' . . . . Ep, exp(—i Eg expi
SM vilf) without populating any of theN intermediate HorFp, EX=ide,) #amEs, exflids)
states as time passes. We must still examine whether or not it HooEp, X~ idhp,) ] p2mEs, expli bs,)

where 7 is a nonzero constant. Using EqS) and (6), the
above condition can be translated to

is possible to realize complete population transfer to one
arbitrary member of théVl degenerate states without ever : :
populating the othefM-1) degenerate states, and if yes, MBNEPN exp(-idp,) fnviEs, explibs, )
under what conditions.

Our consideration is based on the relation (25

Surprisingly, Eq.(25) makes no reference to the transition
Aplds , +Aalds, + o + Audds, = Sav deXS), dipole moments that are related to stdfg5, |f,), ... |fy-1)-
(20) Then, even if one has no knowledge about the properties of
states|f,),|f,), ...,|fu-1) beforehand, it is still possible, by
which leads to use of adiabatic passage, to completely suppress the popula-
tion transferred to these states. Note also that condi26n
Q requires a definite phase relationship between the component
Sim 0 fields of the full control field, which is a consequence of the

) QSZ 0 fact that quantum interference effects are directly responsible
S I = I (21 for the appearance of the additior{d—1) nodes of|A).

There is another interesting implication of E85). Let us
assume that among th¢ transition dipole moments related
to state|f,), | of them, sayuiy,mom, - - - »tim, happen to be
Hence if the laser fields are designed such that zero. To still have aiiM +N-1)-node null eigenvector dfl,
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Eq. (25) requiresﬁp :EP :"'=~Ep =0, i.e., removing thé The important guestion is whether or not one can ayoid
laser fields that couple stai6) to the intermediate states PoPulating statef\s) and therefore avoid populating the in-
liD), lia), ..., [i)). This clearly results in a simplification of termedllate states du.r|ng the _populatlon transfer. At first
our adiabatic passage scheme, but it does not suggest thatdInce it seems plausible that since stateg are degenerate
these cases the intermediate staligs i), ... i) are no  With [A1), nonadiabatic transitions fro,) to [Az) will be
longer important or can be removed from the system, peUnavoidable. Interestmgly,_ thls_ls not t_he case. Specifically,
cause they are still coupled with the other unwanted degert;héa strength of the nonadiabatic coupling betweks) and
erate states. These intermediate states in this situation can B 1S Proportional toj(As|dA,/db], which turns out to be
regarded as a high-dimensional analog of the so-callegero at all times due to th@v+N-1)-node structure ofA;)
branch state in a five-level extended STIRAP schéa@,  and the(M+1)-node structure ofA;) [see Egs(28) and

for which case it has been shown that increasing the coupling30)]. Hence, only the null eigenvectpk,) that has(M+N
between an unwanted state and the branch state will enhaned) nodes is relevant to the dynamics of population transfer.

the yield of the desired state. It is interesting to note that M =1 (i.e., there is only one
target statgthen our model system becomes a collection of
B. The M <N case N lambda systems. In this extreme case condit@B) may

be regarded as a simple extension of a previous result for

In this case Eq(11) requires “double-lambda” systemp2Q]. It is then surprising that un-

Q*P der the same condition complete population transfer to one
Vi . target state can still be achieved even when this target state is
S Yo | __ QP2 (26) degenerate with other states. The analysis here leads to a
: % : ' significant prediction. That is, under conditig®5) and for
x M =N, we can always achieve adiabatic passage via the null
u QPN eigenvector|A,), irrespective of the actual value & and

the values of the transition dipole moments between the in-
termediate states and the unwanted degenerate states. As a
. result, during the entire process of population transfer the
> QgYj=~20p, k=M+1,M+2,..,N.  (27)  undesired degenerate states and all the intermediate states
=1 can never be populated, even if the exact number of the
Under condition(22), Eq. (26) still gives the result of Eq. unwanted degenerate states and their properties are unknown
(23), which can also ensure that E@7) is satisfied. It is [0 US. , , _
then clear that the null eigenvector, if it exists, will still have _ Of course, if the exact number of degeneradies'N is
(M-1) nodes on the unwanted degenerate states. given, it may be unnecessary to st_|II use the (Z)mp(_)ne_nt
Next we examine Eqg9) and (10) for M <N. Note first f|elds to achle.ve complete population transfer. As indicated
that under condition22), Eq. (9) is included in Eq.10). [N the preceding section, one may remoudNzM) laser
Equation (10) indicates that now there ardl variables fields and consider onliM intermediate states to realize the
X1,%o, ... Xy and yet the number of the constraints is okly ~ S&me control.
Hence there is more than one solution to ), i.e.,H can
have multiple null eigenvectors ¥ <N.
The most obvious solution to Eq10) is given by x;
=X,=---=Xy=0. Under conditior{22) the associated null ei- In this case Eqs(9) and (10) in general have only one
genvector is then given by solution given by Eq(14). So the null eigenvector, if it ex-
o _ - ists, should generically hawé nodes on all the intermediate
[A)=|A1) =[2:0,0, ...,0:0,0, ..., %€M]".  (28)  giates. However, there are multiple solutions to &) since

This eigenvector is analogous to the only null eigenvector irfhere areM unknown variabley,y,, ... .yw while the num-
the M=N case. Let the other null eigenvectors be denoteder of the constraints is only. ThereforeH again has mul-
|A,). Under condition22) |A,) can be written as tiple null eigenvectors. Denote two orthogonal null eigenvec-

| . tors of H by |[A’) and|A”),

Ag) =25 %1,%0, .. XN: 0,0, ..., —Zpé(D)], (29 ) o )

. . . |A,>:(ZO;0101 1Oy11y21 yyM)Ta
with xq,%,, ... Xy satisfying Eq(10) and at least one of them

and
M

C. The M>N case

being nonzero. Since any linear combination/of) and|A,) " _ (. "o PNT
is still a null eigenvector, we rewrite the other null eigenvec- A7) =(2:0,0, ... .0y1.¥z. - Vo) (39)
tors as The strength(denotedy) of the nonadiabatic coupling be-

_ . _ T tween statesA’) and |A”) is proportional to|(z))* dZj/dt
A3 =[A2) = [AD) = (05x1, %, ... %i0,0, ...,07. (30) +3M,(y/)*dy//d. Due to the normalization requirement,
Note that|As) is orthogonal toA,. As such, at early times z,=y;=y,=---=y;,=0 is not an acceptable solution to Eq.
state|A,) fully correlates with the initial statf®), but all the  (11). As such, there is no general reason whywhould be
other null eigenvectors represented| hy) have zero overlap zero. In particular, under conditiof22), one finds that one
with state|0). null eigenvector can be analogous to that in khesN case,
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ie., |A)=[z;0,0,...,0;0,0,...,%&t)]". Then y M

«|zyd25/ dt-z¢* (t)dyy,/dt|, which is nonzero in general. i = 2 Cimigs k=1,2, ... N. (35)
This being the case, statd”) and therefore some of the =1

statesfy), |f5), ... |fu-1) will be populated during the popu- since the transition dipole moments;; can be obtained

lation transfer. This is true no matter how slowly the laserfom i by considering a unitary transformation between

fields are turned on or off, as statee’) and|A’) are degen- g different sets of basis states of the same degenerate sub-

erate. _ space, it can be easily proved that condit{@8) is equiva-
Clearly, then, in the >N case, our scheme cannot guar-|ent to condition(19). Note also that there is no need to

antee complete population transfer to stHtg). However, construct, from superpositions of stateg,|f,), ... .|fu), the

the results above suggest that this problem can be eaSib’xplicit forms of statesf;),|f5), ... |[f},_1), as their proper-

fixed if there are more intermediate states available. That igjes are not required to predict that they can never be popu-
using additional (M-N) intermediate states and adding |ated during the population transfer.

2(M~=N) laser fields will recover the desired complete popu-
lation transfer. IV. NUMERICAL EXAMPLE
To confirm the validity and feasibility of our general so-
lution to the realization of complete population transfer to
one arbitrary member of a set &1 degenerate states, we
We note that states,),|f,), ... ,|f\) are just one particu- present in this section some numerical examples. In particu-
lar choice of the basis states of Bhidimensional degenerate lar, we consider a system that His 7 nondegenerate states
subspace. Indeed, any arbitrary superposition of stategs intermediate states and<N degenerate orthogonal

D. Complete population transfer to arbitrary superpositions
of M degenerate states

|f2),1f2), ... [fw) can be used as one of the basis states of thétates. We define the sum of population in all the intermedi-
same degenerate subspace. Consider now a target superp@ép states aB,, the sum of population in all the degenerate
tion state states except for statéy) as Py, and the population in the

target statdf,) asP;. For convenience all the transition di-
pole moments are assumed to be real and all the laser phases

M
fy= ¢l (329 are set to zero. Hence all the Rabi frequencies take real val-
M/ = ) ) . ~ -
j=1 i ues. To fulfill condition(24), we assume()pk:QSK7, for k
=1,2,...N.

wherec; (j=1,2,... M) are arbitrary coefficients in the su- Figure 2 displays an example of population transfer in the

perposition state. Lelf/,) be the last new basis state of the ¢as€ 0fM=N. It is seen that during the population transfer,

same degenerate subspace and let the other new orthogoR3f Maximum value oP, is less than 0.3%, and the maxi-

basis states bi}),|f}), ... |fi,_,). The transition dipole mo- Mum value ofPy is less than 0.1%. The fin&l; is extremely

ment between staf) and statdf/) is represented by. close to 100%. We then arbitrarily alter some of the peak
We now apply the above general solution to completeX@Pi frequencies that are related to stdfgs,|f2), ... [fe)-

population transfer in degenerate systems to st in- The associated results are shown in Fig. 3. Clearly, popula-
stead of|fy). Then, forM <N and tion transfer is still almost complete arfé and P, again

remain negligible at all times. This demonstrates that totally
suppressing the population transferred to states

M1 M1z Tt M If1),|f2), ... |fs) does not require us to know their properties
Uy Map Mo before_hand. Slmllar results are obtained in numerous other
def . # 0, (33)  numerical experiments.
) ) ) Figure 4 displays analogous results in a case where two
Mmv1 My 77T Muwm transition dipole momentg,; and u,; (and therefore the two

peak Rabi frequencieés17 and 9%7) that are related to the
all population can be transferred from st{eto the super- target statef,) happen to be zero. As predicted by E25),

position statdfy,) if the component fields satisfy this requires us to remove two laser fields that connect the
initial state to two intermediate states. Accordingly we set
= ; ;= - Qp. andQp_to zero. As seen from Fig. 4, almost complete
MoiEp, eXp(=idp) mivEs, explids) P TP : A . .
01~P1 F1 1M~Sl St population transfer wittP, and P, negligible at all times is
MozEp, eXpl=idp) uomEs, expligs)) also achieved.
=7

' Figure 5 shows a numerical example where all the peak
Rabi frequencies that are related to stafgsand|f,) are set
I“*ONEPN exp(— i¢PN) Mr'\nMEsN exp(icbgu) to zero, while keeping other peak Rabi frequencies the same
as those used in Fig. 2. Due to this procedlig, and |f,)
(34) are totally decoupled from the system and effectively there
are only five degenerate states. As seen from Fig. 5, almost
where 100% population transfer to stafe) with P, and Py negli-
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population
population

time (units of T) time (units of T)

FIG. 2. A numerical example of adiabatic passage through a F|G. 4. Same as in Fig. 2 excef :ﬁsz =0 andQp =Qp
13-node null eigenstate for the complete population transfer from:g. At all timesP, < 0.03% andP, < 0.01%. - ! 2

an initial state to one arbitrary member =7 degenerate states.
The number of intermediate states is givenNby7. P, represents

the population in all the intermediate statBg,represents the popu- task to analytically expose the nonadiabatic effects associ-

lation in all the degenerate states except for the target stateRand ated with our model S_ySter_n' However, as seen in the numeri-
represents the population in the target stéie The parameters for cal e)_(amples, nona_dlabf':ltlc effects here are small even when
the peak Rabi frequencies are, in units of T1/given by ”Le fll<el((jj fr:retngth_'s still not r\]’ery sltrong:d\/r\]/e ha\r/]e Ef‘_lsl(()j
- - - checke at by increasing the pulse width or the fie
Egpv%%'%3'954@%@%’9% ;25%0,120&)1?(5)69269?;;;; strength, or optimizing the time delay between the laser
et PG Lt PRSE TGS Tt S fields and the ratio of the peak Rabi frequenciesg.,
(9321’9522’9%3’9524’9525’9326’9527):(90’57’24’45’69’78’90

B B B B B Bre e ) 2(90.75.39.36.39.78. 60 ﬁpk/ﬁsm), one can always further suppress the nonadiaba-
Qs s, 05,5 s, Os s, 0s,) =(90,75,39, 36,39, 78,6 ticity of the dynamics and therefore the population transfer
(9341, Qs,,,06,,0s,,,0s ., Qg 9547)=(60, 18,24,75,66,48,120

can be made even closer to the adiabatic limit.
(Qg,.0s,,05,,.0g,, 05, Qg , 05 )=(39,27,93,15,66,78,90
(6561,6%2,6%3,6%4,6%5,6%6,6%7):(93,69,18,87,72,78,99
= V. DISCUSSION AND CONCLUSION
and (9371,9572,0573,9374,9375,9376,0577)—(36,54,48,57,96,

78,139. Note that conditiori24) is satisfied since we have chosen  controlled population transfer from a selected initial state
Op,=Q0g_, for k=1,2,...,7. At all times P,<0.3% and to a manifold of degenerate states has previously been exam-
P,<0.05%. ined in the context of atomic processes involving magnetic
sublevelg[21-25. Our results are much more powerful and
gible at all times is also obtained. This clearly confirms ourgeneral than those previously established. A key difference
previous prediction that our adiabatic passage method worksetween this work and previous studies is that we have ex-
as well even if the exact number of degeneracgieg., M ploited the properties of particular coherent excitations of
=5 or M=7) is unknown to us. manifolds with multiple nondegenerate intermediate states.
To end this section, we note that in general nonadiabatitn particular, withN nondegenerate intermediate states it be-
effects in many-level systems are expected to be strong@omes possible to adjust, wittN2laser fields, all the Rabi
than those in few-level systems. Admittedly, it is not an easyfrequencies involved in Eq22). Hence Eq(22) can always

1

"
0.8 08
S 06 S 06
= K]
> >
g 04 & 04
o o
0.2 0.2
0 0!
time (units of T) time (units of T)

FIG. 3. Same as in Fig. 2 exceﬁtsl =39 ﬁ% =39 ()SZ =48 FIG. 5. Same as in Fig. 2 except that all the peak Rabi frequen-
~ ~ - ~ N T . .=
9532:45, Qg,,=81, Qg =57, Qg =48, 05 =39, 05 =24. At all cies that are related to statdg) ahd\f2> are set to zero, i.eQsg
times P, <0.2% andP,<0.03%. =QSk2=O, fork=1,2,...,7. At all time$,<0.3% andP, < 0.05%.
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be satisfied by designing the laser fields, providing thereby a Although our adiabatic passage solution offers a general
systematic solution to the design of complete populatiormethod for complete population transfer from an initial state
transfer from an initial state to an arbitrary superposition ofto an arbitrary member of a set bf degenerate states, there
M <N degenerate states. It is also straightforward to deterare still two subtle differences between this solution and an
mine if the requirementfi.e., condition(19) andM <N] are  actual proof of complete controllability of the degenerate
met for our general solution to be applicable. system. First, a completely controllable degenerate system
Most coherent control approaches based on STIRAP-likavill have a complete population transfer pathway within a
dynamics are independent of the relative phases of the coffinite time, whereas the complete population transfer in our
trol laser fields[17]. As shown in this work and in Refs. solution, in the most strict sengee., P; is exactly 100%
[19,20,25, this is not true for all STIRAP-like control can only be realized in the adiabatic limit, e.g., for infinitely
schemes. On one hand, the phase-dependence of the contievige pulse width. Second, we have used the rotating-wave
process causes even more experimental difficulties; on thapproximation in constructing our solution. Mathematically
other hand the phase-dependence of our adiabatic passaggeaking, such an approximation inevitably modifies the is-
scheme clearly demonstrates that laser phases can be alee of complete controllability. It is unclear to what physical
important in STIRAP-like dynamics and may bring about extent this approximation changes the controllability of de-
dramatic opportunities for controlling atomic and moleculargenerate systems. For the above two reasons we regard our
processes. adiabatic passage method as a specific physical, but not
One great advantage of our adiabatic passage schemerisgmthematical, solution to the complete control of degenerate
its adaptability in cases where the intermediate states or th&ystems.
unwanted degenerate states are not bound states. That is,One potential application of this study is to provide a
since the(M +N-1)-node null eigenvector does not overlap useful guide for understanding the extremely complex laser
with any of the intermediate states or any of the unwantedields obtained by genetic algorithms in adaptive feedback
degenerate states, the structure of this multinode eigenvectegntrol of quantum systemd,2,2§. Suppose an adapative
survives if these states actually decay. As long as the assodeedback control experiment is carried out in a degenerate
ated decay rate constants are much smaller than the pe&kstem and the control goal is to maximize the population in
Rabi frequencies of the component field$], the nonadia- only one ofM degenerate states and minimize the population
baticity induced by the decaying states will be negligible andn all the unwanted degenerate states and the intermediate
the dynamics of population transfer would be still given bystates. It would be of great interest to see if the optimized
the evolution of thg M +N-1)-node null eigenvector. control field suggested by a genetic algorithm can be decom-
This work extends our previous adiabatic passage metho@osed into X=2M laser fields with their frequencies, am-
for the realization of complete control of the population plitudes, and relative phases close to what is suggested by
transfer branching ratio between two degenerate sfa}s  our adiabatic passage scheme. If this is the case, then such a
The extension is from a five-level and four-pulse scheme to #edback control experiment becomes a realization of our
(1+N+M)-level and(2N)-pulse scheme. While the five-level general solution to complete population transfer in degener-
and four-pulse scheme should be experimentally achievabl@te systems and more applications of this work can be ex-
directly applying the present work to realistic systems wouldPected.
be demanding foM =3, as it would in general require a To summarize, we have shown that under certain condi-
significant number of laser fields. However, from the point oftions complete population transfer from an initial state,Nia
view of understanding the limits to complete controllability hNondegenerate intermediate states, to an arbitrary superposi-
in degenerate systems subject to strong constrains and/Bgn of M (M<N) degenerate states is achievable by adia-
with unknown parameters, this work is of great theoreticalbatically following an(M +N-1)-node null eigenstate that is
interest. In particular, we have shown that it is possible tocreated by designing the relative phases and amplitudes of
realize complete population transfer without ever populatinghe component fields of a control field. The results may find
a Hilbert subspace that is only dimension-two smaller tharapplications in quantum information processing in atoms and
the whole Hilbert space, even when the exact number ofmolecules and shed considerable light on the issue of com-
degeneracies and the properties of the unwanted degenergiete controllability in degenerate systems under strong con-
states are unknown to us. We hope that the results of thistraints and/or with unknown parameters.
study will motivate future theretical work on coherent con- Note added in proofRecently a similar idea with a spe-
trol in degenerate systems. For example, it is interesting teific molecular application was published in RE27].
consider variations on our adiabatic passage scheme, and to
seek alternative, and experimentally more feasible, control
scenarios that can provide the same type of population trans- This work was supported by the National Science Foun-
fer pathway that is already shown to exist. dation.
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