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A simple theoretical solution to the design of a control field that generates complete population transfer from
an initial state, viaN nondegenerate intermediate states, to one arbitrary member ofM sM øNd degenerate
states is constructed. The full control field exploits ansM +N−1d-node null adiabatic state, created by design-
ing the relative phases and amplitudes of the component fields that together make up the full field. The solution
found is universal in the sense that it does not depend on the exact number of the unwanted degenerate states
or their properties. The results obtained suggest that a class of multilevel quantum systems with degenerate
states can be completely controllable, even under extremely strong constraints, e.g., never populating a Hilbert
subspace that is only a few dimensions smaller than the whole Hilbert space.
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I. INTRODUCTION

Coherent control, i.e., controlling atomic and molecular
processes via quantum interference effects induced by exter-
nal fields, has attracted great theoretical and experimental
interest[1–3]. In particular, our ability to manipulate atomic
and molecular excitation and therefore drive the microscopic
motion to generate an arbitrarily selected target state is one
key prerequisite for quantum information processing[4] in
atoms and molecules.

One formal mathematical problem associated with coher-
ent control is determining whether or not complete control-
lability is achievable. If, for a given system, it can be proved
that there exists a control field(possibly composed of a num-
ber of component fields) that can yield complete population
transfer to an arbitrary target state within a finite time, then
the system is called completely controllable. For such sys-
tems, the primary task of coherent control studies is to design
methods that are conceptually as simple as possible and also
experimentally feasible. If the formal complete controllabil-
ity of a quantum system is not established in general, then it
is of great theoretical interest to construct specific control
fields that can achieve, say, complete population transfer be-
tween two particular quantum states.

Some existence theorems that establish conditions for
complete controllability of a quantum system have been
proved[5–7]. The Huang-Tarn-Clark theorem[5] is believed
to be the strongest result, but it applies only to systems with
discrete and nondegenerate states. Ramakrishnaet al.
showed that for a quantum system with a Hilbert space of
dimensionL, the necessary and sufficient condition for com-
plete controllability is that the field-free Hamiltonian and the
interaction Hamiltonian induced by a control field generate a
Lie algebra of dimensionL2 [6]. This criterion is applicable
to multilevel systems that involve degenerate states[8,9], but
the required computations to generate the commutators of
the Lie algebra structure can be demanding for largeL, vary
drastically from system to system, and provide no hint as to
how a control field can be designed. As such, the possibility
for complete controllability in a variety of degenerate sys-
tems is still unknown and it is widely accepted that coherent
control in degenerate systems is more difficult than in non-
degenerate systems[10–13].

Even more challenging is to establish the complete con-
trollability of a quantum system subject to restrictions on the
population transfer pathway along which the system may
evolve. Shapiro and Brumer[14] have shown that there is
often a loss of controllability if the whole Hilbert space of a
quantum system is partitioned and one wishes to generate an
evolution that does not pass through some particular Hilbert
subspace. Soláet al. [15] have proposed an optimal control
theory to maximize the final population in the target state and
minimize a time-integral of the population in all the un-
wanted states. Neither of these two previous studies has pro-
vided conditions for a class of quantum systems subject to
strong constraints to be completely controllable.

Encouraged by recent progress in extending the stimu-
lated Raman adiabatic passage(STIRAP) [16] method and
its variations[13,17–19,21–25] for coherent control, we ad-
dress the controllability of population transfer to one ofM
degenerate states in a system withNùM nondegenerate in-
termediate states by invoking a general adiabatic passage
scheme. In particular, we demonstrate that, under certain
conditions, it is possible to realize complete population trans-
fer from an initial state, viaN nondegenerate intermediate
states, to one arbitrary member of a set ofM sM øNd degen-
erate states, without ever populating any states other than the
initial state and the target state. The solution is surprisingly
simple and general in the sense that realizing such a popula-
tion transfer pathway may not require our knowledge of the
exact number of degeneracies or the properties of theM
degenerate states except for the target state. The solution can
also be easily adapted for the creation of an arbitrary super-
position of theM degenerate states. The results we have
obtained strongly suggest that a class of multilevel quantum
systems with degenerate states should be completely control-
lable. The results also imply that complete controllability in a
class of quantum systems may still be possible even when
extremely strong constraints are applied, e.g., never populat-
ing a Hilbert subspace that is only dimension-two smaller
than the whole Hilbert space.

The central idea of our approach is to manipulate the
component fields of the full control field to create ansM
+N−1d-node null eigenstate of the system dressed by the
fields. This multinode null eigenstate is designed to fully
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correlate with the initial state at early times and then evolve
to the target state as the component fields that have specified
relative phases and amplitudes are turned on and off in a
particular order. This scheme is a significant extension of our
previous adiabatic passage method for the realization of
complete control of the population transfer branching ratio
between two degenerate states[19]. In addition, both the
present study and our previous work[19] demonstrate a
powerful marriage between weak-field coherent phase con-
trol and traditional adiabatic passage techniques[16] that are
insensitive to the relative phases of the control fields.

This paper is organized as follows. In Sec. II we describe
our model system. We then present in Sec. III our adiabatic
passage scheme for the complete population transfer from an
initial state to one arbitrary member ofM degenerate states.
Simple computational examples that support our theoretical
results are described in Sec. IV. We discuss our results and
conclude this paper in Sec. V.

II. THE MODEL SYSTEM

Consider a multilevel quantum system that has a nonde-
generate initial state(denotedu0l), and M degenerate or-
thogonal states(denoteduf1l , uf2l , . . . , ufMl). Without loss of
generality we denote one arbitrary member of theM degen-
erate states that we wish to transfer population to asufMl. We
assume that theM degenerate states cannot be directly
coupled with the initial state and that there existN nonde-
generate intermediate states(denotedui1l , ui2l , . . . , uiNl) that
can be coupled with the initial state and some of theM
degenerate states. The question under consideration is the
following: under what conditions can we, in principle, real-
ize 100% population transfer from stateu0l to stateufMl with-
out ever populating the intermediate states or any other de-
generate states. From a mathematical point of view, this
question is formidable because(i) the extent of controllabil-
ity in degenerate systems without constraints is not yet re-
solved and(ii ) the extent of controllability in systems subject
to strong constraints has barely been studied.

One needsN laser fields to resonantly couple the initial
state to theN intermediate states, with the corresponding

Rabi frequencies denoted by 2VP1
, 2VP2

, . . . ,2VPN
, and

additionalN laser fields to resonantly couple the intermediate
states with theM degenerate states, with the Rabi frequency
associated with stateuikl sk=1,2, . . . ,Nd and stateuf jl s j
=1,2, . . . ,Md represented by 2VSkj

. A schematic diagram of
the energy levels and the corresponding parameters for the
Rabi frequencies is shown in Fig. 1. As in the simplest ver-
sion of STIRAP[16], we assume that the laser fields are
Gaussian pulses and that they are counterintuitively ordered.
Specifically, the electric fieldEPk

that couples stateu0l with
stateuikl is given by

EPk
std = ẼPk

cossvPk
t + fPk

dexpf− st − Td2/T2g, s1d

and the electric fieldESk
that couples stateuikl with the M

degenerate states is given by

ESk
std = ẼSk

cossvSk
t + fSk

dexpf− t2/T2g. s2d

Here t is the time variable,T is the pulse width,ẼPk
andẼSk

are the peak amplitudes of the electric fields,vPk
andvSk

are
the laser carrier frequencies, andfPk

and fSk
are the laser

phases. Note thatEPk
std is delayed byT relative to ESk

std.
The Rabi frequencies are then given by

2VPk
= 2ṼPk

expf− st − Td2/T2g, s3d

2VSkj
= 2ṼSkj

expf− t2/T2g, s4d

where the peak Rabi frequencies 2ṼPk
and 2ṼSkj

are

2ṼPk
= m0kẼPk

expsifPk
d, s5d

2ṼSkj
= mkjẼSk

expsifSk
d. s6d

Here m0k;k0um̂uikl and mkj;kikum̂uf jl are the transition di-
pole moments.

In the rotating-wave approximation and in the interaction
representation, the Hamiltonian of the system plus the com-
ponent fields of the full control field is given by

H = 3
0 VP1

VP2
¯ VPN

0 0 ¯ 0

VP1

* 0 0 ¯ 0 VS11
VS12

¯ VS1M

VP2

* 0 0 ¯ 0 VS21
VS22

¯ VS2M

A A A A A A A A A
VPN

* 0 0 ¯ 0 VSN1
VSN2

¯ VSNM

0 VS11

* VS21

*
¯ VSN1

* 0 0 ¯ 0

0 VS12

* VS22

*
¯ VSN2

* 0 0 ¯ 0

A A A A A A A A A

0 VS1M

* VS2M

*
¯ VSNM

* 0 0 ¯ 0

4 s7d
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As suggested by this Hamiltonian, we have assumed that the
N nondegenerate intermediate states will not be coupled to
one another by the external fields.

III. ADIABATIC PASSAGE IN DEGENERATE SYSTEMS

Our previous work on complete control of the population
transfer from an initial state to one of two degenerate target
states[19] suggests that the desired complete population
transfer from the initial stateu0l to the target stateufMl may
be achieved by using an eigenstate dressed by the external
fields that has nodes on all the states that we do not wish to
transfer population to. If, by choosing the component fields
of the full control field so that a multinode dressed eigenstate
is created that correlates first with stateu0l and then with the
target stateufMl as the fields evolve in time, then in the
adiabatic limit, i.e., in cases where the dynamics of the sys-
tem can adiabatically follow the evolution of the multinode
dressed eigenstate, this control field will generate complete
population transfer from stateu0l to stateufMl.

In particular, we examine here the existence and proper-
ties of the null eigenstate(denoted asuLl) of H. By defini-
tion, one has

H uLl = 0. s8d

In the same representation ofH, uLl can be written in terms
of its s1+N+Md components, i.e., sz0;x1,x2, . . . ,xN;
y1,y2, . . . ,yMdT. Then Eqs.(7) and (8) give

o
k=1

N

VPk
xk = 0, s9d

1
VS11

* VS21

*
¯ VSN1

*

VS12

* VS22

*
¯ VSN2

*

A A A A
VS1M

* VS2M

*
¯ VSNM

*
21x1

x2

A
xN

2 =1
0

0

A
0
2 , s10d

and

1
VS11

VS12
¯ VS1M

VS21
VS22

¯ VS2M

A A A A
VSN1

VSN2
¯ VSNM

21 y1

y2

A
yM

2 = − z01
VP1

*

VP2

*

A
VPN

*
2 .

s11d

Below we examine the solution to Eqs.(9)–(11) in three
different cases, specifically,M =N, M ,N, andM .N.

A. The M =N case

Let M =N. We denote the M 3M matrix Skj sk
=1,2, . . . ,M , j =1,2, . . . ,Md by S,

S; 3
VS11

VS12
¯ VS1M

VS21
VS22

¯ VS2M

A A A A
VSM1

VSM2
¯ VSMM

4 . s12d

Clearly, if

detsSd Þ 0, s13d

then Eq.(10) has only one solution

x1 = x2 = ¯ = xN = 0. s14d

With this solution forxk sk=1,2, . . . ,Nd, Eq. (9) is automati-
cally satisfied. Further, under condition(13), one obtains the
only solution to Eq.(11), namely

1
y1

y2

A
yM

2 = − z0S
−11

VP1

*

VP2

*

A
VPN

*
2 , s15d

where the value ofz0 is determined by the normalization
requirement andS−1 denotes the inverse ofS. Note thatS−1

can be explicitly written as follows:

S−1 =
1

detsSd1
A11 A21 ¯ AM1

A12 A22 ¯ AM2

A A A A
A1M A2M ¯ AMM

2 , s16d

whereAkj is the cofactor ofVSkj
,

FIG. 1. A schematic diagram of an adiabatic passage scheme for
the realization of complete population transfer from an initial state
u0l, via N nondegenerate intermediate statesui1l , ui2l , . . . ,uiNl, to
state ufMl that is degenerate with othersM −1d states
uf1l , uf2l , . . . , ufM−1l. Under certain conditions 100% population
can be transferred from stateu0l to stateufMl without ever populat-
ing any of the intermediate states or any of the undesired degenerate
states.
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Akj = s− 1dk+jDkj, s17d

with Dkj being the complementary minor ofVSkj
, i.e., the

determinant of ansM −1d3 sM −1d submatrix ofS obtained
by deleting thekth row andj th column ofS.

It should be pointed out that whether or not detsSd can be
zero is a time-independent property inherent to the system
itself. Using Eqs.(4) and (6) one obtains

detsSd = S1

2
DMFp

k=1

M

ẼSk
expsifSk

dGexps− Mt2/T2d

3 det1
m11 m12 ¯ m1M

m21 m22 ¯ m2M

A A A A
mM1 mM2 ¯ mMM

2 . s18d

Thus, provided that

det1
m11 m12 ¯ m1M

m21 m22 ¯ m2M

A A A A
mM1 mM2 ¯ mMM

2 Þ 0, s19d

detsSd will be nonzero at all times. Unless there are some
particular system symmetries, it is rare that condition(19)
will be violated.

Thus, under condition(19), H has only one null eigenvec-
tor with N nodes on the intermediate states and its other
sM +1d componentsz0,y1,y2, . . . ,yM satisfying Eq. (15).
Due to the ordering of the laser fields[see Eqs.(3) and(4)],
this null eigenvector initially correlates with stateu0l and
then correlates with a superposition of theM degenerate
states,ok=1

M ykufkl. So if the system remains in this null eigen-
state, the population will be transferred from stateu0l to state
ok=1

M ykufkl without populating any of theN intermediate
states as time passes. We must still examine whether or not it
is possible to realize complete population transfer to one
arbitrary member of theM degenerate states without ever
populating the othersM −1d degenerate states, and if yes,
under what conditions.

Our consideration is based on the relation

A1kVS1M
+ A2kVS2M

+ ¯ + ANkVSNM
= dkM detsSd,

s20d

which leads to

S−11
VS1M

VS2M

A
VSNM

2 =1
0

0

A
1
2 . s21d

Hence if the laser fields are designed such that

1
VP1

*

VP2

*

A
VPN

*
2 = jstd1

VS1M

VS2M

A
VSNM

2 , s22d

wherejstd is any function of time, then Eqs.(15), (21), and
(22) yield

1
y1

y2

A
yM

2 = − z0jstd1
0

0

A
1
2 . s23d

That is, by manipulating the component fields of the total
control field we can guarantee that the only null eigenvector
of H will have additional sM −1d nodes on states
uf1l , uf2l , . . . , ufM−1l. The total number of nodes ofuLl is then
given bysM +N−1d. It follows that if the dynamics of popu-
lation transfer adiabatically follows the evolution ofuLl,
complete population transfer from stateu0l to one arbitrary
member of theM degenerate states can be achieved without
ever populating the othersM −1d degenerate states or theN
intermediate states.

For the specific pulse shape functions given in Eqs.(3)
and (4), condition(22) is equivalent to

1
ṼP1

*

ṼP2

*

A

ṼPN

*
2 = h1

ṼS1M

ṼS2M

A

ṼSNM

2 , s24d

whereh is a nonzero constant. Using Eqs.(5) and (6), the
above condition can be translated to

1
m01

* ẼP1
exps− ifP1

d

m02
* ẼP2

exps− ifP2
d

A

m0N
* ẼPN

exps− ifPN
d
2 = h1

m1MẼS1
expsifS1

d

m2MẼS2
expsifS2

d

A

mNMẼSN
expsifSN

d
2 .

s25d

Surprisingly, Eq.(25) makes no reference to the transition
dipole moments that are related to statesuf1l , uf2l , . . . ,ufM−1l.
Then, even if one has no knowledge about the properties of
statesuf1l , uf2l , . . . ,ufM−1l beforehand, it is still possible, by
use of adiabatic passage, to completely suppress the popula-
tion transferred to these states. Note also that condition(25)
requires a definite phase relationship between the component
fields of the full control field, which is a consequence of the
fact that quantum interference effects are directly responsible
for the appearance of the additionalsM −1d nodes ofuLl.

There is another interesting implication of Eq.(25). Let us
assume that among theN transition dipole moments related
to stateufMl, l of them, say,m1M ,m2M , . . . ,mlM, happen to be
zero. To still have ansM +N−1d-node null eigenvector ofH,
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Eq. (25) requiresẼP1
=ẼP2

=¯ =ẼPl
=0, i.e., removing thel

laser fields that couple stateu0l to the intermediate states
ui1l , ui2l , . . . , ui ll. This clearly results in a simplification of
our adiabatic passage scheme, but it does not suggest that in
these cases the intermediate statesui1l , ui2l , . . . ,ui ll are no
longer important or can be removed from the system, be-
cause they are still coupled with the other unwanted degen-
erate states. These intermediate states in this situation can be
regarded as a high-dimensional analog of the so-called
branch state in a five-level extended STIRAP scheme[10],
for which case it has been shown that increasing the coupling
between an unwanted state and the branch state will enhance
the yield of the desired state.

B. The M ,N case

In this case Eq.(11) requires

S1
y1

y2

A
yM

2 = − z01
VP1

*

VP2

*

A
VPN

*
2 , s26d

and

o
j=1

M

VSkj
yj = − z0VPk

* , k = M + 1, M + 2,…,N. s27d

Under condition(22), Eq. (26) still gives the result of Eq.
(23), which can also ensure that Eq.(27) is satisfied. It is
then clear that the null eigenvector, if it exists, will still have
sM −1d nodes on the unwanted degenerate states.

Next we examine Eqs.(9) and (10) for M ,N. Note first
that under condition(22), Eq. (9) is included in Eq.(10).
Equation (10) indicates that now there areN variables
x1,x2, . . . ,xN and yet the number of the constraints is onlyM.
Hence there is more than one solution to Eq.(10), i.e.,H can
have multiple null eigenvectors ifM ,N.

The most obvious solution to Eq.(10) is given by x1
=x2=¯ =xN=0. Under condition(22) the associated null ei-
genvector is then given by

uLl = uL1l ; fz0;0,0, . . . ,0;0,0, . . . ,−z0jstdgT. s28d

This eigenvector is analogous to the only null eigenvector in
the M =N case. Let the other null eigenvectors be denoted
uL2l. Under condition(22) uL2l can be written as

uL2l ; fz0;x1,x2, . . . ,xN;0,0, . . . ,−z0jstdgT, s29d

with x1,x2, . . . ,xN satisfying Eq.(10) and at least one of them
being nonzero. Since any linear combination ofuL1l anduL2l
is still a null eigenvector, we rewrite the other null eigenvec-
tors as

uL3l ; uL2l − uL1l = s0;x1,x2, . . . ,xN;0,0, . . . ,0dT. s30d

Note thatuL3l is orthogonal toL1. As such, at early times
stateuL1l fully correlates with the initial stateu0l, but all the
other null eigenvectors represented byuL3l have zero overlap
with stateu0l.

The important question is whether or not one can avoid
populating statesuL3l and therefore avoid populating the in-
termediate states during the population transfer. At first
glance it seems plausible that since statesuL3l are degenerate
with uL1l, nonadiabatic transitions fromuL1l to uL3l will be
unavoidable. Interestingly, this is not the case. Specifically,
the strength of the nonadiabatic coupling betweenuL3l and
uL1l is proportional toukL3udL1/dtlu, which turns out to be
zero at all times due to thesM +N−1d-node structure ofuL1l
and thesM +1d-node structure ofuL3l [see Eqs.(28) and
(30)]. Hence, only the null eigenvectoruL1l that hassM +N
−1d nodes is relevant to the dynamics of population transfer.

It is interesting to note that ifM =1 (i.e., there is only one
target state) then our model system becomes a collection of
N lambda systems. In this extreme case condition(25) may
be regarded as a simple extension of a previous result for
“double-lambda” systems[20]. It is then surprising that un-
der the same condition complete population transfer to one
target state can still be achieved even when this target state is
degenerate with other states. The analysis here leads to a
significant prediction. That is, under condition(25) and for
M øN, we can always achieve adiabatic passage via the null
eigenvectoruL1l, irrespective of the actual value ofM and
the values of the transition dipole moments between the in-
termediate states and the unwanted degenerate states. As a
result, during the entire process of population transfer the
undesired degenerate states and all the intermediate states
can never be populated, even if the exact number of the
unwanted degenerate states and their properties are unknown
to us.

Of course, if the exact number of degeneraciesM ,N is
given, it may be unnecessary to still use the 2N component
fields to achieve complete population transfer. As indicated
in the preceding section, one may remove 2sN−Md laser
fields and consider onlyM intermediate states to realize the
same control.

C. The M .N case

In this case Eqs.(9) and (10) in general have only one
solution given by Eq.(14). So the null eigenvector, if it ex-
ists, should generically haveN nodes on all the intermediate
states. However, there are multiple solutions to Eq.(11) since
there areM unknown variablesy1,y2, . . . ,yM while the num-
ber of the constraints is onlyN. ThereforeH again has mul-
tiple null eigenvectors. Denote two orthogonal null eigenvec-
tors of H by uL8l and uL9l,

uL8l = sz08;0,0, . . . ,0;y18,y28, . . . ,yM8 dT,

uL9l = sz09;0,0, . . . ,0;y19,y29, . . . ,yM9 dT. s31d

The strength(denotedx) of the nonadiabatic coupling be-
tween statesuL8l and uL9l is proportional tousz08d* dz09 /dt
+o j=1

M syj8d* dyj9 /dtu. Due to the normalization requirement,
z08=y18=y28=¯ =yM8 =0 is not an acceptable solution to Eq.
(11). As such, there is no general reason whyx should be
zero. In particular, under condition(22), one finds that one
null eigenvector can be analogous to that in theM øN case,
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i.e., uL8l=fz0;0 ,0, . . . ,0 ;0 ,0, . . . ,−z0jstdgT. Then x
~ uz0

*dz09 /dt−z0
*j* stddyM9 /dtu, which is nonzero in general.

This being the case, stateuL9l and therefore some of the
statesuf1l , uf2l , . . . ,ufM−1l will be populated during the popu-
lation transfer. This is true no matter how slowly the laser
fields are turned on or off, as statesuL9l and uL8l are degen-
erate.

Clearly, then, in theM .N case, our scheme cannot guar-
antee complete population transfer to stateufMl. However,
the results above suggest that this problem can be easily
fixed if there are more intermediate states available. That is,
using additional sM −Nd intermediate states and adding
2sM −Nd laser fields will recover the desired complete popu-
lation transfer.

D. Complete population transfer to arbitrary superpositions
of M degenerate states

We note that statesuf1l , uf2l , . . . ,ufMl are just one particu-
lar choice of the basis states of anM-dimensional degenerate
subspace. Indeed, any arbitrary superposition of states
uf1l , uf2l , . . . ,ufMl can be used as one of the basis states of the
same degenerate subspace. Consider now a target superposi-
tion state

ufM8 l = o
j=1

M

cjuf jl, s32d

wherecj s j =1,2, . . . ,Md are arbitrary coefficients in the su-
perposition state. LetufM8 l be the last new basis state of the
same degenerate subspace and let the other new orthogonal
basis states beuf18l , uf28l , . . . ,ufM−18 l. The transition dipole mo-
ment between stateuikl and stateuf j8l is represented bymkj8 .

We now apply the above general solution to complete
population transfer in degenerate systems to stateufM8 l in-
stead ofufMl. Then, forM øN and

det1
m118 m128 ¯ m1M8

m218 m228 ¯ m2M8

A A A A
mM18 mM28 ¯ mMM8

2 Þ 0, s33d

all population can be transferred from stateu0l to the super-
position stateufM8 l if the component fields satisfy

1
m01

* ẼP1
exps− ifP1

d

m02
* ẼP2

exps− ifP2
d

A

m0N
* ẼPN

exps− ifPN
d
2 = h1

m1M8 ẼS1
expsifS1

d

m2M8 ẼS2
expsifS2

d

A

mNM8 ẼSN
expsifSN

d
2 ,

s34d

where

mkM8 = o
j=1

M

cjmkj, k = 1,2, . . . ,N. s35d

Since the transition dipole momentsmkj8 can be obtained
from mkj by considering a unitary transformation between
two different sets of basis states of the same degenerate sub-
space, it can be easily proved that condition(33) is equiva-
lent to condition(19). Note also that there is no need to
construct, from superpositions of statesuf1l , uf2l , . . . ,ufMl, the
explicit forms of statesuf18l , uf28l , . . . ,ufM−18 l, as their proper-
ties are not required to predict that they can never be popu-
lated during the population transfer.

IV. NUMERICAL EXAMPLE

To confirm the validity and feasibility of our general so-
lution to the realization of complete population transfer to
one arbitrary member of a set ofM degenerate states, we
present in this section some numerical examples. In particu-
lar, we consider a system that hasN=7 nondegenerate states
as intermediate states andM øN degenerate orthogonal
states. We define the sum of population in all the intermedi-
ate states asPx, the sum of population in all the degenerate
states except for stateufMl as Py, and the population in the
target stateuf7l as Pf. For convenience all the transition di-
pole moments are assumed to be real and all the laser phases
are set to zero. Hence all the Rabi frequencies take real val-

ues. To fulfill condition(24), we assumeṼPk
=ṼSk7

, for k
=1,2, . . . ,N.

Figure 2 displays an example of population transfer in the
case ofM =N. It is seen that during the population transfer,
the maximum value ofPx is less than 0.3%, and the maxi-
mum value ofPy is less than 0.1%. The finalPf is extremely
close to 100%. We then arbitrarily alter some of the peak
Rabi frequencies that are related to statesuf1l , uf2l , . . . ,uf6l.
The associated results are shown in Fig. 3. Clearly, popula-
tion transfer is still almost complete andPx and Py again
remain negligible at all times. This demonstrates that totally
suppressing the population transferred to states
uf1l , uf2l , . . . ,uf6l does not require us to know their properties
beforehand. Similar results are obtained in numerous other
numerical experiments.

Figure 4 displays analogous results in a case where two
transition dipole momentsm17 andm27 (and therefore the two

peak Rabi frequenciesṼS17
and ṼS27

) that are related to the
target stateuf7l happen to be zero. As predicted by Eq.(25),
this requires us to remove two laser fields that connect the
initial state to two intermediate states. Accordingly we set

ṼP1
and ṼP2

to zero. As seen from Fig. 4, almost complete
population transfer withPx and Py negligible at all times is
also achieved.

Figure 5 shows a numerical example where all the peak
Rabi frequencies that are related to statesuf1l anduf2l are set
to zero, while keeping other peak Rabi frequencies the same
as those used in Fig. 2. Due to this procedure,uf1l and uf2l
are totally decoupled from the system and effectively there
are only five degenerate states. As seen from Fig. 5, almost
100% population transfer to stateuf7l with Px and Py negli-
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gible at all times is also obtained. This clearly confirms our
previous prediction that our adiabatic passage method works
as well even if the exact number of degeneracies(e.g., M
=5 or M =7) is unknown to us.

To end this section, we note that in general nonadiabatic
effects in many-level systems are expected to be stronger
than those in few-level systems. Admittedly, it is not an easy

task to analytically expose the nonadiabatic effects associ-
ated with our model system. However, as seen in the numeri-
cal examples, nonadiabatic effects here are small even when
the field strength is still not very strong. We have also
checked that by increasing the pulse width or the field
strength, or optimizing the time delay between the laser
fields and the ratio of the peak Rabi frequencies(e.g.,

ṼPk
/ṼSkM

), one can always further suppress the nonadiaba-
ticity of the dynamics and therefore the population transfer
can be made even closer to the adiabatic limit.

V. DISCUSSION AND CONCLUSION

Controlled population transfer from a selected initial state
to a manifold of degenerate states has previously been exam-
ined in the context of atomic processes involving magnetic
sublevels[21–25]. Our results are much more powerful and
general than those previously established. A key difference
between this work and previous studies is that we have ex-
ploited the properties of particular coherent excitations of
manifolds with multiple nondegenerate intermediate states.
In particular, withN nondegenerate intermediate states it be-
comes possible to adjust, with 2N laser fields, all the Rabi
frequencies involved in Eq.(22). Hence Eq.(22) can always

FIG. 2. A numerical example of adiabatic passage through a
13-node null eigenstate for the complete population transfer from
an initial state to one arbitrary member ofM =7 degenerate states.
The number of intermediate states is given byN=7. Px represents
the population in all the intermediate states,Py represents the popu-
lation in all the degenerate states except for the target state, andPf

represents the population in the target stateuf7l. The parameters for
the peak Rabi frequencies are, in units of 1/T, given by

sṼP1
,ṼP2

,ṼP3
,ṼP4

,ṼP5
,ṼP6

,ṼP7
d = s60,90,60,120,90,99,135d,

sṼS11
,ṼS12

,ṼS13
,ṼS14

,ṼS15
,ṼS16

,ṼS17
d=s90,15,0,150,36,18,60d,

sṼS21
,ṼS22

,ṼS23
,ṼS24

,ṼS25
,ṼS26

,ṼS27
d=s90,57,24,45,69,78,90d,

sṼS31
,ṼS32

,ṼS33
,ṼS34

,ṼS35
,ṼS36

,ṼS37
d=s90,75,39,36,39,78,60d,

sṼS41
,ṼS42

,ṼS43
,ṼS44

,ṼS45
,ṼS46

,ṼS47
d=s60,18,24,75,66,48,120d,

sṼS51
,ṼS52

,ṼS53
,ṼS54

,ṼS55
,ṼS56

,ṼS57
d=s39,27,93,15,66,78,90d,

sṼS61
,ṼS62

,ṼS63
,ṼS64

,ṼS65
,ṼS66

,ṼS67
d=s93,69,18,87,72,78,99d,

and sṼS71
,ṼS72

,ṼS73
,ṼS74

,ṼS75
,ṼS76

,ṼS77
d=s36,54,48,57,96,

78,135d. Note that condition(24) is satisfied since we have chosen

ṼPk
=ṼSk7

, for k=1,2, . . . ,7. At all times Px,0.3% and
Py,0.05%.

FIG. 3. Same as in Fig. 2 exceptṼS14
=39, ṼS25

=39, ṼS26
=48,

ṼS32
=45, ṼS43

=81, ṼS52
=57, ṼS56

=48, ṼS62
=39, ṼS72

=24. At all
timesPx,0.2% andPy,0.03%.

FIG. 4. Same as in Fig. 2 exceptṼS17
=ṼS27

=0 andṼP1
=ṼP2

=0. At all timesPx,0.03% andPy,0.01%.

FIG. 5. Same as in Fig. 2 except that all the peak Rabi frequen-

cies that are related to statesuf1l and uf2l are set to zero, i.e.,ṼSk1

=ṼSk2
=0, for k=1,2, . . . ,7. At all timesPx,0.3% andPy,0.05%.
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be satisfied by designing the laser fields, providing thereby a
systematic solution to the design of complete population
transfer from an initial state to an arbitrary superposition of
M øN degenerate states. It is also straightforward to deter-
mine if the requirements[i.e., condition(19) andM øN] are
met for our general solution to be applicable.

Most coherent control approaches based on STIRAP-like
dynamics are independent of the relative phases of the con-
trol laser fields[17]. As shown in this work and in Refs.
[19,20,25], this is not true for all STIRAP-like control
schemes. On one hand, the phase-dependence of the control
process causes even more experimental difficulties; on the
other hand the phase-dependence of our adiabatic passage
scheme clearly demonstrates that laser phases can be also
important in STIRAP-like dynamics and may bring about
dramatic opportunities for controlling atomic and molecular
processes.

One great advantage of our adiabatic passage scheme is
its adaptability in cases where the intermediate states or the
unwanted degenerate states are not bound states. That is,
since thesM +N−1d-node null eigenvector does not overlap
with any of the intermediate states or any of the unwanted
degenerate states, the structure of this multinode eigenvector
survives if these states actually decay. As long as the associ-
ated decay rate constants are much smaller than the peak
Rabi frequencies of the component fields[19], the nonadia-
baticity induced by the decaying states will be negligible and
the dynamics of population transfer would be still given by
the evolution of thesM +N−1d-node null eigenvector.

This work extends our previous adiabatic passage method
for the realization of complete control of the population
transfer branching ratio between two degenerate states[19].
The extension is from a five-level and four-pulse scheme to a
s1+N+Md-level ands2Nd-pulse scheme. While the five-level
and four-pulse scheme should be experimentally achievable,
directly applying the present work to realistic systems would
be demanding forM ù3, as it would in general require a
significant number of laser fields. However, from the point of
view of understanding the limits to complete controllability
in degenerate systems subject to strong constrains and/or
with unknown parameters, this work is of great theoretical
interest. In particular, we have shown that it is possible to
realize complete population transfer without ever populating
a Hilbert subspace that is only dimension-two smaller than
the whole Hilbert space, even when the exact number of
degeneracies and the properties of the unwanted degenerate
states are unknown to us. We hope that the results of this
study will motivate future theretical work on coherent con-
trol in degenerate systems. For example, it is interesting to
consider variations on our adiabatic passage scheme, and to
seek alternative, and experimentally more feasible, control
scenarios that can provide the same type of population trans-
fer pathway that is already shown to exist.

Although our adiabatic passage solution offers a general
method for complete population transfer from an initial state
to an arbitrary member of a set ofM degenerate states, there
are still two subtle differences between this solution and an
actual proof of complete controllability of the degenerate
system. First, a completely controllable degenerate system
will have a complete population transfer pathway within a
finite time, whereas the complete population transfer in our
solution, in the most strict sense(i.e., Pf is exactly 100%),
can only be realized in the adiabatic limit, e.g., for infinitely
large pulse width. Second, we have used the rotating-wave
approximation in constructing our solution. Mathematically
speaking, such an approximation inevitably modifies the is-
sue of complete controllability. It is unclear to what physical
extent this approximation changes the controllability of de-
generate systems. For the above two reasons we regard our
adiabatic passage method as a specific physical, but not
mathematical, solution to the complete control of degenerate
systems.

One potential application of this study is to provide a
useful guide for understanding the extremely complex laser
fields obtained by genetic algorithms in adaptive feedback
control of quantum systems[1,2,26]. Suppose an adapative
feedback control experiment is carried out in a degenerate
system and the control goal is to maximize the population in
only one ofM degenerate states and minimize the population
in all the unwanted degenerate states and the intermediate
states. It would be of great interest to see if the optimized
control field suggested by a genetic algorithm can be decom-
posed into 2Nù2M laser fields with their frequencies, am-
plitudes, and relative phases close to what is suggested by
our adiabatic passage scheme. If this is the case, then such a
feedback control experiment becomes a realization of our
general solution to complete population transfer in degener-
ate systems and more applications of this work can be ex-
pected.

To summarize, we have shown that under certain condi-
tions complete population transfer from an initial state, viaN
nondegenerate intermediate states, to an arbitrary superposi-
tion of M sM øNd degenerate states is achievable by adia-
batically following ansM +N−1d-node null eigenstate that is
created by designing the relative phases and amplitudes of
the component fields of a control field. The results may find
applications in quantum information processing in atoms and
molecules and shed considerable light on the issue of com-
plete controllability in degenerate systems under strong con-
straints and/or with unknown parameters.

Note added in proof.Recently a similar idea with a spe-
cific molecular application was published in Ref.[27].
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