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We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic
collisions. We begin by considering the case when no radiation is present. This is necessary in order to check
the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov
states. It turns out that a simple formal analogy links the analytical expressions of the unpolarized differential
cross section without laser and the unpolarized differential cross section in the presence of a laser field.
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I. INTRODUCTION

Recently, the study of relativistic aspects of laser-induced
processes has proved necessary, particularly as a result of
very paramount breakthrough in laser technology which is
capable now of attaining considerable ultrahigh intensities
which could never have been dreamt of three or four decades
ago. Many experiments that have shown a relativistic signa-
ture have been recently reported. To name some, the transi-
tion between Thomson and Compton scattering inside a very
strong laser field was investigated by Moore, Knauer, and
Meyerhofer [1]. Bula et al. [2] performed experiments on
nonlinear Compton scattering at SLAC. Also, there are many
other types of laser-assisted processes in which relativistic
effects may be important. For instance, the process of emis-
sion of very energetic electrons and ions from atomic clus-
ters which are submitted to ultrastrong infrared laser pulses
[3]. It is now obvious that the whole apparatus and formal-
ism of the nonrelativistic quantum collision theory[4] have
to be revisited in order to extend known nonrelativistic re-
sults to the relativistic domain. Many theoretical studies of
laser-assisted electron-atom collision have been mainly car-
ried out in the nonrelativistic regime[5]. In presenting this
work, we want to show that the modifications of the relativ-
istic differential cross section corresponding to the elastic
collision e−+Hs1 s1/2d→e−+Hs1 s1/2d due to the dressing of
the Dirac-Volkov electron, in the presence of an ultraintense
laser field can provide many interesting insights concerning
the importance and the signatures of the relativistic effects.

In this work, we do not consider very high laser intensi-
ties that allow pair creation[6] and focus instead on the
domain of intensities that justifies a strong classical electro-
magnetic potential[7]. The Dirac-Volkov electrons are thus
dressed by a strong classical electromagnetic field with cir-
cular polarization. The organization of this paper is as fol-
lows.

In Sec. II we will present the formalism and establish the
expression of the relativistic unpolarized differential scatter-
ing cross section in the absence of the laser field. This will
serve as a guide and test the consistency of the calculation in
presence of the laser field. In Sec. III, we give the expression
of the unpolarized differential cross section in presence of a
laser field with circular polarization and we compare it with
the unpolarized relativistic differential cross section without
laser field. We show that a simple formal analogy links these
two differential cross sections. In Sec. IV, we give a brief
discussion of the results. In Sec. V, we give a brief conclu-
sion. Throughout this work, we use atomic units(a.u.) and
DCS stands for differential cross section.

II. DIFFERENTIAL CROSS SECTION
WITHOUT LASER FIELD

In order to recover the relativistic differential cross sec-
tion without the laser field, we begin by considering the pro-
cesse−+Hs1 s1/2d→e−+Hs1 s1/2d in the absence of radia-
tion. The (direct) transition amplitude corresponding to this
process is

Sfi = −
i

c
E d4x1c̄pfsr 1,tdg0cpi

sr 1,tdkf fsr 2,tduVdufisr 2,tdl,

s1d

wherecpsr ,td=usp,sde−ipx/Î2EV is the electron wave func-
tions described by a free Dirac spinor normalized to the vol-
umeV andfi,fsr 2d are the relativistic wave functions of the
hydrogen atom where the indexi stands for the initial state
and the indexf stands for the final state. As we study the
elastic excitation by electronic impact, we havef = i
=s1s1/2d. The velocity of light isc=137.036 in atomic units,
the explicit expression of the wave functionsfsr d for the
fundamental state(spin up) can be found in Ref.[8] and
reads in atomic units as*Electronic address: attaourti@ucam.ac.ma
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fsr d =
1

Î4p1
igsrd
0

fsrdcossud
fsrdsinsudeif

2 , s2d

with gsrd given by

gsrd = s2Zdg+1/2Î 1 + g

2Gs1 + 2gd
e−Zrrg−1, s3d

whereasfsrd is given by

fsrd = − s2Zdg+1/2Î 1 + g

2Gs1 + 2gd
e−Zrrg−1S1 − g

Za
D . s4d

To simplify the notation we shall use throughout this work
the following abbreviations:

gsrd = Nge
−Zrrg−1,

fsrd = − gsrdS1 − g

Za
D = Nfe

−Zrrg−1. s5d

In Eq. (1), Vd is the direct interaction potential

Vd =
1

r12
−

Z

r1
, s6d

wherer 1 are the electron coordinates,r 2 are the atomic elec-
tron coordinates, andr12= ur 1−r 2u. The parameterg appear-
ing in all these equations is

g = Î1 − Z2a2. s7d

It is straightforward to get for the transition amplitude

Sfi = − i
ūspf,sfdg0uspi,sid

VÎ2Ei2Ef

2pdsEf − EidHsDd, s8d

whereg0 is given in the standard representation of the Dirac
matrices byg0=diags1,1,−1,−1d. The argument of the func-
tion H is D= upi −p fu, the norm of the momentum transfer.
The DCS is given by

ds

dV f
=

up fu
upiu

1

s4pc2d2S1

2o
si,sf

uūspf,sfdg0uspi,sidu2D
3 uuHsDdu2uEf=Ei

. s9d

In Eq. (9), we have summed over the final polarizationsf and
averaged over the initial polarizationsi. For elastic collisions
up fu= upiu= upu so thatEi =Ef =E and

1

2o
si,sf

uūspf,sfdg0uspi,sidu2 = 4E2f1 − b2 sin2su/2dg, s10d

with b= upuc/E. The angleu is the scattering angle between
the vectorspi andp f. We then have for the unpolarized DCS

ds

dV f
=U 4E2

s4pc2d2f1 − b2 sin2su/2dguHsDdu2U
Ef=Ei

. s11d

We now turn to the functionHsDd of the momentum
transfer which is simply proportional to the Fourier trans-
form of the average(static) potential felt by the incident
electron in the field of the hydrogen atom[4]. Performing the
various integrals, we get for this Fourier transform

HsDd = − 4psNg
2 + Nf

2dGs2g + 1dS 1

s2Zd2g+1D2 −
sins2gfd
2gl2gD3D ,

s12d

where the quantitiesl andf are

l = Îs2Zd2 + D2 and f = arctanS D

2Z
D . s13d

Even if it may not seem so, the functionHsDd is well be-
haved for the case of forward scatteringu=0° [recall that
D=2upiusinsu /2d] and has the property that the limit forD
→0 of the quantity

S 1

s2Zd2g+1D2 −
sins2gfd
2gl2gD3D s14d

is given by

s2g + 1ds2g + 2d
6s2Zd2g+3 . s15d

We must of course recover the result in the nonrelativistic
limit (b→0 andgrel→1). In that case, the unpolarized dif-
ferential cross section is simply given by

ds

dV f
= 4

sD2 + 8d2

sD2 + 4d4 . s16d

Takingb→0 andg→1 (for Z=1), one easily recovers from
Eq. (11) the above-mentioned nonrelativistic limit.

III. THE DIFFERENTIAL CROSS SECTION
IN THE PRESENCE OF A LASER FIELD

We turn to the calculation of the DCS for elastic scatter-
ing without exchange in the first Born approximation and in
the presence of a laser field. The(direct) transition amplitude
in this case is given by

Sfi = −
i

c
E d4x1c̄qfsr 1,tdg0cqi

sr 1,tdkf fsr 2,tduVdufisr 2,tdl,

s17d

wherefi,fsr 2d are the relativistic wave functions of the hy-
drogen atom and the functionscqsr 1,td are the Dirac-Volkov
solutions normalized to the volumeV

cqsr ,td =
1

Î2QV
Rsqdusp,sde−iSsxd, s18d

with

Rsqd = S1 +
1

2skpdc
k”fa”1 cosswd + a”2 sinswdgD , s19d

and
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Ssxd = qx+
sa1pd
cskpd

sinswd −
sa2pd
cskpd

cosswd, s20d

in the case of a circularly polarized electromagnetic potential
such thatAm=a1

m cosswd+a2
m sinswd with kmAm=0 (the Lor-

entz condition) and A2=a1
2=a2

2=a2, a1a2=0, and ka1=ka2
=0. The four-vectorqm=sQ/c,qd is the four-momentum of
the electron inside the laser field with wave four-vectorkm.

We have

qm = pm −
a2

2skpdc2km. s21d

In Eq. (21) a2 denotes the time-averaged square of the four-
vector potential of the laser field. The square of the four-
vectorqm is

qmqm = m*
2c2. s22d

The parameterm* plays the role of an effective mass of the
electron inside the electromagnetic field

m*
2 = 1 −

a2

c4 . s23d

The factorRsqd acting on the bispinoru contains information
about the spin-dressing field interaction. Thus, the Dirac-
Volkov wave function represents a free-electron wave(con-
taining a field-dependent phase) modulated by a wave gen-
erated by the interaction of the spin with the classical single
mode field with four-vector potentialAm.

In Eqs.(19) and(20), w=kx=kmxm=k0x
0−k ·x and we use

throughout this work the notations and conventions of
Bjorken and Drell[8]. Proceeding along the lines of standard
calculations in QED[8], one has for the unpolarized DCS

ds

dV f
= o

s=−`

`
dsssd

dV f
. s24d

The sum overs in Eq. (24) stems from the well-known rela-
tion of ordinary Bessel functions expf−iz sinswdg
=os=−`

+` Jsszdexps−iswd and this physically corresponds to the
number of photons exchanged. The quantitydsssd /dV f is the
DCS corresponding to the exchange of exactlys photons and
reads

dsssd

dV f
=

1

s4pcd2

uq fu
uqiu

S1

2o
sisf

uMfi
ssdu2DuuHsDsdu2uQf=Qi+sw.

s25d

In Eq. (25) Ds= uqi +sk −q fu is the momentum transfer with
the net exchange ofs photons. The quantitysosisf

uMfi
ssdu2d /2 is

the electronic contribution to the unpolarized differential
cross sectiondsssd /dV f and has already been determined in a
previous work [9]. It contains combinations of ordinary
Bessel functions. The functionHsDsd is now given by

HsDsd = − 4psNg
2 + Nf

2dGs2g + 1dS 1

s2Zd2g+1sDsd2

−
sins2gfsd

2gls
s2gdsDsd3D , s26d

with ls=Îs2Zd2+sDsd2 and fs=arctansDs/2Zd. Once again,

FIG. 1. Comparison between the nonrelativistic DCS and the
relativistic DCS as functions of the scattering anglesud varying
from 0° to 30°, without taking into account the spherical coordi-
nates ofspi ,pfd; the curves are perfectly confounded.

FIG. 2. The envelope of the relativistic DCS scaled in 10−5 as a
function of the photon energy transfer in the nonrelativistic regime.
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the functionHsDsd is well behaved for the forward scattering
which corresponds tos=0 and u=0°. When no radiation
field is present, all Bessel functions vanish except fors=0,
we haveJssz=0d=ds0 and in this case, the result reduces to
the unpolarized DCS given in Eq.(11).

IV. RESULTS AND DISCUSSIONS

The kinematics of the process is that given in Ref.[9] and
we maintain the same choice for the laser angular frequency,
that is, w=0.043 which corresponds to a near-infrared
Neodymium laser.

A. The nonrelativistic regime

In the limit of low electron kinetic energy and moderate
field strength, typically an electron kinetic energyW
=100 a.u. and a field strength«=0.05 a.u., the effects of the
additional spin terms and the dependence ofqm on the spatial
orientation of the electron momentum due toskpd are small.
In Fig. 1, we compare the nonrelativistic DCS given by Eq.
(16) and the relativistic DCS given by Eq.(11) as functions
of the scattering angleuspi ,p fd in the absence of the laser
field. As expected, in the nonrelativistic limit, there is only a
small difference between these two DCSs and we see that
this difference becomes more pronounced for the case of
forward scattering. For large-angle scattering, there is almost
no difference between the nonrelativistic calculations and the

relativistic calculations. In Fig. 2, we represent the envelope
of the unpolarized relativistic DCS as function of the photon
energy transfer for the following geometry(ui =fi =45° and
u f =45° ,f f =90°). There is an asymmetry between the ab-
sorption and emission part of the spectrum due to the de-
nominators containing powers ofDs appearing in Eq.(26)
and a rapid falloff of the contributions of the various partial
unpolarized DCSs when the arguments of the ordinary
Bessel functions are close to their indices. In Fig. 3, instead
of plotting sds /dV fdNR andsds /dV fdREL as functions of the
scattering angle, we use the angular coordinatessui ,fid of pi

and su f ,f fd of p f to plot the angular dependence of the two
DCSs as functions ofu f, the angle betweenp f and theOz
axis. This will serve as a consistency check of our next cal-
culations in presence of an electromagnetic potential circu-
larly polarized and whose wave vector points in theOz di-
rection. We have chosen a geometry whereui =fi =45° and
the angleu f varies from 0+ to 180° with f f =90°. The rela-
tivistic parametergrel=1/Î1−b2 is equal to 1.0053 which
corresponds to an electron kinetic energy equal to 100 a.u.
.2.721 keV. The first observation to be made is that in the
nonrelativistic regime, the nonrelativistic DCS is very close
to the relativistic one, which was to be expected. Also, there
is a peak in the vicinity ofu f =35°.

It is also important to compare the relativistic DCS
sdsssd /dVd corresponding to the net exchange ofs photons
where only the electronic dressing term is taken into account,
with the corresponding nonrelativistic DCS. Working with
the nonrelativistic Volkov states, one easily gets for the non-
relativistic case

FIG. 3. Comparison in the nonrelativistic regime, between the
nonrelativistic DCS and the relativistic DCS scaled in 10−3 as a
function of su fd the angle betweenp f and theOz axis. The relativ-
istic parameter isgrel=1.0053. The geometry chosen isui =fi

=45° with u f varying from 0° to 180° andf f =90°.

FIG. 4. Comparison in the nonrelativistic regime(grel

=1.0053,«=0.05 a.u.,w=0.043 a.u.) between the relativistic DCS
with laser and the relativistic DCS without laser scaled in 10−3 for
the exchange of ±100 photons.

ATTAOURTI, MANAUT, AND MAKHOUTE PHYSICAL REVIEW A 69, 063407(2004)

063407-4



dsB1,s

dV f
=

up fssdu
upiu

Js
2S uau

cw
ÎsD · x̂d2 + sD · ŷd2DdsB1,F,FsDsd

dV f
,

s27d

where the first-Born DCS is given by Eq.(16) and corre-
sponds to the field free case evaluated forDs. In the argu-
ment of the ordinary Bessel function corresponding to the
circular polarization of the laser field,x̂ and ŷ are the unit
vectors along the direction of thex axis and the direction of
they axis respectively. In Fig. 4, we compare the relativistic
summed DCS with and without laser field for the net ex-
change of ±100 photons. As one can see, the laser field gives
rise to important modifications of the DCS. For this collision
geometry, several hundred photons can be exchanged even in
the case of a moderate laser intensity of 8.7531013 W/cm2.
In Fig. 5, the net exchange of ±300 photons shows that the
DCS with laser field approaches very closely the DCS with-
out laser field and we have almost two indistinguishable
curves. This result is in accordance with the approximate
sum rule[5]. In the nonrelativistic regime, this sum rule is
obtained for a relatively small numbers of photons ex-
changed.

B. The relativistic regime

In the limit of high electron kinetic energy and strong-
field strength, typically an electron kinetic energyW
=c2 a.u. and a field strength«=1.00 a.u., the effects of the

FIG. 5. Comparison between the relativistic DCS with laser and
relativistic without laser scaled in 10−3. The parameters areg
=1.0053,«=0.05 a.u., andw=0.043 a.u. The geometry chosen is
ui =fi =45°, whereu f varies from 0° to 180° withf f =90° for an
exchange of ±300 photons. The curves are indistinguishable.

FIG. 6. Comparison in the relativistic regimegrel=2 between
the nonrelativistic DCS and the relativistic DCS as functions of the
scattering anglesud varying from 0° to 3°.

FIG. 7. Comparison in the relativistic regime(grel=2, «
=1 a.u.,w=0.043 a.u.) between the relativistic DCS with laser and
the nonrelativistic DCS with laser scaled in 10−10, for an exchange
of ±5000 photons. The geometry chosen isui =fi =45°, whereu f

varies from 0° to 180° withf f =90°.
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additional spin terms and the dependence ofqm on the spatial
orientation of the electron momentum due toskpd begin to be
noticeable.

In Fig. 6, the nonrelativistic DCS is compared to the rela-
tivistic DCS as functions of the scattering angleu (not to be
confused with the angleu f). The nonrelativistic formalism is
no longer applicable since there is now a net difference be-
tween the DCS given by Eq.(11) and the DCS given by Eq.
(16) particularly for small angles. Indeed, for the case of
forward scatteringsds /dVdNR=1 while sds /dVdR.4 and
the difference between the DCS remains noticeable up tou
=1.5°. For large angles, both approaches give nearly the
same results. In Fig. 7, we compare the summed DCS rela-
tivistic and nonrelativistic where there is an exchange of
±5000 photons. The values of the nonrelativistic DCS are
more than halved with regard to the relativistic DCS.

V. CONCLUSION

In this work, we have studied the effect of the relativistic
electronic dressing in laser-assisted electron-hydrogen elastic
collisions. To our knowledge, this is the first time that such a
calculation has been carried out at this level. Even if the
formalism may seem heavy and complicated, we have(using
the case with no laser field as a guide) checked every step of

our calculations. What emerges is that the relativistic elec-
tronic dressing reduces considerably the magnitude of the
DCS. We must sum the DCS given by Eq.(24) over a very
large number of photons in order to get the same order of
magnitude as that of the DCS given by Eq.(11). Of course, a
more sophisticated approach is needed in order to have a
complete treatment of this relativistic process. The relativis-
tic generalization of the method due to by Byron and
Joachain[10] which takes into account the atomic dressing
will be presented in a separate paper. These authors and oth-
ers [11] have shown that in the nonrelativistic regime, the
dressing of atomic states can give rise to very important
modifications of the DCS. The nonrelativistic treatment of
laser-assisted electron-atom collisions taking into account
both the electronic dressing and the atomic dressing has been
studied by many authors[12]. All agree that at least in the
nonrelativistic regime, the effects of atomic dressing can
modify the behavior of the DCS. Work is in progress to
include the relativistic atomic dressing in this collision pro-
cess.
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