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In this article we report on the use of degenerate-Raman-sideband cooling for the collimation of a continu-
ous beam of cold cesium atoms in a fountain geometry. Thanks to this powerful cooling technique we have
reduced the atomic beam transverse temperature from 60mK to 1.6 mK in a few milliseconds. The longitu-
dinal temperature of 80mK is not modified. The flux density, measured after a parabolic flight of 0.57 s, has
been increased by a factor of 4 to approximately 107 at. s−1 cm−2 and we have identified a Sisyphus-like
precooling mechanism which should make it possible to increase this flux density by an order of magnitude.
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I. INTRODUCTION

Since the discovery of laser cooling[1], beams of slow
and cold atoms have played an ever more important role in
high-precision experiments—e.g., in atomic interferometry
experiments[2,3] and atomic fountain clocks[4]. In this con-
text the continuous beam approach[5] is interesting because
it dramatically reduces all undesirable effects of atomic den-
sity [4] and the Dick effect which is unavoidable in pulsed
beams[6,7]. However, to take full advantage of the continu-
ous beam approach, one needs to increase the useful flux.
One method is to collimate the atomic beam.

In this paper we present a laser cooling experiment for the
collimation of a continuous beam of cold cesium atoms in a
fountain geometry. The technique that we use is Zeeman-
shift degenerate-Raman-sideband cooling. Sideband cooling
was first applied to trapped ions[8–10]. Later, following a
theoretical proposal by Taïebet al. [11], it was adapted to
neutral atoms in optical lattices by several groups[12–14].
Recently, the group of Chu developed a particularly efficient
scheme[15] for three-dimensional(3D) cooling of a pulsed
cesium beam[16]. Here we report on a demonstration of this
mechanism for two-dimensional cooling of a continuous
atomic beam.

II. DEGENERATE-RAMAN-SIDEBAND COOLING
PRINCIPLE

The cooling scheme we use is similar to that proposed by
Chu and co-workers[15,16]. Let us briefly recall its prin-
ciple. Cesium atoms are trapped in a far-off-resonance opti-
cal lattice and their center-of-mass motion is quantized. In
this context we cool the atoms with a succession of cycles,
decreasing their vibrational energy leveln until they reach
the ground staten=0. As depicted in Fig. 1, forn.1, each

cycle consists of two Raman transitionsuF=3, mF=3, nl
→ u3, 2, n−1l→ u3, 1, n−2l followed by an optical pump-
ing cycle towardsu3, 3, n−2l. Each Raman transition re-
moves one vibrational quantum but the optical pumping con-
servesn with high probability because the atoms are in the
Lamb-Dicke regime. Notice that forn=1 we need a cycle
made up of only one Raman transitionuF=3, mF=3, n=1l
→ u3, 2, 0l followed by optical pumping to bring the atom
to the ground stateu3,3,0l. The Raman cooling process ends

*Electronic address: Gianni.DiDomenico@ne.ch

FIG. 1. Degenerate-Raman-sideband cooling scheme adapted
from [15] by permission of the authors. Atoms trapped in optical
potential wells are brought to the vibrational ground staten=0 by a
sequence of cooling cycles. Each cycle is composed of two Raman
transitions(double arrows) followed by fasts+ optical pumping
except the last cycle which is composed of a single Raman transi-
tion followed by slowp pumping(fast and slow are relative to the
Raman transition rate). Cooling ends in the stateuF=3, mF=3, n
=0l which is dark for both pumping and lattice laser. Different
vibrational levels are brought into degeneracy using a magnetic
field sDEZeemand. The strongs+ pumping beam induces a light shift
on mF=1 sublevelssDELSd. Fortunately, it also broadens thesemF

=1 sublevels, which helps to preserve the degeneracy.
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there since the ground state is dark to both the lattice and
pumper beams. One can further cool the atoms by adiabatic
expansion of the potential well as in Ref.[17].

Two lasers are needed to realize this cooling scheme.
First, for the optical lattice, we need a high-power laser far
detuned to the red of theF=3→F8=2,3,4transitions of the
cesiumD2 line. By tuning this laser to theF=4→F8=3 or
F=4→F8=4 transition we obtain a detuning ofD=−2p
39 GHz and the laser acts simultaneously as a repumper
towards theF=3 hyperfine ground state. Second, to com-
plete the cooling cycle, we need an optical pumping laser
tuned in the neighborhood of theF=3→F8=2 transition of
the D2 line. This laser should be mostlys+ to favor cycles
with two Raman transitions but it should also contain a small
p component for the last cooling cycle. Degenerate Raman
transitions can be stimulated by the optical lattice laser itself.
By a proper choice of polarizations, Raman couplings can be
induced between the statesuF=3, mF=3, nl and u3, 2, n
−1l brought into degeneracy by a magnetic field, as well as
betweenu3, 2, n−1l and u3, 1, n−2l.

Typical cooling times are a few milliseconds and the
atomic beam crosses the cooling zone with a velocity of
approximately 3 m/s. Therefore cooling can be achieved in a
continuous mode with laser beams a few millimeters in di-
ameter. In comparison with previous work[12,15,16] our
experiment has the following distinctive features. We operate
sideband cooling in continuous mode on an atomic beam.
The initial temperature as given by our continuous cold atom
sources60 mKd is much higher than that of sequential ex-
perimentss2–3 mKd [12,15,16]. The lattice potential depth
seen by the atoms when crossing the collimation zone is not
constant(because of Gaussian laser beams). We use a 2D
optical lattice which combines symmetry, phase stability, and
power recycling. See Sec. IV for details.

III. OPTICAL LATTICE

The field configuration used for the optical lattice consists
of four linearly polarized beams having equal amplitudes and
propagating in thexy plane along thex and y axes. The
resulting field can be written as

Esr ,td = E0Esr dexps− ivLtd + c.c., s1d

Esr d = n1 expsikyd + n2 exps− ikyd + n3 exps− ikxd

+ n4 expsikxd,

where E0 is the single-beam amplitude andni is the unit
polarization vector of theith beam. All the beams have the
same frequencyvL, far-detuned to the red of transitions
F=3→F8=2,3,4 of theD2 resonance line. The lattice field
induces spatially nonuniform optical shifts of substates with
total angular momentumF=3. As was shown in Ref.[18], if
the detuning is much greater than the hyperfine splitting of
the excited state, the optical potential for the ground state
takes the form

Û = −
2

3
usuEsr du2 −

i

12
usfEsr d * 3 Esr dg · F̂. s2d

Here F̂ is the angular momentum operator; the single-beam
light shift us=−AI /D is proportional to the single-beam light
intensity I and inversely proportional to the detuningD
=vL−vF,Fmax8 . The constantA is given by A="G2/ s8Isd
whereG=2p35.3 MHz is the natural width of the transition
and Is=1.1 mW cm−2 is the saturation intensity. The first
term in Eq.(2) describes an isotropic energy shift(the same
for all Zeeman sublevels) proportional to the energy density
of the field. The second term acts as an effective magnetic
field with magnitude and direction governed by the vector
ifEsr d* 3Esr dg. In general, the relationship between the sca-
lar and vector terms in the optical shift operator is governed
by the beam polarizationsni—i.e., by the orientation angles
a andb of the wave plates in the present setup: see Fig. 3.
For the field configuration considered here(a=p /8 andb
=0) we have

wsx,yd = uEsr du2 = 4f1 + cosskxdcosskydg, s3d

M sx,yd = ifEsr d * 3 Esr dg = 4fex sinskxd + ey sinskydg

3 fcosskxd + cosskydg. s4d

These scalarw and vectorM are shown in Fig. 2. When the
local quantization axis is chosen along the vectorM sx,yd,
the optical shift operatorÛ is diagonal. The corresponding
eigenvalues(adiabatic potentials) are written as

Umsx,yd = −
2

3
uswsx,yd +

mF

12
usuM sx,ydu, s5d

wheremF=−F , . . . ,F enumerates adiabatic states. However,
if we choose the quantization axis along the static magnetic
field B, which is antiparallel withOy (see Fig. 3), the diag-
onal part of the optical shift operator,

Ûsdiagd = −
2

3
uswsx,yd −

1

3
us sinskydfcosskxd + cosskydgF̂y,

s6d

definesmF-dependent anisotropic potentials. The transverse
off-diagonal term

ÛsRd = −
1

3
us sinskxdfcosskxd + cosskydgF̂x s7d

induces the Raman transitions between vibrational manifolds
of adjacent Zeeman substates. These Zeeman sublevels are
shifted due to both the static magnetic field and optical
pumping field. The resonant Raman transitions are shown in
Fig. 1. It is worth noting that in the strong Raman coupling
regime the off-resonant Raman transitions should be taken
into account as well.

We calculate the vibrational frequenciesvv using the har-

monic approximation of the diagonal elements ofÛsdiagd

from Eq. (6). As a numerical example, we takeI
=100 mW cm−2 and D=−2p39 GHz. Then "−1us<2p
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333 kHz and vv<"−1Î16us«r /3<2p319 kHz for m=0
andvv<2p325 kHz form=3, where«r is the recoil energy
given by«r ="2k2/ s2Md. The potential depthDU is given by
"−1DU<"−116us/3<2p3180 kHz and there are approxi-
mately"−1DU /vv<8 bound states.

Note that the vibrational frequencies are comparable with
the Raman couplingUR<"−1uskl tans2ad<2p310 kHz
where l =Î" /2Mvv is the characteristic size of the lower
vibrational state. Thus, the cooling operates in the strong
Raman coupling regime and the simple physical picture of
Refs.[12,19] is not applicable to our case. In particular, the
Raman transitions strongly perturb the vibrational energy
structure, introducing a deformation of the scalar potential.
As a result, the adiabatic potentials(5), the vector term taken
into account, significantly differ from the scalar potential.

IV. EXPERIMENTAL SETUP

The scheme of the experiment is represented in the dia-
gram of Fig. 3(a). The source of the continuous beam of cold

FIG. 2. Spatial dependence of the optical potential operator

Ûsx,yd, from Eq.(2), within one potential well, −p,kx, +p and
−p,ky, +p. (a) Plot of the dimensionless scalar potential
−2

3wsx,yd, from Eq. (3), as a function ofkx andky. (b) Plot of the
dimensionless absolute value of the vectorM sx,yd, from Eq.(4), as
a function of kx and ky. (c) Plot of the directions of the vector
M sx,yd, from Eq. (4), as a function ofkx and ky. Note that the
vector partM sx,yd is odd with respect to the origin, which provides
the Raman coupling between adjacent vibrational levels.

FIG. 3. Scheme of the experiment.(a) Vertical plane. The source
of the continuous beam of cold atoms is a six beam moving molas-
ses, four of which are shown. It is described in details in Ref.[20].
The collimation plane is tilted at about 3° to the horizontal in such
a way that the atoms arrive at detection after a parabolic flight. PD,
photodetector.(b) Laser beam geometry in the collimation plane.
PBS, Polarizing beam splitter.l /2, half-wave plate with slow axis
tilted at a with respect toOz. l /4, quarter-wave plate with slow
axis tilted atb with respect toOz. The lattice beam input polariza-
tion is vertical. See text for details.
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atoms was presented in detail in[20]. It is an optical molas-
ses loaded by a thermal cesium vaporp=10−8 mbar. The
atoms are continuously cooled and launched upwards by the
moving molasses technique. We thus obtain a continuous
beam of cesium atoms with a flux of the order of 108 at/s, a
temperature between 50 and 100mK and an adjustable ve-
locity of about 4 m/s[20].

Collimation is carried out 22 cm above the source in a
plane tilted at 3° with respect to horizontal. The geometry of
the laser beams in this collimation plane is shown in Fig.
3(b). We chose a scheme suggested by Rauschenbeutelet al.
[21] to obtain a 2D optical lattice which is intrinsically
stable1 while recycling the light to have the highest intensity.
Note that, as mentioned in[21], the stability of the optical
lattice is obvious if we consider it as a folded 1D lattice
intersecting with itself. All four lattice beams are linearly
polarized. The half-wave plate located after the beam splitter
tilts the polarization by 2a with respect to its initial direction
Oz. The quarter-wave plate, withb=0, reverses the polariza-
tion of the retroreflected beam to −2a. The pumping beam
and the magnetic field direction are also in the collimation
plane. The pumping beam makes a 5° angle with respect to
the Oy lattice beam(this is imposed by the access to the
vacuum system). The magnetic field which determines the
quantization axis is essentially alongOy. A small Ox com-
ponent(approximately 10%) is added to adjust thep polar-
ization content of the pumping beam which is almost entirely
s+. Finally, the pumping beam ellipticity is optimized to can-
cel thes− component. Indeed a smalls− component leads to
heating cycles, the opposite of a cooling cycle; see Fig. 1.
The effect of this last adjustment on thep polarization com-
ponent is negligible.

The optical lattice laser is locked to theF=4→F8 mani-
fold, which gives a detuning of 9 GHz to the red side of the
F=3→F8 manifold. It is a Gaussian beam of waistw
=5.68 mm, truncated at a radius ofr =9 mm, with a maxi-
mum power of 190 mW. The pumping beam has the same
geometrical characteristics, with a typical power of about
0.6 mW. It is locked a few megahertz to the blue side of the
F=3→F8=2 transition.

After collimation, the atoms accomplish a parabolic flight
of 0.57 s before reaching the detection region. We detect the
atomic flux by fluorescence using a retroreflected probe laser
beam propagating along theOy direction. This beam has a
diameter of 2 mm, an intensity near saturation, and is locked
on theF=4→F8=5 cycling transition. A repumper locked
on F=3→F8=4 allows us to determine the number of atoms
in both F=3 andF=4 ground hyperfine states.

We measure separately the longitudinal and transverse
temperatures of the atomic beam after collimation. To this
end, we make use of the ballistic flight between the collima-
tion and detection. To determine the longitudinal tempera-
ture, we proceed as follows. Just before collimation, we chop
the continuous atomic beam using a pulsed transverse push-
ing laser beam, to produce a pulsed atomic beam with a

pulse width of 5 ms. We then measure the time-of-flight dis-
tribution at detection. To determine the transverse tempera-
ture, we measure the atomic beam profile in the detection
region. For this purpose, we have mounted the detection sys-
tem as a whole(probe beam, collimation lens, and detector)
on a translation stage in such a way that its sensitivity is
independent ofx. Note that the initial atomic beam size,
probe beam size, and longitudinal temperature all affect the
atomic beam profile at detection. We subtract these contribu-
tions when calculating the transverse temperature. The detec-
tion system has been calibrated to measure the atomic flux
density as a function of position. In the experimental curves,
we have reported the flux density measured in the detection
region, at the center of the atomic beam.

V. EXPERIMENTAL RESULTS

The presence of a dark state and the strong interplay be-
tween magnetic field and pumping beam polarization are
characteristic features of degenerate Raman sideband cool-
ing. We started our study by identifying situations where
sideband cooling takes place. We proceeded as follows. For
different magnetic field configurations and pumper polariza-
tions, we scanned the pumper laser frequency and recorded
the fluorescence signal at detection in the center of the
atomic beam. Representative results are presented in Fig. 4.
On these graphs, collimation manifests itself as a positive
peak. It should be noted that there is no direct correlation
between the size of the peak and the transverse temperature;
i.e., a very high peak does not imply a very low temperature
and nor does a dip imply a high temperature(this will be
clarified later). The peaks help us to identify interesting fre-
quencies to which we then lock the pumping laser to mea-
sure the transverse temperature.

The first situation we investigated is the configuration de-
scribed in Sec. II; i.e., the pumper polarization iss+ and the
magnetic field is nearly parallel with the pumper wave vec-
tor. The result is presented in graph(a) of Fig. 4. We observe
collimation due to sideband cooling on bothF=3→F8=2
and F=3→F8=3 transitions but not onF=3→F8=4. That
is consistent with the fact that there is one dark state
uF=3, mF=3, 0l when the laser is locked to either of the
former two transitions2 but no dark state with the latter. Note
also that the 328 peak is higher than the 338 peak and this can
be explained as follows. The main reason is that theF=3
→F8=3 transition is open, and atoms spend part of their
time in theF=4 hyperfine ground state where they experi-
ence heating due to the lattice field as becomes obvious at
higher pumper intensity; see Fig. 5 and discussion below.
Another effect is that some atoms may be pushed trans-
versely out of the lattice volume by the unbalanced radiation
pressure from the pumping beam before they are trapped in
the potential wells.

1The lattice is intrinsically stable if the only effect of a phase shift
of one of the laser beams, due, for example, to the vibration of a
mirror, is to translate the optical lattice.

2On the F=3→F8=3 transition, the stateuF=3, mF=3, 0l is
dark only if the pumper polarization is purelys+. In practice, we
adjust the magnetic fieldOx component to cancel anyp polariza-
tion.
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The next situation considered is when the pumping beam
polarization is linear alongOz and the magnetic field is
nearly parallel with the pumping beamsOyd. In this case, the
pumper is composed of boths+ ands− polarization compo-
nents, so there are no dark states and we do not expect any
collimation due to sideband cooling. The experimental re-
sults are displayed in graph(b) of Fig. 4. As expected, there
are no collimation peaks; quite to the contrary, we observe
small dips on each of theF=3→F8 transitions. This can be
explained because, in the presence ofs− pumping light, we

expect to observe heating, rather than cooling, cycles.
The last situation is when the pumping beam polarization

is linear alongOz and the magnetic field is also alongOz.
This case corresponds top pumping. Under the combined
effect of degenerate Raman coupling and optical pumping,
there is only one possible dark state: namely, when the
pumping beam frequency is on theF=3→F8=2 transition.
This dark state isuF=3, mF= +3, n=0l if Bz.0 and
uF=3, mF=−3, n=0l if Bz,0. The experimental results are
displayed in graph(c) of Fig. 4. As expected there is a col-
limation peak on theF=3→F8=2 transition but none on the
other transitions.

The three graphs of Fig. 4 were obtained with the lowest
possible pumping beam powers20 mWd in order to highlight
Zeeman pumping effects in theF=3 ground state while lim-
iting the effect of unwanted hyperfine pumping to theF=4
ground state. However, to observe efficient sideband cooling
we have to increase the pumping beam intensity. Therefore
we repeated the measurement of Fig. 4(a) with a higher
pumping beam powers0.6 mWd and the results are presented
in Fig. 5. On the two hyperfine pumping transitionssF=3
→F8=3,4d we observe large dips because atoms spend more
time in the F=4 hyperfine ground state where they are
heated by the strong lattice light. The 348 dip is wider than
the 338 dip because of the power broadening induced by the
lattice laser which is locked to theF=4→F8=4 transition.
We observe a very strong sideband cooling peak on the blue
side of theF=3→F8=2 transition, as well as a narrow dip
on the red side. Note that the dip is due to heating cycles, but
this will be explained in more detail later in this section.

From now on we shall focus on the first situation(pumper
polarizations+ and magnetic field nearly parallel with the
pumper as described in Sec. II) where we observe efficient
sideband cooling for the pumping laser on the blue side of
F=3→F8=2 transition; see Fig. 5. In this situation we have
searched for the laser parameters and the magnetic field that
optimize atomic flux and transverse temperature.

We start with magnetic field. The theoretical value which
optimizes the cooling process is such that the shift between

FIG. 4. Fluorescence signal detected in the center of the atomic
beam as a function of pumping beam frequency. We scan over all
F=3→F8 transitions of the cesiumD2 line in 20 s. We investigated
three different polarization configurations for the pumping laser
beam. In graph(a) we adopted the configuration described in Sec.
II; the pumper polarization iss+ and B is nearly parallel to the
pumper,B=150 mG. In graph(b) we changed the pumper polariza-
tion to linear alongOz but B is kept nearly parallel to the pumper.
In graph(c) the pumper polarization is still linear parallel toOzand
B is also parallel toOz, B=200 mG. Other common conditions:
a=22.5°, optical lattice locked onF=4→F8=4, lattice power
190 mW, and pump power 20mW. For frequency calibration, we
used saturated absorption spectroscopy.

FIG. 5. Fluorescence signal detected in the center of the atomic
beam as a function of pumping beam frequency. We scan over all
F=3→F8 transitions of the cesiumD2 line in 20 s. The polariza-
tion of the pumping beam iss+ and B is nearly parallel to the
pumper, as described in Sec. II. Other conditions:a=22.5°, optical
lattice locked onF=4→F8=4, B=60 mG, lattice power 190 mW
per beam, and pump power 0.6 mW. For frequency calibration, we
used saturated absorption spectroscopy.
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adjacent Zeeman sublevels equals the vibrational level spac-
ing in the lattice wells. However, in our experiment, a con-
tinuous atomic beam crosses a combination of Gaussian laser
beams, leading to position- and time-dependent well depth
and vibrational frequenciesvv. The time dependence satis-
fies the adiabaticity condition 1/vv3dvv /dt!vv but the
magnetic tuning condition can only be met in an average
sense and if the vibration levels are sufficiently broadened by
the pumping light. We have measured the transverse tem-
perature and atomic flux density as a function of magnetic
field amplitude. Results are shown in Fig. 6. We find that the
temperature is minimum forB=50 mG and the atomic flux
density is maximum forB=60 mG.

We have repeated this measurement for values ofa rang-
ing from 0° to 45°. Let us recall that the lattice beam polar-
ization is linear and tilted from theOzaxis by +s−d2a for the
forward(retroreflected) beam. For 2a=0° the flux practically
vanishes, together with the Raman transition probability. The
flux then increases with tilt angle, reaches a maximum at
2a=45°, and decreases again. The dependence of the trans-
verse temperature as a function of magnetic field is the same
for all values ofa.

The effect of lattice laser intensity is shown in Fig. 7. The
atomic flux grows steadily with lattice beam intensity. There
is no obvious sign of saturation and the transverse tempera-
ture is nearly constant. Note that we kept the magnetic field
at a fixed value even if it can be expected that the optimum
magnetic field changes with the lattice intensity. This should
not change the result to a significant degree because the ex-
pected variation of the optimum magnetic field is less than
40% and the resonance inB is smooth in this range.

We have also repeated our flux and temperature measure-
ments for various values of the lattice laser frequency by
locking it to each of the threeF=4→F8 transitions and their
crossovers. We observed no difference except for theF=4
→F8=5 transition frequency, for which the atomic flux van-
ishes. This result is easily understandable: for all transitions
and with sufficient intensity, the lattice laser also acts as a
repumper to theF=3 level, except when it is tuned to the
cycling, F=4→F8=5, transition.

The cooling efficiency is much more critically dependent
on the pumping laser frequency, however. This effect can be
expected from the size and sign of the light shifts experi-
enced by the different Zeeman sublevels of theF=3 state, as
observed and explained by Kermanet al. [15]. Because of
the s+ polarization of the pumping beam, theF=3, mF=1
sublevel is shifted, but theF=3, mF=2 and F=3, mF=3
sublevels are not as they are dark to thes+ pumper light. If
the light shift is negative, which is the case for a red detun-
ing, it will lead to a heating, instead of a cooling, cycle if the
light shift is comparable with the Zeeman shift. This argu-
ment explains the dip observed in Fig. 5 and the fact that the
cooling efficiency is much higher on the blue side than on
the red side of theF=3→F8=2 transition. This behavior is
indeed observed in Fig. 8. Notice that the temperature is
lower on the red side. This can be explained because all
atoms not in the dark stateuF=3, mF=3, 0l are lost by heat-
ing. Thus, only a small fraction of very cold atoms remains.

VI. DISCUSSION

A. Optimum magnetic field

The dependence of flux and temperature on magnetic field
(see Fig. 6) is characteristic of Zeeman-shift degenerate-

FIG. 6. Atomic flux density and transverse temperature as a
function of magnetic field alongOy. The flux density is measured in
the center of the atomic beam where it reaches its maximum value.
Experimental conditions:a=22.5°, lattice locked onF=4→F8=4
transition, pumping beam locked a few megahertz above theF=3
→F8=2 transition, lattice power 190 mW per beam, and pump
power 0.6 mW.

FIG. 7. Atomic flux density and transverse temperature as a
function of lattice beam power. The flux density is measured in the
center of the atomic beam where it reaches its maximum value. The
intensity in the center of the lattice beam can be deduced from the
power byImax fmW/cm2g<2P fmWg because the beam is Gauss-
ian with a waistw=5.68 mm. Same experimental conditions as in
Fig. 6 but withB=60 mG.

FIG. 8. Atomic flux density and transverse temperature as a
function of pumping laser frequency, in a range of a few tens of
megahertz around theF=3→F8=2 transition of the CsD2 line.
The flux density is measured in the center of the atomic beam where
it reaches its maximum value. Same experimental conditions as in
Fig. 6 but withB=60 mG.

Di DOMENICO et al. PHYSICAL REVIEW A 69, 063403(2004)

063403-6



Raman-sideband cooling. Due to the Gaussian profile of the
laser beams, the resonance is smeared out, but there is a clear
optimum of temperature whenB<50 mG. In order to com-
pare this value with theory, we have calculated the optical
potential wells and the vibrational frequencies corresponding
to our experimental conditions. In the center of the laser
beam, we haveI =380 mW cm−2; thus, we obtainvv<2p
350 kHz. At the edge of the laser beamsr =9 mmd, we have
I =2.5 mW cm−2, corresponding tovv<2p34 kHz. The
magnetic field necessary to shift adjacent Zeeman sublevels
by an amount equal to the vibrational energy splitting is
Bmax<140 mG in the center andBmin<11 mG at the edge of
the laser beam.3 The experimental optimum lies between
these upper and lower bounds.

B. Adiabatic cooling

Due to the Gaussian shape of laser beams, atoms should
undergo an adiabatic expansion while leaving the cooling
zone and this should reduce the temperature[15–17]. To
check if this adiabatic cooling takes place in our experiment
we have masked the upper part(approximately 25%) of the
laser beams and we made the following observations. When
we blocked the upper part of all laser beams(lattice and
pump) the temperature increased by a few tens of mi-
crokelvin. This could lead us to believe that there is adiabatic
cooling. However, we repeated the experiment, masking only
the top of the pumping beam, and the temperature increased
even more(although adiabatic expansion should still take
place). We deduce that, after having crossed three-quarters of
the cooling zone, only a small fraction of atoms have reached
the dark stateuF=3, mF=3, n=0l and for this reason the
effect of adiabatic cooling is imperceptible. This also means
that in the future, we might be able to lower the temperature
by increasing the size of laser beams and therefore the transit
time of atoms in the cooling zone.

C. Final temperature

Without adiabatic cooling, the final temperature is linked
to the kinetic energy of atoms inside the optical lattice and,
thus, to the average vibrational frequency. We can calculate
the vibrational ground-state kinetic temperature using
1
2kBT0=kEkineticl= 1

4"vv. For I =100 mW cm−2 we havevv
<2p325 kHz and thusT0=0.6 mK. This is the lowest pos-
sible final temperature which is reached if all atoms are in
the vibrational ground state. However, in the strong coupling
regime, one cannot expect the final vibrational ground-state
population to be close to 1, because of the competition be-
tween off-resonant and resonant Raman transitions(see also
Sec. VI E). Moreover, the spatial and temporal inhomogene-
ity of the optical lattice parameters prevent the resonance
condition DEZeeman="vv from being fulfilled everywhere.
This further reduces the final population of the ground state
and thus increases the final temperature. As a result, we ex-
pect an average vibrational number between 0.5 and 1 which

corresponds to a final temperature between 1.2 and 1.8mK.

D. Cooling of unbound atoms in far-detuned optical
lattice

One important ingredient of the sideband-resolved Raman
cooling scheme of Hamannet al. [12] is an effective loading
of atoms into a few lower vibrational levels. For this pur-
pose, they used the polarization-gradient cooling in a near-
resonant optical lattice. In the method of Treutleinet al. [16]
the precooling stage is absent, and the results obtained in
[16] suggest that two(probably different) cooling mecha-
nisms coexist: one for tightly bound atoms in the Lamb-
Dicke regime and another for unbound atoms moving above
the optical lattice potential. The experiments presented here
correspond, in principle, to the method of Treutleinet al., but
with much higher temperature. In order to ensure that un-
bound atoms are actually cooled in the present scheme, we
have started to consider this problem in the framework of the
standard semiclassical approach[22–30]. Namely, following
the work in Ref.[31], we have developed analytical expres-
sions for the local frictionX and diffusionD coefficients in
the case of a model 1→0 transition. The stationary tempera-
ture of unbound atoms is estimated askBT=−kDl / kXl, where
the angular brackets denote spatial averaging over the lattice
period. We perform numerical averaging of the friction and
diffusion for a 1D model configuration. The dependences on
parameters(pumper detuning, Zeeman shift, lattice intensity,
etc.) we have obtained reproduce the main qualitative fea-
tures of the experimental results.

Note that, from the semiclassical point of view employed
here, we are dealing with a new kind of polarization-gradient
cooling where the atomic recoil is provided by stimulated
rescattering of far-detuned photons in a nondissipative opti-
cal lattice, while the near-resonant optical pumping plays the
role of an effective relaxation in the system. Both Doppler-
like and Sisyphus-like cooling are possible, depending on the
angular momenta of the levels, pumping field polarization,
and other parameters. A detailed theoretical study will be
communicated elsewhere.

E. Model of sideband Raman cooling in the Lamb-Dicke
regime

Reference[19] describes a model of degenerate-Raman-
sideband cooling in a case where the adjacent Zeeman states
are displaced by the Stark shift of an auxiliary laser beam.
By adapting the method described therein, we have per-
formed numerical calculations of the steady-state distribution
among the Zeeman and vibrational substates for a model 1
→0 transition. We took into account five vibrational states
for each Zeeman sublevel and all possible Raman transitions.
We studied a model 1D lattice formed by linearly polarized
counterpropagating laser beams in lin-u-lin configuration
with a magnetic field orthogonal to the beam directions. In
this lattice, the ratioUR/vv is controlled by both the angleu
and the lattice intensity. The results for the average vibra-
tional excitation number are shown in Fig. 9. As can be seen,
they are in qualitative agreement with the experimentally
observed dependence; see Fig. 6.

3The Zeeman frequency shift of adjacent magnetic sublevels is
350 kHz/G for the hyperfine ground states of cesium.
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F. Comparison with Sisyphus cooling

To evaluate the efficiency of sideband cooling, it is inter-
esting to compare it with Sisyphus cooling in the same ge-
ometry. Whena=22.5° the optical lattice has the same ge-
ometry as a 2D lin' lin molasses. Therefore we just have to
lock the lattice on the red side of theF=4→F8=5 transition
and the pumper on theF=3→F8=4 transition to produce the
conditions for Sisyphus cooling. The atomic flux and trans-
verse temperatures obtained after optimization of all param-
eters are presented in Table I. The flux is weaker with side-
band than with Sisyphus cooling. This is most probably due
to the very high temperatures<60 mKd of atoms when they
enter the optical lattice. The question of how to increase the
flux is discussed in the next subsection.

G. Possibility to increase the flux

To push up the intensity of the atomic beam, we would
need an efficient precooling mechanism, preferably superim-
posed with the optical lattice[12]. With this in mind, we
locked the lattice laser 126 MHz below theF=4→F8=5
resonance and scanned the pumping laser frequency over all

F=3→F8 transitions of theD2 line. The result is reported in
Fig. 10. This graph deserves several comments. First, we
observe degenerate-Raman-sideband cooling on theF=3
→F8=2 transition as described in Sec. V, Fig. 8. Second, we
observe two big cooling peaks on theF=3→F8=3 and the
F=3→F8=4 transitions. We measured the transverse tem-
perature of these peaks and obtained approximately 20mK.
Here the atoms are distributed equally in both hyperfine
ground states whereas for sideband cooling they are all in
F=3. Moreover, the peaks disappear whena=0—i.e., with-
out polarization gradients. Therefore these peaks are consis-
tent with a Sisyphus-like polarization gradient cooling
mechanism.

This graph(Fig. 10) shows that two complementary cool-
ing mechanisms can coexist in the same lattice, each corre-
sponding to a different pumping beam frequency. Thus, it
seems possible to combine the high efficiency of Sisyphus-
like cooling with the low temperature of sideband cooling in
the same lattice beams: a first zone, where Sisyphus precool-
ing would be achieved with a pumper tuned to theF=3
→F8=4 transition, would be followed by a second zone
where another pumper, tuned to theF=3→F8=2 transition,
would achieve sideband cooling. We expect this second step
to be much more efficient because it would start at a much
lower temperature than that used up to now: namely, a few
microkelvins instead of 60mK.

Figure 10 deserves one last comment: we observe a small
structure 125 MHz above theF=3→F8=4 transition. We
have observed the same peak in other situations and found it
is always located atnpump=nlattice+9.2 GHz—i.e., when the
frequency difference between the two lasers coincides with
the ground-level hyperfine splitting. It has not yet been in-
vestigated.

VII. CONCLUSION

Our experiment provides a demonstration of degenerate-
Raman-sideband cooling for the collimation of a continuous
beam of cold cesium atoms. Starting from an initial trans-

FIG. 9. Average vibrational number as a function of magnetic
field. Parameters used in numerical calculations: vibrational fre-
quency vv=2p319 kHz, Raman transition rate"−1UR=2p
311 kHz, pumping field intensity 0.1 mW cm−2, and detuning
+2.6 MHz.

TABLE I. Comparison of sideband and Sisyphus cooling
mechanismsin optimized conditions, as discussed in Sect. VI F. The
flux density is measured, after a parabolic flight of 0.57 s, in the
center of the atomic beam. The sideband conditions areB=60 mG,
a=22.5°, optical lattice locked onF=4→F8=4, pumper locked a
few megahertz on the blue side of theF=3→F8=2 transition, lat-
tice power 190 mW, and pump power 0.6 mW. The Sisyphus con-
ditions areB=0, a=22.5°, lattice locked on the red side ofF=4
→F8=5 transition with a detuning of 126 MHz, pumper locked on
theF=3→F8=4 transition, lattice power 16 mW, and pump power
0.1 mW.

Cooling
mechanism

Transverse
temperature

smKd

Atomic flux
density

sat. s−1 m−2d

Sideband 1.6 731010

Sisyphus 3.6 3.631011

FIG. 10. Fluorescence signal detected in the center of the atomic
beam as a function of pumping beam frequency. We scan over all
the F=3→F8 transitions of the cesiumD2 line in 20 s. Same con-
ditions as in Fig. 6 but we locked the lattice on the red side ofF
=4→F8=5 transition with a detuning of 126 MHz. For frequency
calibration, we used saturated absorption spectroscopy. See Sec.
VI G for comments.
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verse temperature of 60mK, we obtained final transverse
temperatures as low as 1.6mK in a single-laser interaction
zone. The total flux of 107 at./s corresponds to an efficiency
of approximately 10%. We have also identified another,
Sisyphus-like, cooling mechanism which requires a different
pumper frequency in the same lattice. This provides nearly
100% efficiency, but with a higher final temperature. Our 2D
four-beam optical lattice combines intrinsic phase stability,
symmetry, and power recycling. In addition, all laser beams
are in a plane perpendicular to the atomic beam, a practical
advantage in view of expected applications such as atomic
fountain clocks, atom interferometers, and atom optics ex-
periments. We have started theoretical studies of laser cool-
ing in a lattice in the strong Raman coupling regime, both for
bound and unbound atoms. Preliminary results with a 1D
model of Raman sideband cooling are verified by our experi-
mental data.

Two main avenues for improvement are being explored.
First, we plan to combine the high capture efficiency of

Sisyphus-like cooling with the low temperature of Raman
sideband cooling by implementing them consecutively in the
same optical lattice. Second, we intend to replace Zeeman
tuning by ac Stark tuning as described in Ref.[19]. For cold
atomic fountain clocks, this has the significant advantage of
preparing all atoms in one of the clock statessmF=0d.
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