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A detailed theory of four-wave mixing(FWM) at a gas-solid interface is developed. Geometry of excitation,
where two electromagnetic waves propagate perpendicularly to the interface and the third one is evanescent
traveling along it, is considered. Assuming that the evanescent wave penetration depth into the gas is much less
than the mean free path of gas molecules, it is shown that FWM spectroscopy allows to distinguish between the
contributions from gas molecules moving to the surface, desorbed from it and directly scattered into the gas. It
is concluded that by scanning the wave frequencies across the molecular transitions it is possible to determine
the parameters of the scattering kernel for direct gas-surface scattering and the velocity-dependent sticking
probability. A method based on this principle could open opportunity for studying adsorption, desorption and
gas-surface scattering dynamics not only under thermodynamically nonequilibrium conditions but as well as in
an equilibrium gas phase.
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I. INTRODUCTION

Gas-surface scattering plays a crucial role in processes of
heat and mass transfer at a gas-solid interface, energy and
momentum exchange between a gas flux and a streamlined
surface, in surface chemical reactions. It is therefore of great
importance for such diverse applications as heterogeneous
catalysis, chemical vapor deposition and aerodynamics.
However, investigation of this phenomenon faces a funda-
mental problem: “in the presence of an equilibrium gas
phase, there is no means whatsoever to distinguish between
desorbing, reflected, diffracted or inelastically scattered mol-
ecules” [1]. Due to this reason, the gas-surface scattering
processes are studied mainly with the use of molecular
beams under ultra-high-vacuum conditions. In such a case,
the surface coverage with an adsorbate is yet sufficiently
different from that under a gas atmosphere of high pressure.
Although the coverage can be simulated by means of surface
cooling, nevertheless the gas-surface scattering dynamics de-
pendent on the surface temperature cannot be investigated by
this way. Therefore, strictly speaking, the data obtained with
the use of molecular beams are irrelevant to the surface prop-
erties which one deals with in various applications.

Recently, a novel laser spectroscopy approach to this
problem has been developed. Laser-induced fluorescence
spectroscopy employing evanescent waves(EW’s) has been
demonstrated to be a sensitive tool for studying gas-surface
scattering dynamics[2–5]. An EW wave, being strongly spa-
tially localized near the surface, excites only molecules
within the Knudsen’s layer where the intermolecular colli-
sions are negligible. If in addition the gas is illuminated by a
laser beam perpendicular to the surface, it is possible, due to
the Doppler effect, to selectively excite either the molecules
approaching the surface or the ones departing from it. This
opportunity allows one to determine the gas-surface scatter-
ing kernel, a fundamental quantity in gas-surface interac-

tions. It has been realized for sodium atoms scattered by a
glass surface and the contributions of both the desorbed and
directly scattered(i.e., not trapped at the surface) atoms were
spectrally distinguished[5]. However, this problem was re-
solved for thermodynamically nonequilibrium conditions
when the gas phase was simulated by a source of sodium
atoms and the contribution of the directly scattered atoms
could be easily identified. Thus the question still remains: Is
it possible to investigate the dynamics of gas-surface scatter-
ing in an equilibrium gas phase?

In this paper, we propose for the first time a spectroscopic
method based on four-wave mixing(FWM) technique[6]
which allows to distinguish between the contributions of
molecules arriving at the surface, those desorbed from it and
those directly scattered into the gas phase where molecules,
although they have induced polarization, are in equilibrium
with respect to their external degrees of freedom. We show
that by this way it is possible to determine the scattering
kernel that provides comprehensive information on gas-
surface scattering.

II. EVOLUTION OF A SINGLE MOLECULE

Assume that the ground electronic state of a gas molecule
has sublevelsugl andug8l, and the excited electronic state has
sublevelsuel andue8l [7] [Fig. 1(a)]. Let the gas molecules be
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FIG. 1. (a) The excitation scheme of the molecular levels.(b)

Geometry of the four-wave mixing process.
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excited by two laser beams of frequenciesv1 andv3 travel-
ing perpendicularly to the gas-solid interface and by an EW
of frequencyv2 propagating along it[Fig. 1(b)]. The laser
frequencies are assumed to be in resonance with the molecu-
lar transitions as it is shown in Fig. 1(a). The evolution of the
molecule density matrixrsr ,v ,td then obeys the Liouville
equation

S ]

] t
+ v · =Dr = −

i

"
fH0 + V,rg − Gr, s1d

where r =sr i ,zd=sx,y,zd is the molecule radius-vector,v
=svi ,vzd=svx,vy,vzd is the molecule velocity,H0 is the
Hamiltonian of the molecule in the absence of any external
fields, and the operatorG can be expressed in terms of the
relaxation ratesgmn. The operator of interaction between a
molecule and the electromagnetic waves,V, can be written in
the dipole approximation as follows:

V = o
n=1,2,3

Vn, s2d

with

Vn = −
1

2
m ·En expf− isvnt − qn · r dg + c.c., s3d

wherem is the dipole moment operator of a molecule,En is
the electric field amplitude of the corresponding wave,q1,3
=s0,k1,3d and q2=sk2, ikd are the wave vectors, andk−1 is
the EW penetration depth. We assume that the molecule
mean free path exceeds both the EW penetration depth and
the mean distance which molecules overcome during the
transverse relaxation timesgmn

−1. In such a case, it is reason-
able to set the boundary conditions for Eq.(1) separately, for
the molecules approaching the surface and for the ones de-
parting from it. We shall require the finiteness of the solution
for the approaching molecules at infinite distance from the
surface, namely[8]

urmn
− sr i,z→ `du , `. s4d

To specify the boundary conditions for directly scattered
molecules, we note that during the flight across the
molecule-surface interaction potential, the nondiagonal ele-
ments of the molecule density matrix acquire a phase deter-
mined by the difference between the molecule-surface poten-
tials in the ground and excited states[9]. For large
differences in the adsorption potentials, this phase varies
quickly with the incident velocity of a molecule that leads to
phase randomization and cancellation of the contribution for
molecules departing from the surface[10]. However, as re-
gards the transition between the ground electronic state sub-
levels ugl and ug8l, it is reasonable to assume that this differ-
ence is negligible[11] and the coherencyrg8g can survive
during the molecule-surface scattering. In accordance with
these arguments, we write the boundary conditions for the
nondiagonal matrix elements relevant to our consideration as
follows

rmn
+ sr i,z= 0d = 0, for hmnj Þ hg8gj, s5d

rg8g
+ sr i,z= 0,v8d = wg8gsv → v8drg8g

− sr i,z= 0,vd, s6d

wherev and v8 are the velocities of a molecule before and
after the scattering, respectively, and we have introduced the
probability wg8g that the coherencyrg8g survives after direct
molecule-surface scattering. For molecules trapped at the
surface and then desorbed from it, it is reasonable to set
rg8g

+ sr i ,z=0d=0 and to adopt Eq.(5) for the other matrix
elements.

The solving of the problem is simplified if one comes to
the Laplace-Fourier transformed quantities

r̂mnsp,sd =E
zù0

drE
−`

`

dt expsip · r − istdrmnsr ,td, s7d

with p=spi , ipzd. The equations for the matrix elements
r̂mnsp ,sd are obtained from Eq.(1) and have the following
form:

iss+ vmn− p ·vdr̂mnsp,sd − vzr̃mnspi,sd

= − fGr̂sp,sdgmn−
i

"
o
kn

fsVndmkr̂knsp + qn,s+ vnd

− r̂mksp + qn,s+ vndsVndkn + sVndmk

3r̂knsp − qn
* ,s− vnd − r̂mksp − qn

* ,s− vndsVndkng,

s8d

where

r̃mnspi,sd =E dr iE
−`

`

dt expsipi · r i − istdrmnsr i,z= 0,td.

s9d

The boundary conditions(5) and(6) lead to the equations
for the transformed quantities

r̃mn
+ spi,sd = 0, for hmnj Þ hg8gj s10d

and

r̃g8g
+ spi,s,v8d = wg8gsv → v8dr̃g8g

− spi,s,vd. s11d

III. PERTURBATION THEORY

We assume that the electromagnetic waves do not saturate
the relevant transitions, so the solution can be found by ex-
panding both sides of Eq.(8) in power series with respect to
the operatorV and equating the terms of the same order inV.
The boundary conditions(10) and (11) take the form

r̃mn
+sldspi,sd = 0, for hmnj Þ hg8gj, s12d

r̃g8g
+sldspi,s,v8d = wg8gsv → v8dr̃g8g

−sldspi,s,vd, s13d

where the superscript in parentheses atr̂mn denotes the order
of the perturbation theory. Now applying the rotating wave
approximation[12] one can obtain the solution forr̂mnsp ,sd
as power series inV, separately for the molecules approach-
ing the surface and departing from it.
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A. Zeroth order

We assume that in the absence of external fields only the
ground state sublevelugl is populated among the considered
levels and its population is equal torgg

0 . Then one obtains

r̂mn
s0dsp,sd =

s2pd3

pz
rgg

0 dspiddssddmndmg, s14d

with dsxd the Dirac’sd function anddi j the Kronecker’sd
symbol, both for molecules moving to the surface and away
from it.

B. First order

In the first order the only nonvanishing matrix element is

r̂eg
s1dsp,sd =

1

geg+ iss+ veg− p ·vdFvzr̃eg
s1dspi,sd

+
i

2
s2pd3 V1

pz − ik1
rgg

0 dspiddss+ v1dG , s15d

where the quantityr̃eg
s1dspi ,sd must be determined from the

boundary conditions. Here and in the followingVn

=mmn·En /" are the Rabi frequencies of the corresponding
transitions. The expression(15) has a pole at

pz1 = −
geg+ iss+ veg− pi ·vid

vz
. s16d

For the molecules moving to the surfacevz,0, and hence
Respz1d.0 for anypi ands. As a result, the corresponding
original function is infinite atz→`. To ensure the finiteness
of the solution, one has to choose the functionr̃eg

−s1dspi ,sd so
that to cancel the terms containing the polepz1. The remain-
ing term has the following form:

r̂eg
−s1dsp,sd =

i

2
s2pd3 V1

pz − ik1
Asvdrgg

0 dspiddss+ v1d, s17d

where

Asvd = fgeg− isD1 − k1vzdg−1, s18d

D1=v1−veg is the detuning of the resonance at theugl
→ uel transition and we have used the equationfsxddsx−ad
= fsaddsx−ad.

Taking into account the boundary conditions(12) for scat-
tered molecules, one obtains

r̂eg
+s1dsp,sd =

i

2
s2pd3 V1

pz − ik1

1

geg+ pzvz8 − iD1

rgg
0

3dspiddss+ v1d. s19d

C. Second order

We shall consider only the matrix elementr̂
g8g
s2d which is

necessary for the calculation of the quantityr̂
e8g
s3d determining

the FWM signal. The general solution can be written in the
form

r̂g8g
s2d sp,sd =

1

gg8g + iss+ vg8g − p ·vdFvzr̃g8g
s2d spi,sd

−
s2pd3

4

V1V2Asvd
pz + k − ik1

rgg
0 dspi − k2ddss+ v1 − v2dG .

s20d

The denominator in front of the square brackets has a zero at

pz2 = −
gg8g + iss+ vg8g − pi ·vid

vz
. s21d

For the molecules moving to the surface this pole leads to
the divergence of the original functionr

g8g
s2d at z→`. By

choosing the quantityr̃
g8g
s2d in the form

r̃g8g
−s2dspi,sd = −

s2pd3

4
V1V2AsvdBsvdrgg

0

3dspi − k2ddss+ v1 − v2d, s22d

with

Bsvd = fgg8g − kvz − isD1 − D2 − k1vz + k2 ·vidg−1 s23d

andD2=v2−veg8 one ensures the finiteness of the solution at
infinite distance from the surface. Then we have for arriving
molecules

r̂g8g
−s2dsp,sd = −

s2pd3

4

V1V2

pz + k − ik1
AsvdBsvdrgg

0

3dspi − k2ddss+ v1 − v2d. s24d

The solution for scattered molecules has the form of Eq.
(20) wherev must be replaced byv8 and the quantityr̃

g8g
s2d

obeys Eq.(13).

D. Third order

We restrict ourselves by the consideration of the matrix
elementr

e8g
s3d which determines the radiation at the transition

ugl→ ue8l and hence the intensity of the FWM signal[6]. The
general solution for the transformed quantityr̂

e8g
s3d can be

written in the form

r̂e8g
s3d sp,sd =

1

ge8g + iss+ ve8g − p ·vdFvzr̃e8g
s3d spi,sd +

i

2
V3

3r̂g8g
s2d sp + q3,s+ v3dG , s25d

where r̂
g8g
s2d sp ,sd is given by Eq.(20). Much as it has been

done above, we choose the quantityr̃
e8g
s3d for molecules mov-

ing to the surface so that to ensure the finiteness of the so-
lution at infinite distance from the surface. We then obtain
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r̂e8g
−s3dsp,sd = − i

s2pd3

8
V1V2V3rgg

0 AsvdBsvdCsvd
pz − p1

3dspi − k2ddss+ vmd, s26d

wherevm=v1−v2+v3 is the frequency of the radiation re-
sulting from the FWM process and we have introduced the
following notations:

Csvd = hge8g − kvz − ifDm − sk1 + k3dvz + k2 ·vigj−1,

s27d

p1 = − k + isk1 + k3d, s28d

with Dm=D1−D2+D3 andD3=v3−ve8g8. The contribution of
scattered molecules can be written in the form

r̂e8g
+s3dsp,sd = − i

s2pd3

8
V1V2V3rgg

0 Fwg8gsv → v8dvz8AsvdBsvd

+
Asv8d
pz − p1

G dspi − k2ddss+ vmd
vz8

2fpz − p2sv8dgfpz − p3sv8dg
, s29d

where

p2svd = −
ge8g − isDm + k2 ·vid

vz
s30d

and

p3svd = −
gg8g − isD1 − D2 + k2 ·vi + k3vzd

vz
. s31d

IV. SIGNAL FROM AN ENSEMBLE OF MOLECULES

A. General expression for the signal

The intensity of the FWM signal from an ensemble of
molecules can be written as follows:

IFWM =
c

2p
kEs−dsR,td ·Es+dsR,tdl, s32d

whereEs±d are the positive- and negative-frequency compo-
nents of the FWM electric field at the detector,c is the speed
of light, R is the radius vector directed to the observation
point and the angular brackets denote the ensemble averag-
ing. The quantitiesEs±d for a rarefied gas are results of sum-
mation over allN molecules participating in the FWM pro-
cess. In the case whenN2@N the average in Eq.(32) can be
approximately factorized and the signal takes the form[13]

IFWM <
c

2pUon

kEn
s+dsR,tdlU2

, s33d

where the contribution from thenth molecule is determined
in the dipole approximation by the equation[14]

kEn
s+dsR,tdl = −

vm
2

c2R
hfm̂ge8 3 R̂g 3 R̂jre8g

s3d sr n,td, s34d

with m̂ge8 the lowering part of the dipole moment operator at

the transitionugl→ ue8l andR̂ the unit vector along the vec-
tor R.

The matrix elements which contribute tor
e8g
s3d have a tem-

poral dependence,exps−ivmtd. Then account of the retarda-
tion effect is reduced to the substitution

t → t8 = t −
uR − r nu

c
< t −

R− R̂ · r n

c
, s35d

the approximation in Eq.(35) being valid in the far zone
whereR@ rn. As a result, the matrix elementr

e8g
s3d acquires an

additional phase factor expfisvm/cdsR−R̂ ·r ndg. Transform-
ing the sum overn into an integral over the gas volumeV
illuminated by three waves along with the averaging over
molecular velocities, we obtain

o
n

kEn
s+dsR,tdl = −

vm
2

c2R
expsiksRdE

zù0
dr

3hfPs3dsr ,td 3 R̂g 3 R̂jexps− iks · r d

= −
1

2p

vm
2

c2R
expsiksRdE

−`

`

ds

3hfP̂s3ds− ks,sd 3 R̂g 3 R̂jexpsistd,

s36d

where

Ps3dsr ,td =
N

V
kTrfrs3dsr ,tdm̂ge8glv s37d

is the positive frequency part of the nonlinear gas polariza-

tion, ks=sksi ,kszd=svm/cdR̂ is the wave vector of the gener-
ated wave, the angular brackets with the subscriptv mean an
average over molecular velocities and we have assumed that
the linear dimensions ofV are much larger than the laser
wavelengths. The Laplace-Fourier transformed polarization

P̂s3d can be written as follows

P̂s3ds− ks,sd =
N

V
kTrfr̂s3ds− ks,sdm̂ge8glv

= X̂:E1E2
*E3dsksi + k2ddss+ vmd, s38d

where the tensorX̂ has the form[15]

sX̂di jkl =
N

"3V
rgg

0 smge8disme8g8d jsmg8edksmegdlsH− + H+d + H+sd.

s39d

Here the quantitiesH−, H+d andH+s determine the contribu-
tions to the nonlinear polarization originating from mol-
ecules arriving at the surface, those desorbed and those di-
rectly scattered, respectively.
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The function dsksi+k2d in Eq. (38) implies the phase-
matching condition for the FWM process providing its maxi-
mum efficiency:ksi=−k2. In the case when EW is excited in
total internal reflection at a prism surface the direction of
phase matching is fixed by the angleu0 satisfying the equa-
tion

sin u0 = −
v2

vm

sin ui

sin uc
, s40d

with ui the incidence angle of the laser beam exciting EW
anduc the critical angle for total internal reflection[see Fig.
1(b)]. If the absolute value of the right-hand side of Eq.(40)
exceeds unity, the wave generated in the FWM process is
evanescent. Assuming thatuvi −v ju!vi and ui <uc, we get
u0<−p /2, i.e., the wave of nonlinear polarization propa-
gates in the backscattering direction relatively EW. In such a
caseukszu !ki.

To obtain the FWM power at the detector one has to in-
tegrate Eq.(33) over the square of the detector surface. That
is reduced to the integration over the solid angledo
=sin ududw with u and w the spherical coordinates of the

vector R̂. The corresponding integrand containsfdsksi

+k2dg2. One of thed functions can be used to remove the
integral overdo whereas the other one givesA/ s2pd2 with A
the square of the prism surface illuminated by three waves.
Finally, one obtains

PFWM =E IFWMR2do=
Aks

2c

32p5

sin2up

cosu0
uX̂:E1E2

*E3u2, s41d

whereup is the angle between the vectorsPs3d and R̂.

B. Averaging over velocities

As it follows from Eq. (38), the FWM signal is deter-
mined by the averaging of the quantityr̂

e8g
s3d over molecular

velocities. In a general case when the gas is not in equilib-
rium with the surface, the fluxes of molecules to the surface
and away from it are characterized by different velocity dis-
tribution functions,f−svd and f+svd, respectively. The relation
between them can be expressed in terms of the scattering
kernelRsv→v8d as follows[16,17]:

f f
+sv8d =E Rsv → v8df f

−svddv, s42d

where we have introduced the velocity distribution functions
normalized to a unit probability flux

f f
±svd =

uvzuf±svd

E uvzuf±svddv

. s43d

The integral in Eq.(43) is taken overvz,0 for arriving
molecules and overvz.0 for departing ones. The quantity
Rsv→v8d is defined as the probability density that a mol-
ecule striking the surface with velocity betweenv and v
+dv will be scattered at the surface with velocity betweenv8
andv8+dv8. In accordance with the two different scattering

channels the scattering kernel can be decomposed by two
parts[5],

Rsv → v8d = Rdessv → v8d + Rdirsv → v8d, s44d

where the kernel

Rdessv → v8d = Ssvdf f
+dsv8d s45d

corresponds to the molecules which were trapped on the sur-
face with the sticking probabilitySsvd and then desorbed
with the velocity distributionf f

+d. The kernelRdirsv→v8d
normalized by the condition

E Rdirsv → v8ddv8 = 1 −Ssvd s46d

describes direct scattering.
Now the averaging of the contributions from different

groups of molecules can be written as follows

kr̂e8g
−s3dlv =E

vzø0
r̂e8g

−s3dsvdf−svddv, s47d

kr̂e8g
+s3dlv =E E r̂e8g

+s3dsv,v8dRsv → v8df f
−svddv dv8

= STE r̂e8g
+ds3dsv8df f

+dsv8ddv8 +E E r̂e8g
+ss3dsv,v8d

3Rdirsv → v8df f
−svddv dv8, s48d

wherer̂
e8g
+ds3d andr̂

e8g
+ss3d describe the contributions of desorbed

and directly scattered molecules and are given by Eq.(29)
with wg8g=0 andwg8gÞ0, respectively, and

ST =E Ssvdf f
−svddv s49d

is the average sticking probability.
In the following, we shall analyze the case of an equilib-

rium between a gas and a solid when bothf f
− and f f

+ are the
Maxwellian distribution functions,f fM, characterized by a
common temperatureT. We shall restrict ourselves by the
consideration of the Doppler limit where the Doppler width
vD is much larger than all the linewidthsgmn as well as the
transit-time broadeningkvT with vT the most probable mol-
ecule velocity. Then the integration over velocities in Eqs.
(47) and(48) can be carried out analytically. As a result, we
obtain for the molecules arriving at the surface and desorbed
from it (see Appendix A for the details)

H− < −
2p7/2sge8g − gg8gdQs− D1dQsD3dQs− k3d

k2
2vT

2fk − isk1 + k3 − kszdg

3hk3D1 − k1D3 + ifk3geg− k1sge8g − gg8gdgj−1

3expS−
D1

2

k1
2vT

2DFdZsv/vTd
dv

G
v=D2/k2

s50d

and
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H+d < −
4p4STD1sge8g − gg8gdQsD1dQs− D3dQs− k3d

k1k2
2vT

3fk − isk1 + k3 − kszdg

3 hk3D1 − k1D3 + ifk3geg− k1sge8g − gg8gdgj−1

3expS−
D1

2

k1
2vT

2DFdZsv/vTd
dv

G
v=−Dm/k2

, s51d

respectively, withZsxd the plasma dispersion function[18]
andQsxd the unit step function.

The contribution from directly scattered molecules(29)
includes two terms in the square brackets. The second of
them has the same form as the contribution of desorbed mol-
ecules. It does not depend onv and hence the integration
overv can be carried out explicitly. It is reduced to the inte-
gral

E Rdirsv → v8df fMsvddv = s1 − STdf fMsv8d. s52d

As a result, the contribution of the second term in Eq.(29) to
the spectrum has the form of Eq.(51) with ST replaced by
1−ST.

The averaging over velocities of the first term in Eq.(29)
can be carried out by means of successive integrations overv
and v8. We note that if the molecule-surface potential well
depth is much greater than the molecule incident kinetic en-
ergy, one can assume that the change in the molecule mo-
mentum parallel the surface during scattering is small[19].
In such a case, the scattering kernel can be written in the
form

Rdirsv → v8d = Rdir
z svz → vz8ddsvi8 − vid, s53d

where the reduced scattering kernelRdir
z is normalized by the

condition

E
0

`

Rdir
z svz → vz8ddvz8 = 1 −Ssvzd. s54d

Under the same assumption, it is reasonable to consider
the quantitywg8g as independent on the velocitiesv and v8
because the time of flight across the molecule-surface poten-
tial depends only slightly on the initial and final velocities far
from the surface. Then the result of the integration of Eq.
(29) over velocities can be written as follows(see Appendix
B for the details):

H+s <
1 − ST

ST
H+d −

4ip4wg8g

k1k2
2k3vT

3 JsD1d

3
sge8g − gg8gdQs− D1dQsD3dQsk3d

D1 + D3 + isgeg+ ge8g − gg8gd
SD1

k1
D

3expS−
D1

2

k1
2vT

2DFdZsv/vTd
dv

G
v=D2/k2

, s55d

where

JsD1d =E
0

` Rdir
z sD1/k1 → vz8dvz8dvz8

vz8 + sD1/k3d − ia
s56d

anda is an infinitesimally small positive quantity. The inte-
gral (56) can be evaluated using Eq.(A6).

V. RESULTS AND DISCUSSION

The distinct resonance conditions for different groups of
molecules which follow from the Doppler effect allow to
distinguish between their contributions. This can be seen
from the analysis of Eqs.(50), (51), and(55). In fact, let us
consider the following cases.

(i) Both k3 andD1 are negative andD3 is positive. Then
the contribution from the molecules moving from the surface
is negligible due to theQ functions and only the molecules
arriving at the surface contribute resonantly to the FWM
spectrum.

(ii ) Both k3 andD3 are negative andD1 is positive. Then,
analogously, both the contribution of the molecules moving
to the surface and that of the second term inH+s are nonreso-
nant. The FWM signal is determined by the functionH+d

describing the desorbed molecules.
(iii ) Both k3 andD3 are positive whereasD1 is negative.

Then only the directly scattered molecules give a resonant
contribution determined by the second term inH+s.

Let us consider the latter case in detail. As it follows from
Eq. (55), the nonlinear polarization in this case is determined
by the scattering kernel for direct scattering taken at the ini-
tial velocity dictated by the detuning of wave 1. It is worth-
while to normalize the FWM power obtained in the case(iii )
to that in the case(i). When scanning the detuningD3 both
signals have sharp maxima, atD3=−D1 and at D3/k3
=D1/k1, respectively. Let us normalize the maximal power
obtained in the case(iii ) to that obtained in the case(i). The
so defined FWM signal has the following form:

hsD1d =
PFWM„casesiii d…
PFWM„casesid…

< 4pSwg8gD1

k1
2k3vT

D2

uJsD1du2uk

− isk1 − uk3u − kszdu2

3F uk3ugeg+ k1sge8g − gg8gd

geg+ ge8g − gg8g
G2

. s57d

As it follows from here, by scanning the detuningD1 it is
possible to determineuJsD1du provided that the other quanti-
ties entering Eq.(57) are known. Basing on an appropriate
model, one can then find the parameters of the scattering
kernel from a fitting procedure. On the other hand, if the
experimental set up allows to measure not only the absolute

value of the tensorX̂ component but also its phase[20], it is
possible to determine the scattering kernelwithout any pre-
defined analytical form, using the relation

ImfJsD1dg = − p
D1

k3
Rdir

z SD1

k1
→ −

D1

k3
D . s58d
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The knowledge of the functionRdir
z svz→vz8d gives oppor-

tunity to calculate the velocity-dependent sticking probabil-
ity from Eq. (54). The transfer energye for which the scat-
tering kernel can be determined is found from the equation

e =
mD1

2

2k1
2 FSk1

k3
D2

− 1G , s59d

with m the mass of a molecule. Assuming that molecules are
excited within the Doppler-broadened absorption line we
conclude thatRdir

z can be probed in the rangeeø fsk1/k3d2

−1gET, whereET is the most probable kinetic energy of gas
molecules.

One additional remark is necessary. When deriving Eq.
(51) describing the contribution of desorbed molecules we
assumed that their velocity distribution function is a Max-
wellian one normalized to a unit probability flux that implies
the validity of the Knudsen’s cosine law. However this may
be not the case for some gas-surface systems[21]. In such a
case, the velocity distribution function of desorbed mol-
ecules can be determined from the analysis of the FWM
signal measured in the configuration(ii ).

Further we shall calculate an expected FWM spectrum in
the framework of a semiclassical model for direct inelastic
gas-surface scattering[19]. It is assumed that the molecule
momentum and energy after scattering differ from their ini-
tial values as the result of creation or annihilation of a sub-
strate phonon with momentumQ and energye. These quan-
tities are related with initial and final molecule velocities by
means of the momentum and energy conservation laws. The
probability Nse ,Qd of such a process can be represented as

Nse,Qd =
1

p3/2DeDK2expF−
se − dd2

De2 GexpS−
Q2

DK2D ,

s60d

with De=2ÎkBTd, kB the Boltzmann constant,DK
=De / sÎ2vRd andvR the Rayleigh mode velocity. The quan-
tity d is the mean energy transfer which can be considered as
an empirical parameter. The direct scattering kernel describes
the same process and can be written in the form

Rdirsv → v8d = CNse,Qd, s61d

whereC is a constant to be determined from the normaliza-
tion condition. If the quantityDK tends to zero, the Gaussian
in momentum givesdsQd=s1/m2ddsvi8−vid and we come to
Eq. (53) where

Rdir
z svz → vz8d = C

mvz8

ÎpDe
expH−

1

De2Fm

2
svz8

2 − vz
2d − dG2J .

s62d

The factormvz8 in Eq. (62) arises from the Jacobian of the
transformation from the variablee to vz8. Then the constantC
must be determined from the equation

E
−`

0 E
0

`

Rdir
z svz → vz8df fMsvzddvzdvz8 = 1 −ST. s63d

Figure 2 presents the quantityuJsD1du2 which determines
the normalized FWM signalhsD1d calculated for different
values of d. The function uJsD1du2 has a single maximum
whose position markedly depends ond.

Finally, let us estimate the magnitude of the FWM signal.
We assume the following typical values of parameters for
electronic molecular transitions: knvT,1 GHz, gmn
,10 MHz, mmn,0.1 D and rgg

0 ,10−3. Taking alsoN/V
,1015 cm−3 [22], wg8g,0.1 [23] and Rdir ,vT

−1

,10−4 cm−1 s [24], we obtain for the contribution of directly

scattered moleculesuX̂u,10−13 cgs. ForA,0.2 cm2 andE1
,E2,E3,1 cgs, that corresponds to the power density of
,100 W/cm2, we get that the photon flux in the FWM wave
is of the order of 103 photons/s that is large enough for
experimental observation.

VI. CONCLUSION

In the present paper we have developed a theory of four-
wave mixing in a gas boundary layer confined by the EW
penetration depth. We have considered the limit where the
mean free path of gas molecules exceeds this quantity that
ensures a collisionless regime of the molecular flow within
the boundary layer. Due to the Doppler effect, one can then
excite either the molecules arriving at the surface, or the ones
leaving it. In addition, the excitation of both arriving and
departing molecules simultaneously by the two different
waves propagating perpendicularly to the surface allows to
spectrally select the direct scattering channel. The parameters
of the direct gas-surface scattering kernel can be extracted
from the FWM spectra measured in such a configuration.
The integral of this kernel over final velocity, Eq.(54), gives
the velocity-dependent sticking probability.
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APPENDIX A: CONTRIBUTION OF ARRIVING
MOLECULES

The contribution of the molecules arriving at the surface
to the FWM signal is determined by Eq.(26) taken atp

FIG. 2. The value ofuJsD1du2 calculated assuming the scattering
kernel in the Brako-Newns model[19] for different values of the
mean energy transferd. k1/k3=1.2.
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=−ks. We represent the productAsvdBsvdCsvd in the follow-
ing form:

AsvdBsvdCsvd =
i

k1k2k3svz1 − vz2dS 1

vz − vz1
−

1

vz − vz2
D

3 F 1

vx − vx1svzd
−

1

vx − vx2svzd
G , sA1d

where

vx1svzd =
1

k2
fD2 − D1 + k1vz − isgg8g − kvzdg, sA2d

vx2svzd =
1

k2
f− Dm + sk1 + k3dvz − isge8g − kvzdg, sA3d

vz1 =
1

k1
sD1 + igegd, sA4d

vz2 =
1

k3
fD3 + isge8g − gg8gdg sA5d

and we have chosen thex axis along thek2 vector.
When integrating Eq.(A1) in the Doppler limit, where

gmn,kvT!vD, one can tend Imsvxjd and Imsvzjd to zero and
use the symbolic equation valid fora→0

1

x − a − ia
= ip sgnsaddsx − ad + P

1

x − a
, sA6d

whereP means the principal value of the integral. The right-
hand side of Eq.(A1) contains the factorsvz1−vz2d−1=hsD1

+ igegd /k1−fD3+ isge8g−gg8gdg /k3j−1 which is essentially
nonzero in the vicinity of the resonance

D1

k1
=

D3

k3
. sA7d

Under such a condition the principal values of the inte-
grals overvz appearing in integrating Eq.(A1) cancel each
other. We assume for definiteness thatk1.0 andge8g.gg8g.
Then the molecules arriving at the surface give a nonzero
resonant contribution determined by thed functions ifk3,0.
To ensure the resonance condition for such molecules it is
necessary to haveD1,0 and, as it follows from Eq.(A7),
also D3.0. The remaining averaging overvy does not
change the result and we come to Eq.(50) given in the text.

The contribution from desorbed molecules can be written
in the form of Eq.(26) with the following substitutions:

Asvd → Asv8d, sA8d

Bsvd → Bsv8;k → − pz,k1 → − k3d, sA9d

Csvd → Csv8;k → − pz,k1 → − k3d. sA10d

Its averaging over velocities can be carried out much as it
has been done for arriving molecules and we obtain as a
result Eq.(51).

APPENDIX B: CONTRIBUTION OF DIRECTLY
SCATTERED MOLECULES

We shall consider here the contribution of the first term in
the square brackets in Eq.(29). The assumption that the scat-
tering kernel has the form(53) allows one to remove the
integration overvi8 and to take all the functions atvi8=vi. The
corresponding integrand contains the factor which can be
represented as follows:

AsvdBsvd
vz8

2fiksz− p2sv8dgfiksz− p3sv8dg
= −

1

k1k2
3

1

svz − vz1dfvx − vx1svzdgfvx − vx3svz8dgfvx − vx4svz8dg
, sB1d

where

vx3svz8d =
1

k2
f− D1 + D2 − sk3 − kszdvz8 − igg8gg, sB2d

vx4svz8d =
1

k2
s− Dm + kszvz8 − ige8gd, sB3d

and the quantitiesvz1 andvx1svzd are given by Eqs.(A4) and (A2), respectively.
The product on the right-hand side of Eq.(B1) can be decomposed into a sum of three elementary fractionssvx−vxjd−1 each

of which can be in turn decomposed into elementary fractionssvz−vzjd−1 and svz8−vzj8 d−1. As a result, each term will be
proportional to the factorfD1+D3+ isgeg+ge8g−gg8gdg−1 which is essentially nonzero in the vicinity of the resonance

D3 = − D1. sB4d

We shall assume for simplicity that the quantitiesk andksz can be neglected in comparison withkn. Then in the Doppler limit
one can use Eq.(A6) when integrating Eq.(B1) over velocities. Taking also into account the condition(B4) and assuming that
the scattering kernel varies slowly at a scale ofgmn/kn, we come to Eq.(55) given in the text.
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