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I. INTRODUCTION

Experiments[1–8] on the dissociative attachment of elec-
trons to gas-phase water molecules have suggested that this
process is governed by complex nuclear and electronic dy-
namics. Three resonance peaks have been identified with
cross-section maxima near incident electron energies of 6.4,
8.4, and 11.2 eV for the production of the H−, O−, or OH−

ions. It was observed that each of these peaks exhibits a
different product distribution. The three electronic resonance
states corresponding to these three cross-section peaks, with
2B1,

2A1, and 2B2 symmetry, are now familar, and it is the
dynamics of dissociative attachment through the lowest of
those, the2B1 metastable state of the anion, that is the sub-
ject of this paper.

Several salient features of the experiments suggest that
the nuclear dynamics of this process may hold some sur-
prises. For dissociative attachment through the2B1 reso-
nance, the cross section for producing H−+OH is roughly 40
times larger at its peak than the cross section for producing
the energetically favored products, O−+H2 [4,5]. The further
observation that the production of OH− associated with this
resonance peak in these experiments was not a product of
direct dissociative attachment[9] is contrary to the natural
chemical intuition from the condensed phase that OH−

should be a major product. These observations indicate that
the products of this reaction are determined by the dynamics
of the process itself rather than by the energetics of the pos-
sible product channels, and that, moreover, those dynamics
are different for each of the resonance states of the water
anion.

Both the detailed experiments of Belić, Landau, and Hall
[8] in 1981, who measured the distribution of vibrational
states of OH as well as angular distributions of the accom-
panying H−, and those of Compton and Christophorou[4],
who measured the isotope effect for production of H− or D−

from H2O or D2O, provide strong tests of the theoretical
understanding of this process. The channel producing H−

+OH through the2B1 resonance state is accompanied by
extensive vibrational excitation of the OH fragment. Given
the competition between dissociation channels and the ob-
served product vibrational excitation, one expects that the
dynamics of dissociative attachment to this molecule are in-
trinsically polyatomic, and can only be described theoreti-
cally by a treatment using the full dimensionality of nuclear
motion. Such a treatment is what we report here.

In a previous paper[10], hereafter referred to as Paper I,
we presented the calculation of the potential surface for the
2B1 resonance state in its full dimensionality. That surface,
V=ER− iG /2, is complex in the region in which this state is
metastable. Both the real part and the widthG were calcu-
lated byab initio methods, the real part in large-scale con-
figuration interaction calculations and the width from com-
plex Kohn variational scattering calculations. Analytic fits of
these quantities were performed to construct a complete rep-
resentation at all geometries necessary for the dynamics cal-
culations we describe here.

In this study we turn to the calculation of the cross sec-
tions for dissociative attachment using that complex potential
surface. The calculations we present are all peformed using
the local complex potential model[11–14], in which the en-
ergy and width of the resonance state are sufficient to deter-
mine the nuclear dynamics and the cross sections.

To apply the local complex potential model to a poly-
atomic system, we make use of a time-dependent version of
it that simplifies both the numerical calculations and the
physical interpretation of the dynamics. As in earlier studies
on resonant vibrational excitation of CO2 [15,16], we make
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use of the multiconfiguration time dependent Hartree
sMCTDHd method[17] to solve the working equations. This
time-dependent approach, combined with the power of the
MCTDH implementation, is the key to treating polyatomic
dissociative attachment and resonant vibrational excitation
problems.

The outline of this paper is as follows. In Sec. II we
discuss the bulk of the formalism involved in this work:
essentials of the local complex potential model, relevant
definitions of dissociative attachment cross sections, the co-
ordinate systems and Hamiltonians necessary for the treat-
ment of a triatomic system, and the application of the
MCTDH method to the computation of the quantities of in-
terest. In Sec. III we present our results, and conclude with
the discussion in Sec. IV. An Appendix is included in which
we address the analysis of the rotational degree of freedom
for the OH fragment of the H−+OH channel, which is not
straightforward.

II. TIME-DEPENDENT LOCAL COMPLEX POTENTIAL
TREATMENT OF DISSOCIATIVE ATTACHMENT

A. Nuclear wave equation

The local complex potentialsLCPd model [11–14,18],
also known as the “boomerang” model when applied to vi-
brational excitation, describes the nuclear dynamics in terms
of the driven Schrödinger equation

sE − Hdjni
sqWd = fni

sqW,0d, s1d

in which the Hamiltonian for nuclear motion in the resonant
state is

H = KqW + ERsqWd −
iGsqWd

2
. s2d

In Eqs.(1) and (2), the nuclear degrees of freedom are col-
lectively denoted byqW and the nuclear kinetic energy is de-
noted byKqW. The energyE is the energy of the entire system,
namely that of the target molecular state plus the kinetic
energy of the incident electron,

E = Eni
+ k2/2. s3d

The driving term,fni
in Eq. (1), is defined as

fni
sqW,0d =ÎGsqWd

2p
xni

sqWd, s4d

in which xni
is the initial vibrational wave function of the

neutral target molecule, whose quantum numbers are collec-
tively denoted byni. The factor which multipliesxni

, called
the “entry amplitude,” is arrived at via certain approxima-
tions [11–14]. As we will see below, the magnitude of the
driving termfni

will largely control the overall magnitude of
the cross section.

The solution of Eq.(1) can be accomplished via time-
dependent methods, as first demonstrated by McCurdy and
Turner[19]. The solutionjni

sqWd satisfies the boundary condi-
tion that it should contain only purely outgoing waves,

jni
sqWd = sE − H + ied−1fni

sqW,0d. s5d

By representing the Green’s function,sE−H+ ied−1, by the
Fourier transform of the corresponding propagator, the sta-
tionary solutionjni

sqWd of Eq. (1) can be obtained,

jni
sqWd = lim

e→0
iE

0

`

eisE+iedte−iHtfni
sqW,0ddt

= lim
e→0

iE
0

`

eisE+iedtfni
sqW,tddt, s6d

where we define the time-dependent nuclear wave function
as

fni
sqW,td = e−iHtfni

sqW,0d. s7d

The essence of the LCP model is that the dynamics of this
wave packet on the complex potential surface of the meta-
stable anion determine the cross sections for dissociative at-
tachmentsDAd or vibrational excitation through the electron
scattering resonance. These wave-packet dynamics provide a
simple interpretation of the physics of the dissociative at-
tachment process that is now well known for diatomics, but,
as we will see below, is even more useful for understanding
dissociative attachment to polyatomic targets.

The LCP model is expected to describe the dynamics of
the case at hand well, since certain basic assumptions of the
model [20] are clearly satisfied. Our interest here is in de-
scribing DA to water, whose electronic ground state at equi-
librium has1A1 symmetry, through its lowest Feshbach reso-
nance anion state, which at the equlibrium geometry of the
neutral target has2B1 symmetry. This resonance lies
,6.5 eV above the neutral target state. The width of the
resonance, and therefore the coupling of the resonance state
to the background electron scattering continuum, is small,
and the incident electron energy is large compared to the
vibrational spacing of the neutral molecular target.

Virtually all previousab initio studies of dissociative elec-
tron attachment have been carried out for diatomics, or for
polyatomics with a single active nuclear degree of freedom.
In the case of a diatomic, the quantum numbersl andm of
the initial state are conserved via the approximations which
yield Eq. (4), and therefore the coordinatesqW reduce to a
single internuclear distanceR. The radial portion of the wave
function given in Eq.(5), defined asJ,

jlmnsR,u,fd = Ylmsu,fdJlnsRd/R, s8d

behaves asymptotically as an outgoing wave:

JlnsRd ,
R→`

expsikR− ilp/2dAlSEln +
k2

2
D . s9d

The total cross section for dissociative attachment in the lo-
cal complex potential model is then[21]
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sDA =
2p2

k2 g
k

mR
lim
R→`

uJlnsRdu2 =
2p2

k2 g
k

mR
UAlSEln +

k2

2
DU2

,

s10d

wherek is the relative nuclear momentum of the two atoms
with reduced massmR, andg is a statistical ratio of the elec-
tronic multiplicity of the resonant state to the electronic mul-
tiplicity of the incoming state.

The generalization of this formulation to polyatomic sys-
tems is, in principle, straightforward. However, there are in-
trinsic complications that arise even in the simplest poly-
atomic case of a triatomic molecule, because there is more
than one final arrangement channel. We therefore must first
specify the coordinate systems and Hamiltonians which we
will employ, before addressing the issue of the proper formu-
lation of the dissociative attachment problem for a triatomic.

B. Jacobi coordinate systems

A three-body system has nine degrees of freedom; nine
variables are required to specify the configuration of such a
system in space. Three of these variables, however, describe
center-of-mass motion, which can easily be separated from
internal motion. The instantaneous positions of three par-
ticles define a plane, so of the remaining six variables, three
can be chosen to specify motion in this plane, while the
remaining three are used to orient the plane with respect to
the space-fixed frame. There are several possible choices for
the three internal(body-fixed) coordinates that describe mo-
tion in a plane. We will use Jacobi coordinates, which are a
natural choice for studying dissociation.

There are two distinct Jacobi coordinate systems that de-
scribe a triatomic system such as H2O. In the first of these
we define an O-H bond lengthr, the distanceR between that
OH center of mass and the second H, and the angleg be-
tween these two vectors, defined such thatg=0 corresponds
to a collinear H-H-O geometry. The other coordinate system
considers H2 as the diatomic species and thus assignsr to the
H-H separation, andR to the distance between the H2 center
of mass and and the oxygen nucleus, withg defined as the
angle between these two vectors. These coordinate systems
were described in Paper I when the construction of analytic
fits of the calculatedab initio complex potential surface were
discussed.

The calculations described below made use of both coor-
dinate systems so that the cross sections for different ar-
rangements could be computed. The first Jacobi coordinate
system is convenient for the OH+H− arrangement channel;
the second, for the the H2+O− arrangement channel.

The remaining three degrees of freedom of this center-of-
mass system are the three Euler angles which orient the in-
ternal or body-fixedsBFd frame to the lab or space-fixed
sSFd frame, which we will denotea ,b ,z. These are shown in
Fig. 1 and will be discussed below.

C. Triatomic nuclear Hamiltonians

The angular momentum of a triatomic system can be
quantized in several different ways. In defining the Hamil-

tonian for this system we will use the standard[22] BF for-
mulation in which we quantize total angular momentumJ,
the projection of angular momentum onto a SF axisM, and
the projection upon a BF axisK. J andM are constants of the
motion. A six-dimensional rovibrational wave function for a
triatomic with particularJ andM values can be expanded in
a BF angular momentum basis as follows:

CJMsR,r,g,a,b,zd = o
K=−J

J

D̃MK
J sa,b,zd

JK
JMsR,r,gd

Rr
,

s11d

where the basis ofD̃MK
J sa ,b ,zd is the set of normalized

Wigner rotation matrices(and BF angular momentum eigen-
states),

D̃MK
J sa,b,zd =Î2J + 1

8p2 DMK
J sa,b,zd, s12d

such that

E
0

2p

daE
−1

1

dscosbdE
0

2p

dzD̃MK
J sa,b,zdD̃M8K8

J8* sa,b,zd

= dJ,J8dM,M8dK,K8. s13d

In Eqs. (12) and (13) we follow the conventions of Zhang
[22], which for theDMK

J are the same as those of Edmonds
[23].

FIG. 1. “R-embedding”[26] coordinate system with origin at
the center of mass. The body-fixedsBFd frame is labeled by theX8,
Y8, andZ8 axes; the space-fixedsSFd, by X, Y, andZ. The BF axes
are marked with thin lines, and the BFX8Z8 and X8Y8 planes are
both marked with a thin line circle. The SF axes are marked with
dashed lines, and the SFXZ andXY planes are marked with dashed
circles. The molecule resides in the BFX8Z8 plane. The Euler
anglesa, b, andz orient the BF frame with respect to the SF frame.
The line of nodes is also drawn. TherW vector connects the nuclei of

the diatomic. TheRW vector connects the center of mass of the di-
atomic to the third atom and is collinear with the BFZ8 axis. R is

the length ofRW , r is the length ofrW, andg is the angle between the

RW and rW vectors.
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By substituting the expansion(11) into the Schrödinger
equation and using the orthogonality relation(13) for the D
functions, one can derive a tridiagonal system of coupled
equations for the radial componentsJK

JMsR,r ,gd of the full
wave function. The BF Hamiltonian operators that appear in
this expansion are given by[24,25]

HKK
J = −

1

2mR

]2

] R2 −
1

2mr

]2

] r2 +
ĵ2

2mrr
2 +

1

2mRR2fJsJ + 1d

− 2K2 + ĵ2g + VsR,r,gd, s14d

HK±1,K
J = −

1

2mRR2
ÎJsJ + 1d − KsK ± 1d ĵ±,

ĵ2 = − S 1

sinsgd
]

] g
sinsgd

]

] g
−

K2

sin2sgdD ,

ĵ± = 7
]

] g
− K cotsgd,

wheremr andmR are the reduced masses appropriate for the
Jacobi coordinate system in use andV is the complex
potential-energy surface. The Hamiltonian operators are, of
course, independent of the SF quantum numberM. Thus the
dynamics in the body-fixed frame are effectively four dimen-
sional, with internal coordinatesr, R, andg denoting the first
three dimensions, and with the expansion in terms of states
of fixed K representing the fourth dimension.

We use the “R-embedding” scheme[26] in which the BF
angular momentum numberK is quantized around the axis
parallel to theR vector. Thusa and b are the polar angles
which orient theR vector with respect to the SF frame, andz
is the third Euler angle specifying orientation about the BFz
axis. A schematic of the coordinate system is shown in
Fig. 1.

With this Hamiltonian, in the Jacobi coordinates appropri-
ate to the final arrangement of interest, we can perform the
time propagation of Eq.(7), expanding the initial wave func-
tion fni

as in Eq.(11). With the understanding that the wave
function being propagated corresponds to a specific value of
total angular momentum, we will drop theJ and M super-
scripts on the wave function for notational simplicity. Before
we turn to the methods we will use to perform that time
propagation, we will generalize the definition of the disso-
ciative attachment cross section in Eq.(10) using these co-
ordinates.

D. Dissociative attachment cross sections

We can now address the problem of generalizing Eq.(10),
which expresses the cross section for dissociative electron
attachment to a diatomic target, to the case of a triatomic
system. The definition of the cross section derives from the
asymptotic form of the time-independent solutionjni

of the
driven Schrödinger equation in the LCP model given by Eq.
(1). Here and below, we use the subscriptni to denote the
quantum numbers that specify the initial state of the target

molecule. For the product channels, consisting of an atom or
atomic ion plus a diatomic fragment, we will use the notation
jn to label the vibrational and rotational quantum numbers of
the product diatom.

For the triatomic case, the asymptotic form ofjni
sRW ,rWd is

expressed most easily in the spaced-fixed basis of coupled

spherical harmonicsY jl
JMsR̂, r̂d, where R̂·r̂ =cossgd. The

quantum numbersl and j , as we will see below, label the
partial-wave angular momentum of the dissociating frag-
ments and the rotational quantum number of the diatomic
product, respectively.

For our purposes, an important identity is the definition of
the coupled spherical harmonics in terms of the normalized
Wigner rotation functions[22],

Y jl
JMsR̂, r̂d = o

K

Clj
JKD̃MK

J sa,b,zdQ j
Ksgd, s15d

where the coefficientsClj
JK of this unitary transformation are

given in terms of Clebsch-Gordon coefficients by

Clj
JK =Î 2l + 1

2J + 1
k jKl0uJKl, s16d

and

Q j
Ksgd ; Î2pYjKsg,0d. s17d

For a total energy ofE=Eni
+k2/2, wherek is the wave

number of the incident electron andEni
is the energy of the

initial state, the asymptotic form of the dissociative attach-
ment wave function, written below in the space-fixed frame,
is that of a purely outgoing wave:

jni

SFsRW ,rWd = o
l j n

f lni jn
+ sRdxnsrd

Y jl
JMsR̂, r̂d

Rr

,
R→`

o
l j n

expsik jnR− ilp/2dxnsrd

3
Y jl

JMsR̂, r̂d
Rr

Alj nSEni
+

k2

2
D , s18d

whereAlj nsEni
+k2/2d is a partial-wave DA amplitude. The

relative momentum associated with the separating fragments
is

k jn =Î2mRSEni
+

k2

2
− EjnD , s19d

whereEjn is the energy of the diatomic rovibrational state
with quantum numbersn and j of the rearrangement channel
in question.

Given the expansion of the dissociative attachment wave
function in Eq.(18), the generalization of the cross section
formula for diatomics in Eq.(10) to a triatomic is straight-
forward. We begin by taking the overlap ofjni

with the final
product states of interest and integrating over the remaining
angular degrees of freedom:
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OjnsRd = R2o
K
USxn

r
D̃MK

J Q j
Kujni

SFDU2

, s20d

wherexnsrd is a vibrational state of the diatomic product and
Q j

K, defined in Eq.(17), is a corresponding rotational state of
the diatomic fragment. The curved brackets indicate integra-
tion over all variables exceptR. In principlexn also depends
on the rotational quantum numberj . However, in the calcu-
lations we report here, no centrifugal term was included in
the vibrational potential for the diatomic fragment, for rea-
sons that will be made clear below; hencex has noj sub-
script here.

The quantityOjnsRd is fully analagous to the quantity
uJlnsRdu2 of Eq. (10), and we therefore define the cross sec-
tion for dissociative attachment to a triatomic as

sDA
jn = lim

R→`

2p2

k2 g
k

mR
OjnsRd. s21d

By using the asymptotic expansion given by Eq.(18), we
obtain the expression

sDA
jn =

2p2

k2 g
k

mR
o

l
UAlj nSEni

+
k2

2
DU2

. s22d

The rotational states of the products are not resolved in most
experiments, so to compare with measured DA cross sections
we will generally be interested in computing the rotationally
summed DA cross sections.

E. Multiconfiguration time-dependent Hartree method

As previously stated, the solution of the time-independent
LCP equation(1) can be accomplished by time-dependent
wave-packet propagation methods. We will first give a brief
description of the MCTDH method we used to carry out the
time propagation and then, in the following subsection, show
how the dissociative attachment cross section, defined above
in Eq. (22), is calculated directly from the time-propagated
wave packet.

To perform the propagation in Eq.(7) we use the Heidel-
bergMCTDH package[27], which is an implementation of the
multiconfiguration time-dependent Hartree, or MCTDH
[17,28–30] method. The MCTDH method has proven its util-
ity in many applications(see Ref. [17] and references
therein) as an efficient adaptive method for nuclear dynamics
of molecular systems—in particular, those with many de-
grees of freedom[31–33].

In the MCTDH method, as in the standard method for
solving the time-dependent Schrödinger equation, we start
with a time-independent orthonormal product basis set,

hx j1
s1dsq1d ¯ x j f

sfdsqfdj, jk = 1¯ Nk, s23d

for a problem withf degrees of freedom and nuclear coordi-
nates labeledq1, . . . ,qf. For computational efficiency, the ba-
sis functionsx jk

skd are chosen as the basis functions of a dis-
crete variable representationsDVRd [34].

The central idea of the MCTDH technique is the repre-
sentation of the nuclear wave packet as a sum of separable
terms,

fni
sqW,td = o

j1=1

n1

¯ o
j f=1

nf

Aj1¯ j f
stdp

k=1

f

w jk
skdsqk,td, s24d

with nk!Nk. Each “single-particle function”(or SPF)
w jk

skdsqk ,td is itself represented in terms of the primitive basis:

w jk
skdsqk,td = o

ik=1

Nk

cik jk
skd stdxik

skdsqkd. s25d

Since both the coefficientsAj1¯ j f
and the single-particle

functionsw jk

skd are time dependent, the wave function repre-
sentation is not unique. Uniqueness can be achieved by im-
posing additional constraints on the single-particle functions
which keep them orthonormal for all times[17].

The size of the SPF expansion in Eq.(24) controls the
degree to which correlation among the various degrees of
freedom is included. Including a greater number of terms in
this expansion leads to a more precise but slower calculation.
Including the maximum number, i.e.,nk=Nk, gives a numeri-
cally exact calculation, while the opposite limitnk=1 yields
the time-dependent HartreesTDHd method[35,36] in which
the propagating wave packet is uncorrelated with respect to
the coordinate system chosen to represent it.

As the single-particle functions are time-dependent, ma-
trix elements of the Hamiltonian have to be evaluated at
every time step. Hence it is essential that this evaluation can
be done quickly. A fast algorithm exists[17,29] if the Hamil-
tonian can be written as a sum of products of single-
coordinate operators. Here the kinetic energy operator is—as
usual—already in product form, but the potential energy sur-
face is not. To profit from the advantages of the product form
we approximate the potentials employed as a sum of sepa-
rable terms, i.e.,

Vsq1, . . . ,qfd < o
j1=1

m1

¯ o
j f=1

mf

Cj1¯ j f
v j1

s1dsq1d ¯ v j f
sfdsqfd.

s26d

TheMCTDH package[27] includes a utility which performs a
fit of a given potential to a separable representation of this
form. Details can be found in Becket al. [17]. All potential-
energy surfaces used in the current calculation were repre-
sented in this manner, using this utility to fit them specifi-
cally for each choice of the DVR grids.

F. Dissociative attachment cross sections from outgoing
projected flux

The cross sections for dissociative attachment, given by
Eq. (22), can be calculated directly from the time-propagated
wave packet by computing the energy-resolved, outgoing
projected flux. The energy resolution is achieved by Fourier
transform and a final state resolution is achieved by the in-
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troduction of appropriate projection operators. For DA lead-
ing to a specific ro-vibrational final product, we use the pro-
jection operator

Pjn = o
K
Uxn

r
D̃MK

J Q j
KLKxn

r
D̃MK

J Q j
KU , s27d

while for the case of the rotationally summed DA cross sec-
tions, we use the operator

Pn = Uxn

r
LKxn

r
U . s28d

The flux operator we employ, which measures the flux
passing through a surface defined byR=Rc, is defined as

F̂ = ifH,hsR− Rcdg, s29d

whereh is a Heaviside function. The energy-resolved pro-
jected flux is then given by

FjnsEd =
1

2p
E

0

`

dtE
0

`

dt8kfni
ueisH−EdtPjnF̂Pjne

−isH−Edt8ufni
l.

s30d

The MCTDH package[27] includes a utility which computes
the outgoing projected flux. In the actual calculations, the
flux operator appearing in the equation above is replaced by
a complex absorbing potentialsCAPd [37–39]. This formu-
lation of the flux operator is very convenient numerically and
entirely equivalent to the traditional formal definition of the
operator in this context. The radiusRc is to be interpreted as
the point where the CAP is switched on. For more details on
this CAP flux formalism see Refs.[17,30,40].

The resulting energy-resolved projected flux is that asso-
ciated with the time-independent solution of the driven
Schrödinger equation of the LCP model in Eq.(1),

FjnsEd =
1

2p
kjni

uPjnF̂Pjnujni
l. s31d

By inserting the expansion ofjni
in Eq. (18) into Eq. (31)

and using the properties of the coupled spherical harmonics
defined in Eqs.(15)–(17), we obtain, after some algebra,

FjnSEni
+

k2

2
D = o

l

1

2p
kf lni jn

+ sRduF̂uf lni jn
+ sRdl. s32d

Then using the asymptotic form of the radial continuum
functions f lni jn

+ sRd, some further manipulation gives

FjnSEni
+

k2

2
D = o

l
UAlj nSEni

+
k2

2
DU2S k jn

2pmR
D . s33d

This equation gives us the desired relationship between the
energy-resolved projected outgoing flux and the amplitudes
for dissociation that appear in the asymptotic form of the
wave function in Eq.(18). By comparing Eqs.(33) and(22),
noting that in this caseg=1, the relationship between the
rotationally and vibrationally resolved total dissociative at-

tachment cross section and the energy-resolved projected
flux, Fjn, is found to be

sDA
jn Sk2

2
D =

4p3

k2 FjnSEni
+

k2

2
D . s34d

Similarly, for the rotationally summed DA cross section, we
use

sDA
n Sk2

2
D =

4p3

k2 FnSEni
+

k2

2
D , s35d

whereFn is defined as in Eq.(31), with Pjn replaced byPn.
These formulas were used to compute cross sections using
the MCTDH method. For the H−+OH channel, an additional
factor of 2 is multiplied into this expression to account for
the fact that in a given calculation we perform the flux analy-
sis for only one of the two H−+OH arrangements, namely
the one for which the Jacobi coordinates are appropriate.

III. COMPUTATIONAL PROCEDURES

A. DVR basis and other MCTDH parameters

In the calculations reported here we used DVR primitive
basis sets for all internal degrees of freedom[17], choosing
the standard sine DVR for ther and R degrees of freedom
and, forJ=0, the Legendre DVR forg. For J.0, the DVR
for g must be modified to account for singularities in the
Hamiltonian[see Eq.(14)] due to the termK2/sin2sgd. This
is done by using an extended Legendre DVR[41,42], which
is implemented in the HeidelbergMCTDH package[27].

Most of the results we will report are for rotationally
summed cross sections and it is for these cases that the fol-
lowing computational details apply. For the case of rotation-
ally resolved final states, there are additional considerations
that come into play; the details of the rotational analysis we
used are described in the Appendix. In the Jacobir =rOH
coordinate systems, we obtained convergence with DVR
bases of 703120340 for s0.5, r ,7.0d, s0.0,R,12.0d,
and s0,g,pd, respectively. For this coordinate system,
with the exception of the calculation incorporating an initial
state with one quantum of asymmetric stretch, the conver-
gence of the calculation with respect to the number of single-
particle functions was relatively slow compared, for ex-
ample, to our earlier studies on vibrational excitation of a
triatomic [15,16]. Therefore we used a large SPF expansion,
24328318 in r ,R,g, to attain converged results. For con-
sistency, this SPF expansion was used for all calculations
presented in this paper performed in this Jacobi coordinate
system.

We also performed a few calculations in the Jacobisr
=rHHd coordinate system, to examine the H2+O− channel.
We used a grid of 0.5, r ,9.0, 0.0,R,9.0, and 0,g,p
with DVR order 90390360 in an attempt to calculate the
total cross section only. For these calculations, which each
took two to three days CPU time on a desktop computer, an
SPF expansion of 24329326 in r ,R,g was used. As we
will discuss below, these calculations gave only an estimate
of the total cross section for the production of O−, and cannot
be considered to have been converged.
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For every propagation, we used complex absorbing poten-
tials (CAP’s) [37–39] at the edge of the grid to eliminate the
propagated wave function before reaching the end of the
grid. In all cases our CAP’s began 3 bohrs before the end of
the grid, were quadratic, and had a strength,h in the notation
of Ref. [17], of 0.007 a.u. Formally, the CAP’s provide the
+ie limit in Eq. (6).

B. Initial states

To investigate the effect of excitation of the water mol-
ecule on dissociative attachment, we performed calculations
using various initial rovibrational states. We also calculated a
few of these initial states using the spectroscopically accurate
ground-state surface of Polyanski, Jensen, and Tennyson
[43], denoted here and by those authors as the PJT2 surface,
for the purpose of verifying the quality of the initial states
obtained from the ground state CI surface calculated in Paper
I, which we denote here as the HZMR surface.

Vibrational states of H2O can be denoted by the notation
sn1,n2,n3d, wheren1 is the quantum number of symmetric
stretch,n2 is the quantum number of bend, andn3 is the
quantum number of asymmetric stretch. For the Jacobisr
=rOHd coordinate system, we obtained and used initial states
as follows: forJ=0, thes000d, s100d, s010d, s001d, ands200d
states, both for D2O and H2O; for J=3, we studied the seven
lowest rovibrational states of H2O; and forJ=10, we studied
the ground rovibrational state of H2O. To calculate initial

rovibrational states, we performed improved relaxation[30]
with a Davidson diagonalizer as implemented in theMCTDH
package[27].

Table I lists all initial states used for our calculations on
H2O. We computed the overlap of vibrational states from the
HZMR surface and three corresponding states we obtained
by improved relaxation using the PJT2 surface. As shown in
Table I these overlaps are nearly unity. In Table I we also
present comparisons of our calculated transition energies
with values calculated by Polyanskiet al. [43] and by Carter
and Handy[44] and with experimental values[45]. In the
course of investigating the two different arrangement chan-
nels for this problem, we calculated two of these transition
energies in both distinct Jacobi coordinate systems,r =rOH
and r =rHH, and Table I also compares these results. To-
gether, these tests verify that any error in the cross sections
we calculate here due to errors in the initial rovibrational
wave functions is negligible.

Vibrational states of H2O for J=0, integrated over cosu
in valence coordinates, are shown in Fig. 2. This figure
shows the probability density of each wave function in the
sr1,r2d plane in valence bond coordinates. Thes000d and
s010d wave functions appear nodeless in this figure, though
of courses010d has a node inu, and they are almost indis-
tinguishable here, although thes010d state is shifted slightly
in the symmetric stretch direction. Thes100d state has a node
parallel to the asymmetric stretch direction, and is elongated
in the symmetric stretch direction; conversely, thes001d state

TABLE I. Initial states for H2O from the present calculations on both the HZMR and PJT2 surfaces
compared with other calculated and experimental results. The quantum numbersKa andKc are defined as in
Ref. [43,44].

State Energies Overlap

J Ka Kc Vib. Present(HZMR) Present(PJT2) Calc. Expt.a ukPJT2uHZMRlu2

0 0 0 s000d 0.0 cm−1 0.0 cm−1 0.0 cm−1 0.9975

0 0 0 s010d 1635.85b 1594.63b 1594.68d 1594.75 0.9974

1635.93c

0 0 0 s020d 3219.95c 3151.53d 3151.63

0 0 0 s100d 3745.06b 3657.05b 3657.15d 3657.05 0.9923

0 0 0 s001d 3805.78b 3755.83d 3755.93

0 0 0 s200d 7366.35b 7202.23d 7201.54

3 0 3 s000d 138.78b 136.9e 136.76

3 1 3 s000d 144.16b 142.4e 142.28

3 1 2 s000d 175.82b 173.6e 173.37

3 2 2 s000d 208.80b 206.3e 206.30

3 2 1 s000d 214.82b 212.2e 212.16

3 3 1 s000d 288.26b 284.9e 285.22

3 3 0 s000d 288.47b 285.1e 285.42

288.41c

10 0 10 s000d 1129.85b 1114.53

aFrom Ref.[45].
bFrom calculation in Jacobisr =rOHd coordinates.
cFrom calculation in Jacobisr =rHHd coordinates.
dFrom Polyansky, Jensen, and Tennyson[43].
eFrom Carter and Handy[44].
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has a node alongr1=r2 and is elongated in the asymmetric
stretch direction.

C. Propagation

The initial states obtained from the HZMR surface were
multiplied by the entrance amplitude and propagated using
the MCTDH procedure discussed above. Propagation was
performed for 75 fssH2Od or 100 fs sD2Od after which
99.9% of the density had typically been either absorbed by
the CAP or by the imaginary component of the resonance
surface. A time-step plot of the wave-function density for a
packet beginning with attachment to thes000d state withJ
=0 is shown in Fig. 3 and will be discussed further below.

IV. RESULTS AND DISCUSSION

A. Cross sections for attachment to the ground vibrational
state with J=0

The experimental determinations of dissociative attach-
ment to water in the gas phase with which we compare here
have been performed at low enough effective temperatures
that the target molecule is in its ground vibrational state. To
compare with those measurements, we performed LCP cal-
culations using the methods described above beginning with
the s000d state and withJ=0. As we will see below, rota-
tional excitation has only a very small effect on the cross
sections, at least up toJ=10, so these calculations are appro-
priate for comparison with the experiments which have been

performed to date. These calculations yielded a total cross
section for the OH+H− channel(summed over final rota-
tional and vibrational states of the OH fragment) which
peaks at 6.81 eV incident electron energy with a value of
0.214a0

2 or 5.99310−18 cm2 and which has an energy-
integrated total cross section of 5.74310−18 eV cm2.

Our computed cross sections for various final vibrational
states are shown in the top panel of Fig. 4 and are compared
with the experiments of Belić, Landau, and Hall[8] in Fig. 5.
The value of the total cross section at its peak nearly repro-
duces the experimental value of 6.4310−18 cm2 and displays
a shape very similar to the experimental one, with the calcu-
lated maximum being shifted slightly from the experimental
maximum at an incident energy of 6.5 eV. A similar level of
vibrational excitation of the OH fragment is observed, with
similar magnitudes. However, as is visible in Fig. 4, there are
increasing quantitative discrepancies for the cross sections as
n increases from 0 to 7 and the cross sections decrease by
two orders of magnitude. This level of agreement with ex-
periment suggests that the potential surface from Paper I is
largely correct, at least for the geometries relevant to the
description of the H−+OH channel, and that the dynamics of
the wave packet shown in Fig. 3 are the origin of the exten-
sive vibrational excitation of the product OH fragment.

As described in Paper I and as is apparent in Fig. 2, in the
vicinity of the equilibrium geometry of the neutral(r1=r2
=1.81 bohrs;u=104.5°) the gradient of the real part of the
resonance energy is steeply downhill in ther1 or r2 direc-
tions. In contrast, the potential is relatively flat inu. The

FIG. 2. Initial wave-function density for radial solution of(clockwise, from upper left) s000d, s100d, s001d, ands010d states, in valence
bond coordinates, integrated over cosu, with real part of2B1 surface atu=104.5°. Distances in bohrs; contours every 0.25 eV.
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H2+O− well can only be reached if the bond angleu is
decreased substantially from the equilibrium geometry of the
neutral, whereas the OH+H− channel is immediately adja-
cent to the initial wave packet. Therefore the wave packet
proceeds downhill towards the OH+H− arrangement chan-
nel, with very little density arriving in the H2+O− well.

Since the wave packets for both ground and vibrationally
excited initial wave packets begin high upon the repulsive
wall of the resonant state, they all initially acquire a large
amount of momentum in the symmetric stretch direction,
which becomes vibrational and translational motion in the
H−+OH wells. This effect is seen clearly in Fig. 3 as the
oscillation of the outgoing packet in the exit wells of the
potential surface. These dynamics are the origin of vibra-
tional excitation in the product fragment, and comprise one
of the central qualitative results of this study of the dynamics
of dissociative attachment through the2B1 resonance.

Dissociative attachment through the2B1 state is also char-
acterized by rotational excitation of the OH fragment in these
calculations. In Fig. 6 we plot rotational distributions for the
ground vibrational state,n=0, and then=4 state of OH, for
attachment to the ground state of water. These results were
obtained via projections onto hindered-rotor or “pendular”
states using an extended potential energy surface, as de-
scribed in the Appendix. Some structure is seen in these

cross sections, although for the reasons discussed in the Ap-
pendix, these distributions may be suspect forj ,4 or so.

The experiments of Belić, Landau, and Hall[8] cite a
maximum in the rotational distribution atj =7 for the n=0
state andj =4 or 5 forn=4, but those authors did not report
values of individual cross sections for rotational excitation.
The present results are consistent with the results of these
experiments to the extent that they predict considerable rota-
tional excitation of the OH fragment in this channel. A de-
tailed comparison is not possible, and there is some uncer-
tainty in the experiment, but it seems that the maximum in
the calculated final rotational distribution may be different
from that observed experimentally and the calculations seem
to show somewhat greater overall rotational excitation.

B. Effects of initial rotational and vibrational excitation

In our calculations, initial rotational excitation had a very
little effect on the cross sections for dissociative attachment.
In Fig. 7 we plot the total cross section for the OH+H−

channel obtained from the calculation on theJ=0 s000d ini-
tial state, along with cross sections from rotationally excited
initial states. The curves in that figure are almost indistin-
guishable, suggesting that the cross sections forJ=0 should
therefore be essentially identical to the values for a thermally

FIG. 3. Radial wave-function probability den-
sity for propagation ofs000d initial state, in Ja-
cobi sr =rOHd coordinates, integrated over cosg,
at t=0, 4, 8, 12, 16, and 20 fs. Also shown is the
real part of resonant surface atg=108°, which
most closely corresponds tou=104.5° at equilib-
rium geometry, with contours every 1 eV. Dis-
tances in bohrs.
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averaged population of rotational states at the effective tem-
peratures of the experiments.

On the other hand, initial vibrational excitation of the tar-
get molecule can affect the cross sections in the OH+H−

channel dramatically and in ways that are very much mode-
specific, as can be seen in Figs. 4 and 8. For example, one
quantum of bend excitation,s010d, has only a small effect
the cross sections, while a single quantum of excitation in
asymmetric stretch,s001d, changes the degree of vibrational
excitation in the products significantly, as is shown in Fig. 4.

Due to the node in ther1=r2 direction for thes001d state
as shown in Fig. 2, the dynamics for this initial wave packet
are such that the bifurcating wave packet moves more di-
rectly down the H-OH wells and therefore results in signifi-

cantly less vibrational excitation than for attachment to the
other states examined. While this result indicates some of the
mode specificity of the effects of vibrational excitation, the
initial states with quanta of symmetric-stretch excitation pro-
vide the most dramatic example of mode-specific behavior
observed in these calculations.

As seen in Fig. 8, the cross sections for dissociative at-
tachment to thes100d initial state have a strong minimum
near an incident electron energy of 6.5 eV, esentially inde-
pendent of the final vibrational state of the products. The
value of the total cross section at this minimum is 0.0014a0

2,
compared to its peak value of 0.21a0

2 at 5.89 eV. This behav-
ior is reminiscent of an effect[46] predicted for photodisso-
ciation of water through the1B1 state. The1,3B1 states both
correspond to the configuration which is the parent of the2B1
resonance state, and in the region in which the initial vibra-
tional state is nonzero they have potential energy surfaces
which are similar in shape to that of the resonance state.

In either dissociative attachment or photodissociation of a
diatomicmolecule such an effect would be simple to explain
via the well known “reflection principle.” The amplitude for
dissociative attachment for a diatomic molecule can be writ-
ten in a form equivalent to that appearing in Eq.(10) so that
it is proportional to the matrix elementkcE

−uG1/2uxni
l, where

cE
−sRd is the scattering wave function for atom-atom scatter-

ing on the potential surface of the resonance. This form is of
course reminiscent of the matrix element for the photodisso-
ciation amplitude. If the initial vibrational wave function
xni

sRd has a node, and we make the simple delta function

FIG. 4. Total cross sections for(top to bottom) s000d, s010d, and
s001d initial states forJ=0 H2O, along with projections into each
final vibrational state of OH, channels which have onsets left to
right with increasingn.

FIG. 5. Cross sections fors000d initial state, total(heavy line),
and into vibrational channelsn=0 throughn=7 of OH (dotted lines,
left to right), on a logarithmic scale. Also included are data from
Belić, Landau, and Hall’s[8] measurements(thin lines with
squares), shifted in energy so that the maxima(present, 6.81 eV,
versus their value of 6.5 eV) in the total cross section coincide.
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approximation forcE
− at the classical turning point, we can

see that at some energy this matrix element will be zero. If
there are two nodes inxni

, this effect will occur at two ener-
gies.

In a polyatomic system a similar argument can be used,
although the geometry of the multidimensional wave func-
tions makes it more complicated because no single coordi-

nate corresponds to the dissociation motion near the Franck-
Condon region. The effect here is essentially polyatomic.
Nonetheless, the similarity of the present case of dissociative
attachment to water initially excited in the symmetric stretch
mode to the case of photodissociation is further underscored
by the cross section for thes200d initial state shown in Fig. 8.
Here we see two minima, as the simplest explanation would
predict from the presence of two nodes in the wave function
of the initial vibrational state, and multiple minima are also
seen in calculations on photodissociation of water[46].

C. Isotope effects

The experimental cross sections for D−+OD and H−

+OH show pronounced isotope effects. Compton and Chris-
tophorou[4] have observed that not only does the D−+OD
cross section exhibit a lower peak maximum than does the
H2O cross section, but also a smaller peak width, and thus a
significantly smaller energy-integrated cross section.

In Figs. 9 and 10 we plot cross sections for dissociative
attachment to D2O for J=0 beginning in thes000d, s100d,
s010d, s001d, ands200d states. The calculated isotope effects
evident in these figures can be summarized collectively as
follows. In the cross sections for the various initial states of
D2O, we observe narrower peaks than for H2O. We observe
higher maxima at the peak values for the D2O cross sections,
and energy-integrated cross sections with about the same val-
ues as those for the corresponding processes in H2O. We also

FIG. 6. Rotational distribution forn=0 (top) andn=4 (bottom)
final vibrational states of H2O as obtained from a calculation on the
J=0 s000d initial state using the extended potential-energy surface.
The energy-integrated cross section for each of the rotational/
vibrational states is plotted with respect to thej value.

FIG. 7. Total cross sections in square bohrs for rotationally ex-
cited initial states. The heavy dotted line is forJ=0 s000d initial
state; the other lines are for the first seven rovibrational states for
J=3, which are very close to theJ=0 line, and the ground state for
J=10, which is slightly farther away.

FIG. 8. Total cross sections froms100d initial state (top) and
s200d initial state (bottom) for J=0 H2O, along with projections
into each final vibrational state of OH; channels which have onsets
left to right with increasingn.
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observe onsets at higher energy for D2O initial states, due to
the fact that the lower energes of the initial states for the
heavier isotope result in a larger incident electron energy
being required to access the resonant surface. Compton and
Christophorou[4] found energy-integrated cross sections of
6.6 and 3.9310−18 eV cm2 for H2O and D2O, respectively,
and peak heights of 6.9 and 5.2310−18 cm2. We find inte-
grated cross sections of 5.79 and 5.33310−18 eV cm2 and
peak heights of 5.99 and 7.04310−18 cm2 for H2O and D2O,
respectively.

Thus the salient differences between our calculations and
experimental observations is that our peak heights for the
D2O cross sections are larger, not smaller, than for H2O, and

our energy-integrated cross sections have nearly the same
value for the two isotopomers.

These results are puzzling, especially in light of the fact
that the calculated isotope effects are what are to be expected
if there is negligible autodetachment during the dissociation
process. Due to the small width of this resonance, as calcu-
lated in Paper I and by others[47,48], only one or two per-
cent of the propagated wave function density is lost to auto-
detachment in our wave-packet calculations. The expected
isotope effect is particularly evident if we first think about
the process as though it occurred in one dimension. In that
case, the semiclassical “reflection principle” results in the
shape of the cross section being determined by the shape of
the initial wave packet,xni

ÎG /2p. Because the initial vibra-
tional wave function for the heavier isotope is more sharply
peaked and narrower, we expect to see D2O cross sections
which are also more strongly peaked and narrower than those
for H2O. In more than one dimension these arguments are
complicated by the fact that no single coordinate maps sim-
ply from the Franck-Condon region inhabited by the initial
states of the molecule to the asymptotic region, but the re-
sults are qualitatively the same as for a diatomic.

Compton and Christophorou[4] were entirely aware of
these arguments and explained the observed isotope effects
by invoking a much larger rate of autodetachment than is
suggested by modernab initio calculations of the width of
the 2B1 state. They argued that since in the deuterium case

FIG. 9. Total cross sections fors000d, s010d, and s001d initial
states for D2O, J=0, along with cross sections for production of
vibrationally excited OD, which have onsets left to right with in-
creasingn. Also plotted as the dotted lines are the total cross sec-
tions for the corresponding H2O initial states.

FIG. 10. Total cross sections fors100d and s200d initial states
(top and bottom, respectively) for D2O, J=0 along with cross sec-
tions for production of vibrationally excited OD, which have onsets
left to right with increasingn. Also plotted as the dotted lines are
the total cross sections for the corresponding H2O initial states.
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the dissociation process takes longer, a large autodetachment
probability would lead to a smaller cross section for disso-
ciative attachment in the case of D2O. In this way they de-
rived a lifetime of 2.1310−14 sec, which corresponds to a
width of approximatelyG=0.197 eV.

Unfortunately, the LCP model indicates that a width of
this magnitude would yield much larger cross sections via its
effect on the entry amplitude. Increasing the width in our
calculations so as to match the isotope effect yields cross
sections that are several times those of the experiments of
Belić, Landau, and Hall. Increasing the width further so that
autodetachment dominates and finally reduces the cross sec-
tion back to near the experimental values exagerates the iso-
tope effect far beyond that observed by Compton and Chris-
tophorou. To quantify this assertion we repeated the ground-
state H2O and D2O calculations with widths multiplied by
several factors; at 27 times the original width, the cross sec-
tions are approximately ten times those we calculated origi-
nally. Somewhere between 9 and 27 times our calculated
width we find that the isotope ratio(in terms of energy-
integrated cross section) agrees with experiment. For larger
widths, where autodetachment dominates dissociative attach-
ment and cross sections have returned to the magnitude ob-
served in experiment, the isotope effect is much larger—
indicating a factor of 3 difference between the energy-
integrated cross sections of H2O and D2O. Thus we are not
able to reproduce the experimentally observed isotope effects
and overall magnitude of the cross section by simply adjust-
ing the magnitude of the calculated width.

However, we can speculate about the possible ways in
which we may have failed to reproduce physical effects lead-
ing to the experimentally observed isotope effect. There are
two qualitatively different mechanisms through which an
isotope effect like that observed in experiment could be ob-
tained, while still maintaining the overall magnitude of the
cross sections observed and calculated in this study.

In the first of these, the form of the entrance amplitude,
ÎG /2p, may preferentially weight portions of the Franck-
Condon region in which the initial H2O wave function has a
significantly larger magnitude than that of the corresponding
D2O wave function. As a result, the driving termfni

of Eq.
(1) may have a larger magnitude for the H2O states than for
the corresponding D2O states, and as a result the energy-
integrated cross section will be larger for the H2O state.
However, some investigation into this mechanism revealed it
to be highly implausible. In spite of the large difference in
the reduced masses for the vibrational motion of these isoto-
pomers, the initial wave functions for corresponding states
are actually not very different. In a harmonic oscillator ap-
proximation, the ground-state vibrational wave functions are
Gaussians with standard deviations in the ratio 1:21/4

=1:1.18 for D2O:H2O. Thus the entrance amplitude would
have to be extremely sharply peaked to account fully for the
observed isotope effect. We observe no such radical structure
in the entrance amplitude, and such extreme behavior would
be such a deviation from the results of this study, and every
other study of the widths of negative ions of which we are
aware, as to be extremely implausible.

The second mechanism which we have examined is much
more reasonable, given the calculations which we describe in

Paper I. As explained in that paper, we have obtained the
width G, which appears in both the entrance amplitude and as
the imaginary component of the potential-energy surface of
the resonant state, exclusively in terms of calculations below
the energy of the parent3B1 state. Thus in the construction of
the imaginary component of the resonance energy we have
disregarded any partial width of the resonant state due to
autodetachment to an excited state of the neutral water mol-
ecule. However, as we note in Paper I, there are many ge-
ometries at which the complex Kohn calculations place the
resonance above its parent. These geometries lie beyond the
Franck-Condon region—in particular, at geometries in which
one O-H bond length is increased from the equilibrium ge-
ometry of the neutral. These geometries lie at the entrance of
the OH+H− well. We note that the complex Kohn calcula-
tions in Paper I employed a basis set optimized for the de-
scription of the resonance state and the ground state of the
neutral water molecule, not for the excited states of the neu-
tral, and thus may actually have placed the resonance even
lower than it should be relative to the neutral excited states.
As a result, we consider it a possibility that the resonance
may actually rise above not only its3B1 parent state but also
some or all of the1B1,

1A1, or 3A1 states as it enters the
OH+H− well and thus acquire a large negative imaginary
component to its energy at these geometries. Model calcula-
tions indicate that such an increase in the width would have
to be large—on the order of 0.05 eV or so—to duplicate the
experimentally observed isotope effects. However, this is the
only mechanism of which we are aware that could account
for these results.

D. Dissociative attachment into the O−+H2 channel

The experimental value of the cross section for production
of O− through the2B1 resonance at its peak is about 40 times
smaller than the peak of the cross section for production of
H− through the same resonance[5]. The dynamics on the
potential surface computed in Paper I presented here are con-
sistent with that result to the extent that H− is by far the
dominant channel in our calculations.

As we pointed out in Paper I, although the H2+O− exit
well includes the lowest points on the potential-energy sur-
face, it is not as immediately accessible from ground-state
equilibrium geometry as is the OH+H− well. The steepest
descent path of the potential-energy surface does in fact lead
from equilibrium geometry into the O−+H2 well, but via a
more indirect route(described in Paper I) than the route to
the H−+OH channel. Thus in the competing dynamics for
the wave packet to exit into these two arrangements, the
more direct path to the production of H− dominates, and the
wave packet has essentially all exited into that channel(with
its two equivalent arrangements) before more than a small
amount of the quantum flux begins to move into the channel
producing O−. Thus the dynamics of the wave packet in the
LCP model shows it is the shape of the potential surface and
not the overall energetics that controls the branching ratio
into the two possible arrangement channels for anion produc-
tion.

Unfortunately, theab initio potential surface computed in
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Paper I seems to overestimate this effect. We were not able to
completely converge the calculations in this channel, but pre-
liminary indications are that the surface from Paper I pro-
duces cross sections about one order of magnitude smaller
than experiment for this channel. As these calculations were
not converged, we attempted no final state analysis for this
channel.

V. SUMMARY

The results we have presented here demonstrate that it is
now possible to perform completelyab initio calculations on
dissociative attachment to a triatomic molecule in full di-
mensionality. Such calculations require almost the complete
arsenal of contemporary techniques of first-principles quan-
tum chemistry and chemical dynamics, and would have been
difficult to obtain, even with today’s powerful computers,
without the MCTDH implementation of the wave-packet dy-
namics in the time-dependent version of the LCP model.

These calculations have achieved substantial agreement
with experimental observation in many respects. The magni-
tude of the observed total cross section for the H−+OH chan-
nel has been reproduced to within less than ten percent, and
the degree of vibrational excitation of the OH fragment cal-
culated is very similar to that observed. The OH fragment is
also produced in these calculations with considerable rota-
tional excitation, as in the experiment, although the degree of
rotational excitation is probably exaggerated in the present
calculations.

The dominance of the production of H− over that of O− is
also confirmed by these calculations, and most importantly,
the combination of the dynamics presented here and the po-
tential surface presented in Paper I explain why this channel
dominates dissociative attachment through the2B1 reso-
nance. We speculate that the reason why we understimate the
cross section into the O− channel is that theab initio surface
computed in Paper I does not represent the resonance
potential-energy surface in the region between the H−+OH
and H2+O− wells accurately enough to correctly represent
the minor channel in a dynamical competition that yields the
observed branching ratio of 40 to 1.

Considerable additional work will be necessary to com-
pletely unravel the dynamics of dissociative attachment to
water. Besides refining the understanding gained in this study
of attachment through the2B1 resonance state using a still
betterab initio potential surface, similar studies must be un-
dertaken for the2A1 and 2B2 resonances seen in the original
experiments on this problem. The question of nonadiabatic
couplings between these states and their effects on branching
ratios remain open as well. Since the understanding of radia-
tion damage to biological systems will require a complete
understanding of this most fundamental process and how it is
modified in the liquid phase and by the proximity of biomol-
ecules, this problem will continue to be a principal target of
experiment and theory in the near future.
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APPENDIX: ROTATIONAL ANALYSIS

The practical necessity of carrying out wave-packet
propagation on finite grids of limited range can cause prob-
lems when long-range forces come into play. That is the case
here when we consider the computation of DA cross sections
for rotationally specific final states. The rotational analysis
for the H−+OH channel is complicated by the fact that this
channel contains a long-range potential corresponding to the
interaction of a polar diatomic molecule and an ion, a poten-
tial which is significant for all geometries on our grid. The
analysis of the rotational degree of freedom for the OH frag-
ment must therefore be performed in terms of hindered-rotor
or “pendular” states, not free rotational states.(A previous
discussion of pendular states can be found in Ref.[49].)
From the point inR at which we perform this analysis, the
pendular states are assumed to connect adiabatically with the
free rotational states of the asymptotic region. In other
words, we assume that the cross sections which we compute
for the j th pendular state correspond to the cross sections
observed in experiment for thej th free rotational state. We
describe a test of this assumption below.

The long-range ion-dipole interaction causes mixing
among the rotational and, in principle, also the vibrational
levels of the product states. However, since the dipole mo-
ment of OH is almost constant with bond length, and the
separation between vibrational levels is very large compared
to the ion-dipole interaction, the mixing between vibrational
states caused by motion ing or R should be very small.

On the other hand, the separation between the pendular
states is relatively small. Hence there will be coupling
among these pendular states caused by motion in theR de-
gree of freedom. Therefore in order to perform a meaningful
rotational analysis, we were required to ensure that this cou-
pling be small enough not to induce nonadiabatic transitions
between pendular states as they progress beyond the edge of
our grid. To this end we extended our potential-energy sur-
face beyond the boundary atR=12 that we used for the other
calculations presented here. We computed additional points
on the potential surface using the methods of Paper I atR
=16 and 24 bohrs and extended our surface to 24 bohrs so
that we could place the CAP atR=21.

As described in Paper I, the procedure by which we con-
struct the real part of the resonance surface incorporates both
an analytic fit and a three-dimensionals3Dd cubic spline of
the difference between the analytic fit and the computed
points. In order to optimize our surface for the rotational
analysis, we computed a new 3D spline representation of the
entire surface using the following analytic fit of the H−

+OH potential well:
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VH−OHsr,R,gd = − 0.69746 cossgd/R2

− 38.349 cos2sgd/R4 + 0.1652

3„h1 − expf1.2971s1.8112 −rdgj2 − 1…,

sA1d

which was obtained from a multidimensional fit of theab
initio calculated points atR.11, r ,4, and smoothly cut off
at small R to avoid the 1/R4 and 1/R2 singularities. The
pendular states with respect to which the rotational analysis
was performed are the eigenfunctions of the hindered rigid
rotor Hamiltonian, ĵ2/2mrr

2+V, using for V the first two
terms in the potential in Eq.(A1) with R=22.0 and withr2

=kr2ln for the vibrational state of OH in question. The pen-
dular states thus have a parametric dependence onR andn.

In order to verify that the nonadiabatic couplings between
pendular states were in fact small by the edge of our recom-
puted and extended grid, we performed a calculation on an
analogous model problem to compute sample nonadiabatic
couplings between pendular states. We approximated the dis-
sociating H−+OH channel as a rigid static dipole in the field
of the H− ion. We thus defined anR-dependent adiabatic
pendular state basisQ jsg ;Rd as eigenfunctions of the Hamil-
tonian

Hadiabaticsg;Rd =
1

2mrkr2l
ĵ2 +

A

R2cossgd sA2d

with eigenvaluee jsRd, i.e.,

HadiabaticQ jsg;Rd = e jsRdQ jsg;Rd. sA3d

We took the dipole momentA and expectation valuekr2l
of the OH molecule to be that computed from the first vibra-
tional state of OH by a 1D wave-function relaxation using
the results of a CI calculation performed on the OH mol-
ecule. The dipole moment from that calculation wasA=
−1.658 D, andkr2l=3.497. The coupling between the pen-
dular states is caused by the nuclear kinetic energy in theR
direction in the full Hamiltonian for this rigid dipole-ion pair,

Hfull = Hadiabatic−
1

2mR

]2

] R2 . sA4d

The adiabatic potentialse jsRd are combined with the nona-
diabatic couplings to produce the effective Hamiltonian in
the R degree of freedom, which can be written in matrix
form as

Hjj 8 = d j j 8Se jsRd −
1

2mR

]2

] R2D
+ kQ jsg;Rdu

1

2mR

]2

] R2uQ j8sg;Rdl

+ kQ jsg;Rdu
1

2mR

]

] R
uQ j8sg;Rdl ]

] R
. sA5d

We computed the pendular states in the basis of the first 40
Legendre polynomials, in order to parallel the 40th order
Legendre DVR used in our MCTDH calculations.

The adiabatic potentialse jsRd are shown in Fig. 11. Also
plotted is the magnitude of the dipole potential,uA/R2u in Eq.
(A2). As is apparent from this figure, the energies of the
pendular states tend to squeeze together around this line. The
second derivative coupling is also at a maximum when adja-
cent pairs are close to this line, but it was found to be neg-
ligible (a small fraction of an meV). In contrast, the first
derivative coupling is significant for this system, given the
large translational kinetic energies(approximately 2 eV) of
the dissociating H−+OH system. Assuming an outgoing
plane waveseikRd, the quantityik multiplies the derivative
coupling via the] /]R operator at the very end of Eq.(A5).
Given a translational kinetic energy ofk2/2mR=2 eV, the
first derivative coupling is plotted in Fig. 12. As is apparent
from comparing this figure to Fig. 11, nearR=21 bohrs the
first derivative coupling is comparable in magnitude to the
separation between pendular states only for the first few pen-
dular states, and drops monotonically with increasingR.

Given this analysis, we were confident that projections
upon pendular states over the region spanned by the CAP,
which lies fromR=21 toR=24, would yield states that to a
good approximation adiabatically change to free rotational
states upon continuing farther into the asymptotic region. We
expect that this approximation will break down to a signifi-
cant degree only for the first few rotational states.

FIG. 11. Diagonal potentialse jsRd of the first nine pendular
statesQ jsg ;Rd (solid lines). Also plotted for reference is the mag-
nitude of dipole potentialA/R2 (dotted line). R is in bohrs.

FIG. 12. Absolute value of model nonadiabatic first-derivative
coupling between the first nine energetically adjacent pairs of pen-
dular states, assumingk2/2mR=2 eV. R is in bohrs.
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