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Complex potential surface for the?B, metastable state of the water anion
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The potential-energy surface corresponding to the complex resonance energy®yf Beshbach resonance
state of the water anion is constructed in its full dimensionality. Complex Kohn variational scattering calcu-
lations are used to compute the resonance width, while large-scale configuration interaction calculations are
used to compute the resonance energy. Near the equilibrium geometry, an accompanying ground-state potential
surface is constructed from configuration interaction calculations that treat correlation at a level similar to that
used in the calculations on the anion.
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I. INTRODUCTION Not surprisingly, negative ion formation has been the sub-

At kinetic energies of less than about 15 eV, electron im{€Ct Of intense experimental and theoretical investigation,
pacts with water molecules are capable of leading to thét@rting as early as 193]. Early experiments on negative
formation of resonance states that are dissociative, or to tH@n formation by electron impact focused mainly on the iden-
excitation of low-lying singlet and triplet electronic states, Ulication of the negative ion species formed, the measure-
many of which are also dissociative. Thus collisions of low-Tent of the total cross sections, and the energy locations of
energy electrons with water can initiate chemical reactiond® Structures in the resonance prod@jsBuchel’nikova[3]

involving both radical and ionic fragments of the water mol- 21d SchultZ4] established that the main products of disso-

ecule. While such processes are certainly interesting on gative electron attachment in water aré &hd O, with the

purely theoretical level, they gain additional relevanceProduction of O being much smaller than that of"Hat

through their suspected complicity in mechanisms of genom@Wer energies, but with Odominating at higher electron-

damage in living organisms. In the presence of ionizing ra/MPact energies. .
diation in the condensed phase, a shower of low-energy sec. ComMpton and Christophords] carried out a comprehen-

ondary electrons results from essentially all primary ioniza->'V® study of negative ion formatl_on in water an(_j m(_easured
he total cross sections for negative ion production yOH

tion events. Therefore dissociative attachment an hree resonance peaks were observed.pbduction was
dissociative excitation of water are candidates to play key bserved at approximately 6.5 and 8.6 éV with the second
roles in the mechanism of radiation damage to biologicaBeak much less intense thaﬁ the firsf. @as observed in
system; . . N . .. _increasing intensities in three peaks at 6.9, 8.9, and 11.4 eV,
In this paper we begin the investigation of dISSOCIatlverespectivew' the first two appearing at slightly higher ener-
attachmeniDA) through the lowest energy Feshbach résOies than the corresponding™Hesonance peaks. Isotopic
nance state of the water anion, which in g symmetry of  effects were also measured and discussed in detail in this
the equilibrium geometry of the water molecule W, study. Trends similar to HH,O and O/H,O were observed
symmetry. Here we address the problem of constructing for the formation of D and O from D,O, although some
complete potential-energy surface of this metastable stat§ignificant differences in peak heights and widths were ob-
which determines the motion of the nuclei during the diSSO'Ser\/ed in the case of the deuterated target_
Ciative attachment proceSS. In the fO”OWing paper, we will A Series Of measurements by Trajmar and |-[6I| and
investigate the quantum dynamics of dissociative attachmemelic, Laudau, and Hall7] revealed the energy and angular
on this surface. That study will make use of the local com-gependence of Hproduction in dissociative electron attach-
plex potential model for the nuclear dynamics, in which thement to HO. The angular distributions at the three resonance
nuclei move on the complex potential surface, peaks were judged to be consistent with the assignment of
V=Er-il/2, (1)  the three resonances as havfilg, °A;, and’B, symmetries,
respectively. These measurements also gave detailed infor-
whereEg and 1'/2 are the real and imaginary parts, respec-mation about the vibrational and rotational state distribution
tively, of the well-defined complex resonance energy of thepf the OH fragments.
’B, state. Compared with the large number of experimental mea-
surements, detailed theoretical work on dissociative electron-
water collisions has been relatively scarce and there has been

*Email address: djhaxton@Ibl.gov no previousab initio work on dissociative electron attach-
"Email address: zyzhang@Ibl.gov ment to water. The paucity of theoretical work on DA stems
*Email address: cwmccurdy@Ibl.gov from the fact that, in water, DA proceeds, not through tun-
SEmail address: tnrescigno@Ibl.gov neling shape resonances, but through Feshbach resonances
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o r andR vectors, calledy, such thaty=0 indicates a collinear
Y / H-H-O geometry. The other denotes the H-H separation by
TAF r, the distance between the O and thedénter of mass by

R, and the angle betwee&randR by y. Finally, the triangular
O coordinate system is comprised of the three internuclear
(b) separationsq, r,, andry.
A subsequent paper will present the results of a study of
(c) the full quantum dynamics of the dissociative attachment
process on this complex potential surface, which has been
r " g \U2 1 T2 carried out using a time-dependent version of the local com-
~— plex potential approximation for nuclear motion of the anion.
That paper will describe the use of the multiconfiguration
time-dependent Hartree methf20-22 for nuclear dynam-
ics to compute cross sections and vibrational and rotational
state distributions of the products.

(a)

(¢ (d) THH

FIG. 1. Coordinate systems to which we refer in this pag®r.
Jacobi (r=rgp); (b) Jacobi (r=ryy); (c) valence bond;(d)

triangular.
[l. ELECTRONIC STRUCTURE AND ELECTRONIC
that involve changes in the electronic structure of the target. STATES OF H,0
Early theoretical work focused on electronic structure calcu-
lations[8,9] on various states of D~ that are possible reso- ~ Near equilibrium  geometry (r;=1.81 bohrs, r,

nances. These calculations, together with experimental ob=1.81 bohrs,#=104.59, the ground state of }0 is well
servations, formed the basis of the assignment of the thre@escribed by a self-consistent fielCH wave function.
Feshbach resonances that are responsible for electron-impddie SCF orbitals, in order of increasing energy, are
dissociation of water in the gas phase. Contemporary thedabeled {la,,2a;,1b,,3a;,1b;} in C,, symmetry or
retical work has include@b initio complex Kohn[10] and {la’,2a’,3a’,4a’,1a"} in Cg symmetry. The b, and 3
R-matrix [11] calculations, at the equilibrium nuclear geom- orbitals are the main bonding orbitals, while thg drbital is
etry, of the resonances and excitation cross sections into lowtonbonding and contains the oxygen lone-pair electrons, per-
lying dissociative electronic states. More recently, Gorfink-pendicular to the molecular plane. Important unoccupied or-
iel, Morgan, and Tennysor{12] carried out R-matrix bitals include the 4, (5a”) orbital, which is the antibonding
calculations of dissociative excitation of water through fourcounterpart to the & orbital, and the B, (6a”) orbital.
low-lying excited stategthe :°B; and®!A, state$. A limited There are six low-lying dissociative electronic states of
study of the effects of nuclear motion were included in thatwater—3B, A, and **B,—which, near equilibrium ge-
work by increasing one of the O-H bonds while keeping theometry, are well described by promoting an occupidy, 1
equilibrium H-O-H bond angle and the other O-H bond 3a,, or 1b, electron into the antibondinga4 orbital. These
length constant. The only theoretical work on the dynamicaktates are the parents of three doubly excited anion states
aspects of dissociative electron attachment to water are eaith configurations ,4a2, 3a,4a2, and b,4a3, correspond-
lier classical trajectory analyses based on either repulsiving to the three main dissociative attachment peaks. In addi-
[13] or attractive[14] model resonace surfaces. tion, there are alsé'A, excited states in this energy range,
This paper describes the construction of the complexf predominantly Rydberg character, obtained by promoting
potential-energy surface of the first dissociative attachmend 1b, electron into the unoccupiedd? orbital.
resonance, théB, state near 6.5 eV, in its full dimensional- The lowest anion state, thi®, state, is a Feshbach reso-
ity. A potential-energy surface for the neutral molecule isnance which becomes an electronically bound state as the
also constructed at a corresponding level of theory. Thenolecule dissociates and the anion energy drops below the
imaginary part of the potential surface in E@) is con-  neutral ground-state energy. In the region of the potential
structed from calculations using the complex Kohn varia-surface where théB; state is a resonance it is quite narrow
tional method[15,16, while the real part of the potential and nearly parallels théB,; state, which is its parent.
surface, Eg in Eq. (1), is constructed from large-scale  In the asymptotic regions, théB, state correlates with
configuration-interactiofCl) calculations. Within the local either OH?IT)+H (1S) or H,('2)+0O(?P). The third ar-
complex potential approximatigi7—19, the complex anion rangement channel, (BS)+OH (*2), which has been ob-
surface and the ground-state target surface are sufficient terved at each of the resonance peaks, is not a direct product
describe the full dynamics of the dissociative attachmenbf dissociative attachment on tRB; resonance surfad@3]

process via théB; resonance. and is in fact excluded by symmetry as long as coupling to
We will refer to several different coordinate systems inother surfaces is omitted.

this paper. These are illustrated in Fig. 1. The valence-bond

coordinate system is comprised of the O-H bond lengihs Ill. CALCULATION OF THE RESONANCE ENERGY

andr, and the H-O-H bond angl®. There are also two AND WIDTH

different Jacobi coordinate systems; one incorporates an

O-H bond lengthr, the distance between that O-H center of There are two qualitatively different regions of nuclear
mass and the other H, denotBdand the angle between the geometry in a dissociative attachment problem: The region
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near the equilibrium geometry of the neutral within which origin and whose asymptotic forms correspond to Ricatti-
the anion is a resonance, and the asymptotic region in whicBessel and outgoing Ricatti-Hankel functions, respectively:
the resonance becomes bound. In the resonance region, the . —

anion has a finite width or inverse lifetime, which can be fi m(Krr) Nwll(krr)/\“'kr- (4)
evaluated either by a direct method using “Fermi’s golden ~

rule,” or by analyzing the results of a fixed-nuclei scattering

. . . . (+) ~ h™ e
calculation. In the bound region, the anion can be described gl,m(krf)r%h (ker)/VKp . 5
using modern electronic structure techniques, e.g., a
configuration-interaction calculation. With each of these continuum functions is associated a chan-

Because théB; resonance is so narro@ =~ 0.006 eV at nel momenturrky
the equilibrium geometry of watgrone can, in practice, use /2 =E-E 5
Cl techniques to evaluate the real part of #i8g surface at res T (6)
all geometries of interest. This strategy allows one to evaluThe second sum in Eq(2) is over square integrable
ate the real part of the resonance surface from large-scale @N+1)-electron terms(configuration state functiopscon-
expansions that would be impossible to use in any practicatrycted from Gaussian molecular orbitals and incorporates
scattering calculation. Fixed-nuclei scattering calculationscorrelation effects not described by the close-coupling ex-
using the complex Kohn variational method, were carriedyansion of the first sum. For convenience we refer to the
out, but over a more limited set of geometries near the equi¢N+1)-electron configuration® , in the second sum as the
I|br|l_Jm p_osmon of the target, for the purpose of obtaining “Q space” and to the square-integrabiie+ 1)-electron con-
the imaginary part of the resonance energies. figurations involving target configurations and the orbitgls

In the following sections we will describe the two types of ganerated by the antisymmetrizer in the first sum as the
calculations we performed to construct the entire complexp space” of the calculation.
potential surface for the’B; state, tumning first to the  |nserting the trial wave function into the variational prin-
electron-molecule scattering calculations necessary for COMyiple
puting the width.

Tofo=T70lo— 2[ G E)‘I’(r;)drl' cdrye (7)

A. Complex Kohn variational method
ields a set of linear equations for the coefficiedfts®, d?,

The complex Kohn variational method makes use of . ;
trial wave function that is expanded in terms of square-and theT matrix, whose elements are denotedT%%m’%.

integrable(Cartesian Gaussigrand continuum basis func- | h€ Cross sections can be constructed fromitheatrix, and
tions that incorporate the correct asymptotic boundary conll the present case the width and position of te reso-
ditions. Detailed descriptions of the method have been giveRance are extracted from its eigenphases.
elsewheresee, for instance, Ref§l5,1§), so here we will A_descrlptlon (_)f a _complex Kohn qalculanon therefore
limit ourselves to a very brief summary to establish the ter"équires the specification of the approximate target spates

minology we will use to describe our numerical calculations.th€ correlating configuration® ,, and, for the expansion of
The physics of a calculation using the complex Kohnthe channel eigenfunctions, the Gaussian molecular orbitals

variational method is exhibited in the trial function, which, ¢i @nd thel,m pairs included in the asymptotic partial-wave

for a target containing\ electrons, has the form expansion.
\I,(F+) - 2 Alxp(ry- rN)F(r+)r (rnen)] B. Target states _an.d basis set o_f the complex
o °r "o Kohn variational calculations
+3d500 (ri---r ' The square inf[egrable_ portion_of the basis useq to con-
% WOuT1 M) @ struct the Kohn trial function consisted of the Gaussian basis

] ) ) ~ setof Gilet al. [10], augmented with additional diffuse or-
The first sum in Eq(2) is over target states explicitly in- pjtals. On the oxygen, we added sfunction with exponent
cluded in a close-coupling expansion, which may be energ 0316 and g function with exponent 0.0254; on each of
getically open or closed, and for whigf(r,---ry) denotes  the hydrogens, we addedunctions with exponents 0.08 and
the corresponding electronic state of the target molecule. Thg,0333, andp functions with exponents 0.2 and 0.05. With
antisymmetrizer is denoted hyt, and the scattering orbital these additions, our basis set included a total of 77 functions.

(channel eigenfunctigrassociated with channél is The orbital space spanned by this basis set was
divided into sets of “target orbitals” and “scattering
(+) — I
Fi(N =2 O‘Pi(r)+|2[f':m(kfr)b\'s'ﬁmv”bé”o orbitals.” The target orbitals were the set
' " {1a;,2a;,1b,,3a;,1b,,4a,,2b,,5a,}, which were obtained
+Tﬂ'g%%gm(krr)]Y,,m(F)/r (3)  from natural orbital calculations on the ground state and on

the resonance, as described below. The scattering orbitals
for incoming boundary conditions in chanrig}. In Eq.(3)  were the orthogonal complement of the target orbitals.
‘P(i+)den0tes a Gaussian molecular orbital, dpg(k-r) and At each geometry, the first five target orbitals were ob-
g,’m(krr) denote continuum functions which are regular at thetained from a multireference plus all single excitations
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configuration-interaction calculation on the neutral ground TABLE I. H,0 target energies at equilibrium geometry. Com-
state. The orbital basis for these calculations consisted of thelex Kohn values are compared with results of van Harrevelt and
five occupied SCF orbitals along with a set of “improved van Hemert{24]. Energies from this work are calculatedratr,
virtual orbitals” (IVOs) calculated in the field of the =1.81 bohrs,#=105. Energies from Ref[24] were calculated at
(N-1)-electron Hamiltonian obtained by singly occupying r1=r,=1.8 bohrs,6=104.5.

the highest occupied molecular orbitélhis orbital was al-
most always the H;/1a” orbital) We performed complete Energy(hartreg  Excitation energy(electron volts
active spacéCAS) Cl calculations in this basis, doubly oc-
cupying the &, orbital and distributing the eight remaining State  Complex Kohn Complex Kohn Rée4]
electrons over all possible configurations_ that c_ould Y ~76.0581 0.0 0.0
be generated from the set of active orbitals ,

{2ay,1b,,3a,1by, 4a;, 2b,}. We also included all single ex-  ~* 15,7795 7:582
citations obtained by placing seven electrons in the active B1 ~75.7666 7.932 7.63
space and the remaining electron in an IVO orbital. This *A; ~75.7086 9.511
generated a Cl expansion ef15 000 terms. The first five 1A, -75.7049 9.611 9.60
“target” orbitals used _in the co_mplex Koh_n trial fu_nction 3a, -75.6933 9.926
were the natural orbitals obtained by diagonalizing the 1A, ~75.6710 10.534 9.95

ground-state density matrix from this CI calculation.

We then performed similar calculations for the anion
state, beginning with a set of occupied orbitals from a
symmetry-restricted SCF calculation on thB, resonance
state. We carried out a Cl calculationdB; symmetry, keep-

The Q-space term®,, were comprised of all configura-
tions that could be generated by placing 11 electrons within
ing the Ja§2a§1b§3a§1bi occupancy of the five inner orbitals the space of target orbitals, §ubject to the constralgt that the
fixed, and allowing two electrons to occupy any of the re-121 orbital be doubly occupied. These so-called "penetra-
maininga, and/orb, orbitals. The 4y, 2b,, and B, orbitals tion” terms contain the dominant configurations that describe
were obtained by diagonalizing the density matrix of thethe Feshbach resonances, as well as terms that relax any
lowest energy root. We found that we could improve this se€onstraints imposed on the channel eigenfunctions that arise
of natural orbitals via an iterative scheme where each iteraffom the orthogonality among the scattering orbitals, con-
tion consisted of a symmetry-restricted, multireference pluginuum orbitals, and target orbital45].
all singles ClI calculation where the reference space was ob- The expansion of the continuum functiolﬁg)Fo in Eq.(3)
tained by distributing 11  electrons ~ over the includedy, s spanning the range=0 to 4, with all values

{1ay,2ay,1b,,38y, 1b;, 48y, 2b,, 58} natural orbitals, with  of mincluded for each target state consistent with oveéyl
the constraint that theal and 1, orbitals be doubly and o a7 symmetry.

singly occupied, respectively, in each configuration. The size

of the configuration space for these last calculations was ) )

~13 000 in C,, symmetry and~25 000 in C, symmetry. C. Calculation of the resonance widths

Four iterations were performed. The complex Kohn calculations were performed over a
The final set of eight target orbitals used in the complexgrid in valence coordinates on which the O-H bond lengths

Kohn trial funnction consisted of the five natural orbitals took on values r={1.51,1.81,2.11,2.41,2.71,3.01,3.61

with the highest occupation numbers—invariably, the orbit-hohr§ and the angles were§={15,30,45,60,75,90,

als {lay,2a;,1b,, 3a,, 1by}—from the neutral ground-state 105,120,135,150,165° Geometries a®={15,3¢ which

calculations, combined with thead 2b,, and @, natural  are energetically inaccessible to the dissociative attachment

orbitals from the anion calculations, the latter Schmidt or-prgcess were not included.

thogonalized to the former. The remaining unoccupied To facilitate locating the resonance position at each geom-

orbitals—the scattering orbitalsg in Eq. (3)—were also  etry, we first diagonalized the energy-independent portion of

taken from the anion calculations and Schmidt orthogonalthe Kohn Hamiltonian, constructed from square-integrable

|ZEd to the five natural orbitals from the grOUnd'State CaICU'basis functions, and inspected the |0w-|ying eigenva|ues and

lations. eigenvectors to locate the resonance root. The full scattering
Seven stategr were explicitly included in theP-space  calculation was then performed at ten energies around the

portion of the Kohn trial function in Eq(2). These states resonance location and the corresponding eigenphase sums

were defined as the roots of a complete active space Gjere tabulated and fitted to a Briet-Wigner form with a linear

within ~ the  space of the target orbitals packground to extract the resonance positions and widths.

{2a;,1b,,3a;, 1by, 4a;, 2b,, 58y}, with the Ia, orbital always  Ejgenphase sums for several representative geometries are

doubly occupied. For energetically closed channels, @Aly shown in Fig. 2.

functions ¢; were included in the expansion 6\‘;}0 in Eq. The complex Kohn calculations produce a narré@;

(3). At each nuclear geometry, the seven target states with th@sonance that lies close to—and generally below-3gts

lowest energy were chosen. Near the equilibrium geometry;)arent state. At several geometries, however, the resonance

this included theA, ground state and thé3B,,13A,, and  pole appeared significantly~.1 eV) above its3B; parent

L3, excited states. The target energies at the equilibriunstate. Unfortunately, we were unable to reliably perform the

geometry of water are listed in Table I. Kohn calculation at energies close enough to threshold to get
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FIG. 2. Eigenphase sums, in radiams. is
. fixed at 1.81,0 at 105°, andr, is varied. Dis-
tances in bohrs.
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meaningful Breit-Wigner fits in these cases. The imaginaryseven electrons in the CI reference space were included in
part of our interpolated resonance surface was therefore cotihe ClI Hamiltonian along with all single and double excita-
structed under the assumption that fBg resonance always tions from that reference space. The total number of configu-
lies below its parent. We will have more to say about thisrations in these calculations was900 000.

below. For this calculation, we defined a full grid afy,r,
={1.45,1.55,1.65,1.75,1.85,1.95,2,2.25,2.5,2.6,2.8,3.0,
D. Cl calculation for real part of resonance surface 3.2,3.4,3.6,3.8,4.0,42,44,46,48,5.0,5.2,5.6,5.8,6.0,

. . L . _.6.5,7.0,8.0,9.0,10.0,11.0,12.0 bahrs 0={1,2,3,4,5,
In the asymptotic regions where the anion is electromcally6 789 10.11 12 14.15 16.17.18.20.22 24.25 30.35

bound, we can use electronic structure methods to COMpUEy 45 50 55 60 65.70.75. 85.100. 120 140 . 160 175°
the anion potential surface. As we stated earlier, the resoz, ' .0 oo o0 00 00 T X ' ' e

real part of the.r(_ason_ance bt geometrie;. It ‘ﬁ?‘lsl%ted points. For none of the 6025 points did the resonance
spares us the difficulties that would be encountered in trying  .ation exceed an absolute value of —~75.8 hartree
to match the energy surface obtained from scattering calcu- ' )

lations in one region with the asymptotic portions of the The Cl calculations, just like the complex Kohn calcula-
) 9 . ymp P tions, showed that for certain geometries the resonance state
surface obtained by a different method.

The real part of the resonance surface was approximate" S energe_:tica_lly slightl_y above its neutral parent. This is
by large-scale, multireference configuration-interaction cal- ustrate_d in Fig. 3. This was generally found to occur at
. o o geometries where one O-H bond distance was close to its
culations with single and double excitations. For these cal*
culations, we used the augmented, correlation-consistent, po- -75.98 T T T T T T T T
larized valence triple-zeta basis set developed by Dunning -
and co-workerg25]. Molecular orbitals were first obtained 761
via a symmetry-restricted SCF calculation on 83 reso-
nance. The CI reference space included theg, Ba;, 1b;,
4a,, 5a;, and D, orbitals in C,, symmetries, which corre-
spond to &', 4a’, 1a”, 5a’, 6a’, and &’ orbitals inCg sym-
metries. The four electrons occupying they Bnd 2, orbit-
als, which are comprised of mainly the oxyges dnd &
orbitals, were fixed with double occupation and not corre-
lated in these calculations. Thésland 3, orbitals describe
the two O-H bonds, while theh} orbital is a nonbonding
orbital that describes the oxygen lone pair. The 45a’) -76.08 5
orbital, which is the resonance orbital near equilibrium ge- r, (bohr)
ometry, becomes theslorbital of the H anion in the OH
+H™ arrangement. Inclusion of theb2 and 5, orbitals is FIG. 3. 2B, resonance anéB, neutral energies, from CI calcu-
important for describing correlation effects in the resonantations, along the cut in valence bond coordinates wjth1.81 and
state and permits the proper dissociation of the moleculed=105°: resonance energgolid curve, neutral energydashed
Configurations corresponding to all possible distributions ofcurve).

-76.02 |~

-76.04 |~

Energy (hartree)

-76.06 -
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tracted from the computed points and the remainder was fit
with three-dimensional cubic splines. The reference potential
is a sum of two-body terms consisting of three Morse poten-
tials in thergy andryy coordinates. The reference potential
plus the splined residual comprises the global fit of the sur-
face which coincides exactly with the calculated points.

The Morse potentials were optimized for the asymptotic
regions, one for each atom-diatom arrangement. Thus

V(rq,r2,0) = Vg(ry,r2,0) + Vou(ry) + Vou(ro) + Viu(ryw)

I

14 1.8 2.2 2.6 3.0
; ®)

in which Vg is the splined residual, ang is a function of
the other three coordinates. The O-H Morse potential was
obtained by fitting the 124 most exterior points, yielding the

—_ fitted function(in atomi it
equilibrium value and the other was stretched by 1—-2 bohrs.I ed function(in atomic units

These are geometries where begins to overlap OH and it Vou(r) =0.15341 - exd1.3441.809 -r)]}? 9)
becomes difficult to maintain a consistent description of cor- | ) )
relation in the neutral and anion states. It is also possible thatith rms error 0.0032. The H-H Morse potential was fit us-
we are looking at small basis set superposition errors at thed@d 69 points at large p#+O™ separations which simulta-
geometries. In any case, we believe this is unlikely to be &€0usly satisfied the conditions thatr,>8 andr, <4,
physically correct result and therefore, as we noted abové//€lding

the imaginary part of our interpolated resonance surface was - _ _\2

constructed under the assumption that #Be resonance al- Vhn(r) = 0.18271 - ex} 1.0981.406 ~1); (10
ways lies below its parent. This issue will prove to be im-with rms error 0.0029. These fits are certainly not
portant in the discussion of experimentally observed isotopspectroscopic—there are three-body interactions still present

FIG. 4. Calculated ground-state potential surfaceéel04.5°
with contours every 0.25 eV. Bond lengths in bohrs.

effects presented in the subsequent paper. for many geometries at the exterior of our grid, and the fits
above only represent the best two-body fits to the exterior
E. ClI calculation for the ground-state potential surface regions of the full three-body potential.

) ) The difference between the reference potential and the
For the calculation of the neutral potential surface, Wecgicylated values is therefore a combination of small correc-
followed a prescription similar to that used in generating th&jsns to the three two-body interaction potentials, plus the

resonance surface. The number of orbitals used to define thg,re three-body interaction potential. This difference is the
active space was the same, with the difference that six, n uantity which was fit with cubic splines to obtain

seven, electrons occupy the reference space Yy(ry,r,, 6) above

1by, 33, 1by,4a,, 58y, and D, orbitals. The splining proceedure was performed in the valence-

For the neutral, the full grid was specified b, 004 coordinate system using the calculated CI points. Since
r,=11.55,1.6,1.65,1.7,1.72,1.74,1.76,1.78,1.8098, 1.82 e did not calculate the full grid of points, a multistep splin-
1.84,1.86,1.88,1.9,1.92,2.25,2.5,2.75,3.0 bot)ys and  ng proceedure was required. First, a series of one-
6={20,40,60,80,100,120,140,160,175The Cl calcula-  gimensional splines, in thé direction and then along thg
tion was performed on each point on this grid. andr, directions, was performed to obtain the surface at the

~The neutral surface was represented by a threeremaining grid points. Second, the full grid of points thus
dimensional cubic spline fit using the full grid of points ob- constructed was fit to three-dimensional cubic splines.
tained from the CI calculation described above. It is conve- Figyre 5 jllustrates how the combination of an analytical
nient to have a representation of the potential far into thgeference potential and a splined residual produces a better
classically forbidden region, and to that end the potential wagepresentation of the full potential surface than what would
extrapolated beyond the end of the computed grid using e obtained with a direct three-dimensional spline fit of the
quadratic representation. The ground-state potential surfacgiculated points. That advantage is particularly important in
is shown in Fig. 4. This potential surface yields energies fokhe H,+0O~ arrangement. The exiting well in this arrange-
the first few bound rovibrational states in good agreemenfent lies diagonally in the valence-bond coordinate system
with the spectroscopically accurate surface of Polyaretky pon which our grid of calculated points is based. Our grid is

al. [26]. also sparse in this asymptotic region. Thus obtaining a reli-
able fit from a spline proceedure alone would be impossible.
IV. FITTING THE RESONANCE POTENTIAL-ENERGY This is because the H O™ potential energy surface—and in
SURFACE particular, the highly repulsive part at small H-H

separations—is not easily described by the third-degree poly-

nomials comprising the spline functions. To illustrate,
To construct a complete representation of the real part ofonsider the geometries(i) {r;=7,r,=7,0=1°} and

the resonance surface, a reference potential was first subit) {r;=7,r,=8,6=1°}, which are adjacent in our grid of

A. Real part of the resonance energy
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10.0
1 9.0
1 8.0
170 R
1 6.0
150 FIG. 5. H-H potential-energy well in Jacobi
4.0 (r=ryy) coordinates, aty=0 (left) and y=90°
(right). The top panels represent a direct splined
10.0 fit of the full surface; the bottom panels combine
{ 90 a reference two-body potential with a splined fit
| 80 of the residual. Distancds andR) in bohrs; con-
| 70 R tours every 0.25 eV.
1 6.0
1 5.0
4.0

points. Point(i) is high upon the repulsive wall of the H-H coordinate system to a basis set expansion of 60 symme-

potential, whereas poiriti) is closer to the H-H equilibrium trized Gaussian functions of the form

separation. A pure spline would represent the behavior of the

potential between these two points with a third-degree poly- 5 2

nomial, which is a poor substitute for the behavior of the true Bij(re,r2,60) = (1 +Py)[(ra/c))”+ (ra/c;)°]

potential(which is better approximated by an exponential or xexf - (r1/c,)2 - (ro/c))?]cogke), (11)

by 1/r'?). The improvement gained by subtracting the ana- .

lytic reference potential before fitting with splines is substan-

tial, as shown in Fig. 5. whereP;; is an operator which permutes indideandj. The
Even with the improvement afforded by this technique,coefficientsc; are {1.2,1.4,1.6,1.8,2}0and the integeik

however, the H+O~ well is not represented with sufficient runs from 0 to 3 inclusive. This basis set was used in a

accuracy to afford reliable rotational or vibrational analysedeast-squares fit of the square root of the width using the

for this rearrangement channel. Irregularities of approxi-method of singular value decompositia7]. The rank of

mately 0.25 eV persist at linear O-H-H geometry. Fortu-the singular value decomposition matrix was 25 and the root-

nately, these irregularities are far removed from the H mean-square error of the width function thereby constructed

+OH well and therefore do not affect dynamics leading towas 0.000 75 eV. In Fig. 6 we show three cuts of our fitted

that arrangement. width function in valence bond coordinates.
_ The interested reader can access the data files and com-
B. Width of the resonance puter codes needed to generate the complex resonance en-

The calculated values of the width were tabulated and thergy at any desired geometry. These electronic files can be
square root of the width was then fit in the valence-bondetrieved from the EPAPS archij28].

1 3.0
{25
{120
{115 0
{10
{05
0.0

FIG. 6. Fitted width function in valence bond
coordinates atf=105°; r,=1.81 bohrs; and in
C,, geometry.6 in radians;r; andr, in bohrs;
contours every 0.0005 eV.
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FIG. 9. Resonance energy as a functiordefith r, andr, fixed
FIG. 7. Calculated width valugsolid squaresand fitted width  at 1.81 bohrs: complex Kohn calculatior(slots connected by
function (dark solid ling along the cut in valence bond coordinates chained curvg present Cl calculationgolid line).
with r;=1.81 bohrs and=105° together with values from Gorfink-
iel et al. [12] at #=104.5°(light solid line). r, in bohrs.
for values ofr, inward of the equilibrium value. For larger
C. Comparison with other calculations values ofr, the CI potential surface is flatter in this cut than

Gorfinkiel, Morgan, and Tennysofl2] have performed IS th.e R-matrix surface.
R-matrix calculations on one portion of this potential surface. F19uré 8 also shows the resonance energy from the com-
They fixed one O-H distance and the bond angle to be thogRlex Kohn_ calculations. In this one-dmensmngl_cyt of the
of the ground state of water, and treated dissociation in on&l potential surface one can see that in the vicinity of the
dimension along the other O-H distancg,in our notation. ~ €quilibrium geometry its shape is similar to that of the CI
In Fig. 7 we compare our calculated widths and our fit ofcalculation, but its behavior for large differs. The large-
them with those of th&-matrix calculation. Our widths are scale CI calculations should be significantly more reliable in
uniformly larger than those of th@-matrix calculation. The this limit because they have been designed to treat the dis-
behavior of the widths from our calculation is similar to that sociative limits correctly.
from the R-matrix calculation in that both show a maximum  Figure 9 compares the resonance energies from the com-
or a plateau around equilbrium ground-state neute@ ige-  plex Kohn and CI calculations at geometries where the
ometry, though thér-matrix values fall off somewhat more O-H bond distances are held fixed and the H-O-H bond
quickly with increasing . angle is varied. Once again the shapes of the two curves are
In Fig. 8 we compare the real part of the resonanc&ound to be very similar.
potential-energy surface calculated in the CI calculations de-
scribed above with th®-matrix calculations of Refl12]. In
this figure the resonance energies are shown relative to the V. CHARACTERIZATION OF THE SURFACE
energy of the ground state at equilibrium geometry in the
corresponding calculation. Our CI calculations agree very

well, both in shape and magnitude, with tRematrix results Several qualitative remarks about the expected shape of

the 2B, resonance surface may be helpful before we describe
the specific features of the potential-energy surface we have
constructed in these calculations.

First, the?B, state is formed by the promotion of an elec-
tron from a nonbonding orbital to an antibonding orbital and
the capture of a continuum electron into the same antibond-
ing orbital. Thus a superficial characterization of this state
would indicate a bond order of 1, and therefore an overall
dissociative shape of the potential-energy surface near equi-
librium ground-state KD geometry.

A second elementary expectation is that the anion surface
should vary less with bending angle than does the ground-
state surface. The splitting of the energies of tagahd 4,
orbitals is enhanced by the-p hybridization afforded by

FIG. 8. Resonance energy along the cut in valence bond cooP€nt geometries; that effect is one explanation of the origin
dinates withr;=1.81 bohrs and9=105°: complex Kohn calcula- Of the molecule’s bent equilibrium geometry, agQHin its
tions (solid dots connected by chained curvpresent Cl calcula- ground state has two electrons in the But none in the &,
tions (dark solid ling, and calculations of Gorfinkiest al. [12] at  orbital. In the?B, state both &; and 4, orbitals are doubly
0=104.5°(dotted ling. r, in bohrs. occupied. As the bending angle is increased from its

9.5

9.0 F
85
80}
75}

Energy [eV]

70 |

65

8.0

1.5 16 17 18 19 20 21 22 23
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6.0

+ 5.0

4.0

(@) r (h) r

FIG. 10. Real part of the surface in valence bond coordinates. Left column, top to béttdh: §=15°, §=35°, #=70°. Right column,
top to bottom:#=104.5°,6=125°, /=150°, #=180°. Black dot ford=104.5° denotes ground-state equilibrium positignandr, in bohrs;
contours every 0.25 eV. Thick curve on each panel denotes geometries where the resonance state crosses the neutral @eritekstate

equilibrium value, the increase in the3orbital energy is tube, a higher part of which can be seen in the next cut at
accompanied by a decrease in tteg drbital energy and the #=15°.
2B, state is thus expected to have a potential-energy surface As the bond angle is increased we see more clearly the
which is relatively flat with bending angle. wells corresponding to the arrangement OH+Ks can be

The entire potential surface is surveyed in Fig. 10 in va-seen in the top panel of the right column of Fig. 10, at the
lence bond coordinates. Cuts are given that vary in the bondquilibrium geometry of neutral }0 the gradient of the sur-
angled from 0° to 180°. From these cuts we can see some oface is quite steep in the symmetric stretch direction.gAt
the expected features”@®H, is visible in the cut ab=0° as  =104.5°, the surface posesses a saddle poini=at,~ 2.1,
two narrow channels for whicli;—r,|=1.4 bohrs. In the va- and then increases in energy as the symmetric stretch coor-
lence bond coordinate system, this channel has the shape oflaate is further increased. On either side of this saddle, the
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- 3.0

10 20 30 40 50 60 7.0 8.0
R

FIG. 11. Real part of the surface @y, symmetry in triangular

. . ) FIG. 12. Real part of the surface in Jacdbtroy) coordinates
coordinates. Distances in bohrs; contours every 0.25 eV.

atr=1.81.Rin bohrs;y in radians; contours every 0.25 eV.

OH+H™ wells form quickly and the gradient in thg or r,
direction is large. Relative to its rapid variationiiporr,, ~ where the resonance becomes bound, the electronic energy
the variation of the surface with respect #ois generally of the resonance drops significantly below that of its parent
small in the vicinity of the equilibrium geometry of the neu- as the electron affinity of the fragments is recovered.
tral. The potential surface of thi, neutral state is itself simi-
Although it does not affect the dissociation dynamics bedar to that of the'B; state. The latter is responsible for the
cause autodetachment is negligible immediately beyond thghotodissociation of water in its first absorption band, which
Franck-Condon region, it is nevertheless interesting to sekas been called “the most studied triatomic photochemical
where the resonance state becomes electronically bound, i.eeaction”[29]. Numerous calculations have been performed
where it crosses the ground-state surface of neutral water. Ten this state, and it is illuminating to compare its potential
locate these crossings, which lie well outside the range ourface with the present resonance surface.
geometries where we needed to compute the neutral target For instance, van Harrevelt and van Hemga4] have
surface, we used the spectroscopically accurate potentiatonstructed and used a potential-energy surface forBhe
energy surface of water computed by Polyansky, Jensen, arflate. They find a minimum in the symmetric stretch direc-
Tennyson[26], shifted to coincide with the minimum of our tion nearr,=r,=2.05 bohrs ford=105°. In ther, or r, di-
calculated Cl surface. The points at which the resonance an@ctions, their potential is steeply dissociative at neutr#H
neutral surfaces cross are plotted in Fig. 10. Since the surfaggyuilibrium geometry, flattening out by approximataly
of Polyanskyet al. is a spectroscopic fit and thus not ex- =5 bohrs. Their surface is reasonably flatginalthough they
pected to represent the dissociative limits correctly, theind a minimum in the'B, potential near§=105° for r,
crossings depicted in Fig. 10 should be considered to ber,=1.8 bohrs, which is approximately 0.8 eV lower than
estimates, especially for cuts such as thatfatl05°, in  the energy at linear H-O-H geometry at those bond lengths.
which the crossing occurs at relatively large bond lengths.  Some parallels with théB, state can be seen in the cut of
Although Fig. 10 in principle gives a complete view of the?B, surface shown in Fig. 12. We can see that the surface
the surface, some features are easier to see in other coorg-relatively flat in the Jacobi angkg though it favors a bent
nate systems. For example, théH, channel is more eas- geometry at small bond lengths and a linear geometry at
ily seen in the triangular coordinates used in Fig. 11 andarger bond lengths. Interestingly, at=r,=1.8 bohrs, the
sketched in Fig. 1. There is a loc@l,, minimum on the difference between the minimum in energy at 105° and the
surface in linear geometry at=r,~2.4, which can be energy at linear H-O-H geometry is 0.807 eV, very similar
found in the upper left part of Fig. 11 on the boundary lineto that calculated for the'B, state of neutral water in
that denotes linear configurations. In a time-dependent viewvRef. [24].
of the dissociative attachment dynamics, which we will use The relative accessibility of the 40O~ and OH+H
in the following paper, the initial wave packet starts out withwells from equilibrium HO geometry is relevant to the
(ryn)=2.91 and(rop)=1.83. This geometry places it a sig- branching ratios for this dissociative attachment process.
nificant distance away from the,HtO~ well, as can be seen While the H,+ O™ exit well includes the lowest points on the
in Fig. 11. In the cut in this figure, the H O~ well appears potential-energy surface, it is not as immediately accessible
dissociative throughout. However, &, geometry is bro- from ground-state equilibrium geometry as is the OH+H
ken, there develops a very weak, broad global minimum ofvell. The steepest descent path of the potential-energy sur-
the surface in the O~ well atr;=5.5,r,=4, 6=0°. This  face does in fact lead from equilibrium geometry into the
well can be interpreted as a polarizable bbund to the O. O +H, well, but it does so only by first stretching one
The Feshbach resonances relevant to dissociative attac®H bond from equilibrium geometry to approximately
ment in water can be characterized as an extra electron4, and then tracing a wide arc tp=0 across a relatively
weakly bound to the corresponding parent states. Thus, dfat region of the potential energy surface, near the cut shown
least in the region where this state is a resonance, we expeict Jacobi coordinates in Fig. 12. The most direct route to this
the shape of théB, potential-energy surface to closely par- well proceeds without breaking,, symmetry along the cut
allel that of its parenfB; state. In the asymptotic region, in Fig. 11, but in doing so moves almost perpendicular to the
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steepest descent path. In our dynamical studies we will seld,O. In an accompanying paper we examine the nuclear
that a wave packet originally located at the equilibrium ge-dynamics on this surface in an effort to obtain the dissocia-
ometry has a strong tendency to bifurcate into the steeplyive attachment cross section.

dissociative H+OH wells. Thus it is the shape of the poten-

tial surface and not the overall energetics that controls the ACKNOWLEDGMENTS
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