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The potential-energy surface corresponding to the complex resonance energy of the2B1 Feshbach resonance
state of the water anion is constructed in its full dimensionality. Complex Kohn variational scattering calcu-
lations are used to compute the resonance width, while large-scale configuration interaction calculations are
used to compute the resonance energy. Near the equilibrium geometry, an accompanying ground-state potential
surface is constructed from configuration interaction calculations that treat correlation at a level similar to that
used in the calculations on the anion.
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I. INTRODUCTION

At kinetic energies of less than about 15 eV, electron im-
pacts with water molecules are capable of leading to the
formation of resonance states that are dissociative, or to the
excitation of low-lying singlet and triplet electronic states,
many of which are also dissociative. Thus collisions of low-
energy electrons with water can initiate chemical reactions
involving both radical and ionic fragments of the water mol-
ecule. While such processes are certainly interesting on a
purely theoretical level, they gain additional relevance
through their suspected complicity in mechanisms of genome
damage in living organisms. In the presence of ionizing ra-
diation in the condensed phase, a shower of low-energy sec-
ondary electrons results from essentially all primary ioniza-
tion events. Therefore dissociative attachment and
dissociative excitation of water are candidates to play key
roles in the mechanism of radiation damage to biological
systems.

In this paper we begin the investigation of dissociative
attachmentsDAd through the lowest energy Feshbach reso-
nance state of the water anion, which in theC2v symmetry of
the equilibrium geometry of the water molecule has2B1
symmetry. Here we address the problem of constructing a
complete potential-energy surface of this metastable state
which determines the motion of the nuclei during the disso-
ciative attachment process. In the following paper, we will
investigate the quantum dynamics of dissociative attachment
on this surface. That study will make use of the local com-
plex potential model for the nuclear dynamics, in which the
nuclei move on the complex potential surface,

V = ER − iG/2, s1d

whereER and −G /2 are the real and imaginary parts, respec-
tively, of the well-defined complex resonance energy of the
2B1 state.

Not surprisingly, negative ion formation has been the sub-
ject of intense experimental and theoretical investigation,
starting as early as 1930[1]. Early experiments on negative
ion formation by electron impact focused mainly on the iden-
tification of the negative ion species formed, the measure-
ment of the total cross sections, and the energy locations of
the structures in the resonance process[2]. Buchel’nikova[3]
and Schultz[4] established that the main products of disso-
ciative electron attachment in water are H− and O−, with the
production of O− being much smaller than that of H− at
lower energies, but with O− dominating at higher electron-
impact energies.

Compton and Christophorou[5] carried out a comprehen-
sive study of negative ion formation in water and measured
the total cross sections for negative ion production in H2O.
Three resonance peaks were observed. H− production was
observed at approximately 6.5 and 8.6 eV, with the second
peak much less intense than the first. O− was observed in
increasing intensities in three peaks at 6.9, 8.9, and 11.4 eV,
respectively, the first two appearing at slightly higher ener-
gies than the corresponding H− resonance peaks. Isotopic
effects were also measured and discussed in detail in this
study. Trends similar to H−/H2O and O−/H2O were observed
for the formation of D− and O− from D2O, although some
significant differences in peak heights and widths were ob-
served in the case of the deuterated target.

A series of measurements by Trajmar and Hall[6] and
Belic, Laudau, and Hall[7] revealed the energy and angular
dependence of H− production in dissociative electron attach-
ment to H2O. The angular distributions at the three resonance
peaks were judged to be consistent with the assignment of
the three resonances as having2B1,

2A1, and2B2 symmetries,
respectively. These measurements also gave detailed infor-
mation about the vibrational and rotational state distribution
of the OH fragments.

Compared with the large number of experimental mea-
surements, detailed theoretical work on dissociative electron-
water collisions has been relatively scarce and there has been
no previousab initio work on dissociative electron attach-
ment to water. The paucity of theoretical work on DA stems
from the fact that, in water, DA proceeds, not through tun-
neling shape resonances, but through Feshbach resonances
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that involve changes in the electronic structure of the target.
Early theoretical work focused on electronic structure calcu-
lations[8,9] on various states of H2O

− that are possible reso-
nances. These calculations, together with experimental ob-
servations, formed the basis of the assignment of the three
Feshbach resonances that are responsible for electron-impact
dissociation of water in the gas phase. Contemporary theo-
retical work has includedab initio complex Kohn[10] and
R-matrix [11] calculations, at the equilibrium nuclear geom-
etry, of the resonances and excitation cross sections into low-
lying dissociative electronic states. More recently, Gorfink-
iel, Morgan, and Tennyson[12] carried out R-matrix
calculations of dissociative excitation of water through four
low-lying excited states(the 1,3B1 and3,1A1 states). A limited
study of the effects of nuclear motion were included in that
work by increasing one of the O-H bonds while keeping the
equilibrium H-O-H bond angle and the other O-H bond
length constant. The only theoretical work on the dynamical
aspects of dissociative electron attachment to water are ear-
lier classical trajectory analyses based on either repulsive
[13] or attractive[14] model resonace surfaces.

This paper describes the construction of the complex
potential-energy surface of the first dissociative attachment
resonance, the2B1 state near 6.5 eV, in its full dimensional-
ity. A potential-energy surface for the neutral molecule is
also constructed at a corresponding level of theory. The
imaginary part of the potential surface in Eq.(1) is con-
structed from calculations using the complex Kohn varia-
tional method[15,16], while the real part of the potential
surface, ER in Eq. (1), is constructed from large-scale
configuration-interactionsCId calculations. Within the local
complex potential approximation[17–19], the complex anion
surface and the ground-state target surface are sufficient to
describe the full dynamics of the dissociative attachment
process via the2B1 resonance.

We will refer to several different coordinate systems in
this paper. These are illustrated in Fig. 1. The valence-bond
coordinate system is comprised of the O-H bond lengthsr1
and r2 and the H-O-H bond angleu. There are also two
different Jacobi coordinate systems; one incorporates an
O-H bond length,r, the distance between that O-H center of
mass and the other H, denotedR, and the angle between the

r andR vectors, calledg, such thatg=0 indicates a collinear
H-H-O geometry. The other denotes the H-H separation by
r, the distance between the O and the H2 center of mass by

R, and the angle betweenrW andRW by g. Finally, the triangular
coordinate system is comprised of the three internuclear
separationsr1, r2, andrHH.

A subsequent paper will present the results of a study of
the full quantum dynamics of the dissociative attachment
process on this complex potential surface, which has been
carried out using a time-dependent version of the local com-
plex potential approximation for nuclear motion of the anion.
That paper will describe the use of the multiconfiguration
time-dependent Hartree method[20–22] for nuclear dynam-
ics to compute cross sections and vibrational and rotational
state distributions of the products.

II. ELECTRONIC STRUCTURE AND ELECTRONIC
STATES OF H2O

Near equilibrium geometry (r1=1.81 bohrs, r2
=1.81 bohrs,u=104.5°), the ground state of H2O is well
described by a self-consistent fieldsSCFd wave function.
The SCF orbitals, in order of increasing energy, are
labeled h1a1,2a1,1b2,3a1,1b1j in C2v symmetry or
h1a8 ,2a8 ,3a8 ,4a8 ,1a9j in Cs symmetry. The 1b2 and 3a1

orbitals are the main bonding orbitals, while the 1b1 orbital is
nonbonding and contains the oxygen lone-pair electrons, per-
pendicular to the molecular plane. Important unoccupied or-
bitals include the 4a1 s5a9d orbital, which is the antibonding
counterpart to the 3a1 orbital, and the 2b2 s6a9d orbital.

There are six low-lying dissociative electronic states of
water—1,3B1

1,3A1, and 1,3B2—which, near equilibrium ge-
ometry, are well described by promoting an occupied 1b1,
3a1, or 1b2 electron into the antibonding 4a1 orbital. These
states are the parents of three doubly excited anion states
with configurations 1b14a1

2, 3a14a1
2, and 1b24a1

2, correspond-
ing to the three main dissociative attachment peaks. In addi-
tion, there are also3,1A2 excited states in this energy range,
of predominantly Rydberg character, obtained by promoting
a 1b1 electron into the unoccupied 2b2 orbital.

The lowest anion state, the2B1 state, is a Feshbach reso-
nance which becomes an electronically bound state as the
molecule dissociates and the anion energy drops below the
neutral ground-state energy. In the region of the potential
surface where the2B1 state is a resonance it is quite narrow
and nearly parallels the3B1 state, which is its parent.

In the asymptotic regions, the2B1 state correlates with
either OHs2Pd+H−s1Sd or H2s1Sd+O−s2Pd. The third ar-
rangement channel, Hs2Sd+OH−s1Sd, which has been ob-
served at each of the resonance peaks, is not a direct product
of dissociative attachment on the2B1 resonance surface[23]
and is in fact excluded by symmetry as long as coupling to
other surfaces is omitted.

III. CALCULATION OF THE RESONANCE ENERGY
AND WIDTH

There are two qualitatively different regions of nuclear
geometry in a dissociative attachment problem: The region

FIG. 1. Coordinate systems to which we refer in this paper.(a)
Jacobi sr =rOHd; (b) Jacobi sr =rHHd; (c) valence bond; (d)
triangular.

HAXTON et al. PHYSICAL REVIEW A 69, 062713(2004)

062713-2



near the equilibrium geometry of the neutral within which
the anion is a resonance, and the asymptotic region in which
the resonance becomes bound. In the resonance region, the
anion has a finite width or inverse lifetime, which can be
evaluated either by a direct method using “Fermi’s golden
rule,” or by analyzing the results of a fixed-nuclei scattering
calculation. In the bound region, the anion can be described
using modern electronic structure techniques, e.g., a
configuration-interaction calculation.

Because the2B1 resonance is so narrow(G<0.006 eV at
the equilibrium geometry of water), one can, in practice, use
CI techniques to evaluate the real part of the2B1 surface at
all geometries of interest. This strategy allows one to evalu-
ate the real part of the resonance surface from large-scale CI
expansions that would be impossible to use in any practical
scattering calculation. Fixed-nuclei scattering calculations,
using the complex Kohn variational method, were carried
out, but over a more limited set of geometries near the equi-
librium position of the target, for the purpose of obtaining
the imaginary part of the resonance energies.

In the following sections we will describe the two types of
calculations we performed to construct the entire complex
potential surface for the2B1 state, turning first to the
electron-molecule scattering calculations necessary for com-
puting the width.

A. Complex Kohn variational method

The complex Kohn variational method makes use of a
trial wave function that is expanded in terms of square-
integrable(Cartesian Gaussian) and continuum basis func-
tions that incorporate the correct asymptotic boundary con-
ditions. Detailed descriptions of the method have been given
elsewhere(see, for instance, Refs.[15,16]), so here we will
limit ourselves to a very brief summary to establish the ter-
minology we will use to describe our numerical calculations.

The physics of a calculation using the complex Kohn
variational method is exhibited in the trial function, which,
for a target containingN electrons, has the form

CG0

s+d = o
G

AfxGsr 1 ¯ r NdFG,G0

s+d sr N+1dg

+ o
m

dm
G0Qmsr 1 ¯ r N+1d. s2d

The first sum in Eq.(2) is over target states explicitly in-
cluded in a close-coupling expansion, which may be ener-
getically open or closed, and for whichxGsr 1¯ r Nd denotes
the corresponding electronic state of the target molecule. The
antisymmetrizer is denoted byA, and the scattering orbital
(channel eigenfunction) associated with channelG is

FG,G0

s+d sr d = o
i

ci
G,G0wisr d + o

l,m
ff l,mskGrddl,l0

dm,m0
dG,G0

+ Tl,l0,m,m0

G,G0 gl,m
s+dskGrdgYl,msr̂ d/r s3d

for incoming boundary conditions in channelG0. In Eq. (3)
wi denotes a Gaussian molecular orbital, andf l,mskGrd and
gl,m

s+dskGrd denote continuum functions which are regular at the

origin and whose asymptotic forms correspond to Ricatti-
Bessel and outgoing Ricatti-Hankel functions, respectively:

f l,mskGrd ,
r→`

j lskGrd/ÎkG, s4d

gl,m
s+dskGrd ,

r→`
hl

s+dskGrd/ÎkG. s5d

With each of these continuum functions is associated a chan-
nel momentumkG

kG
2/2 = E − EG. s6d

The second sum in Eq.(2) is over square integrable
sN+1d-electron terms(configuration state functions) con-
structed from Gaussian molecular orbitals and incorporates
correlation effects not described by the close-coupling ex-
pansion of the first sum. For convenience we refer to the
sN+1d-electron configurationsQm in the second sum as the
“Q space” and to the square-integrablesN+1d-electron con-
figurations involving target configurations and the orbitalswi
generated by the antisymmetrizer in the first sum as the
“P space” of the calculation.

Inserting the trial wave function into the variational prin-
ciple

Ts
G,G0 = Tt

G,G0 − 2E CG
s−dpsH − EdCG0

s+ddr 1 ¯ dr N+1 s7d

yields a set of linear equations for the coefficientsci
G,G0, dm

G0,
and theT matrix, whose elements are denoted asTl,l0,m,m0

G,G0 .
The cross sections can be constructed from theT matrix, and
in the present case the width and position of the2B1 reso-
nance are extracted from its eigenphases.

A description of a complex Kohn calculation therefore
requires the specification of the approximate target statesxG,
the correlating configurationsQm, and, for the expansion of
the channel eigenfunctions, the Gaussian molecular orbitals
wi and thel ,m pairs included in the asymptotic partial-wave
expansion.

B. Target states and basis set of the complex
Kohn variational calculations

The square integrable portion of the basis used to con-
struct the Kohn trial function consisted of the Gaussian basis
set of Gil et al. [10], augmented with additional diffuse or-
bitals. On the oxygen, we added ans function with exponent
0.0316 and ap function with exponent 0.0254; on each of
the hydrogens, we addeds functions with exponents 0.08 and
0.0333, andp functions with exponents 0.2 and 0.05. With
these additions, our basis set included a total of 77 functions.

The orbital space spanned by this basis set was
divided into sets of “target orbitals” and “scattering
orbitals.” The target orbitals were the set
h1a1,2a1,1b2,3a1,1b1,4a1,2b2,5a1j, which were obtained
from natural orbital calculations on the ground state and on
the resonance, as described below. The scattering orbitals
were the orthogonal complement of the target orbitals.

At each geometry, the first five target orbitals were ob-
tained from a multireference plus all single excitations
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configuration-interaction calculation on the neutral ground
state. The orbital basis for these calculations consisted of the
five occupied SCF orbitals along with a set of “improved
virtual orbitals” sIVOsd calculated in the field of the
sN−1d-electron Hamiltonian obtained by singly occupying
the highest occupied molecular orbital.(This orbital was al-
most always the 1b1/1a9 orbital.) We performed complete
active spacesCASd CI calculations in this basis, doubly oc-
cupying the 1a1 orbital and distributing the eight remaining
electrons over all possible configurations that could
be generated from the set of active orbitals
h2a1,1b2,3a1,1b1,4a1,2b2j. We also included all single ex-
citations obtained by placing seven electrons in the active
space and the remaining electron in an IVO orbital. This
generated a CI expansion of,15 000 terms. The first five
“target” orbitals used in the complex Kohn trial function
were the natural orbitals obtained by diagonalizing the
ground-state density matrix from this CI calculation.

We then performed similar calculations for the anion
state, beginning with a set of occupied orbitals from a
symmetry-restricted SCF calculation on the2B1 resonance
state. We carried out a CI calculation in2B1 symmetry, keep-
ing the 1a1

22a1
21b2

23a1
21b1

1 occupancy of the five inner orbitals
fixed, and allowing two electrons to occupy any of the re-
maininga1 and/orb2 orbitals. The 4a1, 2b2, and 5a1 orbitals
were obtained by diagonalizing the density matrix of the
lowest energy root. We found that we could improve this set
of natural orbitals via an iterative scheme where each itera-
tion consisted of a symmetry-restricted, multireference plus
all singles CI calculation where the reference space was ob-
tained by distributing 11 electrons over the
h1a1,2a1,1b2,3a1,1b1,4a1,2b2,5a1j natural orbitals, with
the constraint that the 1a1 and 1b1 orbitals be doubly and
singly occupied, respectively, in each configuration. The size
of the configuration space for these last calculations was
,13 000 in C2v symmetry and,25 000 in Cs symmetry.
Four iterations were performed.

The final set of eight target orbitals used in the complex
Kohn trial funnction consisted of the five natural orbitals
with the highest occupation numbers—invariably, the orbit-
als h1a1,2a1,1b2,3a1,1b1j—from the neutral ground-state
calculations, combined with the 4a1, 2b2, and 5a1 natural
orbitals from the anion calculations, the latter Schmidt or-
thogonalized to the former. The remaining unoccupied
orbitals—the scattering orbitals,wi in Eq. (3)—were also
taken from the anion calculations and Schmidt orthogonal-
ized to the five natural orbitals from the ground-state calcu-
lations.

Seven statesxG were explicitly included in theP-space
portion of the Kohn trial function in Eq.(2). These states
were defined as the roots of a complete active space CI
within the space of the target orbitals
h2a1,1b2,3a1,1b1,4a1,2b2,5a1j, with the 1a1 orbital always
doubly occupied. For energetically closed channels, onlyL2

functionswi were included in the expansion ofFG,G0

s+d in Eq.
(3). At each nuclear geometry, the seven target states with the
lowest energy were chosen. Near the equilibrium geometry,
this included theA1 ground state and the1,3B1,

1,3A2, and
1,3A1 excited states. The target energies at the equilibrium
geometry of water are listed in Table I.

The Q-space termsQm were comprised of all configura-
tions that could be generated by placing 11 electrons within
the space of target orbitals, subject to the constraint that the
1a1 orbital be doubly occupied. These so-called “penetra-
tion” terms contain the dominant configurations that describe
the Feshbach resonances, as well as terms that relax any
constraints imposed on the channel eigenfunctions that arise
from the orthogonality among the scattering orbitals, con-
tinuum orbitals, and target orbitals[15].

The expansion of the continuum functionsFG,G0

s+d in Eq. (3)
includedYl,m’s spanning the rangel =0 to 4, with all values
of m included for each target state consistent with overall2B1
or A9 symmetry.

C. Calculation of the resonance widths

The complex Kohn calculations were performed over a
grid in valence coordinates on which the O-H bond lengths
took on values r =h1.51,1.81,2.11,2.41,2.71,3.01,3.61
bohrsj and the angles wereu=h15,30,45,60,75,90,
105,120,135,150,165°j. Geometries atu=h15,30j which
are energetically inaccessible to the dissociative attachment
process were not included.

To facilitate locating the resonance position at each geom-
etry, we first diagonalized the energy-independent portion of
the Kohn Hamiltonian, constructed from square-integrable
basis functions, and inspected the low-lying eigenvalues and
eigenvectors to locate the resonance root. The full scattering
calculation was then performed at ten energies around the
resonance location and the corresponding eigenphase sums
were tabulated and fitted to a Briet-Wigner form with a linear
background to extract the resonance positions and widths.
Eigenphase sums for several representative geometries are
shown in Fig. 2.

The complex Kohn calculations produce a narrow2B1
resonance that lies close to—and generally below—its3B1
parent state. At several geometries, however, the resonance
pole appeared significantlys,.1 eVd above its3B1 parent
state. Unfortunately, we were unable to reliably perform the
Kohn calculation at energies close enough to threshold to get

TABLE I. H2O target energies at equilibrium geometry. Com-
plex Kohn values are compared with results of van Harrevelt and
van Hemert[24]. Energies from this work are calculated atr1=r2

=1.81 bohrs,u=105+. Energies from Ref.[24] were calculated at
r1=r2=1.8 bohrs,u=104.5+.

Energy(hartree) Excitation energy(electron volts)

State Complex Kohn Complex Kohn Ref.[24]

1A1 −76.0581 0.0 0.0
3B1 −75.7795 7.582
1B1 −75.7666 7.932 7.63
3A2 −75.7086 9.511
1A2 −75.7049 9.611 9.60
3A1 −75.6933 9.926
1A1 −75.6710 10.534 9.95
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meaningful Breit-Wigner fits in these cases. The imaginary
part of our interpolated resonance surface was therefore con-
structed under the assumption that the2B1 resonance always
lies below its parent. We will have more to say about this
below.

D. CI calculation for real part of resonance surface

In the asymptotic regions where the anion is electronically
bound, we can use electronic structure methods to compute
the anion potential surface. As we stated earlier, the reso-
nance widths are so narrow in this case that we can use these
same techniques at all geometries of interest. This strategy
allows us to use large-scale CI techniques to compute the
real part of the resonance surface at all geometries. It also
spares us the difficulties that would be encountered in trying
to match the energy surface obtained from scattering calcu-
lations in one region with the asymptotic portions of the
surface obtained by a different method.

The real part of the resonance surface was approximated
by large-scale, multireference configuration-interaction cal-
culations with single and double excitations. For these cal-
culations, we used the augmented, correlation-consistent, po-
larized valence triple-zeta basis set developed by Dunning
and co-workers[25]. Molecular orbitals were first obtained
via a symmetry-restricted SCF calculation on the2B1 reso-
nance. The CI reference space included the 1b2, 3a1, 1b1,
4a1, 5a1, and 2b2 orbitals in C2v symmetries, which corre-
spond to 3a8, 4a8, 1a9, 5a8, 6a8, and 7a8 orbitals inCs sym-
metries. The four electrons occupying the 1a1 and 2a1 orbit-
als, which are comprised of mainly the oxygen 1s and 2s
orbitals, were fixed with double occupation and not corre-
lated in these calculations. The 1b2 and 3a1 orbitals describe
the two O-H bonds, while the 1b1 orbital is a nonbonding
orbital that describes the oxygen lone pair. The 4a1 s5a8d
orbital, which is the resonance orbital near equilibrium ge-
ometry, becomes the 1s orbital of the H− anion in the OH
+H− arrangement. Inclusion of the 2b2 and 5a1 orbitals is
important for describing correlation effects in the resonant
state and permits the proper dissociation of the molecule.
Configurations corresponding to all possible distributions of

seven electrons in the CI reference space were included in
the CI Hamiltonian along with all single and double excita-
tions from that reference space. The total number of configu-
rations in these calculations was,900 000.

For this calculation, we defined a full grid ofr1,r2
=h1.45, 1.55, 1.65, 1.75, 1.85, 1.95, 2, 2.25, 2.5, 2.6, 2.8, 3.0,
3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.6, 5.8, 6.0,
6.5,7.0,8.0,9.0,10.0,11.0,12.0 bohrsj, u=h1,2,3,4,5,
6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 22, 24,25,30,35,
40, 45, 50, 55, 60, 65, 70, 75, 85, 100, 120, 140, 160, 175°j.
This 33333337 grid includes 40 293 points. But of these,
on only 6025 appropriately chosen points were the CI calcu-
lations performed; as described below, the energies at the
remainder were defined by interpolation among the calcu-
lated points. For none of the 6025 points did the resonance
location exceed an absolute value of −75.8 hartree.

The CI calculations, just like the complex Kohn calcula-
tions, showed that for certain geometries the resonance state
lies energetically slightly above its neutral parent. This is
illustrated in Fig. 3. This was generally found to occur at
geometries where one O-H bond distance was close to its

FIG. 2. Eigenphase sums, in radians.r1 is
fixed at 1.81,u at 105°, andr2 is varied. Dis-
tances in bohrs.

FIG. 3. 2B1 resonance and3B1 neutral energies, from CI calcu-
lations, along the cut in valence bond coordinates withr1=1.81 and
u=105°: resonance energy(solid curve), neutral energy(dashed
curve).
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equilibrium value and the other was stretched by 1–2 bohrs.
These are geometries where H− begins to overlap OH and it
becomes difficult to maintain a consistent description of cor-
relation in the neutral and anion states. It is also possible that
we are looking at small basis set superposition errors at these
geometries. In any case, we believe this is unlikely to be a
physically correct result and therefore, as we noted above,
the imaginary part of our interpolated resonance surface was
constructed under the assumption that the2B1 resonance al-
ways lies below its parent. This issue will prove to be im-
portant in the discussion of experimentally observed isotope
effects presented in the subsequent paper.

E. CI calculation for the ground-state potential surface

For the calculation of the neutral potential surface, we
followed a prescription similar to that used in generating the
resonance surface. The number of orbitals used to define the
active space was the same, with the difference that six, not
seven, electrons occupy the reference space of
1b2,3a1,1b1,4a1,5a1, and 2b2 orbitals.

For the neutral, the full grid was specified byr1,
r2 = h1.55, 1.6, 1.65, 1.7, 1.72, 1.74, 1.76, 1.78, 1.8098, 1.82,
1.84,1.86,1.88,1.9,1.92,2,2.25,2.5,2.75,3.0 bohrsj, and
u=h20,40,60,80,100,120,140,160,175°j. The CI calcula-
tion was performed on each point on this grid.

The neutral surface was represented by a three-
dimensional cubic spline fit using the full grid of points ob-
tained from the CI calculation described above. It is conve-
nient to have a representation of the potential far into the
classically forbidden region, and to that end the potential was
extrapolated beyond the end of the computed grid using a
quadratic representation. The ground-state potential surface
is shown in Fig. 4. This potential surface yields energies for
the first few bound rovibrational states in good agreement
with the spectroscopically accurate surface of Polyanskyet
al. [26].

IV. FITTING THE RESONANCE POTENTIAL-ENERGY
SURFACE

A. Real part of the resonance energy

To construct a complete representation of the real part of
the resonance surface, a reference potential was first sub-

tracted from the computed points and the remainder was fit
with three-dimensional cubic splines. The reference potential
is a sum of two-body terms consisting of three Morse poten-
tials in therOH and rHH coordinates. The reference potential
plus the splined residual comprises the global fit of the sur-
face which coincides exactly with the calculated points.

The Morse potentials were optimized for the asymptotic
regions, one for each atom-diatom arrangement. Thus

Vsr1,r2,ud = VSsr1,r2,ud + VOHsr1d + VOHsr2d + VHHsrHHd
s8d

in which VS is the splined residual, andrHH is a function of
the other three coordinates. The O-H Morse potential was
obtained by fitting the 124 most exterior points, yielding the
fitted function(in atomic units)

VOHsrd = 0.1534h1 − expf1.344s1.809 −rdgj2 s9d

with rms error 0.0032. The H-H Morse potential was fit us-
ing 69 points at large H2+O− separations which simulta-
neously satisfied the conditions thatr1,r2.8 and rHH,4,
yielding

VHHsrd = 0.1827h1 − expf1.098s1.406 −rdgj2 s10d

with rms error 0.0029. These fits are certainly not
spectroscopic—there are three-body interactions still present
for many geometries at the exterior of our grid, and the fits
above only represent the best two-body fits to the exterior
regions of the full three-body potential.

The difference between the reference potential and the
calculated values is therefore a combination of small correc-
tions to the three two-body interaction potentials, plus the
entire three-body interaction potential. This difference is the
quantity which was fit with cubic splines to obtain
VSsr1,r2,ud above.

The splining proceedure was performed in the valence-
bond coordinate system using the calculated CI points. Since
we did not calculate the full grid of points, a multistep splin-
ing proceedure was required. First, a series of one-
dimensional splines, in theu direction and then along ther1
andr2 directions, was performed to obtain the surface at the
remaining grid points. Second, the full grid of points thus
constructed was fit to three-dimensional cubic splines.

Figure 5 illustrates how the combination of an analytical
reference potential and a splined residual produces a better
representation of the full potential surface than what would
be obtained with a direct three-dimensional spline fit of the
calculated points. That advantage is particularly important in
the H2+O− arrangement. The exiting well in this arrange-
ment lies diagonally in the valence-bond coordinate system
upon which our grid of calculated points is based. Our grid is
also sparse in this asymptotic region. Thus obtaining a reli-
able fit from a spline proceedure alone would be impossible.
This is because the H2+O− potential energy surface—and in
particular, the highly repulsive part at small H-H
separations—is not easily described by the third-degree poly-
nomials comprising the spline functions. To illustrate,
consider the geometries(i) hr1=7,r2=7,u=1°j and
(ii ) hr1=7,r2=8,u=1°j, which are adjacent in our grid of

FIG. 4. Calculated ground-state potential surface foru=104.5°
with contours every 0.25 eV. Bond lengths in bohrs.
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points. Point(i) is high upon the repulsive wall of the H-H
potential, whereas point(ii ) is closer to the H-H equilibrium
separation. A pure spline would represent the behavior of the
potential between these two points with a third-degree poly-
nomial, which is a poor substitute for the behavior of the true
potential(which is better approximated by an exponential or
by 1/r12). The improvement gained by subtracting the ana-
lytic reference potential before fitting with splines is substan-
tial, as shown in Fig. 5.

Even with the improvement afforded by this technique,
however, the H2+O− well is not represented with sufficient
accuracy to afford reliable rotational or vibrational analyses
for this rearrangement channel. Irregularities of approxi-
mately 0.25 eV persist at linear O-H-H geometry. Fortu-
nately, these irregularities are far removed from the H−

+OH well and therefore do not affect dynamics leading to
that arrangement.

B. Width of the resonance

The calculated values of the width were tabulated and the
square root of the width was then fit in the valence-bond

coordinate system to a basis set expansion of 60 symme-
trized Gaussian functions of the form

fi jksr1,r2,ud = s1 + Pijdfsr1/cid2 + sr2/cjd2gk/2

3expf− sr1/cid2 − sr2/cjd2gcosskud, s11d

wherePij is an operator which permutes indicesi and j . The
coefficientsci are h1.2,1.4,1.6,1.8,2.0j and the integerk
runs from 0 to 3 inclusive. This basis set was used in a
least-squares fit of the square root of the width using the
method of singular value decomposition[27]. The rank of
the singular value decomposition matrix was 25 and the root-
mean-square error of the width function thereby constructed
was 0.000 75 eV. In Fig. 6 we show three cuts of our fitted
width function in valence bond coordinates.

The interested reader can access the data files and com-
puter codes needed to generate the complex resonance en-
ergy at any desired geometry. These electronic files can be
retrieved from the EPAPS archive[28].

FIG. 5. H-H potential-energy well in Jacobi
sr =rHHd coordinates, atg=0 (left) and g=90°
(right). The top panels represent a direct splined
fit of the full surface; the bottom panels combine
a reference two-body potential with a splined fit
of the residual. Distances(r andR) in bohrs; con-
tours every 0.25 eV.

FIG. 6. Fitted width function in valence bond
coordinates atu=105°; r2=1.81 bohrs; and in
C2v geometry.u in radians;r1 and r2 in bohrs;
contours every 0.0005 eV.
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C. Comparison with other calculations

Gorfinkiel, Morgan, and Tennyson[12] have performed
R-matrix calculations on one portion of this potential surface.
They fixed one O-H distance and the bond angle to be those
of the ground state of water, and treated dissociation in one
dimension along the other O-H distance,r2 in our notation.
In Fig. 7 we compare our calculated widths and our fit of
them with those of theR-matrix calculation. Our widths are
uniformly larger than those of theR-matrix calculation. The
behavior of the widths from our calculation is similar to that
from theR-matrix calculation in that both show a maximum
or a plateau around equilbrium ground-state neutral H2O ge-
ometry, though theR-matrix values fall off somewhat more
quickly with increasingr2.

In Fig. 8 we compare the real part of the resonance
potential-energy surface calculated in the CI calculations de-
scribed above with theR-matrix calculations of Ref.[12]. In
this figure the resonance energies are shown relative to the
energy of the ground state at equilibrium geometry in the
corresponding calculation. Our CI calculations agree very
well, both in shape and magnitude, with theR-matrix results

for values ofr2 inward of the equilibrium value. For larger
values ofr2 the CI potential surface is flatter in this cut than
is theR-matrix surface.

Figure 8 also shows the resonance energy from the com-
plex Kohn calculations. In this one-dimensional cut of the
full potential surface one can see that in the vicinity of the
equilibrium geometry its shape is similar to that of the CI
calculation, but its behavior for larger2 differs. The large-
scale CI calculations should be significantly more reliable in
this limit because they have been designed to treat the dis-
sociative limits correctly.

Figure 9 compares the resonance energies from the com-
plex Kohn and CI calculations at geometries where the
O-H bond distances are held fixed and the H-O-H bond
angle is varied. Once again the shapes of the two curves are
found to be very similar.

V. CHARACTERIZATION OF THE SURFACE

Several qualitative remarks about the expected shape of
the 2B1 resonance surface may be helpful before we describe
the specific features of the potential-energy surface we have
constructed in these calculations.

First, the2B1 state is formed by the promotion of an elec-
tron from a nonbonding orbital to an antibonding orbital and
the capture of a continuum electron into the same antibond-
ing orbital. Thus a superficial characterization of this state
would indicate a bond order of 1, and therefore an overall
dissociative shape of the potential-energy surface near equi-
librium ground-state H2O geometry.

A second elementary expectation is that the anion surface
should vary less with bending angle than does the ground-
state surface. The splitting of the energies of the 3a1 and 4a1
orbitals is enhanced by thes−p hybridization afforded by
bent geometries; that effect is one explanation of the origin
of the molecule’s bent equilibrium geometry, as H2O in its
ground state has two electrons in the 3a1 but none in the 4a1
orbital. In the2B1 state both 3a1 and 4a1 orbitals are doubly
occupied. As the bending angle is increased from its

FIG. 7. Calculated width values(solid squares) and fitted width
function (dark solid line) along the cut in valence bond coordinates
with r1=1.81 bohrs andu=105° together with values from Gorfink-
iel et al. [12] at u=104.5°(light solid line). r2 in bohrs.

FIG. 8. Resonance energy along the cut in valence bond coor-
dinates withr1=1.81 bohrs andu=105°: complex Kohn calcula-
tions (solid dots connected by chained curve), present CI calcula-
tions (dark solid line), and calculations of Gorfinkielet al. [12] at
u=104.5°(dotted line). r2 in bohrs.

FIG. 9. Resonance energy as a function ofu with r1 andr2 fixed
at 1.81 bohrs: complex Kohn calculations(dots connected by
chained curve), present CI calculations(solid line).
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equilibrium value, the increase in the 3a1 orbital energy is
accompanied by a decrease in the 4a1 orbital energy and the
2B1 state is thus expected to have a potential-energy surface
which is relatively flat with bending angle.

The entire potential surface is surveyed in Fig. 10 in va-
lence bond coordinates. Cuts are given that vary in the bond
angleu from 0° to 180°. From these cuts we can see some of
the expected features. O−+H2 is visible in the cut atu=0° as
two narrow channels for whichur1−r2u=1.4 bohrs. In the va-
lence bond coordinate system, this channel has the shape of a

tube, a higher part of which can be seen in the next cut at
u=15°.

As the bond angle is increased we see more clearly the
wells corresponding to the arrangement OH+H−. As can be
seen in the top panel of the right column of Fig. 10, at the
equilibrium geometry of neutral H2O the gradient of the sur-
face is quite steep in the symmetric stretch direction. Atu
=104.5°, the surface posesses a saddle point atr1=r2<2.1,
and then increases in energy as the symmetric stretch coor-
dinate is further increased. On either side of this saddle, the

FIG. 10. Real part of the surface in valence bond coordinates. Left column, top to bottom:u=0°, u=15°, u=35°, u=70°. Right column,
top to bottom:u=104.5°,u=125°,u=150°,u=180°. Black dot foru=104.5° denotes ground-state equilibrium position.r1 andr2 in bohrs;
contours every 0.25 eV. Thick curve on each panel denotes geometries where the resonance state crosses the neutral ground state(see text).
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OH+H− wells form quickly and the gradient in ther1 or r2
direction is large. Relative to its rapid variation inr1 or r2,
the variation of the surface with respect tou is generally
small in the vicinity of the equilibrium geometry of the neu-
tral.

Although it does not affect the dissociation dynamics be-
cause autodetachment is negligible immediately beyond the
Franck-Condon region, it is nevertheless interesting to see
where the resonance state becomes electronically bound, i.e.,
where it crosses the ground-state surface of neutral water. To
locate these crossings, which lie well outside the range of
geometries where we needed to compute the neutral target
surface, we used the spectroscopically accurate potential-
energy surface of water computed by Polyansky, Jensen, and
Tennyson[26], shifted to coincide with the minimum of our
calculated CI surface. The points at which the resonance and
neutral surfaces cross are plotted in Fig. 10. Since the surface
of Polyanskyet al. is a spectroscopic fit and thus not ex-
pected to represent the dissociative limits correctly, the
crossings depicted in Fig. 10 should be considered to be
estimates, especially for cuts such as that atu=105°, in
which the crossing occurs at relatively large bond lengths.

Although Fig. 10 in principle gives a complete view of
the surface, some features are easier to see in other coordi-
nate systems. For example, the O−+H2 channel is more eas-
ily seen in the triangular coordinates used in Fig. 11 and
sketched in Fig. 1. There is a localC2v minimum on the
surface in linear geometry atr1=r2<2.4, which can be
found in the upper left part of Fig. 11 on the boundary line
that denotes linear configurations. In a time-dependent view
of the dissociative attachment dynamics, which we will use
in the following paper, the initial wave packet starts out with
krHHl=2.91 andkrOHl=1.83. This geometry places it a sig-
nificant distance away from the H2+O− well, as can be seen
in Fig. 11. In the cut in this figure, the H2+O− well appears
dissociative throughout. However, asC2v geometry is bro-
ken, there develops a very weak, broad global minimum of
the surface in the H2+O− well at r1<5.5, r2<4, u=0°. This
well can be interpreted as a polarizable H2 bound to the O−.

The Feshbach resonances relevant to dissociative attach-
ment in water can be characterized as an extra electron
weakly bound to the corresponding parent states. Thus, at
least in the region where this state is a resonance, we expect
the shape of the2B1 potential-energy surface to closely par-
allel that of its parent3B1 state. In the asymptotic region,

where the resonance becomes bound, the electronic energy
of the resonance drops significantly below that of its parent
as the electron affinity of the fragments is recovered.

The potential surface of the3B1 neutral state is itself simi-
lar to that of the1B1 state. The latter is responsible for the
photodissociation of water in its first absorption band, which
has been called “the most studied triatomic photochemical
reaction” [29]. Numerous calculations have been performed
on this state, and it is illuminating to compare its potential
surface with the present resonance surface.

For instance, van Harrevelt and van Hemert[24] have
constructed and used a potential-energy surface for the1B1
state. They find a minimum in the symmetric stretch direc-
tion nearr1=r2=2.05 bohrs foru=105°. In ther1 or r2 di-
rections, their potential is steeply dissociative at neutral H2O
equilibrium geometry, flattening out by approximatelyr1
=5 bohrs. Their surface is reasonably flat inu, although they
find a minimum in the1B1 potential nearu=105° for r1
=r2=1.8 bohrs, which is approximately 0.8 eV lower than
the energy at linear H-O-H geometry at those bond lengths.

Some parallels with the1B1 state can be seen in the cut of
the 2B1 surface shown in Fig. 12. We can see that the surface
is relatively flat in the Jacobi angleg, though it favors a bent
geometry at small bond lengths and a linear geometry at
larger bond lengths. Interestingly, atr1=r2=1.8 bohrs, the
difference between the minimum in energy at 105° and the
energy at linear H-O-H geometry is 0.807 eV, very similar
to that calculated for the1B1 state of neutral water in
Ref. [24].

The relative accessibility of the H2+O− and OH+H−

wells from equilibrium H2O geometry is relevant to the
branching ratios for this dissociative attachment process.
While the H2+O− exit well includes the lowest points on the
potential-energy surface, it is not as immediately accessible
from ground-state equilibrium geometry as is the OH+H−

well. The steepest descent path of the potential-energy sur-
face does in fact lead from equilibrium geometry into the
O−+H2 well, but it does so only by first stretching one
O-H bond from equilibrium geometry to approximatelyr
=4, and then tracing a wide arc tog=0 across a relatively
flat region of the potential energy surface, near the cut shown
in Jacobi coordinates in Fig. 12. The most direct route to this
well proceeds without breakingC2v symmetry along the cut
in Fig. 11, but in doing so moves almost perpendicular to the

FIG. 11. Real part of the surface inC2v symmetry in triangular
coordinates. Distances in bohrs; contours every 0.25 eV.

FIG. 12. Real part of the surface in Jacobisr =rOHd coordinates
at r =1.81.R in bohrs;g in radians; contours every 0.25 eV.
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steepest descent path. In our dynamical studies we will see
that a wave packet originally located at the equilibrium ge-
ometry has a strong tendency to bifurcate into the steeply
dissociative H−+OH wells. Thus it is the shape of the poten-
tial surface and not the overall energetics that controls the
branching ratio into the two possible arrangement channels
for dissociative attachment through this resonance.

VI. CONCLUSION

We have calculated the potential-energy surfaces neces-
sary for a description of dissociative electron attachment to

H2O. In an accompanying paper we examine the nuclear
dynamics on this surface in an effort to obtain the dissocia-
tive attachment cross section.
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