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We present amab initio study of elastic scattering and vibrational excitation of NO by low-energy
(0—2.0 eV} electron impact. The low-energy scattering cross sections are dominated by shape resonance
contributions associated with tH&~, A, and'>* states of NO. Resonance parameters for the three anion
states were extracted from an analysis of fixed-nuclei variati@ahplex Kohn calculations that employed
elaborate trial wave functions. Independent estimates of the resonance parameters were obtained by analyti-
cally continuing the results of large-scale coupled-cluster calculations into the plane of complex momentum.
The local complex potential model was used to calculate vibrational excitation cross sections, as well as the
resonant portion of the vibrationally elastic cross sections. These results were combined with background
contributions from the fixed-nuclei calculations to compute elastic and grand total cross sections. Our results
capture the essential features of recent measurements of the cross sections, but suggest the need at lower
energies for a more sophisticated, nonlocal treatment of nuclear dynamics.
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[. INTRODUCTION quantitatively accurate determination of cross sections in this
region is difficult since the proper placement of the reso-
The diatomic molecule nitric oxide plays an important nance states relative to the ground state can only be achieved
role in a number of physical, chemical and biological pro-with an elaborate correlated target state and a trial wave
cesses. Our interest here is in its interaction with low-energyunction that achieves a balanced description of correlation
electrons, which is of direct relevance to understanding itén the N- and (N+1)-electron systems. Moreover, to explain
role in various atmospheric processes. The low-energy behe rich energy structure observed in the cross sections, the
havior of e -NO cross sections has been the focus of severatuclear dynamics problem must be solved for all three reso-
experimental studiegl—4], including three recent investiga- nances.
tions [5—7] which have provided absolute values for total, In the present study, we have used the complex Kohn
elastic and vibrational excitation cross sections. By contrastyariational method to perform fixed-nuclei electron-NO scat-
there has been very little theoretical work on electron-NOtering calculations, in different total symmetries, over a
scattering, especially in the region below 3 eV collision en-range of internuclear geometries. These calculations provide
ergy which is dominated by negative ion resonances. Severdlckground elastic cross sections and, in the resonant sym-
early studieg8,9] provided semiempirical determinations of metries, are used to extract tRedependent resonance ener-
the resonance parameters obtained from analyses of availalgées and lifetimes which form the basis for a study of the
experimental data. Tennyson and Nofl€] later performed nuclear dynamics. We have also carried out large-scale
R-matrix calculations, but only at a single internuclear dis-coupled-cluster calculations on neutral NO and on hg,
tance, and reported energy-dependent eigenphase sums, bitand !3* anion states, at geometries where the latter are
no cross sections. Da Paixao, Lima, and McKdy] also  electronically bound. We have devised a procedure for ana-
performed fixed-nuclei calculations at the equilibrium geom-lytically continuing these results to geometries where they
etry, but did not report cross sections below 5 eV collisionare electronically unbound, to provide an independent esti-
energy. To our knowledge, there have been no previous thenate of the complex potential energy curves of the anion
oretical estimates of electron-NO cross sections in the imporstates. Finally, we use the local complex potentialP) or
tant low-energy region below 3 eV. “boomerang” mode[13] to study resonant nuclear dynamics
Low-energy electron-NO scattering poses significant theon the different anion curves and to evaluate the vibrational
oretical challenges. Neutral NO is an open-shell moleculesxcitation cross sections. Our theoretical results will be
with a 21 ground electronic state. The ground state of theshown to capture the essential features of recent experiments,
negative ion NO is a 33~ state and is bound by only but also suggest the need for a nonlocal treatment of the
24 meV [12]. By analogy with its isoelectronic counterpart nuclear dynamics to produce quantitative predictions and to
0,, NO™ has low-lying excited states dfA and 'Y, symme- reproduce some features of the cross sections for excitation
try. All three anion states are electronically unbound at theof higher vibrational levels.
equilibrium internuclear distance of the neutral and give rise The theoretical formulation we have used is described in
to a rich series of overlapping resonance structures whickhe following section. Section Ill presents the computational
dominate the electron-NO cross sections below 3.0 eV. Adetails of the present theoretical study. Our results are pre-
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sented in Sec. IV, along with comparisons to recent experif15], we can write the governing equatigfor a diatomic
mental data. We conclude with a brief discussion. targey as

[E - Eres(R) - KR]gvi(R)
Il. THEORETICAL FORMULATION

_  Ue(R) , .
To understand the general features of low-energy _L'LTJ)E = de Ue(R)€,(R")
electron-NO scattering, we can use a simple molecular or- g
bital picture of the relevant wave functions. Neutral NO has = UEVi(R), (1)

an open-shelfIl ground state; its electronic configuration is

(core®(5 0)%(1 m*2 m)*. The quasiboundresonancean-  whereE is the total energyR is the internuclear distanckig

ion states have the configuratiéoore®(5 )21 m)*2 m)% s the nuclear kinetic energy operat@,{R) is the elec-
The two open-shell 2r electrons can be coupled to form tronic resonance energy agg(R) is the wave function, as-
three states with symmetrié& ", *A, or 'S, which, by anal-  sociated with an initial target state having enefgy, that

ogy with O,, are expected to be separated by only a fewyescribes the relative motion of the nuclei. The function
electron volts. Fixed-nuclei electron-NO scattering in thesq_ (R) is a matrix element of the Hamiltonian between the
overall symmetries, at low energies, produces amplité@ies ¢ octronic resonance wave functiop.dr ;R), and a back-
matrice3 that display a prominent resonant behavior that de; round function that describes the nonresonant scattering. If

pends strongly on the internuclear separation. The vibration e assume the Born-Oppenheimer approximation to be valid

excitation cross sections are found to be dominated by thesfgr describing the latter, thed, (R) can be factored as
resonance contributions. For the vibrationally elastic and to- ' Evi

tal scattering cross sections at low energies, we would expect _ ) ] )
there to be,gi]n addition to resonance cor?tributions, signific%nt Ue,(R) = {#hedr; R)[Hel(r; R[4 (iR} 7(R)
background contributions arising from ti{2 ko) 1 and =(k,,R)7,(R), 2)
S[1 symmetry components; these components vary slowly ' "
with internuclear distance. Fixed-nuclei scattering calculawhere i (r;R) is the electronic part of the background
tions at the equilibrium geometry should therefore yield ac-ynction and the curly brackets in the first line of E@)
curate values for the background cross sections. indicate integration over electronic coordinates only and
Our approach, then, is to first compute complex potential;, (R) is a vibrational wave function of the neutral target.
curves(positions and widthsfor the three anion states. We s the channel electron momentum and is defined by energy
have tackled this problem in two different ways. One ap-conservation, B=2E,+k2. Thus the nuclear wave equation
proach is to perform fixed-nuclei scattering calculations ings  formal resonanceV theory is an inhomogeneous
the three resonant symmetries and to extract resonance p&ghradinger equation with an effective Hamiltonian that is
rameters, for each geometry of interest, by analyzing the eNsomplex, nonlocal and energy dependent.
ergy dependence of the eigenphase sums. Since the quality of Nymerical solutions of the nuclear wave equation, at least
the electronic wave functions that can realistically be em+y; giatomic targets, have become routine with current com-
ployed in such an approach is limited, relative to what can bgytational methodg16]. The more formidable challenge,
achieved in a bound-state calculation, we seek an indepeyith ap initio methods, is calculating the parameters that
dent method for computing the resonance parameters. Suchy@fine the nonlocal effective nuclear potential. In particular,
method involves analytic continuation of bound-state resultg,e coupling termUeg,(R), requires computing a matrix ele-

and will be described below. ment between a nonresonant scattering function and the elec-

To evaluate the resonant vibrational excitation €ross seGqnic resonance wave function. If one uses the formally ex-
tions, we have employed the local complex potential modelact gefinition of the latter, defined by the residue of the

described briefly belpw. Since the resonances belong to Qif reen’s function at a resonance ppl&], then one is neces-
ferent total symmetries, the LCP calculations can be Cam_eé:,arily required to perform fixed-nuclei calculations at com-
out seperately for each resonance and these cross sectigh)s,energies to locate the resonance energies, and the cou-
can be added, with appropriate statistical weights, to producfjing matrix elements must generally be defined by analytic
the physically observed cross sections. continuation from the lower half plangl8]. Alternatively,
one could approximate the resonance wave function by a
discrete, normalizable function and introduce projection op-
erators to compute the background function, defining the
Traditional approaches to resonant vibrational excitatiorcoupling element as an “off-shell” matrix element between
of molecules by electron impact are generally based on rigthe resonance function and the background funciid®). It
orous resonance scattering theory, formulated within thés worth noting that, in all recent theoretical studies using the
Born-Oppenheimer approximation. The theory can benonlocal formalism, an assumed functional form for the cou-
equivalently formulated in several ways to derive a so-callegpling matrix element is employed.
nuclear wave equation that governs the nuclear dynamics In this initial study, we have instead adopted the usual
due to the resonance stede Following O’'Malley [14], who  practice of approximating the effective nuclear Hamiltonian
developed the formal theory using the Feshbach formalisnby a simpler local operator. These approximations, and the

A. Local complex potential model
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conditions under which they are justified, are well under-cross sections away from threshold, so we have not investi-
stood[20,2]. They vyield the so-called local complex poten- gated their use in this work.

tial or boomerang equatiofi3] To compare with physically observed integrated cross sec-
_ _ tions, the unweighted cross sections for each resonance state,
[E-Kr~EedR) +iI'(R/2]¢,(R) = ¢,(R), ) computed with the local complex potential model using Eq.

where the negative ion potential energy curve is charactef8), must be multiplied by their appropriate statistical
ized by a real parEreS(R) and an imaginary par“F(R)/z W9|ghts and added. For the case of NO, which ha@_[a.

The “entry amplitude’, is defined as ground state, the physical cross sections are given by the
" expression
¢,(r) = (L(R)2m)",(R), (4) L. )
where 7, is the initial vibrational wave function of the neu- Utvoflvr = §(3UViyr + ZUVin + inyr)- (10

tral target. The resonaitmatrix for vibrational excitation is

obtained by projecting the solution of E) onto the “exit

amplitude” ¢,,, _ . . )
B. Fixed-nuclei electron scattering calculations

Tow (B) ={y[&,). ®) The fixed-nuclei electron scattering cross sections were

Combining Egs(3) and(5) allows us to writeT,,,(E) as the computed using the complex Kohn variational metia8].

matrix element of a nuclear Green’s function between entr)}” this method, the electronic trial wave function of the scat-
and exit amplitudes tering system is expanded as

W= 2 ALDR(Xy e X Fr (e )T+ 2 6,0 (X e X
r "

TVV’(E) = <¢V’| |¢V> (6)

E - Kg-EdR) +il(R)/2

The entry and exit amplitudesg, and ¢,,, depend on the i
initial and final target vibrational wave functions, but not Where the®; are N-electron target eigenstates, denote

explicitly on the initial and final electron momenta. This is so SPac€-Spin coordinates} antisymmetrizes the coordinates

because in deriving the boomerang equation, the electrofif the target and scattered electrons and@heare square-
momentumk,, is replaced by the local momentuk(R) at integrable (N+1)-electron configuration state functions

which the resonance would occur if electrons were scattereSF9 described further below. The first sum, which we de-
by molecules with the nuclei fixed at separat®Rnthat is, note as theP-space portion of the wave function, runs over
the energetically open target states. We denote the second

KX(R) _ sum as the correlation portion of the wave function.
2 EedR) ~Eo(R), ) In the Kohn method, thé&, which represent the wave
functions of the scattered electron, are expanded as a linear
whereEq(R) is the electronic energy of the target. This ap-combination of symmetry-adapted molecular orbit@sus-
proximation is a good one when the resonance energy isiang and numerical continuum functions. Although the
much larger than the spacing between the target vibrationgresent study is confined to electronically elastic scattering,
levels; in such cases, the local complex potential model cathe first term in the trial function is written as a sum to reflect
be expected to yield accurate results. In general, the croshe fact that the open-shell ground state of NO &lastate
sections computed with the boomerang model, which ar@and in general, depending on the total symmetry under con-

11

given by the expression sideration, both spatial components of the target ground state
273 must be retained in the trial function. THé+1-electron

Uy_}y,:l|-|-w,(E)|2 (8)  CSFs describe short-range correlations and the effects of

E closed channels and are critical to striking a proper balance

between intra-target electron correlation and correlation be-
een target and scattered electrons.
For the target ground state, we use a multiconfiguration
wave function obtained by defining a complete active space
ﬁ)é molecular orbitals and performing a full configuration-
interaction(Cl) calculation within that space of orbitals. For
the correlation part of the wave function, we included two
_ f(k,) 2 classes of terms. The first class is the set oNadl1-electron
¢V(F)—m[F(R)/27T] 7,(R). (9 CSFs that can be formed from the active space of target
orbitals. These are generally referred to as “penetration
For example, Wigner’s threshold laws can be satisfied byerms”[23]. Since the scattering functios are constucted
choosingf(k) to bek'**’2, wherel is the lowest partial wave from bound and continuum functions which are, by construc-
that contributes to the resonance. As well as correcting th&on, orthogonal to the target orbitals, the penetration terms
qualitative behavior at low energies, these somewhat arbiare needed to relax any constraints implied by this strong
trary factors can significantly change the magnitude of theorthogonality. In addition to the penetration terms, we in-

will be inaccurate at very low energies and will not have the
correct energy dependence near threhold. This problem Itgv
sometimes addressed by thd hocintroduction of “barrier
penetration factors{22] into the entry and exit amplitudes
that ensure the correct energy behavior of the cross sectio
near threshold,
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cluded a second class of “Cl relaxation term{&3]. The  0=a,(R) +a;(Rk(R)?+ -+ + by (RK(R? 1+ by(Rk(R)?*3
target ground state is built as a fixed linear combination of a
number of CSFs, salyl, from the active space. The target ClI (14)

calculation can also produ¢®! - 1) excited states, which are The coefficients[a;,b;], can themselves be expanded in a
presumed to be energetically closed. The Cl relaxation termgower series in the internuclear distance. So retaining the
are constructed as the direct product of these states and thigst three terms in Eq(13) and expanding the coefficients

orbitals used to describe the scattered electron. In othehrough first order irR, the equation that defines the reso-
words, this class of Cl relaxation terms is simply the complenance curve can be written as

ment (1-P) of the P-space portion of the wave function.

This complement, combined with the penetration terms, con-0 = 1 +CiR+ Cok(R)? + sRKR)? + c4k(R)? ™ + csRKR)* .
stitute the correlation part of the trial wave function. In solv- (15
ing the variational equations, we use Feshbach partitioning to .

combine the penetration and relaxation terms into an optical "€ known quantities are the reklvalues and corre-

potential. For more details on this subject, we refer the readetPonding internuclear distancBswhere the anion is bound.
to Ref.[23]. The unknown coefficients; can be determined from these

known values by using, for example, a linear least-squares
procedure. Having determined these coefficients, we have
C. Resonance curves from electronic structure calculations (for integer £) a polynomial ink whose zeros define the
resonance curve for aR. The zeroes of this polynomial will
in general be complex and the anion potential curve is de-
Fined asEq(R)—k(R)?/2. As we will see below, this remark-
bly simple procedure can give very accurate results.

In addition to performing fixed-nuclei scattering calcula-
tions, we have also carried out electronic structure calcul
tions for the NO ground state and tRE™, 'A and!S* anion
states, in the regions where they are electronically bound
using coupled-cluster methods. We have devised a method
for analytically continuing these results to provide complex lll. COMPUTATIONS
potential curves in the regions where the anion curves are
unbound. In addition to providing a check on the accuracy of
the resonance widths extracted from the scattering calcula- The basis sets for the complex Kohn calculations were
tions, this procedure allows us to construct resonance curvediosen as follows. The target orbitals were determined using
with wave functions that include more correlation effectsa basis of contracted Gaussian functions centered on each
than could realistically be used in any practical scatteringttom. For oxygen, we used&0s6p4d/6s5p4d) set which is
calculation. the same as th€l1s7p4d) set described by Gigt al. [26],

Consider a bound anion potential curve in a region wherevith the most diffuses andp functions deleted. For nitrogen,
it is close to crossing the neutral curve. To the right of thewe used Dunning’q27] (9s5pld/5s3pld) basis. For the
crossing, theR-dependent binding energlfy(R) -E,{R), is  scattering calculations, the oxygen basis was augmented with
a positive real number, which we denotekdR)?/2. To the  one additional s-type and one additiopetype function(ex-
left of the crossingk(R) becomes a complex number that ponents 0.0316 fog and 0.0254 fop), while two additional
characterizes the resonance. We now make an analogy wightype functions(exponents 1.0 and 0.pSvere included on
potential scattering and assume the problem can be describéte nitrogen.
by a Jost function/F(p(R)), that describes a scattered elec- The target state wave function was obtained from a com-
tron with momentunp(R) and angular momenturf. For a plete active space_configuration—interact'(ﬁIASCI) calcula-
nonpolar target, we can taketo be the dominant angular tion where the active space consisted of 60, 1, and 27
momentum component of the resonance. For a polar targerbitals, which yields 54-term functions for each component
this definition may be modified to incorporate the long-range®! the 21 ground state. The target molecular orbitals for
electron-dipole interactiof24]. these calculations were obtained by first performing a self-

Bound states, as well as resonances, correspond to zerg@nsistent fieldSCH calculation on the closed-shell ground
of the Jost function. So the “resonance momentuktR), is  State of NO. The occupied and virtual molecular orbitals

simply that value ofp(R) for which the Jost function van- fro_m this calculation were the_n used to perform a CI calcu-
ishes lation for the ground state using a single reference plus all

single excitations. The density matrix for this state was di-
agonalized to produce ther560, 17, and 27 natural orbit-
Fi(P(R)pr=(r = 0 (12) als for the CASCI calculations that describe the target in the
Kohn trial function in*IT and3I1 symmetry.
But nearp(R)=0, F,(p(R)) can be expanded 485] For the symmetries in which negative ion shape reso-
nances occur, we found it necessary to take both the anion
Fo(p(R) = ag(R) + a;(RIp(R)Z+ - - +by(R)p(R)%*1 states and the neutral ground state into account in determin-
ing the active space of target orbitals, so as to get a proper
+ by (R)p(RZ*3+ -+, (13)  description of the resonance states relative to the NO ground
state. For the resonance symmetries, therefore, we also car-
so what we seek are solutions to the equation ried out single-reference plus all-singles calculations for the

A. Complex Kohn variational scattering calculations
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various anion states. The density matrices from the anion TABLE I. Resonance parameters for the three low-lying™NO
calculations were averaged with the neutral ground state derstates at an internuclear separation of 2.1747 bohr.
sity matrices and then diagonalized to obtain the natural or

bitals that were used in the complex Kohn calculations inSymmetry E.(hartree T (hartree Model
837, 1A, and 13" symmetry. If the neutral ground-state den- : —
sity matrix were used to generate natural orbitals, our limited>" 0.017 0.0064 Analytic continuation
CASCI calculations would place the neutral NO potential 0.016 0.0060 Complex Kohn
curve too low relative to the anion states. Conversely, using 0.033 0.0065 Ref{10]
the anion density matrices to generate the natural orbitals 0.017 Ref[9]
over correlates the resonance states reIat_lve to the neytral an 0.057 0.036 Analytic continuation
places them energetically too low. Averaging the density ma-
trices is a convenient expedient for striking a balance be- 0.045 0.031 Complex Kohn
tween correlation effects in the neutral and anion states. 0.066 0.027 Ref[10]

The averaging scheme used depends on the symmetry un- 0.042 Ref.[9]
der consideration. IA%~ symmetry, we averaged the density 13+ 0.076 0.062 Complex Kohn
matrix for the 3~ anion state with the density matrices for 0.098 0.045 Ref[10]

the two degenerate components of #i& ground state. As
we will see below, this choice of molecular orbitals gives a

good balance between correlation effects in the negative 1%he resonance parameters extracted by fitting the eigenphase

"Yums to a Breit-Wigner form. For geometries where the
ﬁegative ion states become electronically bound, i.e., where
they lie below the neutral NO ground state, their energies
were determined by diagonalizing the “bound” portion of the
full Kohn Hamiltonian.

Table | lists the resonance parameters we obtained from

. . hese calculations at the equilibrium internuclear separation
ferences between target and anion orbitals are expected to £ the target. For comparison, we have listed the values ob-
larger. It is consequently more difficult to describe the neu- ' ’

tral andA ani tat ith t of acti bital tained by Tennyson and Noble in their one-state, static-
ral an anion states with a common set ot active orbi asexchange plus polarizatioR-matrix calculations. These au-
and we should therefore expect larger errors in that case.

Simil iderati into olav in determining th thors also reported results for six-st&enatrix calculations,
I, imilar considerations come into piay In determining ey,  hose results evidently led to an unbalanced description
>.* resonance, despite the fact that the twe éectrons in

that qiff i tial orbitals. that of the anion states, since tAE~ anion state appeared bound
at case occupy ditterent spatial orbitais, for reasons that arg a4y e to the ground state of NO in those calculations. Also
a bit more subtle. ThéA anion state is doubly degenerate. In

. . ) listed in Table | are the resonance energies forhe and
the reduced symmetr§,, in which these calculatlon_s Were 1x iates obtained by Teillet-Billy and Fiquet-Fayajel
performed, one component of tha state 1apPears A, from a semiempirical analysis of the experimental data of
symmetry, the other ifA; symmetry. ThelS* resonance

also appears iRA; symmetry. The contributions to the total Troncet al. [4]
1 - 3 ; _
cross section fromtA and '3* symmetry are strictly addi- For the backgroundIL and*[1 symmeiries, we only per

tive: the 1A and 13+ resonance contributions to the cross formed calculations at the equilibrium internuclear separa-

Loy ) tion of 2.1747 bohr. The eigenphase sums and integrated
section in“A; symmetry overlap, but they do not1|n+terfe_re. In cross sections for these symmetries are plotted as a function
order to extract the resonance parameters forHeanion of energy in Fig. 1. The only other theoretical data available
state from a calculatlon.per.formed 1A, symmetry, we must for comparison in this energy range are the eigenphase sums
first subtract the contribution from th&\ resonance. The reported by Tennyson and Nob[d0] using the R-matrix
latter can bel obtained unambiguously f“’"? the C""ICUI"’mon?hethod, which are rather different from the present results.
performed in"A, symmetry. For the subtraction procedure to The R-matrix calculations included polarization effects but,
work, we must assure that the two components of ‘the

. ; . . unlike the present calculations, they employed an SCF target
state remain strictly degenerate. This means that the acti P y employ 9

orbitals used in botAA and!s* symmetry calculations must {fiave function.
be chosen identically. The averaging scheme we used in
these symmetries therefore included the density matrices for
the neutral ground state and both fideand'>* anion states. We also carried out electronic structure calculations using
As outlined in Sec. Il B, the complex Kohn trial function the coupled-clustefCC) method. We performed coupled-
included all CSFs generated by placing eight electrons in theluster, single- and double-excitation calculations with a
four frozen core orbitals, seven electrons in the active spaceoniterative triples correctiofCCSIO(T)) [28] using aug-
and one electron in theaugmentegvirtual space. This set mented, correlation-consistent, polarized valence triple-zeta
plus the remaining penetration terms gave trial functions obasis set§29,30 on the neutral target and negative ion
~5000 configurations for each total symmetry consideredstates. The CC calculations give unambiguous values for the
For the resonants™, A, and2* symmetries, calculations anion potential energy curves at geometries where they are
were performed over a range of internuclear distances anelectronically bound. To the left of their respective crossings

for the scattering calculations. The anion states all have
dominant 272 structure. In®3~ symmetry, the two 2z elec-
trons occupy orbitals odlifferentspatial symmetry and, con-
sequently, optimal 2 orbitals for the neutral anél.~ anion
states are rather similar. In the case of theresonance, the
two 27 electrons are in theamespatial orbital, so the dif-

B. Coupled-cluster calculations
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_ FIG. 2. Comparison of3.~ resonance energies and widths from
“omplex Kohn and electronic structure calculations. Upper panel:
NO ground state and real part of tAE~ resonance energies. The
portion of the CCSDT) resonance curve to the left of its crossing
with the neutral curve was obtained by analytic continuation. Lower
panel: resonance widths.

FIG. 1. Eigenphase sums, in radians, and integrated fixed-nucl
cross sections, in atomic unit¢a3=0.28x 10716 cn?) for €-NO
scattering in®ll and I symmetry at equilibrium geometry. The
R-matrix results are from Ref10]. The cross sections include sta-
tistical weights of 1/4 and 3/4 for théll and 31 cases,
respectively.

nance parameters, giving us additional confidence in the va-

with the ground state NO curve, the anion states becomidity of the Jost function model, as well as in the accuracy of
complex quantities. For these latter geometries, we carrieH'® Variational scattering results for this symmetry.

0 . . .
out analytic continuations for each anion state using the pros Fgg_the A 835% tlhe agtrr]eement“s nKothqune aﬁ gtoog als n
cedure outlined in Sec. Il C. For the angular momentum of e case. Ve believe the compiex 1onn resufts to be 1ess

the resonantly scattered electron, we used the e As accurate in this case, reflecting the fact, as stated earlier, that

previously mentioned, one can modify this choice in the cas it is more difficult to describe the neutral and negative ion

f lar t t 10 tak ¢ BEd dent diool %tates with a common set of molecular orbitals in this case.
ofa polar target 1o take accoun ependent dipole mo- Nevertheless, the resonance widths for YAestate obtained

ment [24,3]. We found this modification to be negligible o the scattering calculations and from analytic continua-
(less than 1%in the present case, since the dipole momention are seen to be very similar.

of NO is small(0.15 D) at equilibrium and goes through zero

) X The results for the third resonanc&,*, are shown in Fig.
over the Franck-Condon region of interest here.

4. We see from the coupled-cluster results for this case that
the negative ion curve remains very close to the neutral curve
C. Complex resonance curves to the right of their crossing near 2.9 bohr. To understand this
The resonance energies and widths from both the complefgehavior, it is again useful to point to the analogy between
Kohn calculations and CC calculations are plotted in Figsthe NO states and the states 0fQn the case of oxygen,
2—4. Note that all energies are plotted relative to the minithe *3g, *A and '3 states all dissociate to (€P)+0O7(*P).
mum of the NO ground state, which is taken as the zero oHowever, in the case of NQas Zeccd3] pointed out, only
energy. For thé>~ anion case, the complex Kohn and the the *%~ dissociates to S)+ O™ (°P). The!A and!3" states
analytic continuation model give virtually identical reso- both correlate with N(3P)+O(3P). But the electron affinity
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FIG. 3. As in Fig. 2, for the'A resonance. FIG. 4. As in Fig. 2, for thelS* resonance. Note that the
CCSOT) 3* curve in the upper panel is the raw result, not the
analytically continued result.

of nitrogen is essentially zero, so the neutral NO curve and IV. RESULTS

the *A and 3* states must all correlate to the same limit.
This behavior is clearly evident for th&* anion, which
crosses the neutral curve at a laRgalue. Since there is no

region where thé* state is electronically bound and well .
. . cross sections both show pronounced boomerang structures,
separated from the neutral ground state, the analytic continyz, i the broad'S* resonance gives structureless cross sec-

ation procedure cannot be carried out for the third resonancg s that rapidly diminish with increasing final vibrational
The CC (:,‘urve,:’ to the left of.the crossing shown in Fig. 4 ISquantum number. The peaks in tRE~ cross sections are
thus the “raw” energy obtained from the structure calculaparrower than those in the\ cross sections, reflecting the
tion. difference in the widths of the two resonances. In the vibra-
The complex Kohn results for th&* case show the reso- tipnally elastic cross sections, tha and!S* cross sections
nance crossing the neutral at a somewhat smaller internuclegpth display a qualitatively incorrect dependence on energy
distance than the CC results show. There was also more umelow 1 eV, rising rather than falling with decreasing energy.
certainty in obtaining the resonance widths in this case, sincBor both cases, this energy range falls well outside the reso-
the 13" resonance becomes quite broad, making a Breitnance region where the local complex potential model is
Wigner analysis difficult. Since we felt that the coupled-valid. Moreover, the results shown in Fig. 5 were obtained
cluster results for théX* state are quite accurate in the vi- without including any barrier penetration factors in the boo-
cinity of the crossing with the neutral curve, we used the COmerang calculations that would force the cross sections to
results for the real part on the resonance energy in the locajanish at threshold.
complex potential calculations, along with the widths from  To help explain the structures seen in the computed cross
the scattering calculations. ThHedependence of the widths sections, we refer to Fig. 6, which shows the vibrational
was shifted by. 0.2 bohr to insure tHawanishes at the point levels of the’ll neutral and thés~ and'A anion states, the
where the resonance state crosses the neutral. latter computed using the real parts of the resonance poten-

The resonance contributions to the integrated vibrational
excitation cross sections we obtained using the local com-
plex potential model are shown in Fig. 5. TRE™ and A
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FIG. 5. Local complex potential results for the 0-0, 0-1, 0-2, and 0-3 electron-NO vibrational excitation cross sectidis, Theand
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tial curves. These curves can be compared to the semiempir-
ical curves obtained by Teillet-Billy and Fiquet-Faydi@
(not shown. The equilibrium internuclear distances for the
3%~ and'A anion states we calculatg8.39 and 2.37 bohr,
respectively are very close to the semiempirical values, as
are the relative shapes of the curves. Moreover, the energies
of the 33~ levels we find, relative to those of the neutral, are
also close to the semiempirical values. For the anion
state, however, our calculations give a curve which lies
~0.35 eV above the one determined semiempirically.
Teillet-Billy and Fiquet-Fayard’s analysis of the data of
Troncet al. [4] assumed a coincidence of tAB~(»=7) and
IA(v=2) levels as a criteria to position tH& curve relative
to the 33 curve. Our calculations, on the other hand, show
the 33~ (»=8) and*A(»=1) levels to coincide in energy.
Inspection of the’>~ curve shows that its lowest vibra-
tional level lies outside the Franck-Condon region of the
neutral ground level and hence makes no contribution to any
of the cross sections. The progression of peaks seen in the
elastic(0—0) 33~ cross section, starting near 0.1 eV, arise

FIG. 6. Neutral and anion potential curves and vibrational lev-from thev=1,2,3...vibrational levels of the anion. For the

els. Solid curve, ground-state NO curve; dashed cuf¥e,anion
curve; dotted curvelA anion curve.

case of 0—1 excitation, the=1 level of the33~ anion is
energetically closed, so the progression of observed peaks
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FIG. 9. Comparison of theory and experiment for the 0-2 cross
FIG. 7. Comparison of theory and experiment for vibrationally S€ction.

elastic and grand total cross sections. . ) . . . .
vibrationally inelastic cross sectionare also tabulated in

begins with»=2 anion level. Analogously, the peaks in the Table Il. The authors will provide tabulated values for other
0—2 and 0—33 " cross sections arise from thee4,5... and  Cross sections upon request. The calculated results for the
v=5,6...anion levels, respectively. It is also worth noting integrated elastic cross section were obtained by adding the
that, in 33~ symmetry, the energy location of a given peakbackground*°Il (Fig. 1) cross sections to the resonance
does not change when observed in different exit channels. Cross sectior[Eq. (10)]. We also adjusted théA and "

In the case of théA cross sections, the=0 anion level is ~ contributions to the 0-0 cross sectiqifdg. 5) below 1 eV so
again Franck-Condon forbidden, so the progression of peak§at they go smoothly to zero. The experimental results for
observed in all the cross sections corresponds to resonanfie total cross section are those of Alle, Brunger, and Buck-
contributions arising from the/=1,2 3... anion levels. In mMan[5], obtained by high resolution time-of-flight spectros-
this case, however, the peak positions are not constant witbPPy. While the integrated elastic results plotted are the re-
respect to exit channel quantum number, shifting to highefent absolute crossed-beam measurements of Jelisavcic,
energy as the excitation level increases. The peaks are al§@najotovic, and Buckma7]. The recent results of Josat
seen to broaden with increasing excitation. These featured. (Not shown [6] — obtained from a semiempirical analy-
are both associated with the shorter lifetiftarger width of ~ Sis using measured electron-swarm data—give total cross
the 1A anion, relative to thé3 ™ state. sections very close to those of Alle and co-workers. The

Our calculated cross sections are compared with experfalculated cross sections are seen te-#@% larger than the
ment in Figs. 7-9. The integrated elastic and total cross sedneasured values, but are qualitatively very similar, showing
tions are shown in Fig. 7. For reference, our calculated gran@ Pronounced series of resonance peaks superimposed on a
total cross sectiongthe sum of the integrated elastic and fising background cross section. The peak spacings and

widths are in reasonably good accord with experiment.
b7 The 0-1 integrated vibrational excitation cross sections
i p—— RO 1 are presented in Fig. 8. For comparison, we show the calcu-
Expt., Jelisavcic et al. lated results, the crossed-beam results of Jelisavcic, Panajo-
Expt. Josic et al tovic and Buckman[7] and the swarm-derived results of
Josicet al. [6]. In magnitude, our results are closer to those
of Josicet al. When compared with the direct crossed-beam
] measurements, however, there are significant qualitative dif-
\ ferences. While the calculated results show a progression of

L
L L —

peaks arising from théX~ resonancésee Fig. 5, only two
low-energy narrow peaks are seen experimentally. The peaks
arising from higher vibrational levels of tH& ™~ anion, while
prominent in the measured elastic cross section, are evidently
suppressed in the excitation cross section. In the swarm-
i derived results, the peak positions for all the excitation cross
) — '0{5' e sections were fixed to coincide with those measured by Alle,
Energy (eV) Brunger and Buckman for the total cross section.
The 0-2 vibrational excitation cross sections are plotted in
FIG. 8. Comparison of theory and experiment for the 0-1 crosg-ig. 9. In this case, our calculated cross sections fall between
section. the crossed-beam and swarm-derived results in magnitude,

Cross Section (10"'°cm?)
[\*]
T
B —
|
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TABLE Il. Calculatede™-NO grand total cross sectiorf$CS) Jelisavcic and co-workef3] have suggested that interfer-
as a function of energy. Cross sections are in units of 10-1% cmence between the resonances might be responsible for some
and energies are in eV. of the observed features, but this possibility can be ruled out
on theoretical grounds. As pointed out above, the negative
Energy TCS Energy TCS Energy TCS  ion states all have different total symmetries, so their contri-
00 8.437 0.364 14.184 0.800 20198 butions to the integrated cross sections are strictly additive,

even beyond the local complex potential model. The sup-

0.011 4.842 0.370 10.683 0.816 23.720 pression of resonance features in the higher excitation cross
0.027 1968 0375 8305 0832  26.840 gections is more likely a dynamical effect that cannot be
0.044 2.706 0.380 7.156 0.838 27.115 described by boomerang model calculations that employ a
0.049 2.915 0.386 6.976 0.859 24.636 strictly local potential as well as energy-independent entry
0.071 4.148 0.402 8.069 0.881 21.401 and exit amplitudes. The introduction of an energy-modified
0.076 4.207 0.413 8.354 0897 20251 exit amplitude, as in Eq(9), into the boomerang model
0.092 3.414 0.429 9923 0.908 20.074 would be one way of(arbitrarily) supressing the near-

threshold peaks in the cross sections. It is more likely that a

0.097 3.572 0.446 11.985 0.919 20.155 fully nonlocal treatment of the dynamics for the lowest reso-

0.114 5.770 0.462 13.183 0.936 20.558  nance, which we intend to explore in future work, will be
0.119 6.013 0478  17.341 0952  21.456 required to obtain better agreement with experiment.

0.125 5.644 0.489 22.473 0.968 22.982

0.136 4.401 0.495 25.192 0.985 24.939

0.146 6.335 0.506  29.118  1.001  26.038 V. DISCUSSION

0.157 12.402 0522 26867 1017 25342  \\e have presented the results of a fudlg initio treat-
0.168 16.849  0.527  24.007  1.034  24.084 ment of electron-NO scattering in the low-energy region
0.179 14.348 0.533 20.733 1.050 23.212 dominated by negative ion shape resonances. The fixed-
0.190 7.330 0.538 17.579 1.083 22.364 huclei cross sections were computed using the complex
0.201 2 477 0.544 14.991 1.099 22.3g2 Kohn variational method and were used to extract the re-
0.206 1.903 0.549 13.212 1.115 20 629 duired resonance parameters. These parameters were inde-

pendently checked using large-scale electronic structure cal-

0.217 3.057 0.555 12.252 1.132 23.265 . . . . .
culations along with an analytic continuation scheme we

0.223 3.802 0.560 11.925 1.148 23.942 gevised for evaluating the resonance widths.

0.228 5.079 0571 12124 1191 23665  These initialab initio results confirm the interpretation
0.244 5.426 0.587 12.647 1.251 22.723 that the prominent features observed in the elastic and vibra-
0.255 5.899 0.604 14.047 1.284 22.576 tional excitation cross sections arise fré&~ and!A nega-
0.261 6.395 0.620 15.551 1.317 22528 tive ion states. The lowest energy peaks observed are due to
0.272 7. 646 0636  17.823  1.349 22014 the®3” state and appear at the same energy in different exit
0.283 8.695 0.642 19.306 1.382 21.698 channels. ThéX~ peaks are overlapped by a broader series

of A peaks at higher energies which shift in energy as the

0.299 9.253 0.647 21.144 1.415 21.690 exit channel quantum number changes. We have also found
0.304 9.740 0.658 25.086 1.480 21.458  tpat the third®>* resonance, which contributes to the elastic
0.310 10.900 0669  27.702  1.512  20.809 packground cross section, is too broad to display any boo-
0.315 12.974 0.674 28.048 1.545 20.318 merang structure.

0.321 15.947 0.685 27.327 1.578 20.161 While the local complex potential model we have used
0.326 19.455 0.702 21.941 1.676 19.378 Manages to capture essential features of the measured cross
0.331 22.829 0.712 18.575 1.708 18.897 Sections, there are deficiencies in the treatment that become

increasingly apparent in the higher excitation cross sections.

0.337 25.265 0.723 16.730 1.741 18.614 : h : .
The vibrational levels of theé’S~ anion are energetically

0.342 26.090 0.729 16.363 1.806 18.186  (|5se to those of the neutral target, which invalidates several
0.348 24.999 0734 16.237  1.839  17.798 ey assumptions used in deriving the local complex potential
0.353 22187 0745 16303 1937  16.870 model [20,27. Nonlocal effects, beyond the boomerang

0.359 18.292 0.772 17.420 2.002 16.322 model, may be critical in explaining the suppression of reso-

nance peaks that occurs in the higher excitation cross sec-
tions. We hope to explore these effects in future studies of

o . . this interesting and challenging system.
but the qualitative differences between theory and direct g ging sy

measurement are now more significant. The beam measure-
ments show a complete suppression of ¢ resonance
peaks in the 0-2 cross section: while the energy threshold for
excitation is 0.46 eV in this case, the beam data show no This work was performed under the auspices of the U.S.
significant excitation below 1.1 eV. Department of Energy by the University of California,
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