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We examine one importaand previously overlookgaspect of well-known crossing diabatic potentials or
Landau-Zene(LZ) problem. We derive the semiclassical quantization rules for the crossing diabatic potentials
with localized initial and localized or delocalized final states, in the intermediate energy region, when all four
adiabatic states are coupled and should be taken into account. We found all needed connection matrices and
present the following analytical resultg) in the tunneling region, the splittings of vibrational levels are
represented as a product of the splitting in the lower adiabatic potential and the nontrivial function depending
on the Massey parameteit) in the overbarrier region, we find specific resonances between the levels in the
lower and in the upper adiabatic potentials and, in that condition, independent quantizations rules are not
correct;(iii ) for the delocalized final stat¢decay lower adiabatic potentjaive describe quasistationary states
and calculate the decay rate as a function of the adiabatic coupling(iantbr the intermediate energy
regions, we calculate the energy level quantization, which can be brought into a compact form by using either
adiabatic or diabatic basis s@h contrast to the previous results found in the Landau diabatic b2gigli-
cations of the results may concern the various systems; e.g., molecules undergoing conversion of electronic
states, radiationless transitions, or isomerization reactions.
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[. INTRODUCTION own intellectual right. Recent experimental and theoretical
advance$12,13 in particular are beginning to yield a coher-

There has been great progress in the theory of crossingnt understanding of several phenomena that are far from
potentials during the last seven deca¢e=e, e.g., the refer- requiring minor corrections to the standard adiabatic treat-
ences in both research and textbook literatiire9]). Sur-  ment of the problem. Physically, such types of situations can
prisingly, a seemingly simple but basic question as to howoccur as a result of nonadiabatic interactions of different
well-known semiclassical quantization rules should be modielectronic states forming in crossing one-well diabatic vibra-
fied for this particular situatioficrossing diabatic potentials tional potentials. Adiabatic coupling removes diabatic level
with bound(i.e., localized initial and localized or delocal- crossing, and the diabatic levels are replaced by the adiabatic
ized final statesto the best of our knowledge are still unan- ones(see Fig. 1 illustrating this phenomenoin the case of
swered(at least, a complete and unifying description of thea large adiabatic splittingsee precise criteria belgwone
guantization for a general case is still not available and aan restrict oneself to the only lower adiabatic potential
number of other questions remain to be clarified (symmetric or asymmetric double-well, or decay potential

Partially, this is related to the fact that, unfortunately, ex-for the systems under consideratiand neglect any influ-
perimental data in this field are still scarce and not veryence of the upper adiabatic potentiphrabolic one-well for
accurate. However, the situation is now changing. Experiour cas¢ However, in a general case of arbitrary adiabatic
mental techniquese.g., the increasing precision of experi- splittings, intrawell and interwell dynamics depend on both
mental tests in the femtosecond laser pulse range enables adiabatic potentialgi.e., on tunneling and adiabatic split-
to excite well-defined molecular states and to study theiting). With respect to applications, the studies of these ques-
evolution in time using the second probing laser beantions may concern the various molecular systems undergoing
[5,10,11) have progressed to the point where molecular tunso-called conversion of electronic states, isomerization reac-
neling splitting dependence on energy can be measured #ions, or radiationless transitions arising from “intersystem”
well controlled conditions with a very high accuracy. It crossings of potential energy surfaces in molecular spectros-
would therefore seem appropriate at this time to take a freshopy and chemical dynamics, or inelastic atomic collisions.
look at the theory, which is the purpose of the present article. It is worth noting that there exists a huge literature de-
Note also that these questions are not only of interest in theiwoted to different approaches that have been made by other
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application of this approach to the level quantization prob-
lem is difficult to realize. Indeed, the problem requires one to
know the eigenfunctions in the coordinate space, and one
cannot bluntly use the Fourier transform of the functions
found in the momentum space, since the WKB method gives
us only asymptotics of the eigenfunctions. These drawbacks
of the WKB-like methods did not allow the study of the level
guantization for crossing diabatic potentials in the previous
investigations; here, we explicitly addresses the question on
the behavior in the intermediate energy region. In all previ-
FIG. 1. Potentials in the vicinity of the diabatic potentials cross-OUS publications, this region was considered as a very narrow
ing pointU* The diabatic potentialghin lines, 1,3, the adiabatic ~and insignificant one, or in the best case the results were
potentials(bold lines, 3,3, the adiabatic coupling enerdy,,, and  obtained by a simple interpolation from the tunneliwgth
E, is the characteristic zero-point oscillations energy in the paramonotonic decay of the transition probabijitp the overbar-
bolic barrier approximated the lower adiabatic potential near its toprier (with oscillating behaviorregions.
The tunneling energ region is shown by a broken line. Recently, we have show[i21] that semiclassical solutions
of many eigenvalue problems can be simplified by consider-

. . . . ing second-order turning points. i -
authors concerning the problem of crossing diabatic poten- 9 g points. The fact is that one second

tials (see, €.g.[2,3,6-10,14—2)), but some important differ- order turning point replaces two close linear turning points.

ences to our work should be noted. First, suffice it to say, thaMO.reOV(.er’ it tumns outsee below that connectlor_l matrices,
the problem of how diabatic potentials crossing modifies th h'ch, ,I'nk on the_ co_mplex P"’?"",e the SOIU“°”$ to the
adiabatic potentialgoccurring as a result of this crossing Schrodinger equation in the vicinity of the crossing point
quantization rules has not been investigated at all. One of th¥ith the asymptotic solutions far from this point, can be
reasons, is that for many standard rigid molecules with quité@/culated from the solutions of the Weber equation. Increas-
large adiabatic splitting of energy levels, one may safely neld and decreasing solutions in the classically forbidden re-
glect any influence of the upper adiabatic potentia., to gion around a second-order turning point, are characterized
use the standard quantization ryledowever, nowadays the by the action that has a minimum along a certain trajectory,
increasing precision of experimental tests of molecular tunto which we will refer in what follows as the instanton tra-
neling splitting and decayand also investigations and syn- jectory. The same kind of Weber equation can be formulated
thesis of more and more new nonrigid molecil@sakes the to calculate the connection matrices in the vicinity of a
study of this problem relevant and actual. Second is a mesaddle pointor a maximum of the potential, but besides we
thodic note. All previous approaches were based on the gershould also relate increasing and decreasing solutions at the
eral semiclassical WKB formalism. The crucial point to treatcrossing poin{see also our recent publications on LZ cross-
guantization for crossing diabatic potentials is how to com-4ng phenomen§22]).
pute the contribution coming from the contour around a com- Our aim is to construct semiclassical wave functions. To
plex turning point. The accuracy of the WKB method can bedo it, we use connection matrix methodology that can be
improved considerably14-17 (more recent references on applied to any semiclassical approximation, but details of the
so-called Laplace contour integration can be found also inmethod depends on the order of the turning points. For the
[2,13)) by the appropriate choice of the integration pathsecond-order turning points that are minima of a potential,
around the turning point. This method, attributed to Landauhe whole procedure is equivalent to the traditional instanton
[1], appears to be quite accurate for the tunneling and ovelpproach, and the imaginary tingee., after Wick rotatioip
barrier regions(thowever, even in this case there are somenstanton trajectories correspond to the periodic orbits be-
non-negligible corrections found in the papg8sl8,19), but  tween the turning points, and the connection matrices in this
in the intermediate energy regidwhere there are relevant case(see below and Appendix)Aare real-valued ones. It is
contributions from all four quantum states occurring at thenot the case for the second-order turning point, which is the
crossing diabatic potentiglthe method becomes completely potential maximum. The complex-valued connection matrix
inadequate. Besides the choice of these additional specitihks two regions of infinite motion. Formally, one might
trajectories(which one has to include to improve the accu-refer to the corresponding wave functions also as instanton
racy of the WKB method, and along which the semiclassicabnes, applying the Wick rotations twice. LZ crossing points
motion is described by the Weber functipriepends on the are combinations of two second-order turning points with
detail form of the potential far from the top, and therefore fortwo different Stokes constan{®23] corresponding to one
each particular case the nonuniversal procedure should bBinimum and one maximum of the potential. In the tunnel-
performed from the very beginning. ing region, there exist periodic orbits for two solutions, while
The essential simplification of the procedure achieved ustwo others correspond to unrestrictédfinite) motions. As
ing the standard WKB semiclassical approximation in theabove, we will call these wave functions instanton ones since
momentum space representation was also proposed in tileey are Weber functiongas in the traditional instanton
literature [2,6,15-19. The method works well to compute method, but with complex-valued arguments occurring as a
the Landau-Zene(LZ) transition probability; however, the result of complex coordinate frame rotation.
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Thus, our approach in this paper is based on the minimi- M-)L UclL ‘M+

zation of the functional of classical action in the upside-

down potential, so-called instanton type approach, which ~

represents the most important area of the configurational

space where the semiclassical wave functions are localized

(see[4,13-23). The whole analysis can be brought into a

more elegant form by introducing connection matrices that

link, on the complex plane, the semiclassical solutions to the

Schrédinger equation for the model potential of the problem

under study and the exact solutions of the so-called compari-

son equation that is valid near the crossing point, where one

can approximate the potential by linear or parabolic ones.

The explicit calculations of the connection matrices are FIG. 2. The diabatic level crossing phenomeg@bound initial

rather involved since one should treat the four fundamenta®nd final states(b) bound initial and decay final states.

solutions to the left and to the right regions with respect to

turning or crossing points. Therefore, the connection matri-

ces we are looking for arex4 matrices. Although the gen- ca| derivations can skip these appendices, finding all essen-

eralization for our case of the already knowix 2 connec-  tja| physical results in the main text of the paper.

tion matrices (see, e.g.,[23,24) is straightforward, it

deserves some precaution as it implies quite different proce-

dures for the energgmore accurately foE/y, wherey>1 is Il. FOURTH-ORDER COMPARISON EQUATION

the semiclassical parameter, see bglsmaller thar(the tun- FOR THE CROSSING POINT

neling region, larger thanthe overbarrier region or of the

order (the intermediate regignof the potential barrier en-  To move further on smoothly let us first describe our strat-

ergy. Within the framework of the connection matrix ap- egy. First, we should define all notations and relevant points
proach, we present a full and unified description of a onef the diabatic potentials crossing problem. We depict the
-dimensional(1D) (which very often can be a quite reason- typical situation in the vicinity of the diabatic potentials
able approximation for real systepisvel quantization prob- crossing point in Fig. 1. The diabatic potentidls2) are
lem for diabatic potentials crossing. shown by thin solid lines, the adiabatic potentiébs4) by
The remainder of our paper has the following structure bold solid lines. In addition, we have introduced in the pic-
Section Il contains basic methodical details and equationgure the adiabatic coupling enerdy;,, the crossing point
necessary for our investigation. Except for a mathematicaénergyU”, andE, is the characteristic zero-point oscillations
trick that eliminates a large amount of tedious algebra an@nergy in the parabolic barrier approximating the lower adia-
allows us to construct a regular method for calculating highebatic potential near its top.
order perturbative corrections, the section contains already As a model for diabatic potentials in this paper, we choose
known results. Our current physical results are collected inwo parabolad), andUg with a symmetrical crossing at the
Secs. IV-VI, and partially in Sec. lll, where we calculate all point x=0. To be specific, let us consider two types of the
needed connection matrices, which provide a very efficientliabatic potential crossing depicted in Fig. 2. The corre-
method of finding semiclassical solutions to the Schrodingegponding adiabatic potentials are, respectively, the double
equation in potentials having several turning points. Thewell or decay lower potential, and the one-well upper adia-
knowledge of the connection matrices is important and sighatic potential. At arbitrary values of the parametéy, to
nificant not only in itself, but also for developing a good find eigenstates and eigenfunctions for our model potential,
analytical approximation and standardized numerical procewe should solve the coupled Schrédinger equations
dures. In Sec. IV, we find the quantization rules for the tun-
neling and overbarrier energy regions. Section V is devoted

to the intermediate energy region, where all four states oc- _ }ﬂ _ -

curring at the diabatic potentials crossing should be regarded 2 dx +/1ULK) ~EJOL = 7U10r,

on the same footing. Different particular cases, depending on (2.2
the ratio of the model parameters, are also examined in this 1d%0y

section. In Sec. VI, we investigate the linear coupling of the o ae T Y[Ur(X) — ElOg= y"U1,0, .

LZ system to harmonic phonons and find that it renormalizes

by the parameters entering the initial diabatic potentials

crossing problems considered in the previous Secs. IV and \Here, y>1 is the semiclassical parameter that is determined
The last section VII contains summary and discussion. Iy the ratio of the characteristic potential scale over the zero
two appendices to the paper, we collect some more speciabscillation energyi.e., y= mQOaS/h, wheremis a mass of a
ized technical material required for the calculations of theparticle,a, is a characteristic length of the problem, e.g., the
connection matrices in different energy windogigppendix  tunneling distance(), is a characteristic frequency, e.g., the
A), and to reduce the fourth-order Schrodinger equation t@scillation frequency around the potential minimum

two independent second-order Weber equatigispendix These equation@.1) can be written as one fourth-order
B). Those readers who are not very interested in mathematequation, e.g., fof, as
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d‘e d20 du, de d
L — 252[UL(X) + UR(X) - 2E] L—4y2—L—L F(\,X) =\ = 292(u, + Ug — 2€)\2 —472 UL
dxt dx dx
1 d?U, 1 d2u
+44%| (U - E)(Ug-E) - U%,~ 27 a2 0,=0. + 4P (uL—e)(uR—e)—UEz—ﬁ—dX;
(2.2 =0, (2.9

In what follows, we use&f), and a, to set corresponding or in the equivalent form
dimensionless scales, e.g., dimensionless enerdy/ y(),
Ur=ULr! (YA€), U;=2U1,/ (¥h€) (we introduce factor FOV =N = 202 = 297\ + /(o - uf, - £2X0),
2 in uy, for ease of writing the equations belpveoordinate (2.9
X=x/ag, and we puti=1 (except where explicitly stated to . , )
the contrary and where the occurrenceshodre necessary determine independent solut|on_sl(m7). Solving the equa-
for understanding tion F(\)=0 perturbatively over <1, we find

Luckily, Eq. (2.2) admits semiclassical solutions by the Nz N0+ \d (2.10
Fedoryuk method[25-27 since the coefficients at the J
nth-order derivatives proportional t9™", and therefore so where
small that higher order derivatives of the prefactor the

semiclassical form the wave function can be always pre- =t et 2+ 122 (211
sented as the prefactor times the expopeain be safely
neglected in finding of asymptotic solutions. The Fedoryuk
method makes possible to find asymptotic solutions to the : f
ordinary differential equations of the form A= 2D+ o (2.12
Vug, + X
n-1

Y S PR Xy =0, (2.3 we find finally the four asymptotic solutions ¢2.7)
k=0

A dE -1/2 X ) )
where we designated® =d*y/dX¥, and the coefficients at i} =16.,6.,6-6}= (J) exp{fo N(X)dX }
the derivativesf(X) are arbitrary functions oK. Note that
Eq. (2.2 for ® has this Fedoryuk form. By the standard (2.13
semiclassical substitutiog=A exgyW(X)], (2.3 can be The subscripts in2.13 correspond to the upper or lower
reduced to the set of equations combining the terms propoadiabatic levels, and the superscripts refer to the sign of the

tional to 9", " -+, which for y>1 can be represented in action.
the form of generalized so-called Hamilton-Jacobi and trans- As was mentioned above, in the vicinity of the crossing
port equations, respectively, as point one can replacg.2) by (2.7), and by the substitution
n-k 1,2
0, = explkq X)Pp, 2.1
FOO=A"+ > f(ONK=0, (2.4) L= expliey 2Pt (219
k=0 we can find the equation for as
and 1,,
K= ayPKk®+ —'y4u12= - kK*8%(1 +28) +R(k,d),
OII:dA+1d2—Fd—)\A—O (2.5 !
dvdX  2d\2dX ' (2.19
where\=—ydW/dX. where

Noting that in the vicinity of the crossing poix=0, the
parabolic diabatic potentials can be replaced by the linear
ones counted from the barrier taf, as

R(k,8) = (2)7H1-39)(1 + 9 [1-Q-1-2Q7),

Q=88(1+9),
u Rr(X) = U £X (2.6)
[as abovep?=U*/(y# )], and eventually Eg2.2) can be 5= ﬁ 1 (2.16)
presented into a more compact and simple form 453 4’
d‘e, a0, d.L and
vl 2%’a v 2y2f - 22 - 2,10, = 5
2.7 K12= + ya 1—3 (2.17)
where in our dimensionless units=2(u”-e). It can be proved that the fourth-order equat{@tv) in vari-
The roots of the characteristic polynomial f&.7) ables(2.14) is reduced to the equation with constant coeffi-
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cients in front of all derivatives and with the free term in the _( 32)

form of a quadratic oveK function. When the exponent in Ky = * inlall|1-—1. (2.22
(2.14) is a solution to Eq(2.15), the transformed equation is 2

reduced to the Weber equations upon neglecting anharmonig aqdition, in(B6),

terms like X2dF/dX, X3F(X), and X*F(X). We presented all
details of this reduction in Appendix B. Thus, E@.7) is
reduced to two independent Weber equations with the known
fundamental solutiong28]

Y >
KO:|T§(|C(| +Va —ufz),
\’

and with & playing the role of the small parameter in this

0= {exp(i m@mu,{(%f&] , region, i.e.,

~ f
- { (2,21 (2.18 5 (2.23
exqiy\‘s’ax)D—l—V (_> X:| ’
o Again as above for the tunneling region, the coefficients at
the higher order derivatives are small and, therefore, the

- 4'y|a|3/2'
= [2) i -

where v= yu.lzl (4fve) IS the so-called Mass_ey parameter. function ® (2.14) satisfies the Weber equation with the fun-
The corrections to the indices of the parabolic cylinder func- amental solutions
tionsD and to the arguments of these functions can be foung
from (2.15. D-12(Bx +X

Presented above, the leading terms of these solutions cor- p12(Ba.aX),
responding to the tunneling cagieere we use a dimensional where
energyE) given by ~ -
. o ..

- S
E<(U'-Uy) (2.19 = -1+ =i + 17,

(in our dimensionless units it i&>u,,), where the charac-

teristic fourth-order polynomial2.8) can be reduced to the - 12f2\ 14 ®
second-order ong.e., two pairs of roots are nearly degener- BL= exp(iw/4)(—) 1+ 2/ (2.29
ate), are known in the literatur¢see, e.g.[1-4]) but the o

Fedoryuk method we used also gives us in the tunneling

region the higher order over the paramefef2.16) correc- - f2\1/4 &
tio%s. ’ P eR2.19 ,BZ:exp(—iSq-rM)(yz—) (1+—>

In the tunneling regioii2.19), one can expand the roots of o 4
(2.15 in terms of the parametef (2.16). Using the substi- (v is defined as the Massey parameter ente(hd8 with
tution (2.14) to transform(2.2), we can find easily that at the a— |af; i.e., 7=[yu2,/ (4f\|a]]). As it was for the tunneling
conditions(2.15), (2.16), the coefficients at the fourth- and at region(2.20), the leading terms of the expansi¢h24) co-
the third-order derivatives in the transformed fourth-orderincide with the well-known results, but frort2.24) we are
differential equation forP are smallproportional toSand to  able to compute the corrections to the main terms.
V'8, respectively, and thus this fourth-order equation can be  The analogous task for the intermediate energy region
rewritten as two second-order Weber equations with the sadimensional units i.e.,

lutions u "
(U +U12)2E2(U _U12)1 (225)
Dpa.a(BX), is much more tricky. Our results will be presented in Sec. V,
where but a few comments are necessary here. In the problem we

have three dimensionless parameters characterizing the en-
o S S e A 52 ergy (a), the level couplinguy,), and the potentialf), and
pl=-1+——p,p@=—-ypp= <_) (1 + _)- for the ease of semiclassical estimations, we also keep the
4 4 a 4 '
semiclassical parameter>1. Note also that these param-
(2.20 eters are not independent ones, and the relatigs 2f2
(which will be useful in our further consideratipshould be
satisfied. In terms of these parameters within the intermedi-
E> (U*+Uy) (2.21) ate energy region(2.25, we have the subregio§’, |qf
<2y ! andu;,<2y7%, and the intermediate subregidi,
[again as in(2.19 we have used dimensional units, and in where yyu;,/2>1. In Sec. V, we calculate the connection
dimensionless forni2.21) reads as «>u;,] when the en- matrices for both subregions; details of the reduction proce-
ergy is larger than the upper adiabatic potential minimumgdures, which are different i’ (where the comparison equa-
the roots of Eq(2.8) are complex conjugated and have thetions are reduced to two decoupled Airy equatijoasd S’
same structure as presented ab@see also(B6)] for the  (where these comparisons equations are Weben anegle-
tunneling region with the rootg given as scribed in Appendix B.

The same manner in the overbarrier energy region, i.e.,
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a) . a)

b)
b)

FIG. 5. Connection matrices for the intermediate energy region
FIG. 3. Connection matrices for the tunneling energy regian: (as in the tunneling region, there are no real valued turning points
in the WKB approach to the lower states, whéé are the con- for the upper statgs
nection matrices for the linear turning points, ddgfor the cross-
ing point; the shift matrices are depicted as arrows, in the classically
accessible regioris_ andLg, and in the classically forbidden region barrier with the oscillation solutions in the wells. Techni-
Fi and Fg (for the upper states there are no real-valued turningcally, the matching should be performed asymptotically; i.e.,
points); (b) |n the instanton type method, one has two connectiongt small|X| but for large enough y|X| To do it one has to
matrlce:sML,R for the second-order turning points and shift matricescg|culate all needed connection matricgmmely, at the
FL andFg in the classically forbidden region. crossing point, and at the linear and second-order turning
points, and the shift matrices from the crossing point to the
turning points in the classically forbidden region and be-
Ill. CONNECTION MATRICES tween the turning points in the classically accessible region
Within the instanton t method, the trajector through
The purpose of this section is to briefly indicate the main only theeclazgca?ly ¥()pr?3|d§en0?eg|()e[52ée(l:=%ygﬁg?san;ug

steps in the derivation of the connection matrices. Thematchmg should be performed only at two second-order

matching points we must find to quantize the energy Ievel§urnlng points. In the overbarrier energy regi@ee Fig. 4

depend essentially on the energy window under conside )
ation [(2.19, (2.21), and (2.25]. The tunneling region is the matching is performed by using the crossing point con

placed in the lower adiabatic potential. In the WKB method, 10+4

in this case starting from the crossing po{t=0), one has

to investigate the classically forbidden region in the lower 10+3

adiabatic potential barrigisee Fig. 82) and the correspond- (I)k 2

ing figure caption for all notatiorjs The solutions can be 10

found easily in the vicinity of the crossing point, but to de- 10+1

rive the quantization rules, one should also know the solu-

tions quite far from the crossing point. To do it explicitly in 100

the WKB method, we should match the two exponentially p

decreasing and two exponentially increasing solutions in the 10
1072
103
104

M+
L.

FIG. 6. The matching of the asymptotic solutions in the tunnel-
ing region for the diabatic levels crossing shown in Fig)11 - the
function <I>L(X)\27T/F(1+v) 2- the function® (X); 3 - the func-

FIG. 4. Connection matrices for the overbarrier energy regiontion ®5(X)\27/T(1+v); 4 - the function®g(X); 1’ - the func-
The shift matrices from the crossing point to the inner turningtion exnkOX)D_l_,,(BX); 2’ - the function expkoX)D_1_,(=BX);
points are designated Hy (all other notations are the same as in 3" - the function exp-kgX)D_;_(BX); 4’ - the function

Fig. 3. exp(—koX)D-1-,(=BX).
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2
P = Wi =X+ 22,

nection matrixU;, the shift matrixL connecting the crossing
point and the linear turning points at the upper adiabatic
potential, and the shift matrices i belonging to the diaba- — _ “
tic potentials. In this case, all matching solutions are oscilWhereko=yva is imaginary momentuniU” sets the energy
lating ones. Finally, for the intermediate energy region, theréorresponding to the diabatic potentials crossing poand
are no real-valued turning points for the upper statee wg are the actions computed from an arbitrary distant point
Fig. 5, and the matching between two oscillating and twoiN theL or in theR wells, respectively, to the point=0. On
exponentially varying solutions is determined by the connecth® other _hand, in the adiabatic ~potentials®
tion matrix (see Fig. 5 linking the linear imaginary turning =U*+\uf,+f>X? the corresponding actions can be repre-
points of the adiabatic potentials. sented as

To recast the analysis into a compact form, it is conve- 5
nient to _formulat_e the gener_al procedur_e f(_)r calculatmg the PWE = PWE = KoX & Exzsgr(X). (3.6)
connection matrices for arbitrary combinations of the first- 4
and second-order turning points. After that, the procedure. . ] ) ] ) )
can be applied to any particular problem under investigationEXPlicitly comparing the semiclassical wave functions in the
To do it, one has to extend the linear turning points procePoth representation@diabatic and diabatic ongst is easy
dure which is already knowf23]. For a generic semiclassi- to see that the adiabatic functions in the potenitlalcoin-

cal equation cide with the diabatic functions for localizddandR states
at X<0 andX>0, respectively. The adiabatic functions for
>y the upper potentidl* correspond to the tails of the diabatic
P Yq(2)¥(2) =0, (3.1)  wave functions localized in the opposite wells. Therefore, in

the level crossing region the/ R diabatic functions are trans-
in the limit > 1, the Stokes and anti-Stokes lines are deterformed into theR/L functions, and the interaction entangles
mined by the respective conditions the diabatic states with the same sigrkgX. Thus, we have

only four nonzero amplitudes of the following transitions:

ReW(z) =0 (3.2 oy el e
g (D[ |PR) (D | D), (PR D), (PR|D)). (3.7
an
Recalling that
Im W(2) =0, (3.3 i
where the action YW = Vf (@t U, + F2XA)M2 = kX + %Xzi g(l -Inwv),
z 3.8
W(2) =f Va(2)dz (3.4 3.8

we come to the conclusion that the quantum soluti@20),

The lower integration limit in(3.4) is not relevant because Valid in the vicinity of the level crossing point asymptoti-
we are interested in semiclassical solutions for lajge C@lly, match increasing and decreasing solutions smoothly,
These Stokes and anti-Stokes lines separate the complé@ding to the Landau descriptiq] of the level crossing
planez into the sectors. On the anti-Stokes lines, the increasfansitions. To illustrate the analytical results presented
ing and decreasing solutions become equal, and the type 8P°Ve, We show schematically in Fig. 6 the matching of the
the solution is interchanged upon crossing the anti-Stoke@Symptotic(Fedoryul solutions(2.13) for the crossing di-
lines. The Stokes lines are bisectors between neighboring?at'c poten_tlals .Wlth Iocallzgd |n|t|a_I and final states via the
anti-Stokes lines. After the crossing with the Stokes line, one//ePer functions in the tunneling region. We use the symmet-
should add to the coefficient at the decreasing solution theC Pasis constructed from the functio(®13 (see detailed
coefficient at the increasing solution times so-called Stoke§€Scription in the Fig. & caption

constant. The latter one occurs as a result of going around the N the tunneling regior(2.19 for every well (L or R),
turning point and depends on the turning point type. there exist exponentially increasing and decaying real-valued

To find the connection matrices for the tunneling region,solutions to the Schrodinger equation. The solutions are

we have to establish the correspondence between the solffdiched at the crossing point; therefore, they are linked by

tions of the fourth-order differential equatig®.2) and those e real-valued %4 connection matrix, which should have
for the localized in the lef(L) and in the right(R) wells two 2X 2 blocks linking the increasingdecreasingdiabatic

states. In the case f|X| for the diabatic potentials, the solution in theL-well with the decreasingncreasing diaba-

action can be computed starting from the both wéRsand tic solution in theR-well, in the ggreeme_n} with the' s_tandard
L), as Landau scheme of the tunneling transitigi$. Omitting a

large amount of tedious algebra, we can represent the con-
32 nection matrix linking the “asymptoticfi.e., in the left/right
YV = YW + kX + ?XZ, (L,R) wells and for the upper/lower,-) adiabatic poten-
tials] solutions in the tunneling energy region in the follow-
(3.9 ing form:
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Dy |\7|<‘>—( 1 i ) (3.12
o | (mg>tg>mg—>ﬁc 0) c “\=(2) @) '
o 0 1 and l\?lé” is the matrix Hermitian conjugated {8.12). The
o L(L‘j)R andF. matrices are called shift matrices, and those are
ot related to the variations of the coefficients of increasing and
o) ': decaying semiclassical solutions in the regions between the
<0 FMILEEME 0 | & (3.9  uming points(F. is the shift matrix when one moves from
¢ 0 1/l @r | ' the crossing to the turning point in classically forbidden re-
o gion, andL(LC,)R are the shift matrices in the classically acces-
R sible regiong Explicitly, we get
Here,LAJc is the 4X 4 connection matrix at the crossing point, - [exp(- YW/2) 0
which in the tunneling region has the form Fe= 0 exp(y\/\/,;IZ) ' (313
p 0 0 - cogmv) Here,\/\/f3 is the action in the lower adiabatic potential barrier.
~ 0 [sirZ(mv))lp - cogmv) 0 Finally, the structure of the shift matric C,)R is
U , .
c 0 coq mv) p 0 I:(LC/)R: (eXFiI'YM/R) 0 ) , (3.14
cogmv) 0 0 [sird(mv)]/p 0 exp(—iyWr)
(3.10  whereW,, is the action calculated by the integration be-
. tween the turning points. We present explicit expressions for
where we designated the total connection matrix in Appendix A.
. The overbarrier regioig2.21) can be treated in the same
V27 exp(- 2x) manner. In this case, the crossing point is in the classically

(3.1 accessible region for the both potentials. The fundamental
diabatic solutions can be represented as the waves propagat-

e ing in the opposite directions, and the complex-valued con-

and x=(v/2)=(1/2)[v=(1/2)]Iin ». The matricesM_" and  nection matrix has as it was for the tunneling regior 2

M(C‘) are the 2 2 connection matrices at the correspondingblock structure, where the blocks link the waves in thend

turning points, which are determined by the phase shifts aR wells propagating in the same direction. Specifically, the

I'(v) '

these points corresponding connection matrix at the crossing pﬁipt
|
sexp—i¢) 0 0 - exp— mv)
~ 0 s expi - exp- 0
0. = pli ) N _m/) , (3.15
0 expl—mv) sexp—i¢p) 0
exp(— mv) 0 0 s explig)

where we denoted s=\1-exg-2mv), ¢=argl'(-iv) the upper one-well adiabatic potential. Thus, finally, in the

+Im(2y), and overbarrier region, we get
Py <Dt
Y=~ (12 (w/4) + (1 = In )] + (LA (7v+1n v), o | (Mgﬂﬁg 0 >O,<L<L°>|\7|<c-> 0 ) o]
(3.16) o/ 0 Mm@/ \ o o/ P
o] o,
should be multiplied by two blocks: the block from the left (3.17

gives the contribution at the turning point and includes theI-|ere we used the same notations as above for the tunnelin
shift matrix to the crossing point ih and inR wells of the o 9

lower adiabatic potential, and the right block is related to the'€gion, the matrice1 are transposed with respect to the
turning point and to the shift matrix to the crossing point in matricesM(ci) given in(3.12, and the new shift matrik is
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exp(— iyW'/2) 0 ) Tl
( 0 expli YW'/2) (3.19 Wi = ’

Y
(recall thatW' is the action in the upper adiabatic potential
Combining(3.12—3.18), one can trivially find the full con- where
nection matrix for the overbarrier energy regith21). We
present the explicit form of the matrix in Appendix A.

A more tricky task is to calculate the connection matrix in YiVUipt @
the intermediate energy regid.25. Following the same O2= 4f ’

line as above, we first present the general structure of the

connection matrix in the intermediate energy region as ) ) ]
and all other matrices enterin@.19 are already defined.

Op SinceM{” turn into the unit matrices at> uy, and a<uy,

@ MOLOMS 0 the connection matrix3.19 matches continuously into the

o = ~ ) corresponding matricg8.9) and(3.17) for the tunneling and
L 0 My overbarrier regions, respectively.

o) The connection matrix in the intermediate energy subre-
gion S’ can be calculated using Weber function asymptotic

+
SOrORO 0 q)f expapsion for large cor_nplex indiqe{BlS), _which_ are the
< MZL M O solutions to the comparison equatici#s15) in the interme-
¢ 0 o /| g | diate energy subregio’. These four roots aiarranged
" Pt clockwise and counterclockwise on the radiugl,,/2 circle
R

around the crossing point. The following combinations of the
(3.19 comparison equations match the semiclassical solutions

N 2.13:
These matricer) have been introduced in our paged] @13
for the imaginary turning points characterizing the both adia-

batic potentials in the regioja| <u,,, and they read 01+0;— 0] 0,+0;— 0, 0]+0;— 0 0
( 1 o) +0;— 0.,
(il2)exp(— YW) 0/’

whereW! are so-called Euclidian actions in the reversed upCoOmbining the asymptotic expansions for these combina-
per and Iower adiabatic potentials, which can be estimated a®ns, we find, at the crossing point, the mattlfg is

[\2m/T(q") Jexp - 2x(d)] 0
O = 0 [T(a)/v2m] exd 2x(q)][L - exp— 2mqp)cos (mqy)]
¢ 0 exp(— 270,) coS 7d)y)
exp(— 2md,)cog ) 0
0 exp(— 2m0,)cog ;)
— exp(— 27qp)cog ) 0
o : (3.20
[N2m/T'(q) lexd 2x(a)] 0
0 [T(a")/V2mrlexd 2x(q)][1 - exH— 2mdp)cos(may)]
[
where, as above, ] 1
X=x1tixa 2x=0h— |01~ > In[q] + ¢qp,
. YUp\VUpp « .
A=0u+idy o= d =a-id, (3.22
(3.2)
and we then introduce the abridged notations and analogously
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A. Two diabatic parabolic potentials crossing

1
2x2 =0, = qoln|g| - ( ——), 3.2
X2= G = G2inld] - ¢ & 2 323 Now (collecting the explicit expressions for all needed

connection matrices from Appendix)Awe are in the posi-

whereg is defined by(B10). Now, the full connection matrix tion to derive the quantization rules, which can be formu-
in the both intermediate energy subregions can be found eated as a condition that the amplitudes of solutidfs ®F,

ily by simply collecting the expressions given above, and theexponentially increasing ak>0 and X<0, respectively,
explicit form for the connection matrix is presented in Ap- Must vanish. Taking into account tHaf =W, (the actions in
pendix A. Note that the intermediate energy region connecthe corresponding wells of the lower adiabatic potentald
tion matrix (3.20 has the same block structure as the con-using the connection matrix relating the fundamental solu-
nection matrices in the tunneling and overbarrier regionstions of the Weber equation, we can formulate the corre-
This is a consequence of the fact that in the neighborhood dfponding quantization rule for the tunneling region in terms
the diabatic potential crossing point, only the Weber func-0f the matrix elements defined k$.9), as

tions with equal indices can be hybridized. | =u,,, the

connection matrix3.20) turns into the connection matrices MpoMg3 — MpgMg =0, (4.7)
(3.10 for the tunneling region and int8.15 for the over-
barrier energy region, enabling us to construct semiclassicdl
solutions for any arbitrary energy window. Note, however,
that in the intermediate energy region, the Massey paramet
is replaced by the complex indey. In Sec. V, we will 2
present another derivation of the connection ma¢&x20), tan(YW,) = + —exp(yWp), 4.2
and will discuss specific relations between the adiabatic and P

diabatic states in the intermediate energy region.

herem; are corresponding matrix elements frgé9).
Putting all together, we can find froi8.9), (3.10, and
-1 the quantization rule for this case

where W is the action in the barrier formed in the lower
adiabatic potential, and=U,, is the corresponding matrix
IV. QUANTIZATION RULES element of the connection matr{8.10).
Only the factor 1p varying from O to 1 in the diabatic

In the tunneling energy region, one has only real-valuedand adiabatic limits, respectively, makes this quantization
eigenfunctions, since in both wells there are only localizedcondition (4.2) different from the well-knowr{1] quantiza-
states. In this energy window, the connection matrix linkingtion rule for the symmetric double-well potential. Corre-
the “asymptotic”(i.e., in the left/right(L,R) wells and for  spondingly, the tunneling splitting at finite values of the so-
the upper/lower(+,-) adiabatic potentia)jssolutions is rep- called Massey parametercan be represented as a product
resented in the forni3.9) and is given by(A1)—(A7). Within
the WKB method, we should match the two exponentially An=Afp(v) (4.3
decreasing and two exponentially increasing solutions in the ) 0. ] . ]
barrier with the oscillation solutions in the wells; thus requir- Of the tunneling splitting\; in the adiabatic potential and the
ing the knowledge of the connection matrices at the crossinéctor
point and at the linear turning points, and the shift matrices

from the crossing point to the turning points in the classically - V2T 12y
forbidden region and as well between the turning points in P() F(v)y eXp(- ), @4

the classically accessible regi¢rig. 3a)]. Within the in-
stanton type method, the trajectory goes through only th@ssociated with the transition amplitudes between the diaba-
classically forbidden regiofisee Fig. 80)], and to perform tic potentials in the crossing region.
the matching one should know also the connection matrices It is particularly instructive to considg#.2) as the stan-
for the second-order turning points. dard [1] Bohr-Sommerfeld quantization rule, where in the
The overbarrier region can be treated in the same mannetight-hand sidgr.h.s) both the geometricap, and the tun-
with the corresponding connection matii.17 and (A9). neling x, phases are included additively. In the adiabatic
Evident modifications of the expressions given above for théimit when p(v) — 1, we find thate,—0, and(4.2) is re-
tunneling and overbarrier regions should be performed taluced to the quantization of the symmetric double-well po-
treat the intermediate energy windows. Indeed, in this castential. In the diabatic limitp,=-y,, and the geometric phase
one has also to take into account the contributions from theompensates the tunneling one. The physical argument lead-
imaginary turning points. The procedure is reduced to reing to this compensation may be easily rationalized as fol-
placement of oscillating factors by exponentially decayinglows. Indeed, at the reflection in the crossing po{stO, the
ones(see details in the next sectiprFinally, for the inter-  trajectories in the classically forbidden energy region are the
mediate energy region, there are no real-valued turningame as those for the tunneling region, but with a phase
points for the upper statesee Fig. 3 and the matching shift .
between two oscillating and two exponentially varying solu- We focus now on the quantization rules for the overbarrier
tions is determined by the connection mat{&19 linking energy region. Closely following the consideration per-
the linear turning points of the adiabatic potentigdee formed above for the tunneling region, and replacing the
Fig. 5. connection matrix3.10) by the corresponding matrix for the
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overbarrier regiorisee Sec. )l(and making some other self- tential. The quantization rules in this case correspond to the
evident replacementswe end up after some algebra with the vanishing amplitudes for the exponentially increasing solu-
quantization rule tions whenX— -, and one also has to require that no
waves propagating from the region of infinite motion; i.e., at

[1 - expt- 2mv)Jcog 2yW[ - glcos YW + ¢) X>1/2. Performing the same procedure as above, we find

YW that in the tunneling energy region, the eigenstates are the
+exp(- 2mv)co| YW + — /=0 (4.9  roots of the equation
i ian i i 4
WhgreW is 'the actlo_n in the yvell formed. by the upper adia- tar(yM) - iZ—eXp(ZyV\/é), (4.9
batic potential, andb=argI'(-iv)+Im(2y) is determined ac- p(v)

cording to(3.16. From Eg.(4.5), it follows that the eigen-

. with the same notation as above. To proceed further, it is
states are determined by the parameter P ’

convenient to introduce the complex action to describe the

exp(- 2mv) 6 quasistationary states, given by
= 4.
1-exg-2mwv) (4.6 E r
n A n
o _ yM:w——l—), (4.10
In the diabatic limitv— 0, and, thereforeB— 1/(27v), in Q20

(4.5) the main contribution is due to the second term, and 'twhere evidently2= AW, / E does depend ofi. From(4.10),

I_eads toa splitting of degenerate levels in the diabatic poten[-he real and imaginary parts of the quantized eigenstates are
tials. Moreover, since

1 QO
V(V\ff_‘*g) :w{n+212v sin{y<vv|i+\/\?f) +¢H, En:Q<n+§), Fn:pz(v)zexp(— 2yWp).
@7 (4.11)

the splitting increases when the Massey parameten- This relation(4.1_]) describes the nonadiabatic tunrjeling de-
creases, and it is an oscillating function of the interactioncay_Of th_e quasistationary states of the lower adiabatic po-
Uy, tent|al.. Similar t_o what we obtained for_the two parab(_)llc

potentials crossing4.3), here, the tunneling and the adia-
batic factors are entering the decay rate multiplicatively.
r§ince the decay rate is proportional to the square of the tun-
neling matrix elementl”,= p?(v), as it should be.

In the overbarrier energy region, the quantization rule is

In the adiabatic limit, whenr—«, ¢— 0, and, therefore,
from (4.6) B=exp(-27v), the main contribution tq4.5)
comes from the first term, which determines the quantizatio
rule for the upper one-well potential and for the lower
double-well potential in the overbarrier energy region; in this
limit Fhe parameteB plays a role of the tunneling tra_nsition 1 - exp- 2mv)exg - i(yM — $)]cod YW + ¢)
matrix element. FoB smaller than nearest level spacings for
the lower and for the upper potentials, one can find from +exp(— 2mv)exp(— iYW /2)co YW + YW /2) =0,
(4.5 two sets of quantization rules leading to two sets of (4.12

independent energy levels
and the actions depend on the enekggs

1 1
y\/\f=ﬂ'(nl+ 5), 27M=w<n2+5>. (4.9 E Qy(uf+uy,) E
7VVE=775, W =7 Y g ol

Since the eigenstate energy level displacements depend on ! !
the adiabatic coupling),, the resonances can occur at cer- (4.13
tain values of this parameter, where the independent quantjghere() and(), areE-dependent frequencies of the diabatic
zation rules(4.8) are no longer correct. The widths of these 5 the upper adiabatic potentials respectively.
resonances are proportional to expmv) and therefore are | the diabatic limit, the decay rate is proportional to the
strongly diminished upon the Massey parameténcrease. |\jassey parameter and has a form
This behavior is easily understood, since in the limit the
wave functions of the excited states for the lower potential
are delocalized, and their amplitudes in the localization re-

gions for the low-energy states of the upper potential are ) ) o )
very small. and in the opposite, adiabatic limit, the decay rate is

T, = Qg exp(- 27v)[1 - sin2yW, - ¢)].  (4.19

Ir,= %V cCoS(YW + ¢), (4.19

B. Bound initial and decay final states: the diabatic potentials |, the both limits, the decay rate is the oscillating function of
(1+X)?/2 and (1/2)-X crossing Uy,

The second instructive example treats the one-well and We illustrate the dependend&U,,) for the crossing di-
linear diabatic potentials crossing. It leads to the lower adiaabatic potentiald);=(1+X)?/2 andU,=(1/2)-X in Fig. 7.
batic decay potential and to the upper one-well adiabatic poNote that while the tunneling decay rate of the low-energy

062508-11



BENDERSKII, VETOSHKIN, AND KATS PHYSICAL REVIEW A69, 062508(2004)

107 are localized in its own effective cavity whose position is
I 10°- given by the condition$’,=0 (4.14) or (4.15).
n 10+ Similarly, one can study the more general example, de-
N scribing two nonsymmetric diabatic potentials crossing at
10% X=0 point:
10%
1 1
107 - up==(1+X)?, u,=—(X2-2bX+bh). (4.16
2 2b
10% . - .

a) 0 In a certain sense it is the generic case, and when the param-
107 eterb entering the potentig¥.16) is varied from 1 toe, we
1070+ recover the two particular examples considered above, and
101 come from two identical parabolic potentials to the case of
102 one-well and linear diabatic potentials crossing. This kind of

the potential was investigated recently by two of the authors
10° e e (V.B. and E.K) [29] aiming to study crossover behavior from
0.0 0.1 0.2 0.3 coherent to incoherent tunneling upon increase of the param-
U12 eter b; the larger this parametds, the larger will be the
density of final states. The criterion for coherent-incoherent
0.03 crossover behavior found if80] is based on comparison of
] the transition matrix elements and the interlevel spacings in
1—‘n the final state. The analogous criterion should hold for the
1 level crossing problem; however, in the latter case, the tun-
0.02-] neling transition matrix elements have to be multiplied by
] the small adiabatic factor. Therefore, the coherent-incoherent
tunneling crossover region moves to the larger density of
final states, and the largey,, is the smaller will be the

b) region for incoherent tunneling. Quite a different situation

0.01 7 occurs for highly excited states. In the diabatic limit, the

] transition matrix element is increased with the Massey pa-
rametery, and therefore at a givdmvalue, the system moves

to more incoherent behavior. In the adiabatic limit, the tran-

sition matrix element is exponentially small, and coherence

0.00 of the interwell transitions should be restored. However,

0.0 0.1 0.2 0.3 0.4 since the matrix elements are oscillating function&Jgj for
U12 the intermediate range of this couplingJ,,) coherent-

incoherent tunneling rates are also nonmonotonically varying
FIG. 7. T, versusU,, for the quasistationary states at the diaba- fynctions.

tic potentials(1+X)2/2 and(1/2)-X crossingja) 1-4 are the level
energies 0.042, 0.125, 0.208, and 0.292, respectively, for the lower
adiabatic potential(b) 1’'—3" are the level energies 0.625, 0.708,

and 0792 respectively, for the upper adiabatic potential. V- INTERMEDIATE ENERGY REGION

A more difficult task is to derive the quantization rule in
states is increased monotonically with the Massey parameté¢he intermediate energy region, where all four roots of the
v, the decay rate of the highly excited states goes to zero inharacteristic equation contribute into the solutions. One has
both (diabatic and adiabatfjdimits. Besides there are certain to use the connection matr{8.19 computed for this region
characteristic values ofJ;, when the r.h.s. 0f4.14 and (see details in Sec. Il and Appendix)Alt has two 2x 2
(4.15 equal to zero and therefolg,=0. This result, seem- blocks structure, the same as the connection matrices for the
ingly paradoxical and contradictory to conventional wisdom,tunneling and overbarrier regions. Here, we present another
can be rationalized as follows. For the case under considederivation of the same connection matrix using the adiabatic
ation (one-well upper adiabatic and decay lower adiabatiaepresentation. It offers a deeper insight into the mathemati-
potentialg, there are always energy levels blocked by thecal structure of the problem, and also provides physically
upper adiabatic potential. This resonance phenomenomelevant relations between the adiabatic and diabatic states in
manifests wavelike particle properties omnipresent in quanthe intermediate energy region. The very possibility to use
tum mechanics. For the system under consideration, the ufpoth the representation is stipulated by the fatteady men-
per adiabatic potential is equivalent to a resonator with a setoned in Sec. 1l) that the semiclassical eigenfunctions in the
of well-defined modegresonanceswith high quality factors.  intermediate energy region can be represented as linear com-
An important featurdin distinction to a conventional reso- binations either diabatic or adiabatic functionghis
nators where these modes occupy more or less homogesdiabatic-diabatic transformation has been discussed for
neously the whole phase space that the resonance modes quantum coherence phenomendg30], see alsd2)).
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. Singe the adia}bgtic potentials have two second-qrder turn- Upp= 2U*12, |U# - E] < Uyy. (5.4)

ing points(the minimum of the upper, and the maximum of " i ) . )

the lower adiabatic potentiglshe blocks of the connection The positions of ihe linear turning poinfs’| corresponding
matrix in the intermediate energy regionhere now, unlike [0 the energiedJ”+U,, do depend on the ratitJ;,/U,,.

the matrices(3.9) and (3.17) describing the transitions be- These points are located inside or outside of the interval
tween the diabatic states, the connection matrix corresponds ¥ /% +7v7?] at U1,/U,<1 and atUy,/Uy,> 1, respec-

to the transitions between the adiabatic states, and nonadifively. Accordingly, for both cases, the matching conditions
batic perturbations induce the transitid@4]), are character- in the intermediate energy region are different. In the former

ized by the parametef§, , analogous tog, , from (3.2 ~ case for the asymptotic matching region, the potentials can
entering(3.20). For the real-valued blocks, be reasonably approximated by parabola, and therefore we

should work with the Weber equations. For the latter case,

U the matchings are performed in the region where the poten-
= Al 12(u12+ @), (5.1) tials are linear ones; thus the equations are reduced to the
af Airy ones.

Let us discuss first the intermediate energy subre@on
and for the complex-valued block&@ssociated with the whereq, andq, are large, and therefore the Massey param-
maximum of the lower adiabatic potenpial eter, i.e., the indices of the Weber functions, are also large.

The arguments of the Weber functions ar&yy, and their

W2uy, asymptotic expansions determine the interval where the
= pr (Upp— a). (5.2 matching should be doné.4). In what follows, we will

closely follow the method we borrowed from ON&1] (for

] ) ) the asymptotic expansions of the Weber functions with large
We can now reap the fruits of the previous subsection effort§ngices, see also his monografs2]), which is in fact an
can see that when the energy approaches to the top of thgyonentg5.1) and (5.2)] of the fundamental Weber solu-

barrier, the exponents” andp" of the parabolic cylinder tions and it leads to an asymptotic solutionXat 0
functions are increased and thus, are more and more deviated

from the value prescribed by the Massey parameteBec- PL(X) = Y:YAX + Y,) Sexp- yXY,),
ond, increasing ofg;; upon |a| decreasing, decreases the
values of|X| where the asymptotic smooth matching of the W(X) = Y_YHX + Y )b2expli yXY.), (5.5)

solutions should be performed. Fér- 0, these|X| values [

are located deep in the classically forbidden region, wher&vhere Y,=\uz,*a?+f2X% Using the known relation be-
the potentials are close to the diabatic potentials, while fofween the fundamental solutions of the Weber equ&f2ah
6=1/4, these coordinatéX| are of the order of the quantum D.(2) = exp~ imu)D,,(2)

zero-point oscillation amplitudes. Therefore, to find the solu- e THE

tion in this region, we have to use the adiabatic representa- V27 Cou+1 )
tion. + T( )EX I7 5 D_M_l(IZ),
-

Although, as it is shown in Appendix B, the intermediate
region for the both subregionS’ at §<1/4, andS at we can find two othefcomplementary t@5.5)] solutions
6>1/4 can be investigated on equal footing in the frame-
work of the comparison equatiofise., at the diabatic basis +oy) = V12| _ i = +V ) Gayy—
it is instructive to study the problem in the adiabatic repre- TiX) =Y, sin(mdy) (X + Y,) " exp(— yXY,)

sentation as well, which is the purpose of this section. As a —

subproduct of this consideration, we also get the justification + exp(- 2)(1)\52—770( + Y+)alexp(yXY+)} ,
of the comparison equation approach. In the adiabatic basis, I'(1/2) +qy)

the intermediate subregionS' and S’ should be studied (5.6)

separately. Two simple observations give us a conjecture as
to how to treat the problem in the intermediate energy reand
gion. First of all, the energetical “window” for the interme-
diate subregior®’, whered<1/4, and|a|<u,, in terms of L I ~ i ;
. ; . . Z(X)= -1 exp(— X+ Y_)™2exp(i yXY-
the dimensional energy scale is determined by the rectangle X)=Y. (= 7)( ) RiyXY-)

around the crossing point, as —

12 .
+ eXpl- 2xp)—— o —— (X + )

Up=<2Up, [U*-E<Ul, (5.3 T'((2/2) - id2)

where we defindJ},= (1/2)(A%F2/m)*, In other words, the xexp(—i J’XY—)l . (5.7
characteristic interaction energy at the intermediate region

boundaries does not depend 0Or,. Analogously, the inter- In the case of weak level coupling,e., for the intermediate
mediate subregio®' is restricted by the lines energy subregior8’), the adiabatic potentials everywhere
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(except in a small neighborhood of the level crossing point P (f|x|)—l/2exp(¢§+ +sgnX),

can be linearized(i.e., represented ag+*f|X|), and the

asymptotic solutions are reduced to a linear combination of

the functions O o (f|X]) Y2exp( £ - sgnX), (5.8

2
L= —(f]X| + @)®?
& 3f(| |+ a)®?,

and these functions are smoothly matched with semiclassical soluseesdetails in Appendix B As a result, we can
calculate, finally, the connection matriX! in the intermediate energy region in the adiabatic basis, as

[\2m/T (- it,) Jexd - 2x(id,)] 0
(e = 0 [T @&)/\ 27 ]exe] 2x (@) sir(mti,)
! 0 cog(7d),)
i exp(— 70, 0
0 —i exp(= 70y
- cog—Ty) 0
[\2m/T (@) lexd 2x(@y)] 0 !
0 2T (= i)/ N2 lexp - 2i x(@,) Jexp(— 7, costt(t,)

k=12 : :n'-1
where the functiory is defined in(3.22 and(3.23. We see E e

1.0

that the connection matrix in the adiabatic basis, unlike E ﬂ:——Q::
(3.20) defined in the diabatic basis, does not provide continu- 09110 n=10-
ous transformation into the connection matrices for the tun- ne10e
neling and overbarrier energy regiojit8.10 and(3.15), cor- o.83%? o S

respondingly. This apparent inconsistency is due to
disregarding of adiabatic level interactions, which become
relevant in the intermediate energy region. However, there is
a simple remedy to ensure the continuous over all energy
windows matching of the connection matrices. One has to
rotate the complex plang over the anglep (B10). Thus,
luckily (as is often the case in semiclassical approagives

can safely reduce the problem quite accurately to the Weber
or Airy equations in the both intermediate energy subregions,
using, respectively, the perturbation theory with respect to
the diabatic or adiabatic states. The adiabatic connection ma-
trix found above could be used on the same footing as the
diabatic connection matrig3.20, e.g., to derive the quanti-
zation rule, which for the intermediate energy window can be U,
written in the simple and compact form as

FIG. 8. Level displacements versuk, for two diabatic cross-
ing potentialg1+X)?/2. Dashed lines show the intermediate energy
Cos(Zy\/\/f_) = - exp(— 70y). (5.9 region (the subregionS’ is between the dashed lines, while the

i . subregionsS’ are confined to the left pockets between the dashed
It is useful to illustrate the essence of the general resulf,y gotted-dashed linpsdotted-dashed lines also show displace-

given above by simpléyet nontrivia) examples. First, let Us  ments for the top and for the bottom of the adiabatic potentals.

consider two identical parabolic potentials with their minimagngn’ are quantum numbers for the diabatic, and lower and upper
at X=+1 and with the coupling that does not dependXon  adiabatic potentials, respectively. Note that the figure level displace-
Due to the symmetry, the solutions of the Hamiltonian can benents shown coincide with the error not exceeding 10%, with the

represented as symmetric and antisymmetric combinations @ésults of the numerical diagonalization in the basis of harmonic
the localized functions oscillator functions.
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2

Wt = (D + D). (5.10 VOGIYD) = V00 + S %YE FFOD CY,. (6.1
k k

1

/

v

N

The functions are orthogonal, and two sets of the functionglere, Vy(X) is the bare(in a general case anharmonitD
(Pg, Vo) and (Vy,¥,) (Where the subscripts O aredstand ~ potential,wy is the eigenfrequency of the transverse oscilla-
for the ground and for the first excited states, respectjvelytor k, the functionF(X) describes how the only strongly fluc-
correspond to the two possible kinds of level crossings.  tuating coordinateX is coupled to thermal bath of transverse
In Fig. 8, we depict schematically the dependence of thescillators, andC, are corresponding coupling constants.
level positions on the coupling;,. In the energy regiorc This kind (6.1) of multidimensional potential has been
<U"+U,,, where there only exist the discrete levels of thestudied in the literaturésee, e.g.[4]), and some efforts were
lower adiabatic potentials, there are pairs of alternating pammade to find a feasible approximation to treat the potential
ity levels (3, ¥,) and (¥, ¥,). The tunneling splittings  within the semiclassical approach. In this section, we legiti-
are increased monotonically since the Massey paramager mate the method proposed[4 focusing on the LZ problem
increased, and the barrier is decreased Witph The same in the tunneling region. Similar considerations can be easily
level and parity classification remain correct for the energygeneralized for the overbarrier and intermediate regions.
region above the barrier of the lower adiabatic potential, The equation of classical motigin imaginary time for
where the spectrum becomes an almost equidistant on#he longitudinal coordinate has the form
However, in the overbarrier region, the resonances occur be-

tween the levels of the same parity, this sequence of the odd o % &de(X)
and even levels is broken, and level displacements are not X="x ‘% ol dX (@, [F(X)D), (6.2

monotonic functions ofJ;,. Some of the levels of different
parities can be mutually crossed. For the upper adiabatic pQgherel is the integral transformation
tential, the level sequence is opposite to that for the lower
adiabatic potential. The intermediate subreg&rimits are o [©
shown by two dashed lines. The boundaries between the in- (@ [F(X)]) = Ef expl - ot - t'[FX(t")]dt'.
termediate subregio8' and the tunneling and the overbar- -
rier regions are shown by the dotted-dashed lines outgoing (6.3
from the corners of the subregid® rectangle; these lines
coincide with energetic displacements of the top and of thét can be expanded in the following high- and low-frequency
bottom of the adiabatic potentials. Note also that we checkelimits, as
the results of our semiclassical approach and found remark-
ably good agreement with the numerical quantum diagonal-
ization. As shown in Fig. 8, level displacements verklys
coincide(with the error not exceeding 10% for the full range - 0’Ry—0*Ry— ..., w—0,
of variation of U,, including the both intermediate energy
subregiongwith the results of the numerical diagonalization where
in the basis of harmonic oscillator functions of the initial : . .

o e . . . ) . 1
z—|1ain>1(|)lt2(;r;|.an (2.1) for two diabatic crossing potentials Rn:fw dtlfw dtZ"'fm F(t)dt 6.5

(w,[F]) = F+w_2|'i+w_4|'i+..., W — © (6.4)

At the high-frequency limit(6.4) is reduced to the trajec-
VI. COUPLING TO A THERMAL RESERVOIR tory equation, but with the renormalized potential corre-

We have considered semiclassical quantization of boungpondmg to theX-dependent effective mass

and quasistationary states beyond the adiabatic approxima- ~

tion, but for the 1D case only. Of course, the ene_rg_etic profile \HE[\FX] = av +0O(pg), (6.6)
of any real system is characterized by a multidimensional dt dX

surface. However, it is often possible to identify a reaction

coordinate, such that the energy barrier between initial anwhere

final states is minimized along this specific direction and,

therefore, effectively one can treat the system under consid- < dF\2 -~ 1 dF?
eration as 1D, regarding all other degrges of freedom as a " K= 1+p4(d_x> V) —V1(X)‘§P2&,

bath of harmonic oscillators. In this section, we investigate 2

the simplest multidimensional Hamiltonian describing the 0 EE % (6.7)
nonadiabatic transitions, namely, the<2 matrix potential % wyp

for the X variable (or what are the same two 1D diabatic

potentials crossing considered in the previous sectiand  (recall that we put unity for the bare massin our dimen-
the set of "transverse” harmonic oscillatgig} coupled with  sionless unitg

the reaction coordinat¥, given by In the low-frequency limit, the trajectory equation reads
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. dvy in the adiabatic potential and the nontrivial functier) (we
X= ax PoR(1). (6.9 calculated analyticallydepending on the Massey parameter;
i.e., on the energy and the slopes of the diabatic potentials in
In the p, approximation for the spectral density of oscillators, the crossing region. In the overbarrier region, we found spe-
the terms proportional tpg, neglected in(6.7) [and the last cific resonances between the levels in the lower and in the
term in (6.8)] are small. The physical message of the calcu-upper adiabatic potentials; in that condition, one may not use
lation performed in this section is that the renormalization ofindependent quantization rules. Interesting results have ema-
the effective mass leads to slowing down of the motion, andrated from our consideration of the intermediate energy re-

it is equivalent to saying that the Massey parameter is renodion. For this energy region we calculated the energy level
malized as quantization, using adiabatic basis.

We have presented in this paper all details of the LZ prob-
v— v = Vm (X, (6.9 lem for two electronic states using the connection matrix
) ) ) ) . approach for the LZ problem in the coordinate space, the
whereX_ is the crossing point. Of course, the coupling will approach that turned out to be very efficient for this class of
also change the action along the extremal action trajectorfroblems, and which is important in many areas of pure and
(this effect has been discussed in the literature, see[4]g., applied sciences. Even though only model potentials are in-
The phenomenom specific to the LZ problem is the renorvestigated here, our approach is quite general and has poten-
malization of the Massey paramet€r9), which controls the  tial applicability for various systems in physics and chemis-
main features of the behavior for any system undergoingry, and the results can be tested by their experimental
level crossing. consequences for many examples of molecular systems un-
dergoing conversion of electronic states, nonradiative transi-
VII. CONCLUSION tions, and isomerization reactions, among others. The results
) . . ] of the LZ problem investigations are very relevant for slow

In conclusion, we stress again the main point of our methyomic or molecular collisiong2,33), where the interaction
odology. We have shown that the comparison equations fogf giabatic potentials induces transitions between initial and
the fourth-order differential Landau-Zener equations in theing| electronic states. However, since the interaction is es-
coordinate space can be represented as two decoupled Wek@htial only near the crossing point, one can compute the
equations. The indices and the arguments of the corresponglnnsition probability, linearizing both diabatic potentigdse
ing nger functions defined by the roots of the charac?eristitg,ur consideration in Sec.)lIThe same approximation works
equation(2.15) for the complex wave vectot, and|«[>1in  qguite well for the so-called predissociation phenomena.
the semiclassical approximation. In the framework of our However (in contrast to the atomic and molecular colli-
method, the diabatic potential crossing points are treated agon problemy there are fundamental problems of chemical
two second-order turning points characterized by dif“ferenbhysiCS and molecular spectroscopy where one may not re-
Stokes constant23]. The accuracy of the method dependsrict oneself only to the transition probability calculations,
on anharmonic terms, which are not taken into account in thgyt should know the complete eigenvalues/eigenfunctions
comparison equations, but which are small in the semiclasso|ytion. This is the case, for example, if we are interested in
sical approach over small parameteisd, or &, respec- the calculation of vibrational-tunneling spectra of nonrigid
tively, in the tunneling, overbarrier, and intermediate subre-molecules, or reactive complexes with more than one stable
gion S’ energy windows. In the subregid®i, &, is not a configuration. The lowest multi-well potential of such sys-
small parameter. However, since the asymptotically smootlems is formed from one-well diabatic potentials crossing,
matching is performed at smdK|< y 2, anharmonic cor- corresponding to each stable configuration. Apart from the
rections to the comparison equations can be safely neglectédwest potential, the upper adiabatic potential with its mini-
for this subregion as well. mum above the maximum of the lowest potential should be

We have presented detailed semiclassical analysis of thalso taken into account for these situatigsse Fig. 1 In the
crossing diabatic potentials problem. We examine one impomnost of the calculations of tunneling splittings in the ground
tant (and previously overlookgdaspect of well-known en- and low excited vibrational states, the coupling to the upper
ergy level quantization problem for crossing diabatic poten-potential is neglected, which is certainly correct only for
tials. We derive the semiclassical quantization rules for thestrong enough adiabatic coupling. Evidently, it is not the case
particular situation of crossing diabatic potentials with local-for the levels close to the adiabatic barrier top, and especially
ized initial and localized or delocalized final states, in thein the upper potential well. The quantization of these levels
intermediate energy region, when all four adiabatic states aris noticeable in the spectroscopy of nonrigid molecules, and
coupled and should be taken into account. In fact, it exhaustthe same situation takes place for systems undergoing the
all cases practically relevant for spectroscopy of nonrigidJahn-Teller effect, where the interference of the diabatic
molecules(i.e., with more than one stable configuration states occurs in this energy regifsj.

We use the connection matrix methodology, which pre- One more example for the application of our results are
sents a simple and standardized description of any semiclasiolecular radiationless transitions within excited electronic
sical approximation, and which offers therefore a deeper instates. Typically for this situation, the decay potential is
sight into the mathematical and physical structure of theormed owing to crossing of bound and unbound diabatic
approximation. We found that in the tunneling region, thepotentials. Since the radiationless transitions are followed by
tunneling splitting is represented as a product of the splittindquminescence and chemical reaction phenomees, e.g.,
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[34-37) one should know the complex eigenvalues of the
quasistationary states prepared by optical pumping.

Let us also stress that in real systems, the characteristic
values of the coupling between the diabatic states can vary
within the very wide range from several eV for the electronic
states of the same symmetry to z¢for the states with dif-
ferent sping To treat all these cases, one should know the
solution of the diabatic potentials crossing problem described
in our paper for the corresponding wide range of the Massey
parameter fromy=0 to v>1.
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APPENDIX A

Putting all the Sec. Il expressiorn8.9—3.14) together,
we can recapitulate the matrix elementg of the full con-
nection matrix in the tunneling region:

M1 = Dexp- W) cod A cod W)
~ Sir(mv)
p

expyWy)sin(yYW))sin(yWe), (A1)

My, = gexp(- YW)sin(YW,)cos y\W)
sir’(mrv)

PHYSICAL REVIEW A 69, 062508(2004)

M1 = = - expl= W cod yW)sin( W)

-2

S"’Tf”)exp(ym/*B)sin(yWDcoswvv;>, (A3)

My, = = P exp(— YWg)sin(YW))sin(yWp)
sir?(7v)
p

+4 exp(yWg)cog YW )cos yWr), (A4)
Muiz24= * COS 7v)expx yYWpa/2)sin(YW5),

Myy=— %COiwv)exp(— YW/2)cog W),  (A5)
M3 = — 2 cogmv)exp( YW/2)cog YW),
Ma1/42= % COSmv)exp(x YWe/2)sin(YW,),  (AB)
1
My = ECOS(WV)eXF(‘ VM/Z)COS(VVVL) ,

Mgz = 2 cogmr)exp(WWp/2)cod W), (A7)

SinzF(JWV) yMgy=my3=0. (A8)

Mg3=P; My =

For the overbarrier region, the full connection matrix could
be given in a more compact form. Usin@.17), (3.15,

‘o ext WL Cog W ISIN(WL) . (A2 (3.18, and(3.12 from the main body of the paper, we get
0 A(yWe)CoL W )sin(yWe), (A2) the following matrix:

(2)cod YW g~ @) s sin(yWir— ¢) —exp— mv)sin(YWg)  —exp(— mv)/2 cog YWg)
-ssin(YW g~ ¢®) 2s coYYW g~ &) -2 exg— mv)cog YWg+) exp(— 7v)sin(yWg«) (A9)
—exp(— mv)sin(YW«) 2 exp— 7v)cog YW, «) 2s cod YW + ¢) —ssin(yW + ¢) ’
exp(— 7v)/2 cogyW+)  exp(— wv)sin(YW, ) ssin(yW + ¢) (s/2)cod YW + ¢)
[
whereW =W, +Wg, andW g =W g+ W' /2. in the matching region anharmonic corrections are still small.
The aim of this appendix is to show that the analogous situ-
APPENDIX B ation holds for crossing diabatic potentials points, where two

Weber equations can be successfully used as the comparison
The efficency of the standard instanton approg$39 equations to the fourth-order Landau-Zener equatgf).

(see alsd4,22)) is based on a successful choice of the com-The arguments and the indices of the fundamental solutions
parison equation near second-order turning points, wherg these Weber comparison equations are determined by the
asymptotically smooth matching of semiclassical solutions tqoots of the corresponding characteristic equati@es be-
the solutions of this equation should be performed. It islow and the main body of the paper
known, for examplg21], that for anharmonic potentials, the ~ To prove the statement, let us first substit(2el4) into
Weber equation provides such a very successful choice singeg. (2.7). We get
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D*® + 4kD3® + (6% — 2ay?)D*D equations foix (2.9) and fork (2.15 determine the accuracy
of our approach, let us compare the solutions. The roots of
+4(K3— ay’k— %yzf)DCD+ [k* = 2ay’K? (2.9) at X=0,
- 2%k + Y- U2, - F2X3) 1P = 0, (B1) | —
1 M=t ya+Up Nga=tya—-Up  (B7)

whereD"=d"/dX". Equation(B1) can be formally derived o . _ _

by simple manipulationgtwo sequential differentiations and are moved upon the variation efin the intermediate energy

Summation;from the second-order equation region from the real to imaginary coordinate axis. Analo-
gously, the roots 0f2.15),

D2 + (ag+ a; X + a,X?)® =0, (B2)
where the coefficients are Kpp= % %(Oﬁ Va? Ulz)llz
v
- 2! 2t -
ay= K- ay’ - (1+5) a; = ¥’f6, a,=—*fké,
Y 1/2
Kaa= t —=(a—Va?-u (B8)
(B3) 3,4~ \52( 12)
(2.15, and 5 is given by(2.16. and overbarrier regions, respectively.
The fundamental solutions {®2) read as We conclude from{B7) and(B8) that in the tunneling and
Af2\ 1/4 1 overbarrier energy regions, there is one-to-one correspon-
D {_(7_2> ( - _)} (B4)  dence between the roaksof (2.9) and « of (2.15. Just this
K 2k correspondence allows us to match smoothly the semiclassi-

cal solutions to the Schrédinger equation and the Weber
functions found as the solutions to the comparison equations.
1 [ HAF2\ 12 af It is not the case in the intermediate energy region, where
p=- > + ( ) - (B5) two roots of(2.9) are real and two are imaginary ones having
the same modulus; i.e., moving upenvariation along a

In the tunneling(2.19 and overbarriet2.21) regions of en-  circle with the radiusyyuy,/2. In this case, the semiclassical
ergies, these four solutiori§wo solutions of(B4) for two  solutions can be presented as certain linear combinations of
largest modulus roots of the characteristic equat@15]  the comparison equation solutions. We have found these
can be separated into two independent pairs. In the tunnelingPmbinations in the adiabatic basis in Sec. V. In this appen-
region, the two largest modulus roots(@f15 are(two other ix, we show how to solve the same problem in the diabatic

roots are small and do not satisfy semiclassical appjoach basis, and it reveals more clearly and explicitly an estimate
of the omitted terms in the equation and the areas where the

1+ 52 KS B l( 22 solutions become wrong and where the matching procedure
K=K\ 1255 2 —ay?)’ o= S\ Ve - ug is carried out. Indeed, the roots (£.15 in the intermediate
0 energy region(2.25 are

where

K2 4a2 '

(B6)
i i find (neglectings? ie., f - Y2 =t W 2ay i
Putting(B6) into (B5), we find (neglectings” terms, i.e., for Kip= %7 ) explio), Kk3ga= iy ) exp-ig),

Kk=kg) four fundamental solutions to the comparison equa-
tion in the form(2.18). Thus, from the expressions given (B9)
above and?2.16) and(2.17) from the main text, we conclude
that the solution®, & (2.18 can be expanded over our small where
paramete®, and due to the conditiof2.16) anharmonic cor-
rections to the Weber functiond4) are small(in other tan o = Up—a
words, the paramete$ determines the accuracy of our ap- ¢= Upt+a
proximatior). Indeed, the anharmonic terms neglected in the
Weber comparison equations are of the orded @it is an  Correspondingly to these root810), the arguments and the
upper estimation aK=«/f, i.e., at the boundaries of the indices of the Weber function®4) and(B5) read as
intermediate energy regignthus the corrections are small _
according to(2.16). The same kind of analysis can be per- 2, =2, = 2kin\ SneXp(— i @/2)[X + (2kin) texp—i@)],
formed in the overbarrier regiof2.21), where one finds two (B11)
imaginary largest modulus roots of the characteristic equa- =7,= 2k & exdi + (24 ) Lexn(i
tion. The roots are given byB6) with «; and the small %= 24 = 2uin\ Sm@XH 2 X+ (2rcm) " expli )],
parameters defined according t¢2.22) and(2.23). and

One simple observation helps to perform the same analy-
sis for the intermediate energy regio2.25. Indeed, since
the differences between the solutions to the characteristic

(B10)

y ;mexp(— QL + &, expl- 2],

P1=p-1=-1-
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) _ for the Weber functions with large arguments and indices
explip)[1+ &exp2ig)], (31,32,

= 1=-1 1
P4=P3 = 15

int

(B12) p{ 1J{ ( 1)]1’2 }
D2 xexpy—= | |ZZ-4lp+= dz(, (B15)
where kine= (U2l 202, and 8= (¥20)/ (4k5,). " 2 2

Using known asymptotics of the Weber functions due towe can find asymptotics to the solutions(82) and
Olver ([31,32), we are in the position to compare the semi-

classical functions with the solutions to the comparison . )
. . . = /g + +
equations. The former functions are determined by the expo- Do exp( ! f Vo 3y X + X dx), (B16)

nential factor . _ .
valid at arbitrary values of the parametets(a,=0 includ-

ing). This relation (B16) provides asymptotically smooth
matching of the semiclassical solutions with the Weber func-
tions in the intermediate subregid® (where k is of the
while the exponential factors entering corresponding asympoerder of y> 1), and with the Airy solutions in the subregion
totics of the Weber functions are S, whenx=\y.
— . This consideration provides the justification of our ap-
F12) = y\Upz# a1 + 8 X kS expl= 21¢)X? proach described in the main body of the paper. As is seen
yf2 a 5 from (B13), and from(B14) at small«, the accuracy of the
1t— =9 |X (B14)  asymptotically smooth matching of the semiclassical solu-
tions with the Weber functions is of the order 8f;, and,
Let us consider now the intermediate subregi®n |a| close to the energetic boundarighs25 of the intermediate
<(f/y)?3 anduy,<2/y, [see(5.3)], where(2.16) does not  region, anharmonic correctioriX®) are increased. Thus, we
hold. Luckily, however, the asymptotically smooth matchingconclude that the matching for this cage25 can be per-
is performed at smalX| < y 2, where the comparison equa- formed either in the adiabatic bagis has been done in Sec.
tion (B2), and, therefore, the characteristic equati@ril5 V) or in the diabatic basis as we have shown in this appen-
are valid(although ¢ is not a small parameterin this sub-  dix. The simplest way to prove the equivalence of the both
region, we have to take into consideration the t&(m, 6) in representation is to transform into exponential forms the fac-
(2.15. At =0 andu,;,=0, the characteristic equation has tors like (X+Y,)% etc., entering the solution(s.6) and(5.7),
one double degenerate raet 0, or correspondingly inB2),  found in Sec. V. In both methods, the accuracy is of the order
a,=0. Thus, the comparison equations are reduced to twof &, and the connection matrices presented in Appendix A
decoupled Airy equations. Using known Olver asymptoticsdo not depend on the basis.

yf2

———X3  (B13
12U12\"U12i o

Fs(X) = pVUp+ aX+

—+

/
1ZU12VU121 o u_‘]_2
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