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We examine one important(and previously overlooked) aspect of well-known crossing diabatic potentials or
Landau-ZenersLZd problem. We derive the semiclassical quantization rules for the crossing diabatic potentials
with localized initial and localized or delocalized final states, in the intermediate energy region, when all four
adiabatic states are coupled and should be taken into account. We found all needed connection matrices and
present the following analytical results:(i) in the tunneling region, the splittings of vibrational levels are
represented as a product of the splitting in the lower adiabatic potential and the nontrivial function depending
on the Massey parameter;(ii ) in the overbarrier region, we find specific resonances between the levels in the
lower and in the upper adiabatic potentials and, in that condition, independent quantizations rules are not
correct;(iii ) for the delocalized final states(decay lower adiabatic potential), we describe quasistationary states
and calculate the decay rate as a function of the adiabatic coupling; and(iv) for the intermediate energy
regions, we calculate the energy level quantization, which can be brought into a compact form by using either
adiabatic or diabatic basis set(in contrast to the previous results found in the Landau diabatic basis). Appli-
cations of the results may concern the various systems; e.g., molecules undergoing conversion of electronic
states, radiationless transitions, or isomerization reactions.
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I. INTRODUCTION

There has been great progress in the theory of crossing
potentials during the last seven decades(see, e.g., the refer-
ences in both research and textbook literature[1–9]). Sur-
prisingly, a seemingly simple but basic question as to how
well-known semiclassical quantization rules should be modi-
fied for this particular situation(crossing diabatic potentials
with bound (i.e., localized) initial and localized or delocal-
ized final states) to the best of our knowledge are still unan-
swered(at least, a complete and unifying description of the
quantization for a general case is still not available and a
number of other questions remain to be clarified).

Partially, this is related to the fact that, unfortunately, ex-
perimental data in this field are still scarce and not very
accurate. However, the situation is now changing. Experi-
mental techniques(e.g., the increasing precision of experi-
mental tests in the femtosecond laser pulse range enables us
to excite well-defined molecular states and to study their
evolution in time using the second probing laser beam
[5,10,11]) have progressed to the point where molecular tun-
neling splitting dependence on energy can be measured in
well controlled conditions with a very high accuracy. It
would therefore seem appropriate at this time to take a fresh
look at the theory, which is the purpose of the present article.
Note also that these questions are not only of interest in their

own intellectual right. Recent experimental and theoretical
advances[12,13] in particular are beginning to yield a coher-
ent understanding of several phenomena that are far from
requiring minor corrections to the standard adiabatic treat-
ment of the problem. Physically, such types of situations can
occur as a result of nonadiabatic interactions of different
electronic states forming in crossing one-well diabatic vibra-
tional potentials. Adiabatic coupling removes diabatic level
crossing, and the diabatic levels are replaced by the adiabatic
ones(see Fig. 1 illustrating this phenomenon). In the case of
a large adiabatic splitting(see precise criteria below), one
can restrict oneself to the only lower adiabatic potential
(symmetric or asymmetric double-well, or decay potential
for the systems under consideration) and neglect any influ-
ence of the upper adiabatic potential(parabolic one-well for
our case). However, in a general case of arbitrary adiabatic
splittings, intrawell and interwell dynamics depend on both
adiabatic potentials(i.e., on tunneling and adiabatic split-
ting). With respect to applications, the studies of these ques-
tions may concern the various molecular systems undergoing
so-called conversion of electronic states, isomerization reac-
tions, or radiationless transitions arising from “intersystem”
crossings of potential energy surfaces in molecular spectros-
copy and chemical dynamics, or inelastic atomic collisions.

It is worth noting that there exists a huge literature de-
voted to different approaches that have been made by other
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authors concerning the problem of crossing diabatic poten-
tials (see, e.g.,[2,3,6–10,14–20]), but some important differ-
ences to our work should be noted. First, suffice it to say, that
the problem of how diabatic potentials crossing modifies the
adiabatic potentials(occurring as a result of this crossing)
quantization rules has not been investigated at all. One of the
reasons, is that for many standard rigid molecules with quite
large adiabatic splitting of energy levels, one may safely ne-
glect any influence of the upper adiabatic potential(i.e., to
use the standard quantization rules). However, nowadays the
increasing precision of experimental tests of molecular tun-
neling splitting and decay(and also investigations and syn-
thesis of more and more new nonrigid molecules), makes the
study of this problem relevant and actual. Second is a me-
thodic note. All previous approaches were based on the gen-
eral semiclassical WKB formalism. The crucial point to treat
quantization for crossing diabatic potentials is how to com-
pute the contribution coming from the contour around a com-
plex turning point. The accuracy of the WKB method can be
improved considerably[14–17] (more recent references on
so-called Laplace contour integration can be found also in
[2,13]) by the appropriate choice of the integration path
around the turning point. This method, attributed to Landau
[1], appears to be quite accurate for the tunneling and over-
barrier regions(however, even in this case there are some
non-negligible corrections found in the papers[6,18,19]), but
in the intermediate energy region(where there are relevant
contributions from all four quantum states occurring at the
crossing diabatic potentials) the method becomes completely
inadequate. Besides the choice of these additional special
trajectories(which one has to include to improve the accu-
racy of the WKB method, and along which the semiclassical
motion is described by the Weber functions) depends on the
detail form of the potential far from the top, and therefore for
each particular case the nonuniversal procedure should be
performed from the very beginning.

The essential simplification of the procedure achieved us-
ing the standard WKB semiclassical approximation in the
momentum space representation was also proposed in the
literature [2,6,15–19]. The method works well to compute
the Landau-ZenersLZd transition probability; however, the

application of this approach to the level quantization prob-
lem is difficult to realize. Indeed, the problem requires one to
know the eigenfunctions in the coordinate space, and one
cannot bluntly use the Fourier transform of the functions
found in the momentum space, since the WKB method gives
us only asymptotics of the eigenfunctions. These drawbacks
of the WKB-like methods did not allow the study of the level
quantization for crossing diabatic potentials in the previous
investigations; here, we explicitly addresses the question on
the behavior in the intermediate energy region. In all previ-
ous publications, this region was considered as a very narrow
and insignificant one, or in the best case the results were
obtained by a simple interpolation from the tunneling(with
monotonic decay of the transition probability) to the overbar-
rier (with oscillating behavior) regions.

Recently, we have shown[21] that semiclassical solutions
of many eigenvalue problems can be simplified by consider-
ing second-order turning points. The fact is that one second-
order turning point replaces two close linear turning points.
Moreover, it turns out(see below) that connection matrices,
which link on the complex plane the solutions to the
Schrödinger equation in the vicinity of the crossing point
with the asymptotic solutions far from this point, can be
calculated from the solutions of the Weber equation. Increas-
ing and decreasing solutions in the classically forbidden re-
gion around a second-order turning point, are characterized
by the action that has a minimum along a certain trajectory,
to which we will refer in what follows as the instanton tra-
jectory. The same kind of Weber equation can be formulated
to calculate the connection matrices in the vicinity of a
saddle point(or a maximum) of the potential, but besides we
should also relate increasing and decreasing solutions at the
crossing point(see also our recent publications on LZ cross-
ing phenomena[22]).

Our aim is to construct semiclassical wave functions. To
do it, we use connection matrix methodology that can be
applied to any semiclassical approximation, but details of the
method depends on the order of the turning points. For the
second-order turning points that are minima of a potential,
the whole procedure is equivalent to the traditional instanton
approach, and the imaginary time(i.e., after Wick rotation)
instanton trajectories correspond to the periodic orbits be-
tween the turning points, and the connection matrices in this
case(see below and Appendix A) are real-valued ones. It is
not the case for the second-order turning point, which is the
potential maximum. The complex-valued connection matrix
links two regions of infinite motion. Formally, one might
refer to the corresponding wave functions also as instanton
ones, applying the Wick rotations twice. LZ crossing points
are combinations of two second-order turning points with
two different Stokes constants[23] corresponding to one
minimum and one maximum of the potential. In the tunnel-
ing region, there exist periodic orbits for two solutions, while
two others correspond to unrestricted(infinite) motions. As
above, we will call these wave functions instanton ones since
they are Weber functions(as in the traditional instanton
method), but with complex-valued arguments occurring as a
result of complex coordinate frame rotation.

FIG. 1. Potentials in the vicinity of the diabatic potentials cross-
ing point U#: The diabatic potentials(thin lines, 1,2), the adiabatic
potentials(bold lines, 3,4), the adiabatic coupling energyU12, and
E0 is the characteristic zero-point oscillations energy in the para-
bolic barrier approximated the lower adiabatic potential near its top.
The tunneling energyE region is shown by a broken line.
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Thus, our approach in this paper is based on the minimi-
zation of the functional of classical action in the upside-
down potential, so-called instanton type approach, which
represents the most important area of the configurational
space where the semiclassical wave functions are localized
(see[4,13–22]). The whole analysis can be brought into a
more elegant form by introducing connection matrices that
link, on the complex plane, the semiclassical solutions to the
Schrödinger equation for the model potential of the problem
under study and the exact solutions of the so-called compari-
son equation that is valid near the crossing point, where one
can approximate the potential by linear or parabolic ones.
The explicit calculations of the connection matrices are
rather involved since one should treat the four fundamental
solutions to the left and to the right regions with respect to
turning or crossing points. Therefore, the connection matri-
ces we are looking for are 434 matrices. Although the gen-
eralization for our case of the already known 232 connec-
tion matrices (see, e.g., [23,24]) is straightforward, it
deserves some precaution as it implies quite different proce-
dures for the energy(more accurately forE/g, whereg@1 is
the semiclassical parameter, see below) smaller than(the tun-
neling region), larger than(the overbarrier region), or of the
order (the intermediate region) of the potential barrier en-
ergy. Within the framework of the connection matrix ap-
proach, we present a full and unified description of a one
-dimensionals1Dd (which very often can be a quite reason-
able approximation for real systems) level quantization prob-
lem for diabatic potentials crossing.

The remainder of our paper has the following structure.
Section II contains basic methodical details and equations
necessary for our investigation. Except for a mathematical
trick that eliminates a large amount of tedious algebra and
allows us to construct a regular method for calculating higher
order perturbative corrections, the section contains already
known results. Our current physical results are collected in
Secs. IV–VI, and partially in Sec. III, where we calculate all
needed connection matrices, which provide a very efficient
method of finding semiclassical solutions to the Schrödinger
equation in potentials having several turning points. The
knowledge of the connection matrices is important and sig-
nificant not only in itself, but also for developing a good
analytical approximation and standardized numerical proce-
dures. In Sec. IV, we find the quantization rules for the tun-
neling and overbarrier energy regions. Section V is devoted
to the intermediate energy region, where all four states oc-
curring at the diabatic potentials crossing should be regarded
on the same footing. Different particular cases, depending on
the ratio of the model parameters, are also examined in this
section. In Sec. VI, we investigate the linear coupling of the
LZ system to harmonic phonons and find that it renormalizes
by the parameters entering the initial diabatic potentials
crossing problems considered in the previous Secs. IV and V.
The last section VII contains summary and discussion. In
two appendices to the paper, we collect some more special-
ized technical material required for the calculations of the
connection matrices in different energy windows(Appendix
A), and to reduce the fourth-order Schrödinger equation to
two independent second-order Weber equations(Appendix
B). Those readers who are not very interested in mathemati-

cal derivations can skip these appendices, finding all essen-
tial physical results in the main text of the paper.

II. FOURTH-ORDER COMPARISON EQUATION
FOR THE CROSSING POINT

To move further on smoothly let us first describe our strat-
egy. First, we should define all notations and relevant points
of the diabatic potentials crossing problem. We depict the
typical situation in the vicinity of the diabatic potentials
crossing point in Fig. 1. The diabatic potentials(1,2) are
shown by thin solid lines, the adiabatic potentials(3,4) by
bold solid lines. In addition, we have introduced in the pic-
ture the adiabatic coupling energyU12, the crossing point
energyU#, andE0 is the characteristic zero-point oscillations
energy in the parabolic barrier approximating the lower adia-
batic potential near its top.

As a model for diabatic potentials in this paper, we choose
two parabolasUL andUR with a symmetrical crossing at the
point x=0. To be specific, let us consider two types of the
diabatic potential crossing depicted in Fig. 2. The corre-
sponding adiabatic potentials are, respectively, the double-
well or decay lower potential, and the one-well upper adia-
batic potential. At arbitrary values of the parameterU12 to
find eigenstates and eigenfunctions for our model potential,
we should solve the coupled Schrödinger equations

−
1

2

d2QL

dx2 + g2fULsxd − EgQL = g2U12QR,

s2.1d

−
1

2

d2QR

dx2 + g2fURsxd − EgQR = g2U12QL.

Here,g@1 is the semiclassical parameter that is determined
by the ratio of the characteristic potential scale over the zero
oscillation energy(i.e.,g;mV0a0

2/", wherem is a mass of a
particle,a0 is a characteristic length of the problem, e.g., the
tunneling distance,V0 is a characteristic frequency, e.g., the
oscillation frequency around the potential minimum).

These equations(2.1) can be written as one fourth-order
equation, e.g., forQL, as

FIG. 2. The diabatic level crossing phenomena:(a) bound initial
and final states;(b) bound initial and decay final states.
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d4QL

dx4 − 2g2fULsxd + URsxd − 2Eg
d2QL

dx2 − 4g2dUL

dx

dQL

dx

+ 4g4FsUL − EdsUR − Ed − U12
2 −

1

2g2

d2UL

dx2 GQL = 0.

s2.2d

In what follows, we useV0 and a0 to set corresponding
dimensionless scales, e.g., dimensionless energye=E/gV0,
uL/R=UL/R/ sg"V0d, u12=2U12/ sg"V0d (we introduce factor
2 in u12 for ease of writing the equations below), coordinate
X=x/a0, and we put"=1 (except where explicitly stated to
the contrary and where the occurrences of" are necessary
for understanding).

Luckily, Eq. (2.2) admits semiclassical solutions by the
Fedoryuk method[25–27] since the coefficients at the
nth-order derivatives proportional tog−n, and therefore so
small that higher order derivatives of the prefactor(in the
semiclassical form the wave function can be always pre-
sented as the prefactor times the exponent) can be safely
neglected in finding of asymptotic solutions. The Fedoryuk
method makes possible to find asymptotic solutions to the
ordinary differential equations of the form

ysnd + o
k=0

n−1

gn−kfksXdyskd = 0, s2.3d

where we designatedyskd;dky/dXk, and the coefficients at
the derivativesfksXd are arbitrary functions ofX. Note that
Eq. (2.2) for Q has this Fedoryuk form. By the standard
semiclassical substitutiony=A expfgWsXdg, (2.3) can be
reduced to the set of equations combining the terms propor-
tional to gn, gn−1

¯, which for g@1 can be represented in
the form of generalized so-called Hamilton-Jacobi and trans-
port equations, respectively, as

Fsld = ln + o
k=0

n−k

fksXdlk = 0, s2.4d

and

dF

dl

dA

dX
+

1

2

d2F

dl2

dl

dX
A = 0, s2.5d

wherel=−gdW/dX.
Noting that in the vicinity of the crossing pointX=0, the

parabolic diabatic potentials can be replaced by the linear
ones counted from the barrier topU#, as

uL/RsXd = u# ± fX s2.6d

[as above,u#=U#/ sg"V0d], and eventually Eq.(2.2) can be
presented into a more compact and simple form

d4QL

dX4 − 2g2a
d2QL

dX2 − 2g2f
dQL

dX
+ g4fa2 − f2X2 − u12

2 gQL = 0,

s2.7d

where in our dimensionless unitsa=2su#−ed.
The roots of the characteristic polynomial for(2.7)

Fsl,Xd = l4 − 2g2suL + uR − 2edl2 − 4g2duL

dX
l

+ 4g4FsuL − edsuR − ed − u12
2 −

1

2g2

d2uL

dX2 G
= 0, s2.8d

or in the equivalent form

Fsld = l4 − 2ag2l2 − 2g2fl + g4sa2 − u12
2 − f2X2d,

s2.9d

determine independent solutions to(2.7). Solving the equa-
tion Fsld=0 perturbatively overg−1!1, we find

l j = l j
0 + l j

1, s2.10d

where

l j
0 = ± gfa ± Îu12

2 + f2X2g1/2 s2.11d

and

l j
1 = ±

f

2Îu12
2 + f2X2

, s2.12d

we find finally the four asymptotic solutions of(2.7)

hyjj ; hQ+
+,Q+

−,Q−
+,Q−

−j = SdF

dl
D−1/2

expFE
0

X

l jsX8ddX8G .

s2.13d

The subscripts in(2.13) correspond to the upper or lower
adiabatic levels, and the superscripts refer to the sign of the
action.

As was mentioned above, in the vicinity of the crossing
point one can replace(2.2) by (2.7), and by the substitution

QL = expsk1,2XdFL
1,2, s2.14d

we can find the equation fork as

k4 − ag2k2 +
1

4
g4u12

2 = − k4d2s1 + 2dd + Rsk,dd,

s2.15d

where

Rsk,dd = s2k6d−1s1 − 3dds1 + dd−3f1 − Q − Î1 − 2Q2d,

Q = 8d2s1 + dd,

d =
g2f

4k3 ,
1

4
, s2.16d

and

k1,2= ± gÎaS1 −
d2

2
D . s2.17d

It can be proved that the fourth-order equation(2.7) in vari-
ables(2.14) is reduced to the equation with constant coeffi-
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cients in front of all derivatives and with the free term in the
form of a quadratic overX function. When the exponent in
(2.14) is a solution to Eq.(2.15), the transformed equation is
reduced to the Weber equations upon neglecting anharmonic
terms likeX2dF/dX, X3FsXd, andX4FsXd. We presented all
details of this reduction in Appendix B. Thus, Eq.(2.7) is
reduced to two independent Weber equations with the known
fundamental solutions[28]

hQLj = Hexps±gÎaXdD−nFS f2g2

a
D1/4

XG ,

s2.18dHexps±gÎaXdD−1−nFS f2g2

a
D1/4

XGJ ,

where n=gu12
2 / s4fÎad is the so-called Massey parameter.

The corrections to the indices of the parabolic cylinder func-
tionsD and to the arguments of these functions can be found
from (2.15).

Presented above, the leading terms of these solutions cor-
responding to the tunneling case(here we use a dimensional
energyE) given by

E , sU# − U12d s2.19d

(in our dimensionless units it isa.u12), where the charac-
teristic fourth-order polynomial(2.8) can be reduced to the
second-order one(i.e., two pairs of roots are nearly degener-
ate), are known in the literature(see, e.g.,[1–4]) but the
Fedoryuk method we used also gives us in the tunneling
region the higher order over the parameterd (2.16) correc-
tions.

In the tunneling region(2.19), one can expand the roots of
(2.15) in terms of the parameterd (2.16). Using the substi-
tution (2.14) to transform(2.2), we can find easily that at the
conditions(2.15), (2.16), the coefficients at the fourth- and at
the third-order derivatives in the transformed fourth-order
differential equation forF are small(proportional tod and to
Îd, respectively), and thus this fourth-order equation can be
rewritten as two second-order Weber equations with the so-
lutions

Dps1,2dsbXd,

where

ps1d = − 1 +
d

4
− n,ps2d =

d

4
− n,b = Sg2f2

a
D1/4S1 +

d2

4
D .

s2.20d

The same manner in the overbarrier energy region, i.e.,

E . sU# + U12d s2.21d

[again as in(2.19) we have used dimensional units, and in
dimensionless form(2.21) reads as −a.u12] when the en-
ergy is larger than the upper adiabatic potential minimum,
the roots of Eq.(2.8) are complex conjugated and have the
same structure as presented above[see also(B6)] for the
tunneling region with the rootsk given as

k1,2= ± igÎuauS1 −
d̃2

2
D . s2.22d

In addition, in(B6),

k0 = i
g

Î2
suau + Îa2 − u12

2 d,

and with d̃ playing the role of the small parameter in this
region, i.e.,

d̃ =
f

4guau3/2. s2.23d

Again as above for the tunneling region, the coefficients at
the higher order derivatives are small and, therefore, the
function F (2.14) satisfies the Weber equation with the fun-
damental solutions

Dp̃s1,2dsb̃s1,2dXd,

where

p̃s1d = − 1 − i
d̃

4
+ i ñ,p̃s2d = i

d̃

4
+ i ñ,

b̃1 = expsip/4dSg2f2

uau D
1/4S1 +

d̃2

4
D , s2.24d

b̃2 = exps− i3p/4dSg2f2

uau D
1/4S1 +

d̃2

4
D

(ñ is defined as the Massey parameter entering(2.18) with
a→ uau; i.e., ñ=fgu12

2 / s4fÎuaug). As it was for the tunneling
region (2.20), the leading terms of the expansion(2.24) co-
incide with the well-known results, but from(2.24) we are
able to compute the corrections to the main terms.

The analogous task for the intermediate energy region(in
dimensional units), i.e.,

sU# + U12d ù E ù sU# − U12d, s2.25d

is much more tricky. Our results will be presented in Sec. V,
but a few comments are necessary here. In the problem we
have three dimensionless parameters characterizing the en-
ergy sad, the level couplingsu12d, and the potentialsfd, and
for the ease of semiclassical estimations, we also keep the
semiclassical parameterg@1. Note also that these param-
eters are not independent ones, and the relationu12=2f2

(which will be useful in our further consideration) should be
satisfied. In terms of these parameters within the intermedi-
ate energy region(2.25), we have the subregionS8, uau
ø2g−1 and u12ø2g−1, and the intermediate subregionS9,
where gÎu12/2@1. In Sec. V, we calculate the connection
matrices for both subregions; details of the reduction proce-
dures, which are different inS8 (where the comparison equa-
tions are reduced to two decoupled Airy equations) and S9
(where these comparisons equations are Weber ones) are de-
scribed in Appendix B.
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III. CONNECTION MATRICES

The purpose of this section is to briefly indicate the main
steps in the derivation of the connection matrices. The
matching points we must find to quantize the energy levels
depend essentially on the energy window under consider-
ation [(2.19), (2.21), and (2.25)]. The tunneling region is
placed in the lower adiabatic potential. In the WKB method,
in this case starting from the crossing pointsX=0d, one has
to investigate the classically forbidden region in the lower
adiabatic potential barrier[see Fig. 3(a) and the correspond-
ing figure caption for all notations]. The solutions can be
found easily in the vicinity of the crossing point, but to de-
rive the quantization rules, one should also know the solu-
tions quite far from the crossing point. To do it explicitly in
the WKB method, we should match the two exponentially
decreasing and two exponentially increasing solutions in the

barrier with the oscillation solutions in the wells. Techni-
cally, the matching should be performed asymptotically; i.e.,
at small uXu but for large enoughÎguXu. To do it one has to
calculate all needed connection matrices(namely, at the
crossing point, and at the linear and second-order turning
points, and the shift matrices from the crossing point to the
turning points in the classically forbidden region and be-
tween the turning points in the classically accessible region).
Within the instanton type method, the trajectory goes through
only the classically forbidden region[see Fig. 3(b)], and
matching should be performed only at two second-order
turning points. In the overbarrier energy region(see Fig. 4),
the matching is performed by using the crossing point con-

FIG. 3. Connection matrices for the tunneling energy region:(a)
in the WKB approach to the lower states, whereM± are the con-
nection matrices for the linear turning points, andUc for the cross-
ing point; the shift matrices are depicted as arrows, in the classically
accessible regionsLL andLR, and in the classically forbidden region
FL and FR (for the upper states there are no real-valued turning
points); (b) in the instanton type method, one has two connection
matricesML/R

s2d for the second-order turning points and shift matrices
FL andFR in the classically forbidden region.

FIG. 4. Connection matrices for the overbarrier energy region.
The shift matrices from the crossing point to the inner turning
points are designated byL (all other notations are the same as in
Fig. 3).

FIG. 5. Connection matrices for the intermediate energy region
(as in the tunneling region, there are no real valued turning points
for the upper states).

FIG. 6. The matching of the asymptotic solutions in the tunnel-
ing region for the diabatic levels crossing shown in Fig. 1(a): 1 - the
function FL

+sXdÎ2p /Gs1+nd; 2- the functionFL
−sXd; 3 - the func-

tion FR
+sXdÎ2p /Gs1+nd; 4 - the functionFR

−sXd; 18 - the func-
tion expsk0XdD−1−nsbXd; 28 - the function expsk0XdD−1−ns−bXd;
38 - the function exps−k0XdD−1−nsbXd; 48 - the function
exps−k0XdD−1−ns−bXd.
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nection matrixÛc8, the shift matrixL̂ connecting the crossing
point and the linear turning points at the upper adiabatic

potential, and the shift matricesL̂L/R belonging to the diaba-
tic potentials. In this case, all matching solutions are oscil-
lating ones. Finally, for the intermediate energy region, there
are no real-valued turning points for the upper states(see
Fig. 5), and the matching between two oscillating and two
exponentially varying solutions is determined by the connec-
tion matrix (see Fig. 5) linking the linear imaginary turning
points of the adiabatic potentials.

To recast the analysis into a compact form, it is conve-
nient to formulate the general procedure for calculating the
connection matrices for arbitrary combinations of the first-
and second-order turning points. After that, the procedure
can be applied to any particular problem under investigation.
To do it, one has to extend the linear turning points proce-
dure which is already known[23]. For a generic semiclassi-
cal equation

d2C

dz2 + g2qszdCszd = 0, s3.1d

in the limit g@1, the Stokes and anti-Stokes lines are deter-
mined by the respective conditions

Re Wszd = 0 s3.2d

and

Im Wszd = 0, s3.3d

where the action

Wszd =Ez
Îqszddz. s3.4d

The lower integration limit in(3.4) is not relevant because
we are interested in semiclassical solutions for largeuzu.
These Stokes and anti-Stokes lines separate the complex
planez into the sectors. On the anti-Stokes lines, the increas-
ing and decreasing solutions become equal, and the type of
the solution is interchanged upon crossing the anti-Stokes
lines. The Stokes lines are bisectors between neighboring
anti-Stokes lines. After the crossing with the Stokes line, one
should add to the coefficient at the decreasing solution the
coefficient at the increasing solution times so-called Stokes
constant. The latter one occurs as a result of going around the
turning point and depends on the turning point type.

To find the connection matrices for the tunneling region,
we have to establish the correspondence between the solu-
tions of the fourth-order differential equation(2.2) and those
for the localized in the leftsLd and in the rightsRd wells
states. In the casea@ f uXu for the diabatic potentials, the
action can be computed starting from the both wells(R and
L), as

gWL
* . gW0L

* + k0X +
b2

4
X2,

s3.5d

gWR
* . gW0R

* − k0X +
b2

4
X2,

wherek0=gÎa is imaginary momentum(U# sets the energy
corresponding to the diabatic potentials crossing point), and
W0

L,R are the actions computed from an arbitrary distant point
in theL or in theR wells, respectively, to the pointX=0. On
the other hand, in the adiabatic potentialsu±

=u#±Îu12
2 + f2X2, the corresponding actions can be repre-

sented as

gW± − gW0
± = k0X ±

b2

4
X2sgnsXd. s3.6d

Explicitly comparing the semiclassical wave functions in the
both representations(adiabatic and diabatic ones), it is easy
to see that the adiabatic functions in the potentialU− coin-
cide with the diabatic functions for localizedL andR states
at X,0 andX.0, respectively. The adiabatic functions for
the upper potentialU+ correspond to the tails of the diabatic
wave functions localized in the opposite wells. Therefore, in
the level crossing region theL /R diabatic functions are trans-
formed into theR/L functions, and the interaction entangles
the diabatic states with the same sign ofk0X. Thus, we have
only four nonzero amplitudes of the following transitions:

kFL
+uFR

−l,kFL
−uFR

+l,kFR
+uFL

−l,kFR
−uFL

+l. s3.7d

Recalling that

gW± = gE sa ± Îu12
2 + f2X2d1/2 . k0X ±

b2

4
X2 ±

n

2
s1 − ln nd,

s3.8d

we come to the conclusion that the quantum solutions(2.20),
valid in the vicinity of the level crossing point asymptoti-
cally, match increasing and decreasing solutions smoothly,
leading to the Landau description[1] of the level crossing
transitions. To illustrate the analytical results presented
above, we show schematically in Fig. 6 the matching of the
asymptotic(Fedoryuk) solutions(2.13) for the crossing di-
abatic potentials with localized initial and final states via the
Weber functions in the tunneling region. We use the symmet-
ric basis constructed from the functions(2.13) (see detailed
description in the Fig. 6 caption).

In the tunneling region(2.19) for every well (L or R),
there exist exponentially increasing and decaying real-valued
solutions to the Schrödinger equation. The solutions are
matched at the crossing point; therefore, they are linked by
the real-valued 434 connection matrix, which should have
two 232 blocks linking the increasing(decreasing) diabatic
solution in theL-well with the decreasing(increasing) diaba-
tic solution in theR-well, in the agreement with the standard
Landau scheme of the tunneling transitions[1]. Omitting a
large amount of tedious algebra, we can represent the con-
nection matrix linking the “asymptotic”[i.e., in the left/right
sL ,Rd wells and for the upper/lowers+,−d adiabatic poten-
tials] solutions in the tunneling energy region in the follow-
ing form:
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1
FR

−

FR
+

FL
+

FL
−
2 = SM̂c

s+dL̂R
scdM̂c

s−dF̂c 0

0 1̂
D

3ÛcSF̂cM̂c
s+dL̂L

scdM̂c
s−d 0

0 1̂
D1

FL
+

FL
−

FR
−

FR
+
2 . s3.9d

Here,Ûc is the 434 connection matrix at the crossing point,
which in the tunneling region has the form

Ûc = 3
p 0 0 − cosspnd
0 fsin2spndg/p − cosspnd 0

0 cosspnd p 0

cosspnd 0 0 fsin2spndg/p
4 ,

s3.10d

where we designated

p =
Î2p exps− 2xd

Gsnd
, s3.11d

and x=sn /2d−s1/2dfn−s1/2dgln n. The matricesM̂c
s+d and

M̂c
s−d are the 232 connection matrices at the corresponding

turning points, which are determined by the phase shifts at
these points

M̂c
s−d = S 1 − i

− si/2d s1/2d
D , s3.12d

and M̂c
s+d is the matrix Hermitian conjugated to(3.12). The

L̂L/R
scd and F̂c matrices are called shift matrices, and those are

related to the variations of the coefficients of increasing and
decaying semiclassical solutions in the regions between the
turning points(F̂c is the shift matrix when one moves from
the crossing to the turning point in classically forbidden re-
gion, andL̂L/R

scd are the shift matrices in the classically acces-
sible regions). Explicitly, we get

F̂c = Sexps− gWB
* /2d 0

0 expsgWB
* /2d

D . s3.13d

Here,WB
* is the action in the lower adiabatic potential barrier.

Finally, the structure of the shift matricesL̂L/R
scd is

L̂L/R
scd = SexpsigWL/R

* d 0

0 exps− igWL/R
* d

D , s3.14d

where WL/R
* is the action calculated by the integration be-

tween the turning points. We present explicit expressions for
the total connection matrix in Appendix A.

The overbarrier region(2.21) can be treated in the same
manner. In this case, the crossing point is in the classically
accessible region for the both potentials. The fundamental
diabatic solutions can be represented as the waves propagat-
ing in the opposite directions, and the complex-valued con-
nection matrix has as it was for the tunneling region 232
block structure, where the blocks link the waves in theL and
R wells propagating in the same direction. Specifically, the
corresponding connection matrix at the crossing pointÛc8,

Ûc8 = 3
s exps− ifd 0 0 − exps− pnd

0 s expsifd − exps− pnd 0

0 exps− pnd s exps− ifd 0

exps− pnd 0 0 s expsifd
4 , s3.15d

where we denoted s=Î1−exps−2pnd, f=argGs−ind
+Ims2x̃d, and

x̃ = − si/2dfsp/4d + ns1 − ln ndg + s1/4dspn + ln nd,

s3.16d

should be multiplied by two blocks: the block from the left
gives the contribution at the turning point and includes the
shift matrix to the crossing point inL and inR wells of the
lower adiabatic potential, and the right block is related to the
turning point and to the shift matrix to the crossing point in

the upper one-well adiabatic potential. Thus, finally, in the
overbarrier region, we get

1
FR

−

FR
+

FL
+

FL
−
2 = SM̂c

s+dL̂R
scd 0

0 M̂s+dL̂
DÛc8SL̂L

scdM̂c
s−d 0

0 L̂M̂s−d
D1

FL
+

FL
−

FR
−

FR
+
2 .

s3.17d

Here, we used the same notations as above for the tunneling

region, the matricesM̂s±d are transposed with respect to the

matricesM̂c
s±d given in (3.12), and the new shift matrixL̂ is
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Sexps− igW* /2d 0

0 expsigW* /2d
D s3.18d

(recall thatW* is the action in the upper adiabatic potential).
Combining(3.12)–(3.18), one can trivially find the full con-
nection matrix for the overbarrier energy region(2.21). We
present the explicit form of the matrix in Appendix A.

A more tricky task is to calculate the connection matrix in
the intermediate energy region(2.25). Following the same
line as above, we first present the general structure of the
connection matrix in the intermediate energy region as

1
FR

−

FR
+

FL
+

FL
−
2 = SM̂c

s+dL̂R
scdM̂−

s+d 0

0 M̂+
s−d D

3Ûc9SM̂−
s−dL̂L

scdM̂c
s−d 0

0 M̂+
s+d D1

FL
+

FL
−

FR
−

FR
+
2 .

s3.19d

These matricesM̂±
s±d have been introduced in our paper[21]

for the imaginary turning points characterizing the both adia-
batic potentials in the regionuau,u12, and they read

S 1 0

si/2dexps− gWi
±d 0

D ,

whereWi
± are so-called Euclidian actions in the reversed up-

per and lower adiabatic potentials, which can be estimated as

Wi
± .

pq1,2

g
,

where

q1,2=
gu12

Îu12 ± a

4f
,

and all other matrices entering(3.19) are already defined.
SinceM±

s±d turn into the unit matrices ata.u12 anda,u12,
the connection matrix(3.19) matches continuously into the
corresponding matrices(3.9) and(3.17) for the tunneling and
overbarrier regions, respectively.

The connection matrix in the intermediate energy subre-
gion S9 can be calculated using Weber function asymptotic
expansion for large complex indices(B15), which are the
solutions to the comparison equations(2.15) in the interme-
diate energy subregionS9. These four roots are arranged
clockwise and counterclockwise on the radiusgÎu12/2 circle
around the crossing point. The following combinations of the
comparison equations match the semiclassical solutions
(2.13):

Q1
+ + Q4

+ ↔ Q+
+ Q2

− + Q3
− ↔ Q+

− Q1
− + Q3

+ ↔ Q−
+ Q2

+

+ Q4
− ↔ Q−

−.

Combining the asymptotic expansions for these combina-

tions, we find, at the crossing point, the matrixÛc9 is

Ûc9 =3
fÎ2p/Gsq*dgexpf− 2xsq*dg 0

0 fGsqd/Î2pg expf2xsqdgf1 − exps− 2pq2dcos2spq1dg
0 exps− 2pq2dcosspq1d

exps− 2pq2dcosspq1d 0

0 exps− 2pq2dcosspq1d
− exps− 2pq2dcosspq1d 0

fÎ2p/Gsqdgexpf2xsqdg 0

0 fGsq*d/Î2pgexpf2xsq*dgf1 − exps− 2pq2dcos2spq1dg
4 , s3.20d

where, as above,

q = q1 + iq2, q1,2=
gu12

Îu12 ± a

4f
, q* = q1 − iq2,

s3.21d

and we then introduce the abridged notations

x = x1 + ix2, 2x1 = q1 − Sq1 −
1

2
Dlnuqu + wq2,

s3.22d

and analogously
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2x2 = q2 − q2lnuqu − wSq1 −
1

2
D , s3.23d

wherew is defined by(B10). Now, the full connection matrix
in the both intermediate energy subregions can be found eas-
ily by simply collecting the expressions given above, and the
explicit form for the connection matrix is presented in Ap-
pendix A. Note that the intermediate energy region connec-
tion matrix (3.20) has the same block structure as the con-
nection matrices in the tunneling and overbarrier regions.
This is a consequence of the fact that in the neighborhood of
the diabatic potential crossing point, only the Weber func-
tions with equal indices can be hybridized. Atuau=u12, the
connection matrix(3.20) turns into the connection matrices
(3.10) for the tunneling region and into(3.15) for the over-
barrier energy region, enabling us to construct semiclassical
solutions for any arbitrary energy window. Note, however,
that in the intermediate energy region, the Massey parameter
is replaced by the complex indexq. In Sec. V, we will
present another derivation of the connection matrix(3.20),
and will discuss specific relations between the adiabatic and
diabatic states in the intermediate energy region.

IV. QUANTIZATION RULES

In the tunneling energy region, one has only real-valued
eigenfunctions, since in both wells there are only localized
states. In this energy window, the connection matrix linking
the “asymptotic”(i.e., in the left/rightsL ,Rd wells and for
the upper/lowers+,−d adiabatic potentials) solutions is rep-
resented in the form(3.9) and is given by(A1)–(A7). Within
the WKB method, we should match the two exponentially
decreasing and two exponentially increasing solutions in the
barrier with the oscillation solutions in the wells; thus requir-
ing the knowledge of the connection matrices at the crossing
point and at the linear turning points, and the shift matrices
from the crossing point to the turning points in the classically
forbidden region and as well between the turning points in
the classically accessible region[Fig. 3(a)]. Within the in-
stanton type method, the trajectory goes through only the
classically forbidden region[see Fig. 3(b)], and to perform
the matching one should know also the connection matrices
for the second-order turning points.

The overbarrier region can be treated in the same manner,
with the corresponding connection matrix(3.17) and (A9).
Evident modifications of the expressions given above for the
tunneling and overbarrier regions should be performed to
treat the intermediate energy windows. Indeed, in this case
one has also to take into account the contributions from the
imaginary turning points. The procedure is reduced to re-
placement of oscillating factors by exponentially decaying
ones(see details in the next section). Finally, for the inter-
mediate energy region, there are no real-valued turning
points for the upper states(see Fig. 5), and the matching
between two oscillating and two exponentially varying solu-
tions is determined by the connection matrix(3.19) linking
the linear turning points of the adiabatic potentials(see
Fig. 5).

A. Two diabatic parabolic potentials crossing

Now (collecting the explicit expressions for all needed
connection matrices from Appendix A), we are in the posi-
tion to derive the quantization rules, which can be formu-
lated as a condition that the amplitudes of solutionsFL

+, FR
+,

exponentially increasing atX.0 and X,0, respectively,
must vanish. Taking into account thatWL

* =WR
* (the actions in

the corresponding wells of the lower adiabatic potential) and
using the connection matrix relating the fundamental solu-
tions of the Weber equation, we can formulate the corre-
sponding quantization rule for the tunneling region in terms
of the matrix elements defined by(3.9), as

m22m33 − m23m32 = 0, s4.1d

wheremij are corresponding matrix elements from(3.9).
Putting all together, we can find from(3.9), (3.10), and

(4.1) the quantization rule for this case

tansgWL
* d = ±

2

p
expsgWB

* d, s4.2d

where WB
* is the action in the barrier formed in the lower

adiabatic potential, andp;U11 is the corresponding matrix
element of the connection matrix(3.10).

Only the factor 1/p varying from 0 to 1 in the diabatic
and adiabatic limits, respectively, makes this quantization
condition (4.2) different from the well-known[1] quantiza-
tion rule for the symmetric double-well potential. Corre-
spondingly, the tunneling splitting at finite values of the so-
called Massey parametern can be represented as a product

Dn = Dn
0psnd s4.3d

of the tunneling splittingDn
0 in the adiabatic potential and the

factor

psnd =
Î2p

Gsnd
gn−s1/2dexps− nd, s4.4d

associated with the transition amplitudes between the diaba-
tic potentials in the crossing region.

It is particularly instructive to consider(4.2) as the stan-
dard [1] Bohr-Sommerfeld quantization rule, where in the
right-hand side(r.h.s.) both the geometricalwn and the tun-
neling xn phases are included additively. In the adiabatic
limit when psnd→1, we find thatwn→0, and (4.2) is re-
duced to the quantization of the symmetric double-well po-
tential. In the diabatic limitwn=−xn, and the geometric phase
compensates the tunneling one. The physical argument lead-
ing to this compensation may be easily rationalized as fol-
lows. Indeed, at the reflection in the crossing pointX=0, the
trajectories in the classically forbidden energy region are the
same as those for the tunneling region, but with a phase
shift p.

We focus now on the quantization rules for the overbarrier
energy region. Closely following the consideration per-
formed above for the tunneling region, and replacing the
connection matrix(3.10) by the corresponding matrix for the
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overbarrier region(see Sec. II) (and making some other self-
evident replacements), we end up after some algebra with the
quantization rule

f1 − exps− 2pndgcosf2gWL
* − fgcossgW* + fd

+ exps− 2pndcos2SgWL
* +

gW*

2
D = 0, s4.5d

whereW* is the action in the well formed by the upper adia-
batic potential, andf=argGs−ind+Ims2x̃d is determined ac-
cording to(3.16). From Eq.(4.5), it follows that the eigen-
states are determined by the parameter

B =
exps− 2pnd

1 − exps− 2pnd
. s4.6d

In the diabatic limitn→0, and, therefore,B→1/s2pnd, in
(4.5) the main contribution is due to the second term, and it
leads to a splitting of degenerate levels in the diabatic poten-
tials. Moreover, since

gSWL
* +

W*

2
D = pHn +

1

2
± 2n sinFgSWL

* +
W*

2
D + fGJ ,

s4.7d

the splitting increases when the Massey parametern in-
creases, and it is an oscillating function of the interaction
U12.

In the adiabatic limit, whenn→`, f→0, and, therefore,
from (4.6) B.exps−2pnd, the main contribution to(4.5)
comes from the first term, which determines the quantization
rule for the upper one-well potential and for the lower
double-well potential in the overbarrier energy region; in this
limit the parameterB plays a role of the tunneling transition
matrix element. ForB smaller than nearest level spacings for
the lower and for the upper potentials, one can find from
(4.5) two sets of quantization rules leading to two sets of
independent energy levels

gW* = pSn1 +
1

2
D ; 2gWL

* = pSn2 +
1

2
D . s4.8d

Since the eigenstate energy level displacements depend on
the adiabatic couplingU12 the resonances can occur at cer-
tain values of this parameter, where the independent quanti-
zation rules(4.8) are no longer correct. The widths of these
resonances are proportional to exps−2pnd and therefore are
strongly diminished upon the Massey parametern increase.
This behavior is easily understood, since in the limit the
wave functions of the excited states for the lower potential
are delocalized, and their amplitudes in the localization re-
gions for the low-energy states of the upper potential are
very small.

B. Bound initial and decay final states: the diabatic potentials
„1+X…2/2 and „1/2…−X crossing

The second instructive example treats the one-well and
linear diabatic potentials crossing. It leads to the lower adia-
batic decay potential and to the upper one-well adiabatic po-

tential. The quantization rules in this case correspond to the
vanishing amplitudes for the exponentially increasing solu-
tions whenX→−`, and one also has to require that no
waves propagating from the region of infinite motion; i.e., at
X.1/2. Performing the same procedure as above, we find
that in the tunneling energy region, the eigenstates are the
roots of the equation

tansgWL
* d = − i

4

p2snd
exps2gWB

* d, s4.9d

with the same notation as above. To proceed further, it is
convenient to introduce the complex action to describe the
quasistationary states, given by

gWL
* = pSEn

V
− i

Gn

2V
D , s4.10d

where evidentlyV=]WL /]E does depend onE. From(4.10),
the real and imaginary parts of the quantized eigenstates are

En = VSn +
1

2
D, Gn = p2snd

V

2p
exps− 2gWB

* d.

s4.11d

This relation(4.11) describes the nonadiabatic tunneling de-
cay of the quasistationary states of the lower adiabatic po-
tential. Similar to what we obtained for the two parabolic
potentials crossing(4.3), here, the tunneling and the adia-
batic factors are entering the decay rate multiplicatively.
Since the decay rate is proportional to the square of the tun-
neling matrix element,Gn~p2snd, as it should be.

In the overbarrier energy region, the quantization rule is

1 − exps− 2pndexpf− isgWL
* − fdgcossgW* + fd

+exps− 2pndexps− igW* /2dcossgWL
* + gW* /2d = 0,

s4.12d

and the actions depend on the energyE as

gWL
* = p

E

V
, gW* = pF− g

V0su# + u12d
V1

+
E

V1
G ,

s4.13d

whereV andV1 areE-dependent frequencies of the diabatic
and the upper adiabatic potentials respectively.

In the diabatic limit, the decay rate is proportional to the
Massey parametern and has a form

Gn .
V0

2
n cos2sgW* + fd, s4.14d

and in the opposite, adiabatic limit, the decay rate is

Gn . V0 exps− 2pndf1 − sins2gWL
* − fdg. s4.15d

In the both limits, the decay rate is the oscillating function of
U12.

We illustrate the dependenceGsU12d for the crossing di-
abatic potentialsU1=s1+Xd2/2 andU2=s1/2d−X in Fig. 7.
Note that while the tunneling decay rate of the low-energy

SEMICLASSICAL QUANTIZATION OF BOUND AND… PHYSICAL REVIEW A 69, 062508(2004)

062508-11



states is increased monotonically with the Massey parameter
n, the decay rate of the highly excited states goes to zero in
both (diabatic and adiabatic) limits. Besides there are certain
characteristic values ofU12 when the r.h.s. of(4.14) and
(4.15) equal to zero and thereforeGn=0. This result, seem-
ingly paradoxical and contradictory to conventional wisdom,
can be rationalized as follows. For the case under consider-
ation (one-well upper adiabatic and decay lower adiabatic
potentials), there are always energy levels blocked by the
upper adiabatic potential. This resonance phenomenom
manifests wavelike particle properties omnipresent in quan-
tum mechanics. For the system under consideration, the up-
per adiabatic potential is equivalent to a resonator with a set
of well-defined modes(resonances) with high quality factors.
An important feature(in distinction to a conventional reso-
nators where these modes occupy more or less homoge-
neously the whole phase space) is that the resonance modes

are localized in its own effective cavity whose position is
given by the conditionsGn=0 (4.14) or (4.15).

Similarly, one can study the more general example, de-
scribing two nonsymmetric diabatic potentials crossing at
X=0 point:

u1 =
1

2
s1 + Xd2, u2 =

1

2b
sX2 − 2bX+ bd. s4.16d

In a certain sense it is the generic case, and when the param-
eterb entering the potential(4.16) is varied from 1 tò , we
recover the two particular examples considered above, and
come from two identical parabolic potentials to the case of
one-well and linear diabatic potentials crossing. This kind of
the potential was investigated recently by two of the authors
(V.B. and E.K) [29] aiming to study crossover behavior from
coherent to incoherent tunneling upon increase of the param-
eter b; the larger this parameterb, the larger will be the
density of final states. The criterion for coherent-incoherent
crossover behavior found in[30] is based on comparison of
the transition matrix elements and the interlevel spacings in
the final state. The analogous criterion should hold for the
level crossing problem; however, in the latter case, the tun-
neling transition matrix elements have to be multiplied by
the small adiabatic factor. Therefore, the coherent-incoherent
tunneling crossover region moves to the larger density of
final states, and the largerU12 is the smaller will be the
region for incoherent tunneling. Quite a different situation
occurs for highly excited states. In the diabatic limit, the
transition matrix element is increased with the Massey pa-
rametern, and therefore at a givenb value, the system moves
to more incoherent behavior. In the adiabatic limit, the tran-
sition matrix element is exponentially small, and coherence
of the interwell transitions should be restored. However,
since the matrix elements are oscillating functions ofU12 for
the intermediate range of this couplingsU12d coherent-
incoherent tunneling rates are also nonmonotonically varying
functions.

V. INTERMEDIATE ENERGY REGION

A more difficult task is to derive the quantization rule in
the intermediate energy region, where all four roots of the
characteristic equation contribute into the solutions. One has
to use the connection matrix(3.19) computed for this region
(see details in Sec. III and Appendix A). It has two 232
blocks structure, the same as the connection matrices for the
tunneling and overbarrier regions. Here, we present another
derivation of the same connection matrix using the adiabatic
representation. It offers a deeper insight into the mathemati-
cal structure of the problem, and also provides physically
relevant relations between the adiabatic and diabatic states in
the intermediate energy region. The very possibility to use
both the representation is stipulated by the fact(already men-
tioned in Sec. III) that the semiclassical eigenfunctions in the
intermediate energy region can be represented as linear com-
binations either diabatic or adiabatic functions(this
adiabatic-diabatic transformation has been discussed for
quantum coherence phenomena in[30], see also[2]).

FIG. 7. Gn versusU12 for the quasistationary states at the diaba-
tic potentialss1+Xd2/2 ands1/2d−X crossing;(a) 1–4 are the level
energies 0.042, 0.125, 0.208, and 0.292, respectively, for the lower
adiabatic potential;(b) 18–38 are the level energies 0.625, 0.708,
and 0792 respectively, for the upper adiabatic potential.
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Since the adiabatic potentials have two second-order turn-
ing points(the minimum of the upper, and the maximum of
the lower adiabatic potentials) the blocks of the connection
matrix in the intermediate energy region(where now, unlike
the matrices(3.9) and (3.17) describing the transitions be-
tween the diabatic states, the connection matrix corresponds
to the transitions between the adiabatic states, and nonadia-
batic perturbations induce the transitions[21]), are character-
ized by the parametersq̃1,2 analogous toq1,2 from (3.21)
entering(3.20). For the real-valued blocks,

q̃1 =
gÎ2u12

4f
su12 + ad, s5.1d

and for the complex-valued blocks(associated with the
maximum of the lower adiabatic potential),

q̃2 =
gÎ2u12

4f
su12 − ad. s5.2d

We can now reap the fruits of the previous subsection efforts.
First, let us note that from the relations(2.20) and(2.24), one
can see that when the energy approaches to the top of the
barrier, the exponentspsid and p̃sid of the parabolic cylinder
functions are increased and thus, are more and more deviated
from the value prescribed by the Massey parametern. Sec-
ond, increasing ofbsid upon uau decreasing, decreases the
values ofuXu where the asymptotic smooth matching of the
solutions should be performed. Ford→0, theseuXu values
are located deep in the classically forbidden region, where
the potentials are close to the diabatic potentials, while for
dù1/4, these coordinatesuXu are of the order of the quantum
zero-point oscillation amplitudes. Therefore, to find the solu-
tion in this region, we have to use the adiabatic representa-
tion.

Although, as it is shown in Appendix B, the intermediate
region for the both subregionsS9 at d,1/4, and S8 at
d.1/4 can be investigated on equal footing in the frame-
work of the comparison equations(i.e., at the diabatic basis),
it is instructive to study the problem in the adiabatic repre-
sentation as well, which is the purpose of this section. As a
subproduct of this consideration, we also get the justification
of the comparison equation approach. In the adiabatic basis,
the intermediate subregionsS8 and S9 should be studied
separately. Two simple observations give us a conjecture as
to how to treat the problem in the intermediate energy re-
gion. First of all, the energetical “window” for the interme-
diate subregionS9, wheredø1/4, anduauøu12, in terms of
the dimensional energy scale is determined by the rectangle
around the crossing point, as

U12 ø 2U12
* , uU# − Eu ø U12

* , s5.3d

where we defineU12
* ;s1/2ds"2F2/md1/3. In other words, the

characteristic interaction energy at the intermediate region
boundaries does not depend onU12. Analogously, the inter-
mediate subregionS8 is restricted by the lines

U12 ù 2U12
* , uU# − Eu ø U12. s5.4d

The positions of the linear turning pointsuX* u corresponding
to the energiesU#±U12

* do depend on the ratioU12/U12
* .

These points are located inside or outside of the interval
f−g−1/2; +g−1/2g at U12/U12

* ,1 and atU12/U12
* .1, respec-

tively. Accordingly, for both cases, the matching conditions
in the intermediate energy region are different. In the former
case for the asymptotic matching region, the potentials can
be reasonably approximated by parabola, and therefore we
should work with the Weber equations. For the latter case,
the matchings are performed in the region where the poten-
tials are linear ones; thus the equations are reduced to the
Airy ones.

Let us discuss first the intermediate energy subregionS9,
whereq̃1 and q̃2 are large, and therefore the Massey param-
eter, i.e., the indices of the Weber functions, are also large.
The arguments of the Weber functions are~XÎg, and their
asymptotic expansions determine the interval where the
matching should be done(5.4). In what follows, we will
closely follow the method we borrowed from Olver[31] (for
the asymptotic expansions of the Weber functions with large
indices, see also his monograph[32]), which is in fact an
expansion over small parameters 1/uq̃iu [where uq̃iu are the
exponents(5.1) and (5.2)] of the fundamental Weber solu-
tions, and it leads to an asymptotic solution atX.0

C+
−sXd . Y+

−1/2sX + Y+d−q̃1exps− gXY+d,

C−
−sXd . Y−

−1/2sX + Y−diq̃2expsigXY−d, s5.5d

where Y±=Îu12
2 ±a2+ f2X2. Using the known relation be-

tween the fundamental solutions of the Weber equation[28]

Dmszd = exps− ipmdDmszd

+
Î2p

Gs− md
expS− ip

m + 1

2
DD−m−1sizd,

we can find two other[complementary to(5.5)] solutions

C+
+sXd = Y+

−1/2F− sinspq̃1dsX + Y+d−q̃1exps− gXY+d

+ exps− 2x1d
Î2p

Gss1/2d + q̃1d
sX + Y+dq̃1expsgXY+dG ,

s5.6d

and

C−
+sXd=Y+

−1/2F− i exps− pq̃2dsX + Y−diq̃2expsigXY−d

+ exps− 2x2d
Î2p

G„s1/2d − iq̃2…
sX + Y−diq̃2

3exps− igXY−dG . s5.7d

In the case of weak level coupling,(i.e., for the intermediate
energy subregionS9), the adiabatic potentials everywhere
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(except in a small neighborhood of the level crossing point)
can be linearized(i.e., represented asa± f uXu), and the
asymptotic solutions are reduced to a linear combination of
the functions

F+
± ~ sf uXud−1/2exps±j+ + sgnXd,

F−
± ~ sf uXud−1/2exps±j− − sgnXd, s5.8d

j± =
2

3f
sf uXu ± ad3/2,

and these functions are smoothly matched with semiclassical solutions(see details in Appendix B). As a result, we can
calculate, finally, the connection matrixUc9 in the intermediate energy region in the adiabatic basis, as

Û
9
c = 3

fÎ2p/Gs− iq̃2dgexpf− 2xsiq̃2dg 0

0 fGsq̃1d/Î2pgexpf2xsq̃1dgsin2spq̃1d
0 cosspq̃1d

i exps− pq̃2d 0

0 − i exps− pq̃2d
− coss− q̃1d 0

fÎ2p/Gsq̃1dgexpf2xsq̃1dg 0

0 2fGs− iq̃2d/Î2pgexpf− 2ixsq̃2dgexps− pq̃2dcosh2spq̃2d
4 ,

where the functionx is defined in(3.22) and(3.23). We see
that the connection matrix in the adiabatic basis, unlike
(3.20) defined in the diabatic basis, does not provide continu-
ous transformation into the connection matrices for the tun-
neling and overbarrier energy regions[(3.10) and(3.15), cor-
respondingly]. This apparent inconsistency is due to
disregarding of adiabatic level interactions, which become
relevant in the intermediate energy region. However, there is
a simple remedy to ensure the continuous over all energy
windows matching of the connection matrices. One has to
rotate the complex planeq over the anglew (B10). Thus,
luckily (as is often the case in semiclassical approaches), we
can safely reduce the problem quite accurately to the Weber
or Airy equations in the both intermediate energy subregions,
using, respectively, the perturbation theory with respect to
the diabatic or adiabatic states. The adiabatic connection ma-
trix found above could be used on the same footing as the
diabatic connection matrix(3.20), e.g., to derive the quanti-
zation rule, which for the intermediate energy window can be
written in the simple and compact form as

coss2gWL
* d = − exps− pq̃2d. s5.9d

It is useful to illustrate the essence of the general result
given above by simple(yet nontrivial) examples. First, let us
consider two identical parabolic potentials with their minima
at X= ±1 and with the coupling that does not depend onX.
Due to the symmetry, the solutions of the Hamiltonian can be
represented as symmetric and antisymmetric combinations of
the localized functions

FIG. 8. Level displacements versusU12 for two diabatic cross-
ing potentialss1±Xd2/2. Dashed lines show the intermediate energy
region (the subregionS9 is between the dashed lines, while the
subregionsS8 are confined to the left pockets between the dashed
and dotted-dashed lines); dotted-dashed lines also show displace-
ments for the top and for the bottom of the adiabatic potentials.k, n,
andn8 are quantum numbers for the diabatic, and lower and upper
adiabatic potentials, respectively. Note that the figure level displace-
ments shown coincide with the error not exceeding 10%, with the
results of the numerical diagonalization in the basis of harmonic
oscillator functions.
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C± =
1
Î2

sFL ± FRd. s5.10d

The functions are orthogonal, and two sets of the functions
sCe

+,C0
−d and sC0

+,Ce
−d (where the subscripts 0 ande stand

for the ground and for the first excited states, respectively)
correspond to the two possible kinds of level crossings.

In Fig. 8, we depict schematically the dependence of the
level positions on the couplingU12. In the energy regionE
øU* +U12, where there only exist the discrete levels of the
lower adiabatic potentials, there are pairs of alternating par-
ity levels sCe

+,C0
−d and sC0

+,Ce
−d. The tunneling splittings

are increased monotonically since the Massey parametern is
increased, and the barrier is decreased withU12. The same
level and parity classification remain correct for the energy
region above the barrier of the lower adiabatic potential,
where the spectrum becomes an almost equidistant one.
However, in the overbarrier region, the resonances occur be-
tween the levels of the same parity, this sequence of the odd
and even levels is broken, and level displacements are not
monotonic functions ofU12. Some of the levels of different
parities can be mutually crossed. For the upper adiabatic po-
tential, the level sequence is opposite to that for the lower
adiabatic potential. The intermediate subregionS9 limits are
shown by two dashed lines. The boundaries between the in-
termediate subregionS8 and the tunneling and the overbar-
rier regions are shown by the dotted-dashed lines outgoing
from the corners of the subregionS9 rectangle; these lines
coincide with energetic displacements of the top and of the
bottom of the adiabatic potentials. Note also that we checked
the results of our semiclassical approach and found remark-
ably good agreement with the numerical quantum diagonal-
ization. As shown in Fig. 8, level displacements versusU12
coincide(with the error not exceeding 10% for the full range
of variation of U12, including the both intermediate energy
subregions) with the results of the numerical diagonalization
in the basis of harmonic oscillator functions of the initial
Hamiltonian (2.1) for two diabatic crossing potentials
s1±Xd2/2.

VI. COUPLING TO A THERMAL RESERVOIR

We have considered semiclassical quantization of bound
and quasistationary states beyond the adiabatic approxima-
tion, but for the 1D case only. Of course, the energetic profile
of any real system is characterized by a multidimensional
surface. However, it is often possible to identify a reaction
coordinate, such that the energy barrier between initial and
final states is minimized along this specific direction and,
therefore, effectively one can treat the system under consid-
eration as 1D, regarding all other degrees of freedom as a
bath of harmonic oscillators. In this section, we investigate
the simplest multidimensional Hamiltonian describing the
nonadiabatic transitions, namely, the 232 matrix potential
for the X variable (or what are the same two 1D diabatic
potentials crossing considered in the previous sections) and
the set of ”transverse” harmonic oscillatorshYkj coupled with
the reaction coordinateX, given by

VsX,hYkjd = V1sXd + o
k

vk
2

2
Yk

2 + FsXdo
k

CkYk. s6.1d

Here, V1sXd is the bare(in a general case anharmonic) 1D
potential,vk is the eigenfrequency of the transverse oscilla-
tor k, the functionFsXd describes how the only strongly fluc-
tuating coordinateX is coupled to thermal bath of transverse
oscillators, andCk are corresponding coupling constants.
This kind (6.1) of multidimensional potential has been
studied in the literature(see, e.g.,[4]), and some efforts were
made to find a feasible approximation to treat the potential
within the semiclassical approach. In this section, we legiti-
mate the method proposed in[4] focusing on the LZ problem
in the tunneling region. Similar considerations can be easily
generalized for the overbarrier and intermediate regions.

The equation of classical motion(in imaginary time) for
the longitudinal coordinate has the form

Ẍ =
dV1

dX
− o

k

Ck
2

vk
2

dFsXd
dX

I„vk,fFsXdg…, s6.2d

whereI is the integral transformation

I„vk,fFsXdg… =
vk

2
E

−`

`

expf− vkut − t8uFsXst8dgdt8.

s6.3d

It can be expanded in the following high- and low-frequency
limits, as

I„v,fFg… =HF + v−2F̈ + v−4F̈
¨

+ . . . , v → `

− v2R2 − v4R4 − . . . , v → 0,
s6.4d

where

Rn =E
−`

t

dt1E
−`

t1

dt2 . . .E
−`

tn−1

Fstnddtn. s6.5d

At the high-frequency limit,(6.4) is reduced to the trajec-
tory equation, but with the renormalized potential corre-
sponding to theX-dependent effective mass

Îm* d

dt
fÎm*Ẋg =

dṼ

dX
+ Osr6d, s6.6d

where

m*sXd = 1 +r4SdF

dX
D2

, ṼsXd = V1sXd −
1

2
r2

dF2

dX
,

rn ; o
k

Ck
2

vk
n s6.7d

(recall that we put unity for the bare massm in our dimen-
sionless units).

In the low-frequency limit, the trajectory equation reads

SEMICLASSICAL QUANTIZATION OF BOUND AND… PHYSICAL REVIEW A 69, 062508(2004)

062508-15



Ẍ =
dV1

dX
− r0R2std. s6.8d

In ther4 approximation for the spectral density of oscillators,
the terms proportional tor6, neglected in(6.7) [and the last
term in (6.8)] are small. The physical message of the calcu-
lation performed in this section is that the renormalization of
the effective mass leads to slowing down of the motion, and
it is equivalent to saying that the Massey parameter is renor-
malized as

n → n* = nÎm*sXcd, s6.9d

whereXc is the crossing point. Of course, the coupling will
also change the action along the extremal action trajectory
(this effect has been discussed in the literature, see, e.g.,[4]).
The phenomenom specific to the LZ problem is the renor-
malization of the Massey parameter(6.9), which controls the
main features of the behavior for any system undergoing
level crossing.

VII. CONCLUSION

In conclusion, we stress again the main point of our meth-
odology. We have shown that the comparison equations for
the fourth-order differential Landau-Zener equations in the
coordinate space can be represented as two decoupled Weber
equations. The indices and the arguments of the correspond-
ing Weber functions defined by the roots of the characteristic
equation(2.15) for the complex wave vectork, anduku@1 in
the semiclassical approximation. In the framework of our
method, the diabatic potential crossing points are treated as
two second-order turning points characterized by different
Stokes constants[23]. The accuracy of the method depends
on anharmonic terms, which are not taken into account in the
comparison equations, but which are small in the semiclas-

sical approach over small parametersd, d̃, or dint respec-
tively, in the tunneling, overbarrier, and intermediate subre-
gion S9 energy windows. In the subregionS8, dint is not a
small parameter. However, since the asymptotically smooth
matching is performed at smalluXu,g−1/2, anharmonic cor-
rections to the comparison equations can be safely neglected
for this subregion as well.

We have presented detailed semiclassical analysis of the
crossing diabatic potentials problem. We examine one impor-
tant (and previously overlooked) aspect of well-known en-
ergy level quantization problem for crossing diabatic poten-
tials. We derive the semiclassical quantization rules for the
particular situation of crossing diabatic potentials with local-
ized initial and localized or delocalized final states, in the
intermediate energy region, when all four adiabatic states are
coupled and should be taken into account. In fact, it exhausts
all cases practically relevant for spectroscopy of nonrigid
molecules(i.e., with more than one stable configuration).

We use the connection matrix methodology, which pre-
sents a simple and standardized description of any semiclas-
sical approximation, and which offers therefore a deeper in-
sight into the mathematical and physical structure of the
approximation. We found that in the tunneling region, the
tunneling splitting is represented as a product of the splitting

in the adiabatic potential and the nontrivial functionpsnd (we
calculated analytically) depending on the Massey parameter;
i.e., on the energy and the slopes of the diabatic potentials in
the crossing region. In the overbarrier region, we found spe-
cific resonances between the levels in the lower and in the
upper adiabatic potentials; in that condition, one may not use
independent quantization rules. Interesting results have ema-
nated from our consideration of the intermediate energy re-
gion. For this energy region we calculated the energy level
quantization, using adiabatic basis.

We have presented in this paper all details of the LZ prob-
lem for two electronic states using the connection matrix
approach for the LZ problem in the coordinate space, the
approach that turned out to be very efficient for this class of
problems, and which is important in many areas of pure and
applied sciences. Even though only model potentials are in-
vestigated here, our approach is quite general and has poten-
tial applicability for various systems in physics and chemis-
try, and the results can be tested by their experimental
consequences for many examples of molecular systems un-
dergoing conversion of electronic states, nonradiative transi-
tions, and isomerization reactions, among others. The results
of the LZ problem investigations are very relevant for slow
atomic or molecular collisions[2,33], where the interaction
of diabatic potentials induces transitions between initial and
final electronic states. However, since the interaction is es-
sential only near the crossing point, one can compute the
transition probability, linearizing both diabatic potentials(see
our consideration in Sec. II). The same approximation works
quite well for the so-called predissociation phenomena.

However (in contrast to the atomic and molecular colli-
sion problems), there are fundamental problems of chemical
physics and molecular spectroscopy where one may not re-
strict oneself only to the transition probability calculations,
but should know the complete eigenvalues/eigenfunctions
solution. This is the case, for example, if we are interested in
the calculation of vibrational-tunneling spectra of nonrigid
molecules, or reactive complexes with more than one stable
configuration. The lowest multi-well potential of such sys-
tems is formed from one-well diabatic potentials crossing,
corresponding to each stable configuration. Apart from the
lowest potential, the upper adiabatic potential with its mini-
mum above the maximum of the lowest potential should be
also taken into account for these situations(see Fig. 1). In the
most of the calculations of tunneling splittings in the ground
and low excited vibrational states, the coupling to the upper
potential is neglected, which is certainly correct only for
strong enough adiabatic coupling. Evidently, it is not the case
for the levels close to the adiabatic barrier top, and especially
in the upper potential well. The quantization of these levels
is noticeable in the spectroscopy of nonrigid molecules, and
the same situation takes place for systems undergoing the
Jahn-Teller effect, where the interference of the diabatic
states occurs in this energy region[3].

One more example for the application of our results are
molecular radiationless transitions within excited electronic
states. Typically for this situation, the decay potential is
formed owing to crossing of bound and unbound diabatic
potentials. Since the radiationless transitions are followed by
luminescence and chemical reaction phenomena(see, e.g.,
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[34–37]) one should know the complex eigenvalues of the
quasistationary states prepared by optical pumping.

Let us also stress that in real systems, the characteristic
values of the coupling between the diabatic states can vary
within the very wide range from several eV for the electronic
states of the same symmetry to zero(for the states with dif-
ferent spins). To treat all these cases, one should know the
solution of the diabatic potentials crossing problem described
in our paper for the corresponding wide range of the Massey
parameter fromn=0 to n@1.
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APPENDIX A

Putting all the Sec. II expressions(3.9)–(3.14) together,
we can recapitulate the matrix elementsmij of the full con-
nection matrix in the tunneling region:

m11 =
p

4
exps− gWB

* dcossgWL
* dcossgWR

* d

−
sin2spnd

p
expsgWB

* dsinsgWL
* dsinsgWR

* d, sA1d

m12 =
p

2
exps− gWB

* dsinsgWL
* dcossgWR

* d

+ 2
sin2spnd

p
expsgWB

* dcossgWL
* dsinsgWR

* d, sA2d

m21 = −
p

2
exps− gWB

* dcossgWL
* dsinsgWR

* d

− 2
sin2spnd

p
expsgWB

* dsinsgWL
* dcossgWR

* d, sA3d

m22 = − p exps− gWB
* dsinsgWL

* dsinsgWR
* d

+ 4
sin2spnd

p
expsgWB

* dcossgWL
* dcossgWR

* d, sA4d

m13/24= ± cosspndexps±gWB
* /2dsinsgWR

* d,

m14 = −
1

2
cosspndexps− gWB

* /2dcossgWR
* d, sA5d

m23 = − 2 cosspndexpsgWB
* /2dcossgWR

* d,

m31/42= ± cosspndexps±gWB
* /2dsinsgWL

* d, sA6d

m41 =
1

2
cosspndexps− gWB

* /2dcossgWL
* d,

m32 = 2 cosspndexpsgWB
* /2dcossgWL

* d, sA7d

m33 = p;m44 =
sin2spnd

p
;m34 = m43 = 0. sA8d

For the overbarrier region, the full connection matrix could
be given in a more compact form. Using(3.17), (3.15),
(3.18), and (3.12) from the main body of the paper, we get
the following matrix:

3
ss/2dcossgWLR − fd s sinsgWLR − fd − exps− pndsinsgWR*d − exps− pnd/2 cossgWR*d
− s sinsgWLR − fd 2s cossgWLR − fd − 2 exps− pndcossgWR*d exps− pndsinsgWR*d

− exps− pndsinsgWL*d 2 exps− pndcossgWL*d 2s cossgW* + fd − s sinsgW* + fd
exps− pnd/2 cossgWL*d exps− pndsinsgWL*d s sinsgW* + fd ss/2dcossgW* + fd

4 , sA9d

whereWLR;WL
* +WR

* , andWL/R,* ;WL/R
* +W* /2.

APPENDIX B

The efficency of the standard instanton approach[38,39]
(see also[4,22]) is based on a successful choice of the com-
parison equation near second-order turning points, where
asymptotically smooth matching of semiclassical solutions to
the solutions of this equation should be performed. It is
known, for example[21], that for anharmonic potentials, the
Weber equation provides such a very successful choice since

in the matching region anharmonic corrections are still small.
The aim of this appendix is to show that the analogous situ-
ation holds for crossing diabatic potentials points, where two
Weber equations can be successfully used as the comparison
equations to the fourth-order Landau-Zener equation(2.2).
The arguments and the indices of the fundamental solutions
to these Weber comparison equations are determined by the
roots of the corresponding characteristic equations(see be-
low and the main body of the paper).

To prove the statement, let us first substitute(2.14) into
Eq. (2.7). We get
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D4F + 4kD3F + s6k2 − 2ag2dD2F

+ 4sk3 − ag2k − 1
2g2fdDF+ fk4 − 2ag2k2

− 2g2fk + g4sa2 − u12
2 − f2X2dgF = 0, sB1d

whereDn;dn/dXn. Equation(B1) can be formally derived
by simple manipulations(two sequential differentiations and
summations) from the second-order equation

D2F + sa0 + a1X + a2X
2dF = 0, sB2d

where the coefficients are

a0 = k2 − ag2 −
g2f

2k
s1 + dd, a1 = g2fd, a2 = − g2fkd,

sB3d

where k should be found from the characteristic equation
(2.15), andd is given by(2.16).

The fundamental solutions to(B2) read as

DpF±Sg4f2

k2 D1/4SX −
1

2k
DG , sB4d

where

p = −
1

2
+ Sg4f2

k2 D−1/2Sa0 −
a1

2

4a2
D . sB5d

In the tunneling(2.19) and overbarrier(2.21) regions of en-
ergies, these four solutions[two solutions of(B4) for two
largest modulus roots of the characteristic equation(2.15)]
can be separated into two independent pairs. In the tunneling
region, the two largest modulus roots of(2.15) are(two other
roots are small and do not satisfy semiclassical approach)

k = k0S1 ±
d2

2

k0
2

2k0
2 − ag2D, k0 =

g

Î2
sa + Îa2 − u12

2 d1/2
.

sB6d

Putting(B6) into (B5), we find (neglectingd2 terms, i.e., for
k=k0) four fundamental solutions to the comparison equa-
tion in the form (2.18). Thus, from the expressions given
above and(2.16) and(2.17) from the main text, we conclude
that the solutionsQL/R (2.18) can be expanded over our small
parameterd, and due to the condition(2.16) anharmonic cor-
rections to the Weber functions(B4) are small (in other
words, the parameterd determines the accuracy of our ap-
proximation). Indeed, the anharmonic terms neglected in the
Weber comparison equations are of the order ofd (it is an
upper estimation atX=a / f, i.e., at the boundaries of the
intermediate energy region); thus the corrections are small
according to(2.16). The same kind of analysis can be per-
formed in the overbarrier region(2.21), where one finds two
imaginary largest modulus roots of the characteristic equa-
tion. The roots are given by(B6) with k0 and the small

parameterd̃ defined according to(2.22) and (2.23).
One simple observation helps to perform the same analy-

sis for the intermediate energy region(2.25). Indeed, since
the differences between the solutions to the characteristic

equations forl (2.9) and fork (2.15) determine the accuracy
of our approach, let us compare the solutions. The roots of
(2.9) at X=0,

l1,2 . ± gÎa + u12, l3,4 . ± gÎa − u12, sB7d

are moved upon the variation ofa in the intermediate energy
region from the real to imaginary coordinate axis. Analo-
gously, the roots of(2.15),

k1,2 . ±
g

Î2
sa + Îa2 − u12

2 d1/2
,

k3,4 . ±
g

Î2
sa − Îa2 − u12

2 d1/2
, sB8d

are moved along the real and imaginary axes in the tunneling
and overbarrier regions, respectively.

We conclude from(B7) and(B8) that in the tunneling and
overbarrier energy regions, there is one-to-one correspon-
dence between the rootsl of (2.9) andk of (2.15). Just this
correspondence allows us to match smoothly the semiclassi-
cal solutions to the Schrödinger equation and the Weber
functions found as the solutions to the comparison equations.
It is not the case in the intermediate energy region, where
two roots of(2.9) are real and two are imaginary ones having
the same modulus; i.e., moving upona variation along a
circle with the radiusgÎu12/2. In this case, the semiclassical
solutions can be presented as certain linear combinations of
the comparison equation solutions. We have found these
combinations in the adiabatic basis in Sec. V. In this appen-
dix, we show how to solve the same problem in the diabatic
basis, and it reveals more clearly and explicitly an estimate
of the omitted terms in the equation and the areas where the
solutions become wrong and where the matching procedure
is carried out. Indeed, the roots of(2.15) in the intermediate
energy region(2.25) are

k1,2 . ± gÎu12

2
expsiwd, k3,4 . ± igÎu12

2
exps− iwd,

sB9d

where

tan w =Îu12 − a

u12 + a
. sB10d

Correspondingly to these roots(B10), the arguments and the
indices of the Weber functions(B4) and (B5) read as

z1 = z2 = 2kint
Îdintexps− iw/2dfX + s2kintd−1exps− iwdg,

sB11d
z3 = z4 = 2kint

Îdintexpsiw/2dfX + s2kintd−1expsiwdg,

and

p1 = p2 − 1 = − 1 −
1

4dint
exps− iwdf1 + dint

2 exps− 2iwdg;
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p4 = p3 − 1 = − 1 −
1

4dint
expsiwdf1 + dint

2 exps2iwdg,

sB12d

wherekint=gsu12/2d1/2, anddint=sg2fd / s4kint
3 d.

Using known asymptotics of the Weber functions due to
Olver ([31,32]), we are in the position to compare the semi-
classical functions with the solutions to the comparison
equations. The former functions are determined by the expo-
nential factor

F0
±sXd = gÎu12 ± aX +

gf2

12u12
Îu12 ± a

X3, sB13d

while the exponential factors entering corresponding asymp-
totics of the Weber functions are

F1,2sXd = gÎu12 ± as1 + dintdX ± kint
2 dint

2 exps− 2iwdX2

+
gf2

12u12
Îu12 ± a

F1 ±
a

u12
− dintGX3. sB14d

Let us consider now the intermediate subregionS8, uau
ø sf /gd2/3, andu12ø2/g, [see(5.3)], where(2.16) does not
hold. Luckily, however, the asymptotically smooth matching
is performed at smalluXu,g−1/2, where the comparison equa-
tion (B2), and, therefore, the characteristic equation(2.15)
are valid(althoughd is not a small parameter). In this sub-
region, we have to take into consideration the termRsk ,dd in
(2.15). At a=0 and u12=0, the characteristic equation has
one double degenerate rootk=0, or correspondingly in(B2),
a2=0. Thus, the comparison equations are reduced to two
decoupled Airy equations. Using known Olver asymptotics

for the Weber functions with large arguments and indices
[31,32],

Dpszd ~ expH−
1

2
E Fz2 − 4Sp +

1

2
DG1/2

dzJ , sB15d

we can find asymptotics to the solutions of(B2) and

F0 ~ expS− i E Îa0 + a1X + a2X
2dxD , sB16d

valid at arbitrary values of the parametersai (a2=0 includ-
ing). This relation (B16) provides asymptotically smooth
matching of the semiclassical solutions with the Weber func-
tions in the intermediate subregionS9 (where k is of the
order ofg@1), and with the Airy solutions in the subregion
S8, whenk.Îg.

This consideration provides the justification of our ap-
proach described in the main body of the paper. As is seen
from (B13), and from(B14) at smalla, the accuracy of the
asymptotically smooth matching of the semiclassical solu-
tions with the Weber functions is of the order ofdint, and,
close to the energetic boundaries(2.25) of the intermediate
region, anharmonic correctionssX3d are increased. Thus, we
conclude that the matching for this case(2.25) can be per-
formed either in the adiabatic basis(as has been done in Sec.
V) or in the diabatic basis as we have shown in this appen-
dix. The simplest way to prove the equivalence of the both
representation is to transform into exponential forms the fac-
tors like sX+Y+dq1 etc., entering the solutions(5.6) and(5.7),
found in Sec. V. In both methods, the accuracy is of the order
of dint, and the connection matrices presented in Appendix A
do not depend on the basis.
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