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Accurate QED calculations of the interelectron interaction corrections fo¢I@p)2'P; and (1s2p)23P,
two-electron configurations for ions with nuclear charge numbers 2& 92 are performed within the line
profile approach. Total energies of these configurations are evaluated. Employing the fully relativistic treatment
based on thg—-j coupling scheme these energy levels become quasidegenerate in theZeglon To treat
such states within the framework of QED we utilize the line profile approach. The calculations are performed
within the Coulomb gauge.
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I. INTRODUCTION The other important two-electron corrections are the

To provide accurate gquantum-electrodynami¢@ED) screened self-energy and vacuum-polarization corrections,
evaluations of energy levels for two- and three-electron conWhich have been evaluated {14-17 for nondegenerate
figurations of highly charged ion@éiCI's) has become now two- and three-electron configurations in HCI's.
an urgent problem in atomic physics. This can be explained Various general bound-state QED approaches have been
by the growing number of experimental data and the necesemployed for the derivation of the energy corrections in
sity to use the energy levels for the evaluation of importantiCl’'s. The one most commonly used is the adiabatic
characteristics of HCI's, such as, e.g., transition probabilitiesS-matrix approach, developed by Gell-Mann and L[],
and recombination cross sections. generalized by Suchdd 9] and first applied to bound-state

In the past an approximate relativistic approach based oRED corrections in Ref20] (see alsd5]). The other one is
variational nonrelativistic wave functions has been used fothe Green’s function approach, first developed2d] and
evaluating energy leve[d]. Numerous theoretical results for now applied frequently in a more sophisticated form of the
few-electron ions have been obtained within the frameworkwo-time Green’s function methof@2-24. Finally, the line
of fully relativistic many-body perturbation theoRMBPT)  profile approach(LPA) is utilized for the same purpose
and relativistic all-ordefAO) many-body theorny2]. How-  [25,24. In our previous studies of the QED theory of inter-
ever, rigorous QED results, which allow for a consequentlectron interaction in HC[11,13 this approach has been
order-by-order improvement of the accuracy of the calculaapplied.
tions have become more and more desirable. In this paper we generalize the line profile approach to the

The approximation of noninteracting electrons is com-case of quasidegenerate electronic states in two-electron
monly employed as a zeroth-order approximation in QEDHCI. This problem arises when a complete QED treatment
perturbation theory for HCI's in the absence of a quasideincluding the relativisticj —j coupling scheme is applied to
generacy of levels. Accordingly, within the zeroth-order ap-the fine-structure multiplets of systems with intermediate
proximation the energy of the few-electron configuration ap-huclear charge numbez Some components of the multip-
pears as the sum of the Dirac eigenvalues for the occupielét with equal relativistic quantum numbers turn out to be
one-electron states. One-electron correctigesned here as close enough to each othghe (1s2p)2 'P; and(1s2p)2 3P,

a generalized Lamb shjfinclude QED radiative corrections, levels are the standard example

such as the electron self-ener¢yE) and vacuum polariza- Up to now the QED theory of the quasidegenerate levels
tion (VP) as well as nuclear corrections—i.e., nuclear sizewas considered only within the two-time Green’s function
(NS), nuclear recoilNR), and nuclear polarizatiofNP), re-  method for the self-energy screening correctignsthout
spectively. A few years ago a status report of one-electromny numerical applications[27], for vacuum-polarization
energy corrections was presented in detafldh Since then, screening corrections[15], and within the covariant
considerable progress concerning the evaluation of higheevolution-operator proceduf@8] for the second-order inter-
order self-energy corrections has been mgije electron interaction. Numerical calculations for two-electron

The dominant two-electron contribution is due to the in-ions with Z=10,18[28] are so far the only example where
terelectron interactionAb initio QED results for the first- bound-state QED has been applied to the evaluation of the
order interelectron interaction in two-electron ions areenergy of quasidegenerate levels taking into account the in-
known from Ref.[5] (see alsd6]). The higher-order correc- terelectron interaction up to second order.
tions are much more intricate. Complete QED calculations of In this work we present an extension of the line profile
the second-order interelectron interaction have been accompproach which is suitable for the evaluation of energies of
plished for the ground state and for nondegenerate low-lyinginy number of the nondegenerate or quasidegenerate levels.
excited states of He-like and Li-like ioff3—13. The interelectron interaction corrections up to first and sec-
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wherei(x) = ya(r)e'*At is the wave function of the electron
k,e in the ground state angl# is the Dirac matrix together with
the electron propagator
A
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FIG. 1. The lowest-order amplitude of the photon scattering on SX %) = Z_J do e"‘”(tl"tZ)E () ¢n(r) )

the atomic electron within the resonance approximation. The double w=-en(1-i0)’
solid line corresponds to bound electrons in the field of the nucleus.
The wavy lines with arrows denote the absorption or the emission
of a photon with momenturk and polarizatiore. HereA(k’”(x) denotes the vector potential of the electromag-

netic field (photon wave function The notations x,

ond order of QED perturbation theory are evaluated for the (tu:fu) @nd x4=(tq,r¢) indicate “up” and “down” vertex

(1s2p)2 1P, and (1s2p)2 3P, levels in a wide range og  coordinates, respectively.
values. Insertion of the expressions for the electron propagator

and the photon wave function yields

- n

II. LINE PROFILE APPROACH 2 2 3 3 — G
o SU=(ie) fdtud rudtydr g [Ya(r) y A, N (r)]
The problem of the natural line profile in atomic physics !
was considered first in terms of quantum mechanics by Weis- . —
skopf and Wignef29]. In terms of modern QED it was first ><eitu<eA+w’>e—iwn(tu—td)'_E Me—ita(ww
formulated for one-electron atoms by Ld&0]. In [30] the 2m°F wn—gy(1-i0)
appearance of the Lorentz profile in the resonance approxi- KA
mpaﬂion within the frameworpk of QED was describedprz)and X [VMdALA ') ar9]. 3
nonresonant corrections were estimated. Later the line profile
QED theory was modified also for two-electron atofB4]  Herew=|k| andw’=|k’| are frequencies of the absorbed and
(see alsq[6,32) and applied to the theory of overlapping emitted photons, respectively,k’ are the photon momenta
resonances in two-electron HCI[83,34. Another applica- and \,\’ denote the photon polarizations. The summation
tion was devoted to the theory of nonresonant correctiongver n is extended over the entire Dirac spectrum of elec-
[35,36. trons in the nuclear Coulomb field, ang, are the Dirac
It was found in[25] that the LPA provides a convenient energy eigenvalues. Integrating over time variaklgst,)
200| for calcm;llatling_ energy cr:]pr;]ecr]tions. MOFEC;VzF, it clearly and abbreviating the expressions in the square brackets by
etermines the limit up to which the concept of the energy o ; ;
the excited states haé3 a physical meaning—that is, theg?/estog-A(r“) andd,(rg), respectively, we can write
nance approximation. The exact theoretical values for the
energy of the excited states defined by the poles in the 2 _(_ima2 2| 3 3 b
Green's function can be directly compared with measurable S = (-ie)*(2m) fd FudTgdon®ary)
quantities only within the resonance approximation, where ) —
the line profile is described by the two parameters: en&rgy X S —erm ) S In(r o) Yn(r o)
and widthI". Beyond this approximation the evaluationEf noTA 27 < w,—en(1-i0)
andI” should be replaced by the evaluation of the line profile
for the particular process. Moreover, in the case of two- X o(ep+ o= wp)Pa(rg). (4)
electron atoms the line profile approach was found to be very
efficient for the evaluation of the reference-state correctionrhe function®,(r) can be considered as a vertex function,
(reducible part of Feynman graphfor two-electron atoms which describes the absorption of a photon by an electron in
[37]. its ground state. Below, we will formulate the resonance ap-
proximation, where we can define the energy and width of
_ ] _ the level which have a general meaning independent of the
A. Line profile approach for one-electron ions features of the considered scattering process. Hence, the en-
Consider the simplest process of photon scattering on &rgy and width will not depend on the functieb,(r) and
one-electron ion which is assumed to be in its ground #ate thus we may consider the functioh,(r) as arbitrary. In
(Fig. 1. Using the standard Feynman rules for bound-particular, it can account for the interaction with the free
electron QED[6] yields the expression for th&matrix ele-  electromagnetic fieldradiative corrections
ment: Let us introduce in Eq4) the matrix
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A VO(0) = G0+ en)an (13)

Here 2x(w) is the renormalized electron self-energy opera-
tor. The upper index at the function indicates the order of
perturbation theory with respect to powers of the fine-
structure constarw for the graphs contributing to this func-
tion. Repeating these insertions in higher orders we can com-

pose a geometric progression with title term:
nm=a
k,e v @ L
’ Q=U2 V) =T DYV (D' T. (14
w—&ggtepn

A

FIG. 2. First-order self-energy insertion into the photon-
scattering graph within the resonance approximation.

The resulting geometric progression is convergent forany
except for values within the interva e [s,—ea—|V Y], e,
—ea+|V Y]] close to the position of the resonance. Applying
the formula for a convergent geometric progression one de-

Toa=(-#) f or (1) DA(T) (5 flves
and integrate over the frequenay,. Employing the defini- Upa=2 T DV (DT
tion of the transition amplitud& via 1=0
S= - 27 8w - )V, ®) L} Ll (15

"D-VD(w) w+epa-VO-VD(g)
we derive the expression for the amplitude:
Hence, the resonance is shifted into the complex plane and

@ _ T*AnTnA Eq. (15) is defined for allw values on the real axis. Equation
UP= —AniA @ values on th _
n W= e, tep (15) presents the analytic continuation of the expansion
32,Q; to the entire complex plane.
We will consider the resonance case when the frequenisy Taking the square modulus of the amplitudé), integrat-

close to the valua™s=¢,—e,+0O(a), wherea labels one of ing over the directions of absorbed and emitted photons and
the exited states of an ion. In the resonance approximatioBumming over the polarizations we obtain the Lorentz profile
we have to retain in Eq.7) only the dominant term wittm  for the absorption probability:

=ain the sum oven—i.e.,

1
* dWw) = —
TaT, N
U@ =—Aa2A i, (8) 2m
w—gatep
y Lan
In order to simplify the application of the line profile ap- [w+ep— VO - RVD ()} + [Im{V D(w)}]?

proach to the many-electron ions we introduce the abbrevi-

ated notations Xdw. (16)

HeredW w) is the probability for the absorption of a photon
within the frequency intervab, w+dw andI',, is the partial

B © width of the levela, associated with the transitian— A.
D=w-VT+en, (10) Taking into account the correction depicted in Fig. 2 we
improve the position of the resonance:

T=Taa 9

VO =g, (11)
0= -, +V O+ RV U(e - ep)} +O(a?).  (17)
Notice that the functiom describes the process of scattering.

To obtain the Lorentz contour one has to insert the elecFormula(16) defines the line profile of the process of scat-
tron self-energy part in the internal electron line in Fig. 1.tering. Within the resonance approximation the line profile
For simplicity we neglect the vacuum-polarization part. Tocan be described by a Lorentz contour which is characterized
the lowest order this leads to the graph depicted in Fig. 2 anby two parameters: the position of the resonance and the
the corresponding expression for the scattering amplitudevidth. We define the energy shift for the staeas the shift
evaluated within the resonance approximation takes the forrof the resonance. The energy of the siis

v . — res —\/ 0 D, — 2
UX;) - U/(fa)—(f) =T D—l [V(l)(w)D_l]T, (12) E=w™+ EA \ + Re{v (Sa 8A)} + O(a ) (18)
- & &
an oA and the width of the level as the width of the corresponding
with Lorentz contour at the position of the resonance:
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a A
' o
na = a kK, e
n
ng # a
a nm=a
k,e
FIG. 3. The second-order electron self-energy correctsm:
called SESE loop-after-logghat gives rise to the correction in Eq. A
(25).

FIG. 4. Feynman graph representing the higher-order electron
self-energy correction within the line profile approda&tSE, loop-
I==21mV (0™} ==2ImV¥(e,~en)} +O(a?). after-IOOF?,yirreducibl)E P prrcd P
(19
V(Z)(w)

=T'DYV@(w)D™T, (22)
w—¢gatep

We note that the enerdy of the level and its width" defined ug=u2
in the framework of the resonance approximation do not de-

pend upon the functiom (or ®,) and, therefore, they do not \where

depend upon the type of scattering process. For example, we

are free to consider not only the scattering of a photon but of @
some other particle as well which couples to electrons. Go- V(o) =

ing beyond the resonance approximation the line profile can

no longer be described by a Lorentz contour and, conseNote that the singular term=a is not included here by
quently, the energy level cannot be characterized only by tw@efinition. This term was taken into account in the geometric
parameter& andI'. In this case the evaluation of the energy progression described above and represents exactly the sec-
levels should be replaced by the evaluation of the particulapnd term of this progression. Repeating the evaluations lead-
line profiles which, in general, depend upon the features ofng to Eq.(16) with

scattering process under consideration.

¢S <2R<w+sA>>an<iR(w+sA>)na_

n#a ep~éptw

(22)

& (&Y} @ [
The real part of the matrix elemefEg(e,))aa describes Q= Ufg(M)

the lowest-order contribution to the Lamb shift, and the W= gyt ep
imaginary part, which is finite and not subject to renormal- =T DYV Y(w) +V () IDYT, (23)
ization, represents the total radiatig@ngle-quantumwidth
of the levela: we obtain the improved resonance condition

_ (VA Re(V D@y +V (2)(wre5)} +0(ad) - ea— =0,

- i
AEF= CREa)aa= L3~ Sla (20) (24)

Solving this equation forw™S up to termsO(a?) yields
The other contribution to the lowest-order Lamb shiff®
originates from the vacuum polarization. This correction  w®=-g,+V©@+Rel VV(g,—e4) +VP(g,—€p)
does not contribute to the width, [6].

Studying the higher-order Lamb shift in one-electron at- oV V()
oms within the line profile approach, we have to account for +V (g, - sA)[—] +0(a®).
the Feynman graph depicted in Fig. 3. For reasons of sim- Jw w=e e
plicity, we will not consider the other second-order graphs. (25)

In the casen;=nz=a andn, # a the graph in Fig. 4 can be

viewed as a second-order self-energy insertimop-after-  The termV @(g,—¢,) is the contribution of the irreducible
loop, irreducible paitin the graph in Fig. 1 within the reso- part of the graph in Fig. 3. The derivative term corresponds
nance approximation. We derive the following expression forto the reference state=a) correction. In particular, it coin-
the scattering amplitude: cides with the reference-state correction that arises from the
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Feynman graph in Fig. 3 after application of the adiabatic In the one-electron case we introduced the function
S-matrix method[38]. The other second-order electron self- describing the process of scattering under consideration. To
energy(SESB corrections are irreduciblg8]. introduce such a function for the two-electron system we
may consider first the simplest process of photon scattering
on a two-electron ion, disregarding the interelectron interac-
B. Line profile approach for many-electron ions tion corrections to the initiajground state. This process is
(nondegenerate energy level) depicted in Fig. 5, where the ground state is represented by

two noninteracting electrons, one of which absdidrsemity

As in the one-electron case we will consider the procesgne photon. Accordingly, the ground-state wave function is
of photon scattering on an ion which is assumed to be in tSiven by

lowest (ground state. Investigating a hondegenerate energy
level associated with a configuration containing at least one
1 s electron[such ag1s2s)2 1Sy, (152p;,)2 3Py, (18292 3S,,

(19)2 2,5, (15)% 2p, )5, €1C] We can represent the wave func-
tion of the ground state via a proper combination of one- — 1 — —

electron Dirac wave functions. A procedure based on this \I,A(XlaXZ):TE det{yns(X) 1s(%o)}, (27)
approach has been accomplishe{llih,13. However, for the v

investigation of quasidegenerate levels or a doubly excitedvhere ¢(x;)=qo(r;) €11, 5 (x,) are the Dirac one-
level the interelectron interaction corrections have to beelectron functions with different projections of the total an-
taken into account in the wave function of the ground stategular momentum. The bar over the one-electron functions
Here we restrict ourselves to two-electron ions. The genetindicates Dirac conjugation.

alization toN-electron ions will be presented at the end of  The S-matrix element corresponding to the graph in Fig. 5
this section. can be written as

1
Wa(Xq, %) = E defirs(x1) Yrs(Xo)}, (26)

§0'= (- ie)? f 01, 0%, 0%, 0% 0%, = ) 88, At ) daon, W a0, 4,) AL N (x,,)

e iwnl(tul_tdl) I_ ¢nl(r ul) ‘/’nl(r dl)

272 e (110 PUAKRN (xg ) Wa(Xg, Xg,) + f A%y, 0%y, 0% d*xg 8%(ry = 1q)) 8ty ) 8ty )dey,
ng Ny Ny

dy

i i ’ﬂn (ru)‘ﬂn (rd)

o AT (KN oo (b ~ty ) o\ Uy ot dy

><\I,A(X”l’xuz)ﬂy UZAMuz (XUZ)e e 2 wn, —&p,(1-i0)
n, @n,~ &n,

PR (Xa X)) |- (28

d,

In order to employ the function¥, and¥, we introduced D p(Xq, %) = VEy"lAﬁfl'”(xl)‘I'A(xl,xz) St—-1t), (29
additional integrations dx,, ,d%q, ,8%ry,,

—rg, )d(t, )ty ). The first and second terms in the square - L e

brackets represent graphs, where the photon is absorbed —®a(X1,X) = V2W (x4, %) 1A, K M (x)) 8(t; ~ 1), (30)
(emitted by the first or by the second electron, respectively.

Since the functionsl(x;,%,) and Wa(x4,X,) are antisym-  we can write

metric it would be sufficient to consider one of these terms

only. —

Xs in the one-electron case we will look for the position SO =(- 'e)zf Ay, 4%y, A, d*xg, don, dor, Palxy,,Xy,)
of the resonance and employ the resonance approximation. It
implies the neglect of the nonsingular teresaluated at the
resonancein comparison with singular ones. The terms in
the sum oven; andn, in Eqg. (28) may contain a singularity

X e_i wnl(tul_tdl)e_i wnz(tuz_tdz)i_ —lpnl(r ul) ¢nl(r dl)
27 T wn ~ e, (1-10)

at the position of the resonance only if they correspond to the . i (1 )J (re)
positive-energy part of the Dirac spectrum. Accordingly, in -+ My U T’ Ay Pa(Xg 1 Xg)- (31)
Eq. (28) we can restrict ourselves to terms with 27 " wn,~ &, (1-10) v
8n1>0,8n2>0.
Introducing the functionb,(x;,X,) as Here we can employ the identity
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k', e o b A J
N2
ke a b A ]

FIG. 5. Lowest-order amplitudes for photon scattering on a two-
electron ion in its ground stat& within the resonance approxima-
tion. The ground staté is represented in terms of noninteracting
Dirac electrons.

FIG. 6. The lowest-order amplitude for the photon scattering on
a two-electron ion in the ground stafe In the ground state the
interelectron interaction is taken into account.

1 1 Ea=e1st €1 (37)

[wn, = &n (1 =10)][@n, = £,(1 =10)] Formally the expressio(84) is similar to the one in Eq4)
5 which has been derived in the one-electron case. Taking into
_ 2w (@n, ~ &n,) account interelectron interaction corrections to the ground

i [“’nz_ en,(1- i0)] state the functionb,(r,,r,) and the energ¥, will become

more complicated in particular, the functi@py(rq,r,) will

+ : -1 : (32) depend Moy, and Wp,- Nevertheless, the form of the expres-
(= wn, +&n +i0ep )@y, — £4,(1 =10)] sion (34) would remain unchanged.

Below we will employ the resonance approximation de-
fining the energy and width of the level such that they will
not depend upon the features of the particular process of

which follows from the Sokhotsky formulas

1, =—imd(x) + 7?}, i =iwd(X) +P}, scattering. Since the functioba(rq,r,) carries all informa-
x+10 x x=i0 X tion about the process of scattering, we can assume it to be
arbitrary.

1 . 1 2_775()() (33) Accordingly, it is convenient to introduce a graphical des-
X+i0 —x+i0 i : ignation: a rectangle with a lettérinside(see Fig. §. Lower

_ _ . _ and upper rectangles represent the functidngx;,x,) and
In view of the orthogonality of the Dirac functions and the —

e DA(x1,X%y), respectively, which are difined as
asymmetry of the function¥, andW, the first term of Eq.
(32 yields exactly Eq(28). For &, >0 the second term of D (X1, %)) = Da(r 1,1 )€ EFO 51, — 1), (39)
Eqg. (32) does not contribute when inserted into E8§1). As
was noticed above, fofn1<0 the second term does not de-
velop any singularity at the position of the resonance and can

be disregarded. Here ®A(r,,r,) denotes a complicated vertex function de-

Having performed. the integration over the time Variablesscribing the scattering process under considerafigris the
(tu, ty, ta, ta,) We arrive at

qTA(XLXZ) = CEA(r L1 )BT 5t —ty). (39

a v
S2 = (-ie)?(2m)? J d®ry, d%,d% 4 d° 4, dop, de,
><(I)A(rulvruz) 5(&)”1 + Wn, Ea— o)
% I_ 'pnl(r Ul) l/fnl(r dl) I_ ‘/’nz(r u2) ‘//nz(r d2)
27 wn ~ e (1-10) 27 wn, — £, (1 =i0)
XS(Ea+ o= wn — wn)Pa(rg,.Ta), (34) a b

where FIG. 7. Feynman graph, describing the first-order interelectron

interaction. The double solid lines correspond to bound electrons in
the field of the nucleus, and the wavy line corresponds to the ex-
change of virtual Coulomb and Breitransversg photons. For’

=a andb’=b the graph is called “direct,” and fa’=b,b’=a it is
called an “exchange” graph, respectively.

DAr1,1) =2y AR )WArLr),  (35)
DA(r1,15) = V2W (11,1 p) 7’”1A:L(1k/')\/)(r 1, (36)
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Nng = b’

n2=b

(a) (b)

| FIG. 10. Second-order of interelectron interaction correction to
the amplitude of the photon scattering on a two-electron ion within
FIG. 8. First-order of interelectron interaction correction to the the resonance approximation. Graah represents the contribution
amplitude of the photon scattering on a two-electron ion within thepf the “box” graph to the scattering amplitude, and graphthe

resonance approximation. contribution of the “cross” graph, respectively.

energy of the ground state, andand »’ are the frequencies Torn Tona

of the absorbed and emitted photons. u@=7> M MM? (42)
We will look for the position of a resonance neaf® nnp @~ €n, ~ &n, + Ea

=EO-E,+0(a), whereEQ=¢,+¢, is the energy of two

noninteracting electrons. Applying the identi(§2) to Eq.

(34) one can see that th&function term is singular close to Since we are searching for the position of the resonance near
the resonance, while the other term remains redlere we ~ ©®=E®-E,+O(a), we have to retain only terms in the
assume the functioda(ry,r,) to be arbitrary. The reso-  denominator of Eq42) for which g, +s,,=E®. We assume
nance approximation implies the neglect of the nonsingulathe energy level close t&©=g,+¢, to be nondegenerate
(at the resonangegerms in comparison with singular ones. and hence, within the resonance approximation the ampli-
Accordingly, within the framework of the resonance approxi-tude takes the form

mation the expression for t@ matrix becomes

2) _ *
S2 = (-ie)?(2m)? f d®r,,d%, d*r g d°r g dey, dey, V=S Tann, Tnn, A T 3
A w-EO+E '
_ niny A
><qDA(rulvruz) 5(wnl + Wn, ~ En- wl)5(wnl - gnl)

i o, (Fu) ¥, (1) i, (T ) i (T ) Here the summations run only over quantum numbend
o nzn wn — e, (1-i0) ny, satisfying the conditiore,, +s,,=E®. The matricesT
v 2 2 andD™! are given by
XS(Ep+ @ = wn — wn )Pl (40)
Integrating overwn, and ®p, in EqQ. (40) and introducing the (T)n1n2 = Tona (44)

notation

Tona=(= e)fd3r1d3r2'//nl(rl)‘//nz(rz)q)A(r1ar2)y (41)
(D)nyn, = 0=V O +Ep, (45)
we can express the corresponding amplitude for the scatter-

ing process in a form similar to Eg7):
together with

a v a 74
vO=EO (46)
n 2 1Y T2
As in the one-electron cask defines the type of scattering
process under consideration.
a b a b
(a) (b)

The interelectron interaction correction in first order is
represented by the graph in Fig. 7. In order to evaluate this
FIG. 9. Feynman graphs describing the second-order interelecOntribution which also shifts the position the resonance, one
tron interaction. Grapla) is called a “box” and graplb) is called  has to consider the graph in Fig. 8. In this paper we employ
a “cross.” Notations are the same as in Fig. 7. The summation ovdhe Coulomb gauge together with the covariant metric. The
intermediate states is indicated by, n,. photon propagator can be written as
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. o) . t . .
ot _ ot 0ty tons, whileD,, , (x1,X;) describes transvers@reit) pho-
Dﬂlﬂz(xl'XZ)_Z f dQ lMMz | Q] rp)e tons. The neéléct of retardation implies the substitution
(47) WLZ(Q I =l (O,rlz). We employ also the notation
wherer,=|r,-r,| and
0,1,00,,,0 19 arbran= E fd?"’1d3r2|Ct (Q,rqp)
| Q19 = =5, (48)
12 —
><<l//a'(r1)’Y“ll//a(r1)><1//b'(r2)’)’“2<//b(r2)>-
Oy g 9 11-é€% (50
| (@112 = ( ey 1 o \l2 . 2
172 12 &Xllﬁxzzl’lz QO
X(1=8,,0(1=38,0. (49)  The Lorentz indicegs; should indicate that the Dirac matri-

cesy* act on Dirac wave functions depending on variables
The propagatoD;m(xl,xz) corresponds to Coulomb pho- r;. The correspondingmatrix element reads

S0 = (-ie)* f A% A0 € A4, 0%, 0%, 0 oo, ooy darg By D AT 1, )M B (8, uz)2'—
'
.S G ()1 i o Ty

. . . i
Iwu (tu —tl)e—la)u (tu —tz)e—lwd (tl_td )e—lwd (tz—td ) 1 2
U, @u, su(l—IO)ZWuz wy, = su(l—IO) s © T St ded

Yo, r D%, (ra) i Yo, (1D (fe) |
XZ d,\! 1V ¥d; 0-11 |_ d,\' 2/%d, 92 I_ ,u B (| Q| r 2)9 iQ(ty- tz)e—ltd (EA+w)5(td ~t4 )q)A(rd rd) (51)
4, @d, ~€4,(1-10) 27 g wg,— £4,(1 =i0) 27 "2 2 1 %2

while the summations over,,u, andd,,d, run over the entire Dirac spectrum. Employing the ideni&§) and retaining only
terms which are singular near the resonance—i.e., keepingction terms Eq(32) only—we obtain

1

5(4)——27'“5((» o UW=-27i8w-w) > T T
1 ZEA+w_8dl—8d2

el (|_ €d, + 8u1|)u1u2d
upUpdydy

2

T .
Aulqu +tw-g, — &y d,d, A
1

(52)

Within the resonance approximation we are left with terms satisfying the condi,;ilensuz:sd +sd2:E(O)

The second-order interelectron interaction correction is represented by the graphs in Fig. 9. In order to apply the line profile

approach to the contribution of the “box” graph of Fig. 9 we have to consider the graph depicted in @&g. TH
correspondings-matrix element reads

S =(-ie)? J d¥%,d%%,0*%5d*x,d Q d E ol“xuld“xuzol“xdld“xdzdwulolwuzdwdlolmdchTA(|rul,ruZ)étuJEAm’)(S(tul - )L

tu2 2

XE ¢u1(ru1)¢u1(r3) | ¢U2(ruZ)¢U2( 4) —ILuul('[u1 t3)e Iwu (tu '[4) Iu)n (t3—tq) —Imn (14—'[2),}/;1,3,}/;1,4_

u, @u, ~ &y, (1-10) 2m Uy @u, = &y, (1-10)
Xz wnl(r3)(/fnl(r1) i l/fnz(rzl)‘//nz(rz) _de (ty- td _dez (ty= tdz)'yﬂl'y’”‘ e l//dl(rl)‘//d (rd) i

n, wnl_sn( _|0)27T n, @n,~ &n, (1-i0) 27Td wg, ~ &q, (l—IO)27T

tha,(12) l//dz(l’ d) i

X —_— =1r e—|—4(t1 Iz)_l Q r e IQ(IS '[4) Itd (EA+aJ)5t _t (D r r 53

dEZ wg, ~ £4,(1 =i0) 27 | B |22 2 Haka (| Q] ra) (tg, = ta,)Pa(rg,,ra). (53

Employing the identity32) and retaining only the terms in the summation owgiu, andd,,d, which become singular close
to the resonance, we obtain the following expression forSneatrix element corresponding to the graph in Fign)9
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1 i
S(AG) =27 8(w- 0 )UO®=- 271 8(w - 0') E T;ulqu—e‘l—
U1U2d1d2 A tow- 8u1 - SUZ 277
% 2 f d0 |(| Q |)ulu2n1n2|(|_ Q- €d, + 8u1|)nln2d1d2 1 Tyan
Ny [-Q+ ey, +en (1~ i0)][Ea+ w+ Q- &y, ~en,(1- i0)] Ex+ - &g, " &d, *°

(54)

Again within the resonance approximation only terms satisfying the conohﬂg)ﬁsuzzedl+sd2:E(°) will be kept in the
summations oveu,,u, andd,,d,.

Let us consider separately the reference states terms—i.e., for wt}iebnzzE(O) holds. Inserting a similar identity for the
energy denominators

1
[-Q + ey~ 8n1(1 —i0)][Ep+ 0+ Q- &y, ~ 8n2(1 -i0)]

27 oQ-gy +ep) -1
= + , —, (55)
i (Eatw—en —&p) (Q—sul+snl+8n1|0)[EA+w+ Q—sul—snz(l—IO)]

into Eq.(54), one can verify that the term with thifunction  derivation of a formula for the one-photon exchange contri-
coincides with the second element of the geometric progressution in Fig. 7, the two-photon exchange “box” graph in
sion for the graph in Fig. 7. Hence, while generating theFig. 9a) and the three-photon exchange “box” graph Fig. 11.
geometric progression this term will refer to the second ele- The scattering amplitude can be written as

ment of the progression.

In order to evaluate rigorously the position of the reso- U =TD (VP +V@+vE)DYT, (56)
nance up to second order inwe have to consider all cor- here V@D corresponds to the one-photon exchange araph
rections of first and second order simultaneously. Up to firs(gﬁ/. 7 E 52p. P ge grap
order of perturbation theory we have to account for SE an Ig. 7[see Eq(52)]:

VP correctipns as well as for the exchange of one Coulomb VD=3 19(- 6.+ £))arbra:
or one Breit photon. In second order we have to account for
all one- and two-electron Feynman graphs of second order
including radiative corrections, screening of the self-energyn contrast to the one-electron radiative correctifgee for-
and vacuum polarization, and two-photon exchange graphsnula (13)], this one-photon exchange correction does not
However, the evaluation of the radiative corrections is notdepend onw. Taking into account the “box” graph in Fig.
the goal of the present work. Below we will present the9(a) we obtain[see formulag54) and(55)]

(57)
g=c,t

[

i '
\ (2)(‘0) = 842— 2 2 dQl g(| Q |)a’b’nln2| g (|_ O -gyt 8a’|)nln2ab

gg'=c,t 8n1+8n2#8a+8b —®

= e > > fidQ

X : 4
[-Q +ey— en (1~ i0)][Eat w+ Q—ey — en,(1- i0)] 2w 0 =c.t S on=ea*

-1
+en, ten) O)Ep+tw+ Q—gy — 8n2(1 -i0)]"

X190 Q |)a’b’nln2| g’(|_ Q-gyt 8a’|)nln2ab(Q_ e (58
a/

Again the summations over g and gun over scalaCou- done at the stage of generating the geometric progression
lomb) and transvers€Breit) photons, respectively. The sec- with the one-photon exchange insertion. In particular, the
ond term in Eq(58) represents the remainder after subtract-identity (55) was employed for deriving the expression for
ing off the reference-state singularity. This subtraction washe reference-state contributidthe reducible pajtof the

062505-9



ANDREEV et al. PHYSICAL REVIEW A 69, 062505(2004)

al U V(O) + Re{v(l)(wreS) +V (2)(wre§ +V (3)(wres.)} —ep— 0®=0.

(62)
n,
N4 The energy and width of the level will be equal[&ee Egs.
(18) and (19)]
2 E=V o 4 Re[V (1)(wre5) +V (2)(wre5) +V (3)(wre5)} + O(a4),

(63)

a b

I'==21mV P (0 +V @ () +V (0} +0(a?).
FIG. 11. The third-order “box” Feynman graph. The notations (64)

are the same as in Fig. 7. Here the wavy lines with the cross rep-

resent the sum of the Coulomb and unretarded Breit interactions. It is important to emphasize that E@4) has the meaning of
a correction to the width of the level only if the full set of

“box” graph, where thes-function term coincides with the Feynman graphs of a given order is under consideration. In-
second element of geometric progression for the one-photogieed, the contribution of the graph in Fig. 7 cancels com-
exchange graph. pletely with a part of the contribution of the self-energy cor-

In the case of one-electron ions the reference-state termection, while the vacuum polarization gives zero
[see Eq.(22)] appeared only via the derivative term in Eq. contribution to the width. Such a cancellation is an immedi-
(25). Considering photon exchange in two-electron ions theate consequence of the Pauli principle according to which
situation is different. In this case a reference-state contributransitions of electrons into occupied states are prohibited
tion appears directly iv ?(w) [see Eq(58)] while a deriva-  [39].
tive term does not arise sindé™ does not depend on. We note that the two-electron graphs to the first order in
Nevertheless, if the sefa,b} and{a’,b’} are equivalent, the V® do not depend om. Hence, the solution of Eq62)
term corresponding to the reference states can be expressegiether withV @, V@ andV ® given by Eqgs.(57), (58)
as a derivative. At the point of the resonance we camnwset and(60) yields
=-E,+E© in Eq. (58). Accordingly, both factors in the de-

nominator will be identical. Utilizing the formula W= —E,+V O+ Re{v(l)(E(O) —E+VQ@EOQ-E,

-1 d 1
X107~ X 10) %9 #VOEY-EQ +VHEC -Ey
. . . L IV @(w)
and integrating by parts we can shift the derivative (Q). X| —— +0(a?). (65)
Let us now turn to the three-photon exchange correction do  Jog0-g,

neglecting retardation effects, crossed-photon graphs, and the @ o
contribution of the negative-energy part of the Dirac spec-The termV “(e;—¢,) represents the contribution O)f one-
trum. Within this approximation the photon propagator doegPhoton exchange graph in Fig. 7, while the tex¥?(e,

not depend on the frequené€y, which yields —g,) accounts for the contribution of the two-photon ex-
change graphs in Fig. 9. In particular, this term includes the
VO = DR L) 19" contribution of the reference states occurring in these graphs.
og'g'=ct M b0 "M TN The third-order termV ®(e,—e,) contributes to the three-
1 photon exchange graphs in Fig. 11. It does not contain the

contribution of the reference states because we disregard re-
(eny* &n,~Ea— 0)(gn + £n, " Ea— )’ tardation effects, considering it within the framework of
(60) RMBPT. The derivative term in E¢65) as well as that term
in EqQ. (25) does not correspond to a certain Feynman graph.
where the prime at the summation symbol indicates that theimilar to Eq.(25) it can be related to the contribution of the
reference state@, +en =ea+ep, &n,+£n, = 8o+ ) are oMit- reducible par(reference statgof the graph in Fig. 11.

ted. Let us mention that if we would take into account in ad-
Taking together the contributions ®®,V @, andV @), dition the radiative co_rrections and as well as screening ef-
we can generate a geometric progression, wheréthhierm ~ f€Cts, we would obtain a corresponding correctibft(«)
reads containing the contribution of the electron self-ene(@$),
the one-photon exchan@g7), and vacuum polarization. For
Q=TD Y V®+V®@+yE)DiT. (61 V@ (w) we would similarly obtain the sum of Eq&22) and

(58) and in addition all the missing radiative effects of sec-
Performing similar steps as in the one-electron case we suwnd order together with the screened self-energy and
up this progression and derive a condition for the position ofvacuum-polarization corrections. Accordingly, instead of Eq.
the resonance: (65) we would have been left with
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(1)
0= -Er+V @+ Rey VIEQ -Ep) +VAEQ -E N+ VI EA){ Al (‘")] +VOEOQ-E,
do  |,=g0-g,
2\/ (1) (1) 2 2
+ Ly EA)ZF v (‘*’)] +V O(EO - EA){‘W_(“’)} +V O(EO EA)|: IV (“’)}
2 Jdw E(O) EA Jw E0) EA Jw w:E(O)_EA
PAVAS)
+V(2)(E( EA)|: (w):| } +O(a4). (66)
Jdw :E(O)—EA

Formulating the line profile approach fdk-electron ions, to these configurations and will construct basic wave func-

it might be convenient to introduce the function tions ¥, and¥, within the j—j coupling scheme. The ener-
N gies corresponding to these wave functions are denoted by
O andE”, and they are supposed to be close to the exact

Dpa(Xg, oo X)) = PA(rg, ... rp)e BT St — t; E,” andE, , an y PpOSE ; ;
04 )= DAl N E (t2 =5, energies of the electron configurations under consideration.

Employing the line profile approach we will consider a scat-
(67) tering of a photon on a two-electron ion in its ground state
which should be depicted graphically by a rectangle with alhe positions of resonances may be found near the values
letter A inside and withN outgoing electron lines. Here w'leS—E(O ~Ep+0O(a) andw}y *=E, O _E,+0(«), respectively.
Du(rq,...,ry) describes theN-electron ions in the lowest Within the resonance apprOX|mat|on we will have to retain
(ground stateA together with the absorbed photon. Accord- two terms in the sung42) corresponding to the basic func-
ingly, formula(32) generalizes to tionsW¥, andW¥,. The scattering amplitude may be written as
ﬂ 1 Upa=T'DH{AVD YT, (70)
i1 [wnj —snj(l—iO)] ) ) . )
whereD is a matrix 2x 2, defined on the function¥,,W¥,:

N-1
=TT 2ot = o) #
= —_— wn —
AR R wn, + € + 106, D=w+Es-V©, (72)
X ! (68) A A
[a)nN - an(l -i0)]’ V©@=h,+h,, (72
This identity can be written as
Y - AV=V-VO =y 4 \y@ y@ ... (73)
27
H i_5(wn 8n)

N 1 = Hereh; andh, are the one-electron Dirac Hamiltonians act-
I1 —— +f(w,e). ing on the one-electron Dirac wave functions depending on
=1 [0n, — &n (1 -i0)] [@n, ~ &n(1=10)] r, or r,, respectively. Since the functionk, and ¥, are
(69) orthogonal, the matridD is diagonal. Accordingly, we now

) , have to compose a geometric matrix progression witHtthe
Then the terms in Eq¢34), (51), and(53) which correspond a1,
to the functionf(w, &) will not contain the singularities and
will be omitted within the framework of the resonance ap-
proximation. Equationg65) and(66) will remain unchanged
however, nowV will contain additional contributions of
three- and up tdN-electron graphs. In particular, for three-
electron ions the function¥ @?(w) and V@ (w) will also
account for contributions of three-electron gragése[11]).

Q =T'DAVDY'T (74)

and sum it up employing the formula for a convergent geo-
metric progression. The expression for the amplitude reads

1 1
Up=TD-AV]iT=T" T=T" T.
D-AV wt+tEp-V
C. Line profile approach for many-electron ions (75)
(quasidegenerate energy levels)

We now turn to the application of the line profile ap- Introducing the functior®=(d,,d,) by means of the rela-
proach to quasidegenerate levels. Without loss of generalityion ®=BW¥, where the matriXB is assumed to diagonalize
we can restrict ourselves to two mixing configurations. Wethe matrix V=V @+ AV—i.e. V929=B*VB, The expression
will search for the positions of the resonances correspondinépr the amplitude can now be written in the form

062505-11



ANDREEV et al. PHYSICAL REVIEW A 69, 062505(2004)

Ua=Tro : To.a Wi ,(T1r2) =N 2 Clz(mymy)
lw+ EA - [B+VB]¢1¢1 1 my, My
+Tx ! T x [lﬁjlllml(rl)(pjz'zmz(rz)
3 [
A2+ Ep - [B*VBlo,a, A =i m (1Ym0l (81)
1 o ' .
=Tre = oA where the normalization constant i&=1/2 for equivalent

to+Ea- \lg,lq)l(w) electrons andN=1/42 for nonequivalent electrons, respec-

1 tively. Cl{2(mymy) is a Clebsch-Gordan coefficient. The one-
+T,§(I>2 ag To,a- (76)  electron Dirac functionsy;,(r) are characterized by the
@+ Ep=Vop,(0) standard set of one-electron quantum numbers—total angular
momentumj, its projectionm, and the orbital angular mo-
gwentuml—that fix the parity of the state. For the two-
electron wave function the relevant quantum numbers are the
I{;g_tal angular momenturd and its projectiorM.
Following the procedure described in Sec. Il C we will

Taking a square modulus of the amplitud@®) and integrat-

ing over the directions of the absorbed and emitted photon
yields a line profile for the probability of photon absorption.
The positions of the resonances are determined by the equ

tions ' construct the matri¥/, Eq. (73), on the functiong81),
WP+ Ep— REVE (019} =0, (77)
W1 M=0,=1/2),=1/2) =01 ,=1 = (152P1)2), (82
w3+ Ea= ReV g (059} =0. (78)
Hence, the energies of the configurations are W 321 M=0,j,=1/2) =8/21,=01 =1 = (1s2p3/), (83
- di
Ea, = RelVo/d, (01}, (79 and examine the positions of the resonances close}
_ =-Eateistes, ,+0(a) and wrzesz‘EA+815+82p3,2+O(01),
Eo,= Re[VE (039}, (80)  respectively.

As has been elaborated in Sec. Il the operatoin gen-
Assuming that the energies of the configurations are close t@raL depends ow. The position of the resonance can be
each other, we can expand E@87) and(78) into a Taylor  derived via Taylor expansion at the approximate positions of

. 0 —
series around the values®*=—Eo+E\” and w{f*=—E,  the resonancesw=-Ex+eistesy , and wy*=—Eateys

+E2(°), respectively. As in the case of nondegenerate Ievelsfengl2 [see Eq(65)]. For the practical calculations it is con-

this can be achieved up to any desired accuracy. venient to expand some matrix elementd/ait the pointw'™
Note that employing the resonance approximation in casgnd others at the pointss keeping only term®(a?) in both

of nondegenerate level we have to retain in a correspondingypansions. The resulting inaccuracy can be referred to cor-

sum (42) certain many-electron functions composed within rgctionsO(a®) [24], because at loviz values the energy dif-

thej—j coupling scheme. Indeed, after diagonalization of theferenceSZ —&,, _becomes small, while at larggvalues

matrix V all other combinations of one-electron functions deger?g?acypgfzthe levels'®, and 23P, is nearly negli-

will yield zero in view of the antisymmetry of the wave .-\ ! !

function of the ground state and the symmetry of the matri><g i

. o The interelectron interaction correction is represented by
V. Hence, having constructed a many-electron function in th‘?he set of graphgFigs. 7 and 9 which is symmetric under
j—J coupling scheme, Eq56) becomes a scalar one. :

) . . ., interchange of the upper and lower indices and relabeling of
The line profile approach outlined above can be eaS|I3{he electrons in the graphs. Accordingly, the operatds

employ_ed f_or an arbitrary number of degengrate levels. Th%iven by a symmetricand in general complgxmatrix. How-

ger'lsrzajllz?ttlr?n ofdth;atr:nethod. tbl-electt_ron ions was de- ever, as a consequence of performing the Taylor expansion of

scribed at the end of the previous section. the matrix elements o and neglecting third- and higher-
orders terms it can lead to a nonsymmetrical matrix. To pre-

Ill. EVALUATION OF THE ENERGY LEVELS OF vent this asymmetry arising due to purely technical reasons
QUASIDEGENERATE TWO-ELECTRON one may symmetrize the matrix by hand.
CONFIGURATIONS Hence, the matrix elements of the frequency-dependent

. . : . . __operatorV evaluated at the resonances can be written as
We will evaluate the interelectron interaction correction

for the two-electron configurations(1s2p)2'P,; and B

(1s2p)2°P,. Employing the relativistig —j coupling scheme (1521 )| V()| (152p1 ) = (12112 F|(152Ps12)),
these energy levels become quasidegenerate in the r&gion (84)
=<40. To treat such states within the framework of QED we

will apply the line profile approach. Within thie-j coupling B

scheme the wave function of a two-electron configuration  ((152P/2)|V(@®9|(152p3/2)) = ((152p3.)[F|(152p372)),
can be represented as (85)
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((132py/2) [ V(@0"®9)|(152ps1) = 5[((152py ) |F|(152ps) F O b= €20 at €00 p— 815~ M, (89
+((1s2p3)o) |F|(152p1 /)],

(86)  where the electron rest energy (in relativistic unite$ and
1s-electron energy are subtracted. In first-order perturbation
((152p310) | V(0"®9](152p1 ) = {(152p12) | V(0"9)|(152p3)0)) - theory the interelectron interaction represented by the graph
(87) in Fig. 7 can be described by the matrix element

The operator is defined via its action on the set of the

one-electron Dirac function@b}, which in our case consists Fél,)b,ab: l(le o — 2a)arby ab- (90
of {ab}={1s2p,,,},{1s2ps;»}. To zeroth-order perturbation

theory the operatoF reads[see Eq(72)].

O

Since the graph in Fig. 7 is irreducibie”
a'b’ab= €a%a’at €S p- (88) grap g

2L COINCides with
the expression[Eq. (57)] for nondegenerate levels. In
Being interested in ionization energies it is more conveniensecond-order perturbation theory we have to account for the

to introduce a shifted with the zeroth-order matrix element two-photon exchange corrections depicted in Fig. 9:

(2)(bOX,iIT) _ 4 | * Ig(| Q |)a’b'nln2| g (| Q - sa' + 8a|)nln2ab
Fabao = €2 2 (1-60 £0) > 40 =G o © -
gg, nin, 12 TJ - (Eab - Enan)(Q— 8n2 + Eab — &y + |08n2)
i (7 19(] Q|)b'.:—m’nln2Ig (|Q_£a+8a’|)nln2ba (91)
0 0 . il
2m) (E;b) - E'glf)b)(ﬂ_ en, &2t IOsnz)
I:(2)(bo>< red 1 42 E s 1 Jm |g(| Q |)a’b’nln2| g (| O-ey+ 8a|)n1n2ab
' =——€ 0 gO —
"bab EO £ o :
aba og’ Mo mnymabf 2q7 ) (Q-ep + EQ-¢, + |08n2)2
N i Jx 490 |g(| Q |)b’a’n1n2| g (| O -eqt 8a’|)nln2ba ‘s 0 (1-6 )
— (0) — 00 g0
27J) (Q-¢g, +ey +i0g,)? By Earby Enyn, Sab
2 2
0 0
|(|8n2 - Eéb) + 8a’|)a’b’n1n2| (|8n2 - E.E:lb) + 8a|)n1n2ab |(|‘9n2 - 8a’|)b’a’nln2I (|8n2 - 8a|)n1n2ba 92
x EO_gO * EO_EO (92
ab n{n, ab nn,
L e 9 g -
p2)(cross,in _ 42 2 (1 - &y ))I_f 40 19( @ |)b’n2n1al (|Q-ea +8a|)n1a’bn2
h - S - +e,.—e.r .
a’b'ab gg’ M2 en,"en v eV o | (8n2 ~&n tep— ga1)(Q— en,t &5t |08n2)
i (" 19 @ |)nlb’an2| T(|Q-eq+ 8a|)a’n2n1b
+ (1 - 50,(sn = —sb+aa/))_ dQ 0 R , (93)
> oy 27) (en,~&n, ~ &bt 8a)(Q= &y, + Egp — &4 +i0ep)
[
. - 0 _ . .
FRCOssE_ 1% 3 5 |_f 40 +gp, and Er21:12‘8“1+£nz are introduced. The index g runs
a’b’ab Olen,"en*eb~2a) o | over c,t(scalar and transverse photariEhe Kronecker sym-

/ Nnqn.
99 T bols ensure that terms with potentially zero denominators

19(] Q |)b,n2nla| 9'(| O-gy+ 8a|)nla’bn2 will be omitted in the summation over;,n,.

Note that Eqs(91), (93), and(94) for the irreducible parts
coincide generically with Eq(58) for nondegenerate levels
(94) (see alsd13]). However, for the reducible part of the “box”

graph additional terms originating from the geometric pro-
gression for the one-photon exchange gr&pbndiagonal

In Egs.(91) and (92) the notationsE;g):sa+ Eps E;?i),:sa, matrix elements of the second term of the progregsicaur.

Q- en,teat iOsnz)2
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TABLE I. Matrix elements of the operatdf for the two-electron configurations'®; and 23P; (eV). The individual contributions for
the Dirac-binding energies ofp2electron state§V(?), the one-photon exchange contributidfi?), and the two-photon contributiofy®)

are compiled, respectivelfy(2 1P;) andEy(2 3P;) are the energies of the corresponding configurations, where only the photon exchange

contributions are taken into accoumeglecting radiative correctiops

Contribution Z=10 18 26 30 40
(1s2py2),(152py ) —340.7099 —1108.0574 —2325.7285 —3108.3193 —5594.0369
VO (152pg) , (152p3)) —340.2556 —1103.2520 —2304.5586 —3070.5057 —5471.5704
(152py2), (152p3/) 0 0 0 0 0
(1s2py/0),(1s2py)  64.7130+0.0007  117.2696-0.0072  171.2105-0.0316  198.9154-0.0560  271.1021-0.1778
VW (1s2pgyjp) , (1s2pg;)  67.6938-0.0007  122.1616-0.0072  177.1674-0.0312  204.9502-0.0551  275.4795-0.1724
(1s2py2),(152p3)n) 4.3418-0.0019 7.6653-0.0204 10.7333-0.0887 12.1369-0.1571 15.1577-0.4954
(1s2py2),(152py ) —2.7692 —2.8168 —2.8938 —2.9439 —3.1082
V@ (152pg) , (152p3) —3.5256 —3.5603 —3.6142 —3.6506 —3.7641
(1s2p1/2) , (152p3)0) —-1.0727 —1.0618 —1.0450 —1.0350 —1.0008
Ex(21P)) —273.8939 —981.1501 —2127.8323 —2866.5171 —5198.2878
Ex(23P)) —280.9596 —997.1059 —2160.5849 —2915.0368 —5327.6102
AEy(2'P,): Appr. 1 2.1934 3.5012 3.1731 2.6890 1.5672
AEy(23P,): Appr. 1 —2.1934 —3.5012 -3.1731 —2.6890 —1.5672
AEx(2'P,): Appr. 2 —0.7581 —0.7203 —0.5599 —0.4460 —0.2175
AEy(23P,): Appr. 2 0.7581 0.7203 0.5599 0.4460 0.2175
AEy(2'P,): Appr. 3 0.0001 0.0019 0.0102 0.0168 0.0571
AEy(23P,): Appr. 3 0.0000 —0.0009 —0.0036 —0.0056 -0.0121
AEy(21P,): Appr. 4 0.0000 0.0002 0.0009 —0.0005 —0.0013
AEy(23P,): Appr. 4 0.0000 0.0000 0.0009 0.0018 0.0038
AEx(2'P,): Appr. 5 0.0000 0.0000 —0.0001 —0.0003 —0.0015
AEy(23P,): Appr. 5 0.0000 0.0000 0.0001 0.0003 0.0015
AEx(21P) —Ex(23P))
This work 7.0657 15.9557
Lindgrenet al. [28] 7.0657 15.9554
Contribution Z=50 60 70 80 92
(1s2py),(152py ) —8884.368 —13062.966 —18250.182 —24621.409 —34211.065
VO (152pg) , (152p3) —8575.514 —12395.463 —16948.025 —22253.673 —29649.834
(152py2), (152p3/») 0 0 0 0 0
(1s2py/2),(152py ) 348.9170.431 434.638-0.912 531.400+1.702 643.793+2.930 809.699+5.178
VD (1s2p3),) , (152p3)0) 347.960-0.415 422.949-0.846 501.042-1.531 582.883-2.533 686.996-4.210
(1s2py) . (152p3)n) 17.320-1.206 18.430-2.491 18.311+4.590 16.795-7.771 12.929-13.440
(1s2py),(152py ) —-3.333 —-3.635 —4.038 —4.585 —5.531
V@: (1s2p3) , (152p3/) -3.915 —4.105 —4.339 —4.628 —5.053
(1s2py), (152p3)0) —0.955 —0.893 —-0.801 -0.771 —0.683
Ex(21P)) —8230.604 —11976.160 —16451.098 —21675.333 —28967.898
Ex(23P)) —8539.649 —12632.423 —17723.044 —23982.287 —33406.890
AEy(2'P,): Appr. 1 0.865 0.460 0.225 0.085 —0.007
AEy(23P,): Appr. 1 —-0.865 —0.460 —-0.225 —-0.085 0.007
AEy(2'P,): Appr. 2 -0.102 —0.049 -0.023 -0.011 —0.004
AEx(23P,): Appr. 2 0.102 0.049 0.023 0.011 0.004
AEy(2'P,): Appr. 3 0.153 0.358 0.759 1.461 2.931
AEy(23P,): Appr. 3 —-0.014 —0.007 0.021 0.096 0.323
AEy(21P;): Appr. 4 —0.004 —0.009 -0.015 -0.035 -0.075
AEy(23P,): Appr. 4 0.011 0.025 0.050 0.094 0.181
AEy(2'P,): Appr. 5 —0.004 —0.009 —-0.016 —-0.026 —-0.041
AEx(23P,): Appr. 5 0.004 0.009 0.016 0.026 0.041
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It is easy to make sure that the contribution of referencderences between the energies of the levels calculated with-
StateS(Er(]%fE;%) , EIE%Z: E;?:) ) to the exchange of two Cou- Out the approximations and the energies calculated within the
lomb photongor Breit photons with neglect of retardation Tr?gnEevE/glr,lépo)fl X\pepragpraoxmatlons are presented in Table
Is absent. Approximation 1: We omit the nondiagonal elements of

the matrixV=V ©+Vv ®+v @ Consequently, effects of the
IV. NUMERICAL RESULTS AND THEIR ANALYSIS quasidegeneracy are tota”y neglected.

The results of the numerical calculations are presented in Approximation 2: We omit the nondiagonal elements only

. . in the matrixV @. As stated above the expression for the
T e e et . phton exchange coecton B9, does not depend o
q P 9 w and coincides with the one for the nondegenerate case.

ate_d by a nuclear charge density desprlk_)ed_ by a Fermi d'Strlﬁccordingly, the first-order contribution is taken into account
bution. The parameters of the Fermi distribution are taker}ust as the solution of the secular equation—i.e., following
from Ref. [13]. _ _ the usual techniques developed in quantum mechanics for

In Table | we present a detailed analysis of our resultgreating degenerate levels. The influence of quasidegeneracy
obtained for the photon exchange contribution. The valugjye to the second-order matrix elemaff® is neglected.
V(@ is the binding energy of thepstate according to Eq.  Approximation 3: We calculate the matrix elements\of
(89), the valueV ) corresponds to the one-photon exchangewithin the framework of RMBPT. Compared with the fialb
contribution Eq.(90), and V@ represents the two-photon initio QED calculation the following contributions are miss-
exchange contributions given by Eq@1)<94). We note ing: (1) negative-energy intermediate stat¢®) crossed-
that, in general, the matri¥ has complex elements and both photon interaction, an@B) rigorous treatment of retardation
their real and imaginary parts contribute to the energyeffects. As mentioned above within the framework of
eigenvalues—i.e., the real part of the diagonalized mafrix RMBPT no contribution due to reference statésr two-
In our calculation the imaginary part & ¥ is taken into  photon exchangearises. Accordingly, the energies of the
account, while the imaginary part of the two-photon ex-levels just follow as solutions of the secular equation.
change contributiofV @) is neglected. The valuds (2'P;) Approximation 4: Only the matrix elements ®? are
and E4(2°P;) denote the photon-exchange contribution toevaluated within the framework of RMBPT. According to the
the energies of the corresponding electron configurationsomment made on approximation 2, this also follows the
(neglecting the radiative correctionsFor Z=10,18 we quantum-mechanical treatment for quasidegeneracy.
present also the values for the difference between the ener- Approximation 5: We neglect the imaginary part of the
gies of the levels under consideration reported in R28]. elements of the matri¥. The matrixV defined in Eq(73) is

In order to analyze the influence of the quasidegeneracg complex one. Although the energy of the level is defined as
on QED effects in more detail we compile the correspondinghe real part of the diagonalized mathKw) at the point of
energy shifts of the levels due to the photon exchange corthe resonancéw= "9, the imaginary part of the elements
tribution calculated within various approximations. The dif- of the matrixV (nondiagongl contributes to the energy.

TABLE II. Data for the energiegin eV) of the configurations 2P, and 2°P;. Photon exchange correc-
tions are taken into account up to second ordew.irSelf-energy(SE) and vacuum-polarizatiotvP) cor-
rections are taken into account only in first order. The one-electron radiative corrections ofrites SE
and VP screening corrections, and all the corrections of the third and higher orders are omitted. The data are
compared with the results of Plange al. [2] and Drake[1].

Contribution Z=10 18 26 30 40
E(2'P,), this work —273.8936  —981.1462 —2127.8070 —2866.4666 —5198.0971
E(23P,), this work —280.9596  —997.1079 —2160.5953 —2915.0545 —5327.6408
E(2'P,), Planteet al. —273.8155  —981.0966 —2127.7712 —2866.4354 —5198.0801
E(2%P,), Planteet al. —281.0132 —997.1451  —2160.6313 —2915.0924 —5327.6917
E(2'P,), Drake —273.8077 —981.0832 —2127.7515 —2866.4129 —5198.0515
E(23P,), Drake —281.0054  —997.1303 —2160.6038 —2915.0556 —5327.6222

Contribution Z=50 60 70 80 92
E(2'P,), this work —8230.079 —11974.951 —16448.629 —21670.722 —28958.974
E(23P,), this work —8539.626 —12632.120 —17721.892 —23979.001 —33397.135
E(2'P,), Planteet al. —8230.078 —11974.972 —16448.682 —21670.812 —28959.135
E(2%P,), Planteet al. —8539.719 —12632.321 —17722.363 —23980.133 —33400.643
E(2'P,), Drake —8230.038 —11974.910 —16448.591 —21670.679 —28958.944
E(2%P,), Drake —8539.592 —12632.088 —17721.944 —23979.373 —33398.993
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TABLE IlI. Theoretical and experimental data forPR; -2 P, transition energiegn eV).

z This work Lindgrenet al. [28] Planteet al. [2] Drake[1] Experiment Ref.
18 15.9617 16.0550 16.0485 16.0471 1603179 [43]
16.0Q0.49 [44]
26 32.7883 32.8601 32.8523 30%H) [45]
33.230.45 [46,45
92  4438.161 4441.508 4440.049 4483.) [47]

The results in Table | demonstrate that for th&P2, and  present work the photon exchange is taken into account up to
23P; levels a complet@ab initio QED theory for describing second order. The SE and VP corrections are included only
the quasidegeneracy has to be employed only when goinig first order. Quantitative results for SE and VP corrections
beyond the level of second-order corrections. Eer30 ap- ~ are taken from Refs]40-42,3. The SE and VP screening
proximation 3 provides an accuracy of about 1% at the leveforrections, the radiative corrections of second order, and all

of second-order perturbation theory. Accordingly, the inaccuthe corrections of third and higher orders are omitted. We
racy can be referred to corrections of third order. Forhote that the VP screening corrections for the states consid-

Z<60—70 approximation 4 leads to an inaccuracy compa€réd have been evaluated by Artemyeval. [15], while
rable in magnitude with the corrections of third order. Forfesults for the SE screening corrections are not yet available.

: i the SE and VP screening corrections partially cancel
Z>60—70 the effect of quasidegeneracy decreases def§Ince . !
nitely to the level of third-order corrections. Consequently,S2¢1 other, we do not include the results 1] in Table II.
approximation 2 can be employed for highsystems. For In Table Il we present various theoretical and experimental

. " data for 22P,—21P; transition energies. We conclude that
Z>80 the quasidegeneracy becomes completely negllglbl%e discrepancy between our data and those from other re-
i.e., it will be sufficient to employ approximation 1. The

M - . X sults arising for small values of is caused by third and
contribution of imaginary parts of the matrix elememMso  pigher orders of the perturbation theory which have not been
the energy levels appears as an effect of quasidegeneragygcounted for in the present paper. For higithe major
which originates completely from QED. It is perceptible only inaccuracy is due to missing self-energy, vacuum-
for high Z>70, which also reveals that the neglect of thepolarization screening corrections, and one-electron radiative
imaginary part oV ® has been legitimate. corrections of second order.

In Table 1l we present the data for the total energies of the
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