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Accurate QED calculations of the interelectron interaction corrections for thes1s2pd21P1 and s1s2pd23P1

two-electron configurations for ions with nuclear charge numbers 10øZø92 are performed within the line
profile approach. Total energies of these configurations are evaluated. Employing the fully relativistic treatment
based on thej − j coupling scheme these energy levels become quasidegenerate in the regionZø40. To treat
such states within the framework of QED we utilize the line profile approach. The calculations are performed
within the Coulomb gauge.
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I. INTRODUCTION

To provide accurate quantum-electrodynamical(QED)
evaluations of energy levels for two- and three-electron con-
figurations of highly charged ions(HCI’s) has become now
an urgent problem in atomic physics. This can be explained
by the growing number of experimental data and the neces-
sity to use the energy levels for the evaluation of important
characteristics of HCI’s, such as, e.g., transition probabilities
and recombination cross sections.

In the past an approximate relativistic approach based on
variational nonrelativistic wave functions has been used for
evaluating energy levels[1]. Numerous theoretical results for
few-electron ions have been obtained within the framework
of fully relativistic many-body perturbation theory(RMBPT)
and relativistic all-order(AO) many-body theory[2]. How-
ever, rigorous QED results, which allow for a consequent
order-by-order improvement of the accuracy of the calcula-
tions have become more and more desirable.

The approximation of noninteracting electrons is com-
monly employed as a zeroth-order approximation in QED
perturbation theory for HCI’s in the absence of a quaside-
generacy of levels. Accordingly, within the zeroth-order ap-
proximation the energy of the few-electron configuration ap-
pears as the sum of the Dirac eigenvalues for the occupied
one-electron states. One-electron corrections(termed here as
a generalized Lamb shift) include QED radiative corrections,
such as the electron self-energy(SE) and vacuum polariza-
tion (VP) as well as nuclear corrections—i.e., nuclear size
(NS), nuclear recoil(NR), and nuclear polarization(NP), re-
spectively. A few years ago a status report of one-electron
energy corrections was presented in detail in[3]. Since then,
considerable progress concerning the evaluation of higher-
order self-energy corrections has been made[4].

The dominant two-electron contribution is due to the in-
terelectron interaction.Ab initio QED results for the first-
order interelectron interaction in two-electron ions are
known from Ref.[5] (see also[6]). The higher-order correc-
tions are much more intricate. Complete QED calculations of
the second-order interelectron interaction have been accom-
plished for the ground state and for nondegenerate low-lying
excited states of He-like and Li-like ions[7–13].

The other important two-electron corrections are the
screened self-energy and vacuum-polarization corrections,
which have been evaluated in[14–17] for nondegenerate
two- and three-electron configurations in HCI’s.

Various general bound-state QED approaches have been
employed for the derivation of the energy corrections in
HCI’s. The one most commonly used is the adiabatic
S-matrix approach, developed by Gell-Mann and Low[18],
generalized by Sucher[19] and first applied to bound-state
QED corrections in Ref.[20] (see also[5]). The other one is
the Green’s function approach, first developed in[21] and
now applied frequently in a more sophisticated form of the
two-time Green’s function method[22–24]. Finally, the line
profile approach(LPA) is utilized for the same purpose
[25,26]. In our previous studies of the QED theory of inter-
electron interaction in HCI[11,13] this approach has been
applied.

In this paper we generalize the line profile approach to the
case of quasidegenerate electronic states in two-electron
HCI. This problem arises when a complete QED treatment
including the relativisticj − j coupling scheme is applied to
the fine-structure multiplets of systems with intermediate
nuclear charge numbersZ. Some components of the multip-
let with equal relativistic quantum numbers turn out to be
close enough to each other[the s1s2pd2 1P1 ands1s2pd2 3P1

levels are the standard example].
Up to now the QED theory of the quasidegenerate levels

was considered only within the two-time Green’s function
method for the self-energy screening corrections(without
any numerical applications) [27], for vacuum-polarization
screening corrections[15], and within the covariant
evolution-operator procedure[28] for the second-order inter-
electron interaction. Numerical calculations for two-electron
ions with Z=10,18[28] are so far the only example where
bound-state QED has been applied to the evaluation of the
energy of quasidegenerate levels taking into account the in-
terelectron interaction up to second order.

In this work we present an extension of the line profile
approach which is suitable for the evaluation of energies of
any number of the nondegenerate or quasidegenerate levels.
The interelectron interaction corrections up to first and sec-
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ond order of QED perturbation theory are evaluated for the
s1s2pd2 1P1 and s1s2pd2 3P1 levels in a wide range ofZ
values.

II. LINE PROFILE APPROACH

The problem of the natural line profile in atomic physics
was considered first in terms of quantum mechanics by Weis-
skopf and Wigner[29]. In terms of modern QED it was first
formulated for one-electron atoms by Low[30]. In [30] the
appearance of the Lorentz profile in the resonance approxi-
mation within the framework of QED was described and
nonresonant corrections were estimated. Later the line profile
QED theory was modified also for two-electron atoms[31]
(see also[6,32]) and applied to the theory of overlapping
resonances in two-electron HCI’s[33,34]. Another applica-
tion was devoted to the theory of nonresonant corrections
[35,36].

It was found in[25] that the LPA provides a convenient
tool for calculating energy corrections. Moreover, it clearly
determines the limit up to which the concept of the energy of
the excited states has a physical meaning—that is, the reso-
nance approximation. The exact theoretical values for the
energy of the excited states defined by the poles in the
Green’s function can be directly compared with measurable
quantities only within the resonance approximation, where
the line profile is described by the two parameters: energyE
and widthG. Beyond this approximation the evaluation ofE
andG should be replaced by the evaluation of the line profile
for the particular process. Moreover, in the case of two-
electron atoms the line profile approach was found to be very
efficient for the evaluation of the reference-state correction
(reducible part of Feynman graphs) for two-electron atoms
[37].

A. Line profile approach for one-electron ions

Consider the simplest process of photon scattering on a
one-electron ion which is assumed to be in its ground stateA
(Fig. 1). Using the standard Feynman rules for bound-
electron QED[6] yields the expression for theS-matrix ele-
ment:

SA
s2d = s− ied2E d 4xud

4xdc̄Asxudg muSsxu,xddg mdcAsxdd

3Amu

* sk8,l8dsxudAmd

sk,ldsxdd, s1d

wherecAsxd=cAsr de−i«At is the wave function of the electron
in the ground state andg m is the Dirac matrix together with
the electron propagator

Ssx1,x2d =
i

2p
E

−`

`

dv e−ivst1−t2do
n

cnsr 1dc̄nsr 2d
v − «ns1 − i0d

. s2d

HereAm
sk,ldsxd denotes the vector potential of the electromag-

netic field (photon wave function). The notations xu
=stu,r ud and xd=std,r dd indicate “up” and “down” vertex
coordinates, respectively.

Insertion of the expressions for the electron propagator
and the photon wave function yields

SA
s2d = s− ied2E dtud3r udtdd3r ddvnfc̄Asr udg muAmu

* sk8,l8dsr udg

3eitus«A+v8de−ivnstu−tdd i

2p
o
n

cnsr udc̄nsr dd
vn − «ns1 − i0d

e−itds«A+vd

3 fg mdAmd

sk,ldsr ddcAsr ddg. s3d

Herev= uk u andv8= uk8u are frequencies of the absorbed and
emitted photons, respectively,k ,k8 are the photon momenta
and l ,l8 denote the photon polarizations. The summation
over n is extended over the entire Dirac spectrum of elec-
trons in the nuclear Coulomb field, and«n are the Dirac
energy eigenvalues. Integrating over time variablesstu,tdd
and abbreviating the expressions in the square brackets by

F̄Asr ud andFAsr dd, respectively, we can write

SA
s2d = s− ied2s2pd2E d3r ud3r ddvnF̄Asr ud

3dsvn − «A − v8d
i

2p
o
n

cnsr udc̄nsr dd
vn − «ns1 − i0d

3ds«A + v − vndFAsr dd. s4d

The functionFAsr d can be considered as a vertex function,
which describes the absorption of a photon by an electron in
its ground state. Below, we will formulate the resonance ap-
proximation, where we can define the energy and width of
the level which have a general meaning independent of the
features of the considered scattering process. Hence, the en-
ergy and width will not depend on the functionFAsr d and
thus we may consider the functionFAsr d as arbitrary. In
particular, it can account for the interaction with the free
electromagnetic field(radiative corrections).

Let us introduce in Eq.(4) the matrix

FIG. 1. The lowest-order amplitude of the photon scattering on
the atomic electron within the resonance approximation. The double
solid line corresponds to bound electrons in the field of the nucleus.
The wavy lines with arrows denote the absorption or the emission
of a photon with momentumk and polarizatione.
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TnA = s− edE d3r c̄nsr dFAsr d s5d

and integrate over the frequencyvn. Employing the defini-
tion of the transition amplitudeU via

S= − 2pi dsv − v8dU, s6d

we derive the expression for the amplitude:

UA
s2d = o

n

TAn
* TnA

v − «n + «A
. s7d

We will consider the resonance case when the frequencyv is
close to the valuevres=«a−«A+Osad, wherea labels one of
the exited states of an ion. In the resonance approximation
we have to retain in Eq.(7) only the dominant term withn
=a in the sum overn—i.e.,

UAa
s2d =

TAa
* TaA

v − «a + «A
= T *D−1T. s8d

In order to simplify the application of the line profile ap-
proach to the many-electron ions we introduce the abbrevi-
ated notations

T = TaA, s9d

D = v − Vs0d + «A, s10d

Vs0d = «a. s11d

Notice that the functionT describes the process of scattering.
To obtain the Lorentz contour one has to insert the elec-

tron self-energy part in the internal electron line in Fig. 1.
For simplicity we neglect the vacuum-polarization part. To
the lowest order this leads to the graph depicted in Fig. 2 and
the corresponding expression for the scattering amplitude
evaluated within the resonance approximation takes the form

UAa
s4d = UAa

s2d V s1dsvd
v − «a + «A

= T *D−1 fVs1dsvdD−1gT, s12d

with

V s1dsvd = e2
„ŜRsv + «Ad…aa. s13d

Here ŜRsvd is the renormalized electron self-energy opera-
tor. The upper index at the functionV indicates the order of
perturbation theory with respect to powers of the fine-
structure constanta for the graphs contributing to this func-
tion. Repeating these insertions in higher orders we can com-
pose a geometric progression with thelth term:

Ql = UAa
s2dF V s1dsvd

v − «a + «A
G l

= T *D−1fV s1dsvdD−1gl T. s14d

The resulting geometric progression is convergent for anyv
except for values within the intervalvP f«a−«A− uV s1du ,«a

−«A+ uV s1dug close to the position of the resonance. Applying
the formula for a convergent geometric progression one de-
rives

UAa=o
l=0

`

T *D−1 fV s1dsvdD−1gl T

=
T *T

D − V s1dsvd
=

T *T

v + «A − V s0d − V s1dsvd
. s15d

Hence, the resonance is shifted into the complex plane and
Eq. (15) is defined for allv values on the real axis. Equation
(15) presents the analytic continuation of the expansion
Sl=0

` Q1 to the entire complex plane.
Taking the square modulus of the amplitude(15), integrat-

ing over the directions of absorbed and emitted photons and
summing over the polarizations we obtain the Lorentz profile
for the absorption probability:

dWsvd =
1

2p

3
GaA

fv + «A − Vs0d − RehVs1dsvdjg2 + fImhV s1dsvdjg2

3dv. s16d

HeredWsvd is the probability for the absorption of a photon
within the frequency intervalv ,v+dv andGaA is the partial
width of the levela, associated with the transitiona→A.

Taking into account the correction depicted in Fig. 2 we
improve the position of the resonance:

vres= − «A + V s0d + RehV s1ds«a − «Adj + Osa2d. s17d

Formula(16) defines the line profile of the process of scat-
tering. Within the resonance approximation the line profile
can be described by a Lorentz contour which is characterized
by two parameters: the position of the resonance and the
width. We define the energy shift for the statea as the shift
of the resonance. The energy of the statea is

E = vres+ «A = V s0d + RehV s1ds«a − «Adj + Osa 2d s18d

and the width of the level as the width of the corresponding
Lorentz contour at the position of the resonance:

FIG. 2. First-order self-energy insertion into the photon-
scattering graph within the resonance approximation.
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G = − 2 ImhV svresdj = − 2 ImhV s1ds«a − «Adj + Osa 2d.

s19d

We note that the energyE of the level and its widthG defined
in the framework of the resonance approximation do not de-
pend upon the functionT (or FA) and, therefore, they do not
depend upon the type of scattering process. For example, we
are free to consider not only the scattering of a photon but of
some other particle as well which couples to electrons. Go-
ing beyond the resonance approximation the line profile can
no longer be described by a Lorentz contour and, conse-
quently, the energy level cannot be characterized only by two
parametersE andG. In this case the evaluation of the energy
levels should be replaced by the evaluation of the particular
line profiles which, in general, depend upon the features of
scattering process under consideration.

The real part of the matrix element(ŜRs«ad)aa describes
the lowest-order contribution to the Lamb shift, and the
imaginary part, which is finite and not subject to renormal-
ization, represents the total radiative(single-quantum) width
of the levela:

DEa
SE= „ŜRs«ad…aa = La

SE−
i

2
Ga. s20d

The other contribution to the lowest-order Lamb shiftLa
VP

originates from the vacuum polarization. This correction
does not contribute to the widthGa [6].

Studying the higher-order Lamb shift in one-electron at-
oms within the line profile approach, we have to account for
the Feynman graph depicted in Fig. 3. For reasons of sim-
plicity, we will not consider the other second-order graphs.
In the casen1=n3=a and n2Þa the graph in Fig. 4 can be
viewed as a second-order self-energy insertion(loop-after-
loop, irreducible part) in the graph in Fig. 1 within the reso-
nance approximation. We derive the following expression for
the scattering amplitude:

UAa
s6d = UAa

s2d V s2dsvd
v − «a + «A

= T *D−1fV s2dsvdD−1gT, s21d

where

V s2dsvd = e4o
nÞa

„ŜRsv + «Ad…an„ŜRsv + «Ad…na

«A − «n + v
. s22d

Note that the singular termn=a is not included here by
definition. This term was taken into account in the geometric
progression described above and represents exactly the sec-
ond term of this progression. Repeating the evaluations lead-
ing to Eq.(16) with

Ql = UAa
s2dSV s1dsvd + V s2dsvd

v − «a + «A
Dl

= T *D−1hfV s1dsvd + V s2dsvdgD−1jlT, s23d

we obtain the improved resonance condition

V s0d + RehV s1dsvresd + V s2dsvresdj + Osa3d − «A − vres= 0.

s24d

Solving this equation forvres up to termsOsa3d yields

vres= − «A + V s0d + ReHV s1ds«a − «Ad + V s2ds«a − «Ad

+ V s1ds«a − «AdF ] V s1dsvd
] v

G
v=«a−«A

J + Osa3d.

s25d

The termV s2ds«a−«Ad is the contribution of the irreducible
part of the graph in Fig. 3. The derivative term corresponds
to the reference statesn=ad correction. In particular, it coin-
cides with the reference-state correction that arises from the

FIG. 3. The second-order electron self-energy correction(so-
called SESE loop-after-loop) that gives rise to the correction in Eq.
(25).

FIG. 4. Feynman graph representing the higher-order electron
self-energy correction within the line profile approach(SESE, loop-
after-loop, irreducible).
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Feynman graph in Fig. 3 after application of the adiabatic
S-matrix method[38]. The other second-order electron self-
energy(SESE) corrections are irreducible[38].

B. Line profile approach for many-electron ions
(nondegenerate energy level)

As in the one-electron case we will consider the process
of photon scattering on an ion which is assumed to be in its
lowest (ground) state. Investigating a nondegenerate energy
level associated with a configuration containing at least one
1 s electron[such ass1s2sd2 1S0,s1s2p1/2d2 3P0, s1s2sd2 3S1,
s1sd2 2s1/2, s1sd2 2p1/2, etc.] we can represent the wave func-
tion of the ground state via a proper combination of one-
electron Dirac wave functions. A procedure based on this
approach has been accomplished in[11,13]. However, for the
investigation of quasidegenerate levels or a doubly excited
level the interelectron interaction corrections have to be
taken into account in the wave function of the ground state.
Here we restrict ourselves to two-electron ions. The gener-
alization toN-electron ions will be presented at the end of
this section.

In the one-electron case we introduced the functionFA
describing the process of scattering under consideration. To
introduce such a function for the two-electron system we
may consider first the simplest process of photon scattering
on a two-electron ion, disregarding the interelectron interac-
tion corrections to the initial(ground) state. This process is
depicted in Fig. 5, where the ground state is represented by
two noninteracting electrons, one of which absorbs(or emits)
the photon. Accordingly, the ground-state wave function is
given by

CAsx1,x2d =
1
Î2

dethc1ssx1dc1ssx2dj, s26d

C̄Asx1,x2d =
1
Î2

dethc̄1ssx1dc̄1ssx2dj, s27d

where c1ssx1d=c1ssr 1d e−i«1st1, c1ssx2d are the Dirac one-
electron functions with different projections of the total an-
gular momentum. The bar over the one-electron functions
indicates Dirac conjugation.

TheS-matrix element corresponding to the graph in Fig. 5
can be written as

SA
s2d = s− ied2FE d4xu1

d4xu2
d4xd1

d4xd2
d 3sr u2

− r d2
ddstu2

ddstd2
ddvn1

C̄Asxu1
,xu2

dg mu1Amu1

* sk8,l8dsxu1
d

3e− ivn1
stu1

−td1
d i

2p
o
n1

cn1
sr u1

dc̄n1
sr d1

d

vn1
− «n1

s1 − i0d
gmd1Amd1

sk,ldsxd1
dCAsxd1

,xd2
d +E d4xu1

d4xu2
d4xd1

d4xd2
d 3sr u1

− r d1
ddstu1

ddstd1
ddvn2

3C̄Asxu1
,xu2

dg mu2Amu2

* sk8,l8dsxu2
de− ivn2

stu1
−td1

d i

2p
o
n1

cn2
sr u2

dc̄n2
sr d2

d

vn2
− «n2

s1 − i0d
gmd2Amd2

sk,ldsxd1
,xd2

dG . s28d

In order to employ the functionsCA andC̄A we introduced
additional integrations d4xu1,2

d4xd1,2
d 3sr u1,2

−r d1,2
ddstu1,2

ddstd1,2
d. The first and second terms in the square

brackets represent graphs, where the photon is absorbed
(emitted) by the first or by the second electron, respectively.

Since the functionsCAsx1,x2d and C̄Asx1,x2d are antisym-
metric it would be sufficient to consider one of these terms
only.

As in the one-electron case we will look for the position
of the resonance and employ the resonance approximation. It
implies the neglect of the nonsingular terms(evaluated at the
resonance) in comparison with singular ones. The terms in
the sum overn1 andn2 in Eq. (28) may contain a singularity
at the position of the resonance only if they correspond to the
positive-energy part of the Dirac spectrum. Accordingly, in
Eq. (28) we can restrict ourselves to terms with
«n1

.0,«n2
.0.

Introducing the functionFAsx1,x2d as

FAsx1,x2d = Î2g m1Am1

sk,ldsx1dCAsx1,x2ddst1 − t2d, s29d

F̄Asx1,x2d = Î2C̄Asx1,x2dg m1Am1

* sk8,l8dsx1ddst1 − t2d, s30d

we can write

SA
s2d = s− ied2E d4xu1

d4xu2
d4xd1

d4xd2
dvn1

dvn2
F̄Asxu1

,xu2
d

3e−ivn1stu1
−td1

de−ivn2
stu2

−td2
d i

2p
o
n1

cn1
sr u1

dc̄n1
sr d1

d

vn1
− «n1

s1 − i0d

3
i

2p
o
n2

cn2
sr u2

dc̄n2
sr d2

d

vn2
− «n2

s1 − i0d
FAsxd1

,xd2
d. s31d

Here we can employ the identity
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1

fvn1
− «n1

s1 − i0dg
1

fvn2
− «n2

s1 − i0dg

=
2p

i

d svn1
− «n1

d

fvn2
− «n2

s1 − i0dg

+
− 1

s− vn1
+ «n1

+ i0«n1
dfvn2

− «n2
s1 − i0dg

, s32d

which follows from the Sokhotsky formulas

1

x + i0
= − ipd sxd + P1

x
,

1

x − i0
= ipd sxd + P1

x
,

1

x + i0
+

1

− x + i0
=

2p

i
d sxd. s33d

In view of the orthogonality of the Dirac functions and the

asymmetry of the functionsCA andC̄A the first term of Eq.
(32) yields exactly Eq.(28). For «n1

.0 the second term of
Eq. (32) does not contribute when inserted into Eq.(31). As
was noticed above, for«n1

,0 the second term does not de-
velop any singularity at the position of the resonance and can
be disregarded.

Having performed the integration over the time variables
stu1

,tu2
,td1

,td2
d we arrive at

SA
s2d = s− ied2s2pd2E d3r u1

d3r u2
d3r d1

d3r d2
dvn1

dvn2

3F̄Asr u1
,r u2

dd svn1
+ vn2

− EA − v8d

3
i

2p
o
n1

cn1
sr u1

dc̄n1
sr d1

d

vn1
− «n1

s1 − i0d
i

2p
o
n2

cn2
sr u2

dc̄n2
sr d2

d

vn2
− «n2

s1 − i0d

3d sEA + v − vn1
− vn2

dFAsr d1
,r d2

d, s34d

where

FAsr 1,r 2d = Î2g m1Am1

sk,ldsr 1dCAsr 1,r 2d, s35d

F̄Asr 1,r 2d = Î2C̄Asr 1,r 2dg m1Am1

* sk8,l8dsr 1d, s36d

EA = «1s + «1s. s37d

Formally the expression(34) is similar to the one in Eq.(4)
which has been derived in the one-electron case. Taking into
account interelectron interaction corrections to the ground
state the functionFAsr 1,r 2d and the energyEA will become
more complicated in particular, the functionFAsr 1,r 2d will
depend onvn1

andvn2
. Nevertheless, the form of the expres-

sion (34) would remain unchanged.
Below we will employ the resonance approximation de-

fining the energy and width of the level such that they will
not depend upon the features of the particular process of
scattering. Since the functionFAsr 1,r 2d carries all informa-
tion about the process of scattering, we can assume it to be
arbitrary.

Accordingly, it is convenient to introduce a graphical des-
ignation: a rectangle with a letterA inside(see Fig. 6). Lower
and upper rectangles represent the functionsFAsx1,x2d and

F̄Asx1,x2d, respectively, which are difined as

FAsx1,x2d = FAsr 1,r 2de−it1sEA+vddst1 − t2d, s38d

F̄Asx1,x2d = F̄Asr 1,r 2deit1sEA+v8ddst1 − t2d. s39d

Here FAsr 1,r 2d denotes a complicated vertex function de-
scribing the scattering process under consideration,EA is the

FIG. 5. Lowest-order amplitudes for photon scattering on a two-
electron ion in its ground stateA within the resonance approxima-
tion. The ground stateA is represented in terms of noninteracting
Dirac electrons.

FIG. 7. Feynman graph, describing the first-order interelectron
interaction. The double solid lines correspond to bound electrons in
the field of the nucleus, and the wavy line corresponds to the ex-
change of virtual Coulomb and Breit(transverse) photons. Fora8
=a andb8=b the graph is called “direct,” and fora8=b,b8=a it is
called an “exchange” graph, respectively.

FIG. 6. The lowest-order amplitude for the photon scattering on
a two-electron ion in the ground stateA. In the ground state the
interelectron interaction is taken into account.
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energy of the ground state, andv andv8 are the frequencies
of the absorbed and emitted photons.

We will look for the position of a resonance nearvres

=Es0d−EA+Osad, where Es0d=«a+«b is the energy of two
noninteracting electrons. Applying the identity(32) to Eq.
(34) one can see that thed-function term is singular close to
the resonance, while the other term remains regular[here we
assume the functionFAsr 1,r 2d to be arbitrary]. The reso-
nance approximation implies the neglect of the nonsingular
(at the resonance) terms in comparison with singular ones.
Accordingly, within the framework of the resonance approxi-
mation the expression for theS matrix becomes

SA
s2d = s− ied2s2pd2E d3r u1

d3r u2
d3r d1

d3r d2
dvn1

dvn2

3F̄Asr u1
,r u2

dd svn1
+ vn2

− EA − v8ddsvn1
− «n1

d

3
i

2p
o

n1,n2

cn1
sr u1

dc̄n1
sr d1

dcn2
sr u2

dc̄n2
sr d2

d

vn2
− «n2

s1 − i0d

3d sEA + v − vn1
− vn2

dFAsr d1
,r d2

d. s40d

Integrating overvn1
andvn2

in Eq. (40) and introducing the
notation

Tn1n2A = s− edE d3r 1d
3r 2c̄n1

sr 1dc̄n2
sr 2dFAsr 1,r 2d, s41d

we can express the corresponding amplitude for the scatter-
ing process in a form similar to Eq.(7):

UA
s2d = o

n1n2

TAn1n2

* Tn1n2A

v − «n1
− «n2

+ EA
. s42d

Since we are searching for the position of the resonance near
vres=Es0d−EA+Osad, we have to retain only terms in the
denominator of Eq.(42) for which «n1

+«n2
=Es0d. We assume

the energy level close toEs0d=«a+«b to be nondegenerate
and hence, within the resonance approximation the ampli-
tude takes the form

UA
s2d = o

n1n2

TAn1n2

* Tn1n2A

v − Es0d + EA
= T+D−1T. s43d

Here the summations run only over quantum numbersn1 and
n2, satisfying the condition«n1

+«n2
=Es0d. The matricesT

andD−1 are given by

sTdn1n2
= Tn1n2A, s44d

sDdn1n2
= v − V s0d + EA, s45d

together with

V s0d = Es0d. s46d

As in the one-electron caseT defines the type of scattering
process under consideration.

The interelectron interaction correction in first order is
represented by the graph in Fig. 7. In order to evaluate this
contribution which also shifts the position the resonance, one
has to consider the graph in Fig. 8. In this paper we employ
the Coulomb gauge together with the covariant metric. The
photon propagator can be written as

FIG. 8. First-order of interelectron interaction correction to the
amplitude of the photon scattering on a two-electron ion within the
resonance approximation.

FIG. 9. Feynman graphs describing the second-order interelec-
tron interaction. Graph(a) is called a “box” and graph(b) is called
a “cross.” Notations are the same as in Fig. 7. The summation over
intermediate states is indicated byn1,n2.

FIG. 10. Second-order of interelectron interaction correction to
the amplitude of the photon scattering on a two-electron ion within
the resonance approximation. Graph(a) represents the contribution
of the “box” graph to the scattering amplitude, and graph(b) the
contribution of the “cross” graph, respectively.
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Dm1m2

c,t sx1,x2d =
i

2p
E

−`

`

d V I m1m2

c,t su V u,r12de−iVst1−t2d,

s47d

wherer12= ur 1−r 2u and

Im1m2

c sV,r12d =
dm10dm20

r12
, s48d

Im1m2

t sV,r12d = − Sdm1m2

r12
eiVr12 +

]

] x1
m1

]

] x2
m2

1

r12

1 − eiVr12

V2 D
3s1 − dm10ds1 − dm20d. s49d

The propagatorDm1m2

c sx1,x2d corresponds to Coulomb pho-

tons, while Dm1m2

t sx1,x2d describes transverse(Breit) pho-
tons. The neglect of retardation implies the substitution
Im1m2

t sV ,r12d= Im1m2

t s0,r12d. We employ also the notation

I c,tsVda8b8ab = o
m1m2

E d3r 1d
3r 2 Im1m2

c,t sV,r12d

3kc̄a8sr 1dg m1casr 1dlkc̄b8sr 2dg m2cbsr 2dl.

s50d

The Lorentz indicesmi should indicate that the Dirac matri-
cesg mi act on Dirac wave functions depending on variables
r i. The correspondingS-matrix element reads

SA
s4d = s− ied4E d4x1d

4x2d V d4xu1
d4xu2

d4xd1
d4xd2

dvu1
dvu2

dvd1
dvd2

F̄Asr u1
,r u2

deitu1
sEA+v8dd stu1

− tu2
d

i

2p

3o
u1

cu1
sr u1

dc̄u1
sr 1d

vu1
− «u1

s1 − i0d
i

2p
o
u2

cu2
sr u2

dc̄u2
sr 2d

vu2
− «u2

s1 − i0d
e−ivu1

stu1
−t1de−ivu2

stu2
−t2de−ivd1

st1−td1
de−ivd2

st2−td2
dgm1gm2

i

2p

3o
d1

cd1
sr 1dc̄d1

sr d1
d

vd1
− «d1

s1 − i0d
i

2p
o
d2

cd2
sr 2dc̄d2

sr d2
d

vd2
− «d2

s1 − i0d
i

2p
Im1m2

su V u,r12de−iVst1−t2de−itd1
sEA+vdd std1

− td2
dFAsr d1

,r d2
d, s51d

while the summations overu1,u2 andd1,d2 run over the entire Dirac spectrum. Employing the identity(32) and retaining only
terms which are singular near the resonance—i.e., keepingd-function terms Eq.(32) only—we obtain

SA
s4d = − 2pidsv − v8dU s4d=− 2pidsv − v8d o

u1u2d1d2

TAu1u2

+ 1

EA + v − «u1
− «u2

e2Isu− «d1
+ «u1

udu1u2d1d2

1

EA + v − «d1
− «d2

Td1d2A.

s52d

Within the resonance approximation we are left with terms satisfying the condition«u1
+«u2

=«d1
+«d2

=Es0d.
The second-order interelectron interaction correction is represented by the graphs in Fig. 9. In order to apply the line profile

approach to the contribution of the “box” graph of Fig. 9 we have to consider the graph depicted in Fig. 10(a). The
correspondingS-matrix element reads

SA
s6d = s− ied2E d4x1d

4x2d
4x3d

4x4d V d J d4xu1
d4xu2

d4xd1
d4xd2

dvu1
dvu2

dvd1
dvd2

F̄Asr u1
,r u2

deitu1
sEA+v8ddstu1

− tu2
d

i

2p

3o
u1

cu1
sr u1

dc̄u1
sr 3d

vu1
− «u1

s1 − i0d
i

2p
o
u2

cu2
sr u2

dc̄u2
sr 4d

vu2
− «u2

s1 − i0d
e−ivu1

stu1
−t3de−ivu2

stu2
−t4de−ivn1

st3−t1de−ivn2
st4−t2dgm3gm4

i

2p

3o
n1

cn1
sr 3dc̄n1

sr 1d

vn1
− «n1

s1 − i0d
i

2p
o
n2

cn2
sr 4dc̄n2

sr 2d

vn2
− «n2

s1 − i0d
e−ivd1

st1−td1
de−ivd2

st2−td2
dgm1gm2

i

2p
o
d1

cd1
sr 1dc̄d1

sr d1
d

vd1
− «d1

s1 − i0d
i

2p

3o
d2

cd2
sr 2dc̄d2

sr d2
d

vd2
− «d2

s1 − i0d
i

2p
Im1m2

su J u,r12de−iJst1−t2d i

2p
Im3m4

su V u,r34de−iVst3−t4de−itd1
sEA+vddstd1

− td2
dFAsr d1

,r d2
d. s53d

Employing the identity(32) and retaining only the terms in the summation overu1,u2 andd1,d2 which become singular close
to the resonance, we obtain the following expression for theS-matrix element corresponding to the graph in Fig. 9(a):
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SA
s6d = − 2pid sv − v8dU s6d=− 2pid sv − v8d o

u1u2d1d2

TA u1u2

+ 1

EA + v − «u1
− «u2

e4 i

2p

3 o
n1n2

E d V
Isu V udu1u2n1n2

Isu− V − «d1
+ «u1

udn1n2d1d2

f− V + «u1
+ «n1

s1 − i0dgfEA + v + V − «u1
− «n2

s1 − i0dg
1

EA + v − «d1
− «d2

Td1d2A.

s54d

Again within the resonance approximation only terms satisfying the condition«u1
+«u2

=«d1
+«d2

=Es0d will be kept in the
summations overu1,u2 andd1,d2.

Let us consider separately the reference states terms—i.e., for which«n1
+«n2

=Es0d holds. Inserting a similar identity for the
energy denominators

1

f− V + «u1
− «n1

s1 − i0dgfEA + v + V − «u1
− «n2

s1 − i0dg

=
2p

i

dsV− «u1
+ «n1

d

sEA + v − «n1
− «n2

d
+

− 1

sV− «u1
+ «n1

+ «n1
i0dfEA + v + V − «u1

− «n2
s1 − i0dg

, s55d

into Eq.(54), one can verify that the term with thed function
coincides with the second element of the geometric progres-
sion for the graph in Fig. 7. Hence, while generating the
geometric progression this term will refer to the second ele-
ment of the progression.

In order to evaluate rigorously the position of the reso-
nance up to second order ina we have to consider all cor-
rections of first and second order simultaneously. Up to first
order of perturbation theory we have to account for SE and
VP corrections as well as for the exchange of one Coulomb
or one Breit photon. In second order we have to account for
all one- and two-electron Feynman graphs of second order
including radiative corrections, screening of the self-energy
and vacuum polarization, and two-photon exchange graphs.
However, the evaluation of the radiative corrections is not
the goal of the present work. Below we will present the

derivation of a formula for the one-photon exchange contri-
bution in Fig. 7, the two-photon exchange “box” graph in
Fig. 9(a) and the three-photon exchange “box” graph Fig. 11.

The scattering amplitude can be written as

UAa
s4d = T+D−1fsV s1d + V s2d + V s3ddD−1g T, s56d

where V s1d corresponds to the one-photon exchange graph
Fig. 7 [see Eq.(52)]:

V s1d = e2 o
g=c,t

I gsu− «a + «a8uda8b8ab. s57d

In contrast to the one-electron radiative corrections[see for-
mula (13)], this one-photon exchange correction does not
depend onv. Taking into account the “box” graph in Fig.
9(a) we obtain[see formulas(54) and (55)]

V s2dsvd = e4 i

2p
o

gg8=c,t

o
«n1

+«n2
Þ«a+«b

E
−`

`

d V I gsu V uda8b8n1n2
I g8su− V − «a + «a8udn1n2ab

3
1

f− V + «a8 − «n1
s1 − i0dgfEA + v + V − «a8 − «n2

s1 − i0dg
+ e4 i

2p
o

gg8=c,t

o
«n1

+«n2
=«a+«b

E
−`

`

d V

3I gsu V uda8b8n1n2
I g8su− V − «a + «a8udn1n2ab

− 1

sV− «a8 + «n1
+ «n1

i0dfEA + v + V − «a8 − «n2
s1 − i0dg

. s58d

Again the summations over g and g8 run over scalar(Cou-
lomb) and transverse(Breit) photons, respectively. The sec-
ond term in Eq.(58) represents the remainder after subtract-
ing off the reference-state singularity. This subtraction was

done at the stage of generating the geometric progression
with the one-photon exchange insertion. In particular, the
identity (55) was employed for deriving the expression for
the reference-state contribution(the reducible part) of the
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“box” graph, where thed-function term coincides with the
second element of geometric progression for the one-photon
exchange graph.

In the case of one-electron ions the reference-state term
[see Eq.(22)] appeared only via the derivative term in Eq.
(25). Considering photon exchange in two-electron ions the
situation is different. In this case a reference-state contribu-
tion appears directly inV s2dsvd [see Eq.(58)] while a deriva-
tive term does not arise sinceV s1d does not depend onv.
Nevertheless, if the setsha,bj andha8 ,b8j are equivalent, the
term corresponding to the reference states can be expressed
as a derivative. At the point of the resonance we can setv
=−EA+Es0d in Eq. (58). Accordingly, both factors in the de-
nominator will be identical. Utilizing the formula

− 1

sx + i0d2 =
d

dx

1

sx + i0d
s59d

and integrating by parts we can shift the derivative toIsVd.
Let us now turn to the three-photon exchange correction

neglecting retardation effects, crossed-photon graphs, and the
contribution of the negative-energy part of the Dirac spec-
trum. Within this approximation the photon propagator does
not depend on the frequencyV, which yields

V s3dsvd = o
gg8g9=c,t

o
n1n2n3n4

8 Ia8b8n3n4

g In3n4n1n2

g8 In1n2ab
g9

3
1

s«n3
+ «n4

− EA − vds«n1
+ «n2

− EA − vd
,

s60d

where the prime at the summation symbol indicates that the
reference statess«n1

+«n2
=«a+«b,«n3

+«n4
=«a+«bd are omit-

ted.
Taking together the contributions ofV s1d ,V s2d, andV s3d,

we can generate a geometric progression, where thelth term
reads

Ql = T+D−1fsV s1d + V s2d + V s3ddD−1gl T. s61d

Performing similar steps as in the one-electron case we sum
up this progression and derive a condition for the position of
the resonance:

Vs0d + RehVs1dsvresd + V s2dsvresd + V s3dsvresdj − «A − vres= 0.

s62d

The energy and width of the level will be equal to[see Eqs.
(18) and (19)]

E = V s0d + RehV s1dsvresd + V s2dsvresd + V s3dsvresdj + Osa4d,

s63d

G = − 2 ImhV s1dsvresd + V s2dsvresd + V s3dsvresdj + Osa4d.

s64d

It is important to emphasize that Eq.(64) has the meaning of
a correction to the width of the level only if the full set of
Feynman graphs of a given order is under consideration. In-
deed, the contribution of the graph in Fig. 7 cancels com-
pletely with a part of the contribution of the self-energy cor-
rection, while the vacuum polarization gives zero
contribution to the width. Such a cancellation is an immedi-
ate consequence of the Pauli principle according to which
transitions of electrons into occupied states are prohibited
[39].

We note that the two-electron graphs to the first order in
V s1d do not depend onv. Hence, the solution of Eq.(62)
together withV s1d , V s2d, andV s3d given by Eqs.(57), (58)
and (60) yields

vres= − EA + V s0d + ReHV s1dsEs0d − EAd + V s2dsEs0d − EAd

+ V s3dsEs0d − EAd + V s1dsEs0d − EAd

3F ] V s2dsvd
] v

G
v=Es0d−EA

J+ Osa4d. s65d

The term V s1ds«a−«Ad represents the contribution of one-
photon exchange graph in Fig. 7, while the termV s2ds«a

−«Ad accounts for the contribution of the two-photon ex-
change graphs in Fig. 9. In particular, this term includes the
contribution of the reference states occurring in these graphs.
The third-order termV s3ds«a−«Ad contributes to the three-
photon exchange graphs in Fig. 11. It does not contain the
contribution of the reference states because we disregard re-
tardation effects, considering it within the framework of
RMBPT. The derivative term in Eq.(65) as well as that term
in Eq. (25) does not correspond to a certain Feynman graph.
Similar to Eq.(25) it can be related to the contribution of the
reducible part(reference states) of the graph in Fig. 11.

Let us mention that if we would take into account in ad-
dition the radiative corrections and as well as screening ef-
fects, we would obtain a corresponding correctionV s1dsvd
containing the contribution of the electron self-energy(13),
the one-photon exchange(57), and vacuum polarization. For
V s2dsvd we would similarly obtain the sum of Eqs.(22) and
(58) and in addition all the missing radiative effects of sec-
ond order together with the screened self-energy and
vacuum-polarization corrections. Accordingly, instead of Eq.
(65) we would have been left with

FIG. 11. The third-order “box” Feynman graph. The notations
are the same as in Fig. 7. Here the wavy lines with the cross rep-
resent the sum of the Coulomb and unretarded Breit interactions.
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vres= − EA + V s0d + ReHV s1dsEs0d − EAd + V s2dsEs0d − EAd+ V s1dsEs0d − EAdF ] V s1dsvd
] v

G
v=Es0d−EA

+ V s3dsEs0d − EAd

+
1

2
V s1dsEs0d − EAd2F ]2V s1dsvd

] v2 G
v=Es0d−EA

+ V s1dsEs0d − EAdF ] V s1dsvd
] v

G
v=Es0d−EA

2

+ V s1dsEs0d − EAdF ] V s2dsvd
] v

G
v=Es0d−EA

+ V s2dsEs0d − EAdF ] V s1dsvd
] v

G
v=Es0d−EA

J + Osa4d. s66d

Formulating the line profile approach forN-electron ions,
it might be convenient to introduce the function

FAsx1, . . . ,xNd = FAsr 1, . . . ,r Nde−it1sEA+vdp
j=2

N

dst1 − tjd,

s67d

which should be depicted graphically by a rectangle with a
letter A inside and withN outgoing electron lines. Here
FAsr 1, . . . ,r Nd describes theN-electron ions in the lowest
(ground) stateA together with the absorbed photon. Accord-
ingly, formula (32) generalizes to

p
j=1

N
1

fvnj
− «nj

s1 − i0dg

= Fp
j=1

N−1S2p

i
d svnj

− «nj
d +

− 1

s− vnj
+ «nj

+ i0«nj
dDG

3
1

fvnN
− «nN

s1 − i0dg
. s68d

This identity can be written as

p
j=1

N
1

fvnj
− «nj

s1 − i0dg
=

p
j=1

N−1
2p

i
d svnj

− «nj
d

fvnN
− «nN

s1 − i0dg
+ fsv,«d.

s69d

Then the terms in Eqs.(34), (51), and(53) which correspond
to the functionfsv ,«d will not contain the singularities and
will be omitted within the framework of the resonance ap-
proximation. Equations(65) and(66) will remain unchanged
however, nowV will contain additional contributions of
three- and up toN-electron graphs. In particular, for three-
electron ions the functionsV s2dsvd and V s3dsvd will also
account for contributions of three-electron graphs(see[11]).

C. Line profile approach for many-electron ions
(quasidegenerate energy levels)

We now turn to the application of the line profile ap-
proach to quasidegenerate levels. Without loss of generality,
we can restrict ourselves to two mixing configurations. We
will search for the positions of the resonances corresponding

to these configurations and will construct basic wave func-
tions C1 andC2 within the j − j coupling scheme. The ener-
gies corresponding to these wave functions are denoted by
E1

s0d andE2
s0d, and they are supposed to be close to the exact

energies of the electron configurations under consideration.
Employing the line profile approach we will consider a scat-
tering of a photon on a two-electron ion in its ground stateA.
The positions of resonances may be found near the values
v1

res=E1
s0d−EA+Osad andv2

res=E2
s0d−EA+Osad, respectively.

Within the resonance approximation we will have to retain
two terms in the sum(42) corresponding to the basic func-
tionsC1 andC2. The scattering amplitude may be written as

UAa = T+D−1fDVD−1g T, s70d

whereD is a matrix 232, defined on the functionsC1,C2:

D = v + EA − V s0d, s71d

V s0d = ĥ1 + ĥ2, s72d

DV = V − V s0d = V s1d + V s2d + V s3d + ¯. s73d

Here ĥ1 and ĥ2 are the one-electron Dirac Hamiltonians act-
ing on the one-electron Dirac wave functions depending on
r 1 or r 2, respectively. Since the functionsC1 and C2 are
orthogonal, the matrixD is diagonal. Accordingly, we now
have to compose a geometric matrix progression with thelth
term

Ql = T+D−1fDVD−1gl T s74d

and sum it up employing the formula for a convergent geo-
metric progression. The expression for the amplitude reads

UA = T+fD − D Vg−1T ; T+ 1

D − D V
T = T+ 1

v + EA − V
T.

s75d

Introducing the functionF=sF1,F2d by means of the rela-
tion F=BC, where the matrixB is assumed to diagonalize
the matrix V=V s0d+ DV—i.e. Vdiag=B+VB. The expression
for the amplitude can now be written in the form
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UA=TAF1

+ 1

v + EA − fB+VBgF1F1

TF1A

+ TAF2

+ 1

v + EA − fB+VBgF2F2

TF2A

=TAF1

+ 1

v + EA − VF1F1

diag svd
TF1A

+ TAF2

+ 1

v + EA − VF2F2

diag svd
TF2A. s76d

Taking a square modulus of the amplitude(76) and integrat-
ing over the directions of the absorbed and emitted photons
yields a line profile for the probability of photon absorption.
The positions of the resonances are determined by the equa-
tions

v1
res+ EA − RehVF1F1

diag sv1
resdj = 0, s77d

v2
res+ EA − RehVF2F2

diag sv2
resdj = 0. s78d

Hence, the energies of the configurations are

EF1
= RehVF1F1

diag sv1
resdj, s79d

EF2
= RehVF2F2

diag sv2
resdj. s80d

Assuming that the energies of the configurations are close to
each other, we can expand Eqs.(77) and (78) into a Taylor
series around the valuesv1

res=−EA+E1
s0d and v2

res=−EA

+E2
s0d, respectively. As in the case of nondegenerate levels

this can be achieved up to any desired accuracy.
Note that employing the resonance approximation in case

of nondegenerate level we have to retain in a corresponding
sum (42) certain many-electron functions composed within
the j − j coupling scheme. Indeed, after diagonalization of the
matrix V all other combinations of one-electron functions
will yield zero in view of the antisymmetry of the wave
function of the ground state and the symmetry of the matrix
V. Hence, having constructed a many-electron function in the
j − j coupling scheme, Eq.(56) becomes a scalar one.

The line profile approach outlined above can be easily
employed for an arbitrary number of degenerate levels. The
generalization of the method toN-electron ions was de-
scribed at the end of the previous section.

III. EVALUATION OF THE ENERGY LEVELS OF
QUASIDEGENERATE TWO-ELECTRON

CONFIGURATIONS

We will evaluate the interelectron interaction correction
for the two-electron configurationss1s2pd21P1 and
s1s2pd23P1. Employing the relativisticj − j coupling scheme
these energy levels become quasidegenerate in the regionZ
ø40. To treat such states within the framework of QED we
will apply the line profile approach. Within thej − j coupling
scheme the wave function of a two-electron configuration
can be represented as

CJMj1j2l1l2
sr 1,r 2d = N o

m1,m2

CJM
j1j2sm1m2d

3 fc j1l1m1
sr 1dc j2l2m2

sr 2d

− c j1l1m1
sr 2dc j2l2m2

sr 1dg, s81d

where the normalization constant isN=1/2 for equivalent
electrons andN=1/Î2 for nonequivalent electrons, respec-
tively. CJM

j1j2sm1m2d is a Clebsch-Gordan coefficient. The one-
electron Dirac functionsc jlmsr d are characterized by the
standard set of one-electron quantum numbers—total angular
momentumj , its projectionm, and the orbital angular mo-
mentum l—that fix the parity of the state. For the two-
electron wave function the relevant quantum numbers are the
total angular momentumJ and its projectionM.

Following the procedure described in Sec. II C we will
construct the matrixV, Eq. (73), on the functions(81),

CJ=1,M=0,j1=1/2,j2=1/2,l1=0,l2=1 ; s1s2p1/2d, s82d

CJ=1,M=0,j1=1/2,j2=3/2,l1=0,l2=1 ; s1s2p3/2d, s83d

and examine the positions of the resonances close tov1
res

=−EA+«1s+«2p1/2
+Osad and v2

res=−EA+«1s+«2p3/2
+Osad,

respectively.
As has been elaborated in Sec. II the operatorV, in gen-

eral, depends onv. The position of the resonance can be
derived via Taylor expansion at the approximate positions of
the resonancesv1

res=−EA+«1s+«2p1/2
and v2

res=−EA+«1s

+«2p3/2
[see Eq.(65)]. For the practical calculations it is con-

venient to expand some matrix elements ofV at the pointv1
res

and others at the pointv2
res, keeping only termsOsa2d in both

expansions. The resulting inaccuracy can be referred to cor-
rectionsOsa3d [24], because at low-Z values the energy dif-
ference«2p1/2

−«2p3/2
becomes small, while at large-Z values

the degeneracy of the levels 21P1 and 23P1 is nearly negli-
gible.

The interelectron interaction correction is represented by
the set of graphs(Figs. 7 and 9 which is symmetric under
interchange of the upper and lower indices and relabeling of
the electrons in the graphs. Accordingly, the operatorV is
given by a symmetric(and in general complex) matrix. How-
ever, as a consequence of performing the Taylor expansion of
the matrix elements ofV and neglecting third- and higher-
orders terms it can lead to a nonsymmetrical matrix. To pre-
vent this asymmetry arising due to purely technical reasons
one may symmetrize the matrixV by hand.

Hence, the matrix elements of the frequency-dependent
operatorV evaluated at the resonances can be written as

ks1s2p1/2duVsvresdus1s2p1/2dl = ks1s2p1/2duFus1s2p1/2dl,

s84d

ks1s2p3/2duVsvresdus1s2p3/2dl = ks1s2p3/2duFus1s2p3/2dl,

s85d
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ks1s2p1/2duVsvresdus1s2p3/2dl = 1
2fks1s2p1/2duFus1s2p3/2dl

+ ks1s2p3/2duFus1s2p1/2dlg,

s86d

ks1s2p3/2duVsvresdus1s2p1/2dl = ks1s2p1/2duVsvresdus1s2p3/2dl.

s87d

The operatorF is defined via its action on the set of the
one-electron Dirac functionshabj, which in our case consists
of habj=h1s2p1/2j ,h1s2p3/2j. To zeroth-order perturbation
theory the operatorF reads[see Eq.(72)].

Fa8b8ab
s0d = «ada8,a + «bdb8,b. s88d

Being interested in ionization energies it is more convenient
to introduce a shiftedF with the zeroth-order matrix element

Fa8b8ab
s0d = «ada8,a + «bdb8,b − «1s − m, s89d

where the electron rest energym (in relativistic unites) and
1s-electron energy are subtracted. In first-order perturbation
theory the interelectron interaction represented by the graph
in Fig. 7 can be described by the matrix element

Fa8b8ab
s1d = e2Isu« a8 − «auda8b8ab. s90d

Since the graph in Fig. 7 is irreducibleF
a8b8ab
s1d coincides with

the expression[Eq. (57)] for nondegenerate levels. In
second-order perturbation theory we have to account for the
two-photon exchange corrections depicted in Fig. 9:

Fa8b8ab
s2dsbox,irrd = e4o

gg8
o
n1n2

s1 − dEn1n2

s0d ,Eab
s0ddH i

2p
E

−`

`

d V
Igsu V uda8b8n1n2

I g8su V − «a8 + «audn1n2ab

sEab
s0d − En1n2

s0d dsV− «n2
+ Eab

s0d − «a8 + i0«n2
d

+
i

2p
E

−`

`

d V
Igsu V udb8a8n1n2

Ig8su V − «a + «a8udn1n2ba

sEab
s0d − En1n2

s0d dsV− «n2
+ «a8 + i0«n2

d J , s91d

Fa8b8ab
s2dsbox,redd = −

1

2
e4o

gg8
o
n1n2

HdEn1n2

s0d ,Eab
s0dF 1

2p
E

−`

`

d V
Igsu V uda8b8n1n2

I g8su V − «a8 + «audn1n2ab

sV− «n2
+ Eab

s0d − «a8 + i0«n2
d2

+
i

2p
E

−`

`

d V
Igsu V udb8a8n1n2

I g8su V − «a + «a8udn1n2ba

sV− «n2
+ «a8 + i0«n2

d2 G + dEn1n2

s0d ,E
a8b8
s0d s1 − dEn1n2

s0d ,Eab
s0dd

3F Isu«n2
− Eab

s0d + «a8uda8b8n1n2
Isu«n2

− Eab
s0d + «audn1n2ab

Eab
s0d − En1n2

s0d +
Isu«n2

− «a8udb8a8n1n2
Isu«n2

− «audn1n2ba

Eab
s0d − En1n2

s0d GJ , s92d

Fa8b8ab
s2dscross,irrd = e4o

gg8
o
n1n2

Hs1 − d0,s«n2
−«n1

+«b−«a8d
d

i

2p
E

−`

`

d V
Igsu V udb8n2n1aI

g8su V − «a8 + «audn1a8bn2

s«n2
− «n1

+ «b − «a8dsV− «n2
+ «a + i0«n2

d

+ s1 − d0,s«n2
−«n1

−«b+«a8d
d

i

2p
E

−`

`

d V
I gsu V udn1b8an2

I g8su V − «a8 + «auda8n2n1b

s«n2
− «n1

− «b + «a8dsV− «n2
+ Eab

s0d − «a8 + i0«n2
dJ , s93d

Fa8b8ab
s2dscross,redd = e4o

gg8
o
n1n2

d0,s«n2
−«n1

+«b−«a8d
i

2p
E

−`

`

d V

3
I gsu V udb8n2n1aI

g8su V − «a8 + «audn1a8bn2

sV− «n2
+ «a + i0«n2

d2 .

s94d

In Eqs. (91) and (92) the notationsEab
s0d=«a+«b, E

a8b8
s0d =«a8

+«b8, and En1n2

s0d =«n1
+«n2

are introduced. The index g runs
over c,t(scalar and transverse photons). The Kronecker sym-
bols ensure that terms with potentially zero denominators
will be omitted in the summation overn1,n2.

Note that Eqs.(91), (93), and(94) for the irreducible parts
coincide generically with Eq.(58) for nondegenerate levels
(see also[13]). However, for the reducible part of the “box”
graph additional terms originating from the geometric pro-
gression for the one-photon exchange graph(nondiagonal
matrix elements of the second term of the progression) occur.

CALCULATION OF QUASIDEGENERATE ENERGY… PHYSICAL REVIEW A 69, 062505(2004)

062505-13



TABLE I. Matrix elements of the operatorV for the two-electron configurations 21P1 and 23P1 (eV). The individual contributions for
the Dirac-binding energies of 2p-electron statessVs0dd, the one-photon exchange contributionsVs1dd, and the two-photon contributionsVs2dd
are compiled, respectively.EXs2 1P1d andEXs2 3P1d are the energies of the corresponding configurations, where only the photon exchange
contributions are taken into account(neglecting radiative corrections).

Contribution Z=10 18 26 30 40

s1s2p1/2d ,s1s2p1/2d 2340.7099 21108.0574 22325.7285 23108.3193 25594.0369
Vs0d : s1s2p3/2d ,s1s2p3/2d 2340.2556 21103.2520 22304.5586 23070.5057 25471.5704

s1s2p1/2d ,s1s2p3/2d 0 0 0 0 0

s1s2p1/2d ,s1s2p1/2d 64.713010.0007i 117.269610.0072i 171.210510.0316i 198.915410.0560i 271.102110.1778i
Vs1d : s1s2p3/2d ,s1s2p3/2d 67.693820.0007i 122.161020.0072i 177.167420.0312i 204.950220.0551i 275.479520.1724i

s1s2p1/2d ,s1s2p3/2d 4.341820.0019i 7.665320.0204i 10.733320.0887i 12.136920.1571i 15.157720.4954i

s1s2p1/2d ,s1s2p1/2d 22.7692 22.8168 22.8938 22.9439 23.1082
Vs2d : s1s2p3/2d ,s1s2p3/2d 23.5256 23.5603 23.6142 23.6506 23.7641

s1s2p1/2d ,s1s2p3/2d 21.0727 21.0618 21.0450 21.0350 21.0008
EXs2 1P1d 2273.8939 2981.1501 22127.8323 22866.5171 25198.2878
EXs2 3P1d 2280.9596 2997.1059 22160.5849 22915.0368 25327.6102

DEXs2 1P1d: Appr. 1 2.1934 3.5012 3.1731 2.6890 1.5672
DEXs2 3P1d: Appr. 1 22.1934 23.5012 23.1731 22.6890 21.5672
DEXs2 1P1d: Appr. 2 20.7581 20.7203 20.5599 20.4460 20.2175
DEXs2 3P1d: Appr. 2 0.7581 0.7203 0.5599 0.4460 0.2175
DEXs2 1P1d: Appr. 3 0.0001 0.0019 0.0102 0.0168 0.0571
DEXs2 3P1d: Appr. 3 0.0000 20.0009 20.0036 20.0056 20.0121
DEXs2 1P1d: Appr. 4 0.0000 0.0002 0.0009 20.0005 20.0013
DEXs2 3P1d: Appr. 4 0.0000 0.0000 0.0009 0.0018 0.0038
DEXs2 1P1d: Appr. 5 0.0000 0.0000 20.0001 20.0003 20.0015
DEXs2 3P1d: Appr. 5 0.0000 0.0000 0.0001 0.0003 0.0015
DEXs2 1P1d−EXs2 3P1d
This work 7.0657 15.9557
Lindgrenet al. [28] 7.0657 15.9554

Contribution Z=50 60 70 80 92

s1s2p1/2d ,s1s2p1/2d 28884.368 213062.966 218250.182 224621.409 234211.065
Vs0d : s1s2p3/2d ,s1s2p3/2d 28575.514 212395.463 216948.025 222253.673 229649.834

s1s2p1/2d ,s1s2p3/2d 0 0 0 0 0

s1s2p1/2d ,s1s2p1/2d 348.91710.437i 434.63810.912i 531.40011.702i 643.79312.930i 809.69915.178i
Vs1d : s1s2p3/2d ,s1s2p3/2d 347.96020.415i 422.94920.846i 501.04221.531i 582.88322.533i 686.99624.210i

s1s2p1/2d ,s1s2p3/2d 17.32021.206i 18.43022.491i 18.31124.590i 16.79527.777i 12.929213.440i

s1s2p1/2d ,s1s2p1/2d 23.333 23.635 24.038 24.585 25.531
Vs2d : s1s2p3/2d ,s1s2p3/2d 23.915 24.105 24.339 24.628 25.053

s1s2p1/2d ,s1s2p3/2d 20.955 20.893 20.801 20.771 20.683
EXs2 1P1d 28230.604 211976.160 216451.098 221675.333 228967.898
EXs2 3P1d 28539.649 212632.423 217723.044 223982.287 233406.890

DEXs2 1P1d: Appr. 1 0.865 0.460 0.225 0.085 20.007
DEXs2 3P1d: Appr. 1 20.865 20.460 20.225 20.085 0.007
DEXs2 1P1d: Appr. 2 20.102 20.049 20.023 20.011 20.004
DEXs2 3P1d: Appr. 2 0.102 0.049 0.023 0.011 0.004
DEXs2 1P1d: Appr. 3 0.153 0.358 0.759 1.461 2.931
DEXs2 3P1d: Appr. 3 20.014 20.007 0.021 0.096 0.323
DEXs2 1P1d: Appr. 4 20.004 20.009 20.015 20.035 20.075
DEXs2 3P1d: Appr. 4 0.011 0.025 0.050 0.094 0.181
DEXs2 1P1d: Appr. 5 20.004 20.009 20.016 20.026 20.041
DEXs2 3P1d: Appr. 5 0.004 0.009 0.016 0.026 0.041
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It is easy to make sure that the contribution of reference
statessEn1n2

s0d =Eab
s0d ,En1n2

s0d =E
a8b8
s0d d to the exchange of two Cou-

lomb photons(or Breit photons with neglect of retardation)
is absent.

IV. NUMERICAL RESULTS AND THEIR ANALYSIS

The results of the numerical calculations are presented in
Tables I and II. To account for nuclear size corrections we
solved the Dirac equation with the Coulomb potential gener-
ated by a nuclear charge density described by a Fermi distri-
bution. The parameters of the Fermi distribution are taken
from Ref. [13].

In Table I we present a detailed analysis of our results
obtained for the photon exchange contribution. The value
V s0d is the binding energy of the 2p state according to Eq.
(89), the valueV s1d corresponds to the one-photon exchange
contribution Eq.(90), and V s2d represents the two-photon
exchange contributions given by Eqs.(91)–(94). We note
that, in general, the matrixV has complex elements and both
their real and imaginary parts contribute to the energy
eigenvalues—i.e., the real part of the diagonalized matrixV.
In our calculation the imaginary part ofV s1d is taken into
account, while the imaginary part of the two-photon ex-
change contributionsV s2dd is neglected. The valuesEXs21P1d
and EXs23P1d denote the photon-exchange contribution to
the energies of the corresponding electron configurations
(neglecting the radiative corrections). For Z=10,18 we
present also the values for the difference between the ener-
gies of the levels under consideration reported in Ref.[28].

In order to analyze the influence of the quasidegeneracy
on QED effects in more detail we compile the corresponding
energy shifts of the levels due to the photon exchange con-
tribution calculated within various approximations. The dif-

ferences between the energies of the levels calculated with-
out the approximations and the energies calculated within the
framework of the approximations are presented in Table
I [DEXs21,3P1d: Appr. 1–5].

Approximation 1: We omit the nondiagonal elements of
the matrixV=V s0d+V s1d+V s2d. Consequently, effects of the
quasidegeneracy are totally neglected.

Approximation 2: We omit the nondiagonal elements only
in the matrix V s2d. As stated above the expression for the
one-photon exchange correction Eq(90), does not depend on
v and coincides with the one for the nondegenerate case.
Accordingly, the first-order contribution is taken into account
just as the solution of the secular equation—i.e., following
the usual techniques developed in quantum mechanics for
treating degenerate levels. The influence of quasidegeneracy
due to the second-order matrix elementV s2d is neglected.

Approximation 3: We calculate the matrix elements ofV
within the framework of RMBPT. Compared with the fullab
initio QED calculation the following contributions are miss-
ing: (1) negative-energy intermediate states,(2) crossed-
photon interaction, and(3) rigorous treatment of retardation
effects. As mentioned above within the framework of
RMBPT no contribution due to reference states(for two-
photon exchange) arises. Accordingly, the energies of the
levels just follow as solutions of the secular equation.

Approximation 4: Only the matrix elements ofV s2d are
evaluated within the framework of RMBPT. According to the
comment made on approximation 2, this also follows the
quantum-mechanical treatment for quasidegeneracy.

Approximation 5: We neglect the imaginary part of the
elements of the matrixV. The matrixV defined in Eq.(73) is
a complex one. Although the energy of the level is defined as
the real part of the diagonalized matrixVsvd at the point of
the resonancesv=vresd, the imaginary part of the elements
of the matrixV (nondiagonal) contributes to the energy.

TABLE II. Data for the energies(in eV) of the configurations 21P1 and 23P1. Photon exchange correc-
tions are taken into account up to second order ina. Self-energy(SE) and vacuum-polarization(VP) cor-
rections are taken into account only in first order. The one-electron radiative corrections of ordera2, the SE
and VP screening corrections, and all the corrections of the third and higher orders are omitted. The data are
compared with the results of Planteet al. [2] and Drake[1].

Contribution Z=10 18 26 30 40

Es21P1d, this work 2273.8936 2981.1462 22127.8070 22866.4666 25198.0971

Es23P1d, this work 2280.9596 2997.1079 22160.5953 22915.0545 25327.6408

Es21P1d, Planteet al. 2273.8155 2981.0966 22127.7712 22866.4354 25198.0801

Es23P1d, Planteet al. 2281.0132 2997.1451 22160.6313 22915.0924 25327.6917

Es21P1d, Drake 2273.8077 2981.0832 22127.7515 22866.4129 25198.0515

Es23P1d, Drake 2281.0054 2997.1303 22160.6038 22915.0556 25327.6222

Contribution Z=50 60 70 80 92

Es21P1d, this work 28230.079 211974.951 216448.629 221670.722 228958.974

Es23P1d, this work 28539.626 212632.120 217721.892 223979.001 233397.135

Es21P1d, Planteet al. 28230.078 211974.972 216448.682 221670.812 228959.135

Es23P1d, Planteet al. 28539.719 212632.321 217722.363 223980.133 233400.643

Es21P1d, Drake 28230.038 211974.910 216448.591 221670.679 228958.944

Es23P1d, Drake 28539.592 212632.088 217721.944 223979.373 233398.993
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The results in Table I demonstrate that for the 21P 1, and
2 3P1 levels a completeab initio QED theory for describing
the quasidegeneracy has to be employed only when going
beyond the level of second-order corrections. ForZ,30 ap-
proximation 3 provides an accuracy of about 1% at the level
of second-order perturbation theory. Accordingly, the inaccu-
racy can be referred to corrections of third order. For
Z,60—70 approximation 4 leads to an inaccuracy compa-
rable in magnitude with the corrections of third order. For
Z.60—70 the effect of quasidegeneracy decreases defi-
nitely to the level of third-order corrections. Consequently,
approximation 2 can be employed for high-Z systems. For
Z.80 the quasidegeneracy becomes completely negligible
i.e., it will be sufficient to employ approximation 1. The
contribution of imaginary parts of the matrix elementsV to
the energy levels appears as an effect of quasidegeneracy,
which originates completely from QED. It is perceptible only
for high Z.70, which also reveals that the neglect of the
imaginary part ofV s2d has been legitimate.

In Table II we present the data for the total energies of the
2 1P1 and 23P1 two-electron configurations, respectively.
The numbers present the ionization energy of the 2p-electron
with the opposite sign. These data are compared with the
results obtained by Planteet al. [2] and Drake[1]. Two dif-
ferent approximate methods have been employed in these
works: the “relativistic AO theory”[2] and “the unified
theory” [1]. The latter methods account approximately for
QED effects, such as retardation, crossed-photon graphs, and
negative-energy intermediate states, while taking into ac-
count partially higher orders of the perturbation theory. In the

present work the photon exchange is taken into account up to
second order. The SE and VP corrections are included only
in first order. Quantitative results for SE and VP corrections
are taken from Refs.[40–42,3]. The SE and VP screening
corrections, the radiative corrections of second order, and all
the corrections of third and higher orders are omitted. We
note that the VP screening corrections for the states consid-
ered have been evaluated by Artemyevet al. [15], while
results for the SE screening corrections are not yet available.
Since the SE and VP screening corrections partially cancel
each other, we do not include the results of[15] in Table II.
In Table III we present various theoretical and experimental
data for 23P1−2 1P1 transition energies. We conclude that
the discrepancy between our data and those from other re-
sults arising for small values ofZ is caused by third and
higher orders of the perturbation theory which have not been
accounted for in the present paper. For highZ the major
inaccuracy is due to missing self-energy, vacuum-
polarization screening corrections, and one-electron radiative
corrections of second order.
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