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The selection rule which forbidsJ=1↔0 two-photon decay when the energies of the two photons are equal
is shown to apply only when the multipolarities of the two photons are the same(i.e., 2E1, 2M1, etc.) and does
not generally apply to mixed multipolarity amplitudes such asE1M2. A calculation of the two-photon decay
rate for He-like ions in the 23S1 state including both 2E1 andE1M2 two-photon decay amplitudes is pre-
sented. It shows a significant contribution for the case of equal-energy photons. The ratio of theE1M2
contribution to the 2E1 contribution is found to be surprisingly large. For example, it is 0.27 for two-photon
decay of the 23S1state in He-like uranium.
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I. INTRODUCTION

The selection rules for two-photon transitions in atoms
have been discussed by a number of authors[1–7]. A sum-
mary for the case when both photons have the same energy
has been given by Grynberg and Cagnac[6] and the more
general multifrequency case has been discussed by Bonin
and McIlrath [5]. One important selection rule forbidsJ
=1↔0 two-photon transitions when the photons have the
same energy.(J is the electronic angular momentum.)
DeMille et al. [8] emphasize that this rule is a consequence
of the exchange symmetry of photons required by Bose-
Einstein statistics and they tested it experimentally in a
search for exchange-antisymmetric two-photon states. It is
important to point out, however, a limitation in all of the
discussions of this selection rule, that only the lowest order
amplitude involving emission of two electric dipole photons
s2E1d has been considered.

A stronger selection rule applies to the disintegration of
3S1 positronium into two(equal-energy) photons. It can be
shown using fundamental symmetry arguments that this pro-
cess is forbidden to all orders, in fact any spin-1 particle
(either vector or pseudovector) is forbidden to disintegrate
into two photons[9–11]. The proof of this rule depends on
the fact that, following disintegration, there are two equal-
energy, counter-propagating photons in the center of mass
[9,10]. This condition does not generally apply in atomic
two-photon decay where the final state consists of three bod-
ies: two photons plus a recoiling atom. So we normally can-
not apply the stronger selection rule to atomic two-photon
decay.

In this paper, we consider whether the selection rule
which forbidsJ=1↔0, equal frequency, two-photon decay
in atoms applies for multipolarities beyond 2E1. We use the
standard formulas for atomic two-photon decay and find that
the rule does apply for all amplitudes in which both photons
have the same multipolarity(i.e., 2E1, 2M1, 2E2, etc.), but
that it does not apply to mixed multipolarity amplitudes such
as E1M2, E2M1. We discuss the derivation of an extended
selection rule in Sec. II, and in Sec. III we explore the sig-
nificance of the result by making an approximate calculation
of the leading order mixed multipolarity amplitudesE1M2d

for the two-photon decay rate of the 23S1 level in heavy
He-like systems. This is a good test case because extensive
calculations of the 2E1 decay rate for this system have been
done[4].

II. DERIVATION OF THE SELECTION RULE

The relativistic formula for the two-photon decay rate(in
atomic units) given by Goldman and Drake[12] is

dw

dv1
=

v1v2

s2pd3c2Uo
n

kf uÃ2
* unlknuÃ1

* uil
En − Ei + v1

+
kf uÃ1

* unlknuÃ2
* uil

En − Ei + v2
U2

dV1dV2. s1d

The operator for photonj can be expanded in partial waves
(see Ref.[12]):

Ãj
* = o

l,L,M
fêj ·YW LM

sld sk̂jdgãLM
sld srd* . s2d

The symbolsêj and k̂j refer to the polarization and momen-

tum vectors of the photon, and theYW LM
sld sk̂jd are related to the

vector spherical harmonics[12]. The ãLM
sld srd* are spherical

tensor operators of rankL, andl indicates the type of mul-
tipole; l=1 for electric multipoles andl=0 for magnetic
multipoles.

For simplicity, we assume the atom has a spinless nucleus
but the extension to the general case of nonzero nuclear spin
is straightforward[6]. We consider an initial state with elec-
tronic angular momentumJi and a final state withJf =0.
Substituting the photon operators from Eq.(2) into Eq. (1),
applying the Wigner-Eckart theorem, and simplifying using
the properties of the 3j symbols[13], thenth term in the sum
in Eq. (1) becomes

PHYSICAL REVIEW A 69, 062502(2004)

1050-2947/2004/69(6)/062502(5)/$22.50 ©2004 The American Physical Society69 062502-1



o
LL8MM8ll8
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The gi,f,n designate all the other quantum numbers of the
states. The phase factors−1dL+L8+Ji ensures the proper ex-
change symmetry required by Bose-Einstein statistics. All
the dependence on the photon polarizations and angular cor-
relations is contained in the factor

fê1 ·YW L8M8
sl8d sk̂1dgfê2 ·YW LM

sld sk̂2dg.

We are interested in the total decay rate so we will integrate
over all photon directions and polarizations.

For the degenerate frequency casesv1=v2d, if the multi-
polarities of the two photons are the same(i.e.,
2E1,2M1,2E2, etc.) andJi is odd, then the bracketed sum in
Eq. (3) vanishes since the two terms have the same magni-
tude and the phase factor is negative. In particular, for a 2E1
amplitude each term in the summation indicated in Eq.(3)
vanishes forJi =1, which demonstrates the selection rule,
forbidding J=1↔0 two-photon transitions for equal-energy
photons. In the same way one can show that the rule also
holds forJ=0→1 transitions.

For mixed multipolarity two-photon transitions
(E1M2,E2M1, etc.), the magnitudes of the numerators of
the two terms in Eq.(3) are not generally equal so they do
not exactly cancel when the frequencies are degenerate even
for the cases where the phase factors−1dL+L8+Ji is negative.
Also, since we are concerned with the two-photon decay rate
that requires integration over the angles of emission and po-
larizations of the photons, there can be no cancellation due to
interferences between the different terms in the summation
of Eq. (3). This is because cross terms involving different
multipoles for the same photon vanish in the integration
over photon directions and polarizations[12]. So the rule
forbidding equal-frequencyJ=1↔0 two-photon decay
applies only when all mixed multipolarity amplitudes are
negligible.

III. TWO PHOTON DECAY OF THE He-LIKE
2 3S1 STATE

As an example of a mixed multipolarity transition which
illustrates a non-negligible equal frequencyJ=0↔1 two-
photon decay, we present a calculation of the two-photon
decay rate of the He-like 23S1 state including both 2E1 and
E1M2 amplitudes. At first glance one might expect the
E1M2 amplitude to be uninteresting since it is usually a very

good approximation to neglect all multipoles beyond 2E1 in
calculating two-photon decay rates between atomic states of
the same parity. For example, Goldman and Drake[12]
found that the ratio of theE1M2 contribution to the 2E1
contribution to the two-photon decay of a H-likes2 2S1/2d ion
of atomic numberZ is 3.08310−11Z4. Even for uranium this
ratio is only 2.2310−3. On the other hand, the 2E1 ampli-
tude for decay of the 23S1 level in He-like ions is suppressed
because the direct and exchange terms add incoherently.
There is no similar suppression for theE1M2 amplitude in
the decay of the 23S1 level since here the direct and ex-
change terms add coherently. Thus theE1M2 amplitude
should be relatively more important for the two-photon de-
cay of the He-like 23S1 level than it is for decay of the
H-like 2 2S1/2 level. Furthermore, the higher order two-
photon amplitudes increase more rapidly withZ than 2E1
does, suggesting that it is particularly important to consider
the mixed multipolarity terms at highZ.

The He-like 23S1 state decays primarily to the 11S0
ground state by single photonM1 emission but it can also
decay by two-photon emission. The two-photon decay
branch has been analyzed in the nonrelativistic approxima-
tion by Bely and Faucher[2,3] and by Drakeet al. [1]. Der-
evianko and Johnson[4] have done an accurate relativistic
calculation which coversZ=2 to Z=100. In all of these cal-
culations only the lowest order 2E1 amplitude was retained.

In carrying out a new calculation of the two-photon decay
rate of the 23S1 state, the aim is to assess the importance of
the E1M2 amplitude relative to the 2E1 amplitude. Since
high accuracy is not required, we neglect electron-electron
interactions of order 1/Z but take relativistic effects fully
into account so that the results will have meaning at highZ.
Our approach is similar to that used by Drake[14] to calcu-
late theE1M1 decay rate of the 23P0 level in He-like ions.

We begin with He-like wave functions that arej j -coupled
products of Dirac single particle wave functions:

CsrW1,rW2d =
1
Î2Ho

m,m
C1s1s1/2,mdC2snljmdK1

2
m jmUJML

− exchange. s4d

We substitute these wave functions into Eq.(1) with the
initial state 1s2s 3S1, and the final state 1s2 1S0. The only
states that survive the sum overn are (in j j coupling):
s1s1/2,np1/2J=1d, s1s1/2,np3/2,J=1d, and s1s1/2,np3/2,J=2d.
We use the formalism of Goldman and Drake[12] to reduce
the two-electron matrix elements in Eq.(1) to one-electron
radial integrals, integrating over photon directions and polar-
izations and averaging over the magnetic quantum numbers
of the initial state. This gives a differential decay rate of

dw

dv1
=

v1v2

pc2

23

36huQ2E1sv1,v2d − Q2E1sv2,v1du2

+ uQE1M2sv1,v2du2 + uQE1M2sv2,v1du2j. s5d

Here,
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−
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J , s6d

and

QE1M2sv1,v2d =
3Î3

5 o
n
HM1s1/2,np3/2

s1,1d sv1dMnp3/22s1/2

s0,2d sv2d

Esnp3/2,1d − Es2s1/2,1d + v2

−
M1s1/2,np3/2
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The radial integralsMab
sl,Ldsvd are given by Ref.[12]:

Ma,b
s1,1d =

1
Î2

fska − kbdI2
+ + 2I2

−g − Î2fska − kbdI0
+ − I0

−g

+ Gf3J1 + ska − kbdsI2
+ + I0

+d − I0
− + 2I2

−g, s8d

Ma,b
s0,2d =

5
Î6

ska + kbdI2
+, s9d

where

IL
± =E

0

`

sgafb ± fagbd jLsvr/cddr, s10d

JL =E
0

`

sgagb + fafbd jLsvr/cddr. s11d

Here,Ma,b
s1,1d and Ma,b

s0,2d are the electric dipole and magnetic
quadrupole integrals,jLskrd is a spherical Bessel function,ga

and fa are the large and small components of the Dirac
H-like wavefunctions, andka is the usual Dirac quantum
number for these states. The parameterG is an arbitrary
gauge parameter. The velocity gauge corresponds toG=0
and the length gauge corresponds toG=Î2.

The total decay rate is obtained by integrating Eq.(5)
over v1,

w2g =
1

2
E

0

v0 dw

dv1
dv1, s12d

where v0 is the transition frequency. The factor of 1/2 is
needed because photon 1 is counted twice in the interval
h0,v0j.

The sum overn in Eqs. (6) and (7) includes an infinite
sum over all discrete states and integrals over all positive-
energy and negative-energy continuum states. We use the
finite basis set(FBS) method of Drake and Goldman[12,15],
to reduce the infinite sum and the integrals to a finite sum

over discrete variational solutions to the Dirac equation.
Convergence of both the 2E1 andE1M2 parts of the total
decay rate to better 0.01% is obtained with 16 basis states
(eight positive energy and eight negative energy). For the
energies of then=1 andn=2 states, we substitute accurate
values calculated by Drake[16] in place of the FBS energies.
This makes the calculations gauge dependent. Calculations
were done in both length and velocity gauges to provide
some indication of the accuracy of the results. In Table I we
compare the results of the 2E1 and E1M2 calculations in
both length and velocity gauge. For the 2E1 amplitude, the
difference is about 15% while forE1M2 the disagreement
between the gauges becomes smaller asZ increases, being
less than 4% atZ=80.

Table II presents a summary of the results of our calcula-
tion for a number of values ofZ between 40 and 100. To get
better accuracy for the corrected total two-photon decay
rates, we use the accurate values of Derevianko and Johnson
for the 2E1 part and our calculations in the length gauge for

TABLE I. Comparison of results of the present calculation for
length sLd and velocitysVd gauges for the 2E1 andE1M2 parts of
the decay ratesss−1d of the 23S1 state of heliumlike ions. Numbers
in square brackets indicate the power of ten by which to multiply.

Z 2E1sLd 2E1sVd E1M2sLd E1M2sVd

40 8.952[6] 10.29[6] 1.311[6] 1.405[6]

60 3.925[8] 4.766[8] 7.822[7] 8.197[7]

80 5.495[9] 6.506[9] 1.353[9] 1.405[9]

100 3.950[10] 4.617[10] 1.194[10] 1.236[10]

TABLE II. Two-photon A2g and M1 AM1 decay ratesss−1d for
decay of the 23S1 state in He-like ions. The two-photon decay rate
is broken down into contributions from the 2E1 andE1M2 multi-
poles. Numbers in square brackets indicate the power of ten by
which to multiply.

Z A2gs2E1da A2gsE1M2db A2g AM1
c

40 7.69[6] 1.31[6] 9.00[6] 1.719[10]

45 2.46[7] 4.36[6] 2.90[7] 5.792[10]

50 6.88[7] 1.26[7] 8.14[7] 1.726[11]

55 1.72[8] 3.28[7] 2.05[8] 4.658[11]

60 3.93[8] 7.82[7] 4.71[8] 1.161[12]

65 8.34[8] 1.74[8] 1.01[9] 2.706[12]

70 1.66[9] 3.62[8] 2.02[9] 5.968[12]

75 3.14[9] 7.07[8] 3.85[9] 1.256[13]

80 5.65[9] 1.35[9] 7.00[9] 2.540[13]

85 9.78[9] 2.46[9] 1.22[10] 4.968[13]

90 1.63[10] 4.30[9] 2.06[10] 9.439[13]

92 1.98[10] 5.32[9] 2.51[10] 1.212[14]

95 2.64[10] 7.17[9] 3.36[10] 1.751[14]

100 4.15[10] 1.19[10] 5.34[10] 3.181[14]

aDerevianko and Johnson[4].
bThis work using length gaugesG=Î2d.
cJohnson, Plante, and Sapirstein[17].
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the E1M2 part. TheE1M2 contribution is a significant frac-
tion of the rate throughout this range ofZ. The ratio of the
E1M2 amplitude to the 2E1 amplitude increases from 0.17 at
Z=40 to 0.29 atZ=100, so the additional amplitude is im-
portant in the medium to highZ regime. For completeness
we also include theM1 decay rate[17] since this is the
dominant decay mechanism for the 23S1 state in He-like
ions.

In Fig. 1 we give the differential decay ratedw/dy as a
function of y=v /v0 for theE1M2 part for several values of
Z. At the highestZ, the curves show a broad maximum at
half the transition energysy=0.5d falling to zero at either
endpoint. The distributions at lowerZ are similar except that
there is a slight dip at the center and the maxima shift to
either side of the center. The main feature of interest here is
that these curves do not vanish at the pointy=0.5 where the
energies of the two-photons are equal. Figure 2 shows the
spectral distributions of the combined 2E1 andE1M2 con-
tributions to the decay rate for several values ofZ. These
show peaks at low energy that are sharpest at lowZ and
increase in width asZ increases. The curves have minima at
y=0.5 but do not go to zero there due to the contribution
from the E1M2 part. Figure 3 shows the spectral distribu-
tions of the total decay rate and the contributions to the spec-
tral distribution from 2E1 andE1M2 multipoles forZ=40
(upper part) and Z=92 (lower part). In both cases the 2E1
component vanishes aty=0.5. The region fromy=0.3 to y
=0.5 is dominated by theE1M2 contribution.

IV. CONCLUSION

We have shown that for two-photon decay of an atom
with a change in electronic angular momentumJi =J→Jf

=0, the decay rate vanishes for degenerate frequenciessv1

=v2d if J is odd and the multipolarities of both photons are
the same. This is in agreement with the well-known rule that
the 2E1 decay rate forJ=1↔0 transitions vanishes when the
energies of the two photons are equal. There is no similar
rule that applies to mixed multipolarity transitions
sE1M2,E2M1,etc.d and we find that two-photon decay rates
can, in general, be nonvanishing when the frequencies of the
two photons are equal.

To illustrate the significance of these results, we have cal-
culated the decay rate of the 23S1 level in He-like ions in-
cluding both the 2E1 amplitude and the leading mixed mul-
tipolarity amplitudeE1M2. TheE1M2 amplitude dominates
the spectral distribution for the 23S1 decay over a broad
region in the center of the distribution. TheE1M2 amplitude
makes a surprisingly large contribution to the two-photon
decay rate for the 23S1 state of He-like ions contributing
15% to the decay rate atZ=40 and 22% atZ=92.

The two-photon decay branch of the 23S1 state has not
been observed to date, but the results of the calculation of the
E1M2 amplitude provide some motivation for an experimen-
tal effort to study this decay branch. The relatively large
contribution of theE1M2 amplitude and its separation from
the 2E1 contribution in the two-photon continuum spectrum
provide an opportunity for a study in atomic physics of a

FIG. 1. Lower half of the continuum distribution for theE1M2
part of the total decay rate as a function of the fractional energyy
=v /v0. The curves are normalized to area 2 over the full interval
y=0 to y=1.

FIG. 2. Low-energy part of the He-like 23S1 two-photon con-
tinuum distribution as a function of the fractional energyy=v /v0

normalized to area(=2 photons) over y=0 to y=1. (Present calcu-
lation in length gauge.)

FIG. 3. Lower energy part of the spectral distributions of the
2E1 andE1M2 contributions to the He-like 23S1 two-photon decay
rate as a function of the fractional energyy=v /v0. (Present calcu-
lation in length gauge.) The sum of the two contributions(total) is
also given. The upper plot is forZ=40 and lower plot is forZ
=92. All curves are normalized to area(=2 for the “total” curves
over y=0→1).
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two-photon amplitude beyond 2E1. Also, the spectral distri-
bution of theE1M2 part makes observation of the 23S1 two-
photon decay more practical. This is because two-photon de-
cay experiments are most sensitive at the center of the
continuum distribution[18] and this is where theE1M2 am-
plitude contributes most strongly.
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