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We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to a global phase. For
several quantum gate libraries we prove that gate counts are optimal in the worst and average cases. Our lower
and upper bounds compare favorably to previously published results. Temporary storage is not used because it
tends to be expensive in physical implementations. For each gate library, the best gate counts can be achieved
by a single universal circuit. To compute the gate parameters in universal circuits, we use only closed-form
algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in
C++.
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I. INTRODUCTION

Recent empirical work on quantum communication, cryp-
tography, and computation[1] resulted in a number of ex-
perimental systems that can implement two-qubit circuits.
Thus, decomposing arbitrary two-qubit operators into fewer
gates from a universal library may simplify such physical
implementations. While the universality of various gate li-
braries has been established in the past[2,3], the minimiza-
tion of gate counts has been studied only recently. Universal
quantum circuits with six, four, and three(controlled-NOT)
(CNOT) gates have been found that can simulate an arbitrary
two-qubit operator up to a phase[4–7]. It has also been
shown that if theCNOT gate is the only two-qubit gate avail-
able, then threeCNOT gates are required[6–8]. Many of
these results rely on the Makhlin invariants[9] or the related
magic basis and canonical decomposition[10–13]. Similar
invariants have been investigated previously[14,15] and
more recently in[16].

Our work improves or broadens each of the above circuit
constructions and lower bounds, as summarized in Table I.
We rely on the Makhlin invariants[9] and simplify them for
mathematical and computational convenience—our version
facilitates circuit synthesis algorithms. We have coded the
computation of specific gate parameters in several hundred
lines of C++ and note that it involves only closed-form al-
gebraic expressions in the matrix elements of the original
operator(no matrix logarithms or exponents). We articulate
the degrees of freedom in our algorithm, and our program
produces multiple circuits for the same operator. This may be
useful with particular implementation technologies where
certain gate sequences are more likely to experience errors.
Additionally, this paper contributes a lower bound for the
number of CNOT gates required to simulate an arbitrary

n-qubit operator, which is tighter than the generic bound for
arbitrary two-qubit operators[3,17].

The two lines in Table I give gate counts for circuits con-
sisting of elementary and basic gates, respectively. Both
types were introduced in[3], but basic gates better reflect
gate costs in some physical implementations where all one-
qubit gates are equally accessible. Yet, when working with
ion traps,Rz gates are significantly easier to implement than
Rx andRy gates[18]. Our work uncovers another asymmetry,
which is of theoretical nature and does not depend on the
implementation technology—a subtle complication arises
when onlyCNOT, Rx, andRz gates are available.

Our work shows that basic-gate circuits can be simplified
by temporarily decomposing basic gates into elementary
gates, so as to apply convenient circuit identities summarized
in Table II.

Indeed, all lower bounds in Table I and then-qubit CNOT

bound above rely on these circuit identities. Additionally,
temporary decompositions into elementary gates may help in
optimizing pulse sequences in physical implementations.

The remainder of this paper is structured as follows. Sec-
tion II discusses gate libraries and circuit topologies. Section
III derives the lower bounds of Table I. Section IV classifies
two-qubit operators up to local unitaries. Section V develops
some technical lemmas, and Sec. VI constructs small circuits
that match upper bounds in Table I. Subtle complications
caused by the lack of theRy gate are discussed in the Appen-
dix and in Sec. VII.

II. GATE LIBRARIES AND CIRCUIT TOPOLOGIES

We recall that the Bloch sphere isomorphism[1] identifies
a unit vectornW =snx,ny,nzd with sn=nxsx+nysy+nzsz. Under
this identification, rotation by the angleu around the vectornW
corresponds to the special unitary operatorRnsud=e−isnu/2. It
is from this identification that the decomposition of an arbi-
trary one-qubit gateU=eiFRzsudRysfdRzscd arises [1]. Of
course, the choice ofy, z is arbitrary; one may take any pair
of orthogonal vectors in place ofyW, zW.
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Lemma 1. Let nW, mW PR3, nW 'mW , andUPSUs2d. Then one
can findu, f, andc such thatU=RnsudRmsfdRnscd.

In the case ofnW 'mW , we havesnRmsudsn=Rms−ud and
Rnsp /2dRmsfdRns−p /2d=Rpsfd for pW =mW 3nW. For conve-
nience, we setSn=Rnsp /2d; thenSz is the usualSgate, up to
a phase. In the following, we always takem,n out of x,y,z.

We denote byCa
b the controlled-NOT gate with control on

the ath qubit and target on thebth. We recall thatRz gates
commute pastCNOTs on the control line andRx gates com-
mute pastCNOTs on the target. Finally, for mathematical con-
venience, we multiply theCNOT gate by a global phasej
such thatj4=−1, to represent it as an element of SU(4).

In this work we distinguish two types of gate libraries for
quantum operators that are universal in the exact sense(com-
pare to approximate synthesis and the Solovay-Kitaev theo-
rem). The basic-gatelibrary [3] contains theCNOT and all
one-qubit gates.Elementary-gatelibraries also contain the
CNOT gate and one-qubit gates, but we additionally require
that they contain only finitely many one-parameter sub-
groups of SU(2). We call theseelementary-gatelibraries, and
Lemma 1 indicates that if such a library includes two one-
parameter subgroups of SU(2) (rotations around orthogonal
axes) then the library is universal. In the literature, it is com-
mon to make assertions such as dimfSUs2ndg=4n−1. Thus if
a given gate library contains only gates from one-parameter
families and fully specified gates such asCNOT, at least 4n

−1 one-parameter gates are necessary[3,17]. Such
dimension-counting arguments lower-bound the number of
Rx,Ry,Rz gates required in the worst case[3].

To formalize dimension-counting arguments, we intro-
duce the concept ofcircuit topologies—underspecified cir-
cuits that may haveplaceholdersinstead of some gates, only
with the gate type specified. Before studying a circuit topol-
ogy, we must fix a gate library and thus restrict the types of
fully specified(constant) gates and placeholders. We say that
a fully specified circuitC conforms to a circuit topologyT if
C can be obtained fromT by specifying values for the vari-
able gates. Allk-qubit gates are to be in SUs2kd, i.e., normal-
ized. For an n-qubit circuit topology T we define
QsT d,SUs2nd to be the set of all operators that can be simu-
lated, up to a global phase, by circuits conforming toT. We
say thatT is universal if and only ifQsT d=SUs2nd. In this
work, constant gates areCNOTs, and placeholders represent
either all one-qubit gates or a given one-parameter subgroup
of SU(2). We label one-qubit gate placeholders bya,b,c, . . .,
and one-parameter placeholders byR* with subscriptx, y,
or z.

We also allow for explicit relations between placeholders.
For example, circuits conforming to the one-qubit circuit to-
pology aba† must contain three one-qubit gates and the first
and last must be inverse to each other.

Circuit identities such asRnsudRnsfd=Rnsu+fd can be
performed at the level of circuit topologies. This identity
indicates that twoRn gates may always be combined into one
Rn gate; hence, anywhere we find two consecutiveRn place-
holders in a circuit topologyT8, we may replace them with a
single one without shrinkingQsT d. Of course,QsT d does not
grow either, sinceRnscd=Rns0dRnscd. We may similarly con-
glomerate arbitrary one-qubit gate placeholders, passRz (re-

TABLE I. Constructive upper bounds on gate counts for generic circuits using several gate libraries. Each
bound given for controlled-not(CNOT) gates is compatible with the corresponding overall bound. These
bounds are tighter than those from[4,5] in all relevant cases.

Lower and upper bounds

Gate libraries CNOT Overall CNOT Overall

{CNOT, any two or three ofhRx,Ry,Rzj} 3 18 3 18

{CNOT, arbitrary one-qubit gates} 3 9 3 10

TABLE II. Circuit identities used in our work.Vj represents an arbitrary one-quit operator on wirej .

Circuit identities Descriptions

Cj
kCj

k=1 CNOT-gate cancellation

v j ,kv j ,k=1 SWAP-gate cancellation

Cj
kCk

j =v j ,kCj
k

CNOT-gate elimination

Ck
JRk

j sud=Rx
j sudCk

j ,Ck
j Sx

j =Sx
j Ck

j Moving Rx, Sx via CNOT target

Ck
j Rz

ksud=Rz
ksudCk

j ,Ck
j Sz

k=Sz
kCk

j Moving Rz, Sz via CNOT control

sx
kCj

k=Cj
ksx

j sx
k Moving sx via CNOT control

Cj
ksz

j =sz
jsz

kCj
k Moving sz via CNOT target

Cj
kv j ,k=v j ,kCk

j Moving CNOT via SWAP

Vjv j ,k=v j ,kVk Moving a one-qubit gate viaSWAP

RnsudRnsfd=Rnsu+fd Merging Rn gates

nW 'mW ⇒SnRmsud=Rn3msudSn Changing axis of rotation
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spectively,Rx) placeholders through the control(respectively,
target) of CNOT gates, decompose arbitrary one-qubit gate
placeholders intoRnRmRn placeholders forn'm, etc.

We now formalize the intuition that the dimension of
SUs2nd should match the number of one-parameter gates.

Lemma 2. Fix a gate library consisting of finitely many
constant gates and finitely many one-parameter subgroups.
Then almost alln-qubit operators cannot be simulated by a
circuit with fewer than 4n−1 gates from the one-parameter
subgroups.

Proof. Fix a circuit topology T with ,,4n−1 one-
parameter placeholders. Observe that matrix multiplication
and tensor products are infinitely differentiable mappings
and let f :R,→SUs2nd be the smooth function that evaluates
the operator simulated byT for specific values of parameters
in the placeholders. Accounting for the global phase,QsT d
=øj2n=1 Imagesjfd. Sard’s theorem[[19], p. 39] demands
that Imagesjfd be a measure-zero subset of SUs2nd for di-
mension reasons, and a finite union of measure-zero sets is
measure zero.

For a given library, there are only countably many circuit
topologies. Each captures a measure-zero set of operators,
and their union is also a measure-zero set. j

III. LOWER BOUNDS

Lemma 2 implies that for any given elementary gate li-
brary one can findn-qubit operators requiring at least 4n−1
one-qubit gates. We use this fact to obtain a lower bound for
the number ofCNOT gates required.

Proposition 1. Fix any gate library containing only the
CNOT and one-qubit gates. Then almost alln-qubit operators
cannot be simulated by a circuit with fewer thand 1

4s4n−3n
−1de CNOT gates.

Proof. Enlarging the gate library cannot increase the mini-
mum number ofCNOTs in a universal circuit. Thus we may
assume the library is the basic-gate library. We show that any
n-qubit circuit topologyT8 with k CNOT gates can always be
replaced with ann-qubit circuit topologyT with gates from
the {Rz, Rx, CNOT} gate library such thatQsT d=QsT 8d and
T 8 hask CNOTs and at most 3n+4k one-parameter gates. The
proposition follows from 3n+4kù4n−1.

We begin by conglomerating neighboring one-qubit gates;
this leaves at mostn+2k one-qubit gates in the circuit. Now
observe that the following three circuit topologies param-
etrize the same sets of operators:

C1
2sa ^ bd = C1

2sRxRzRx ^ RzRxRzd

= sRx ^ RzdC1
2sRzRx ^ RxRzd.

We use this identity iteratively, starting at the left of the
circuit topology. This ensures that eachCNOT has exactly
four one-parameter gates to its left.(Note that we apply gates
in circuits left to right, but read formulas for the same cir-
cuits from right to left.) Then one-qubit gates at the far right
of the circuit can be decomposed into three one-parameter
gates apiece. j

Corollary 1. Fix an elementary-gate library. Then almost
all two-qubit operators cannot be simulated without at least

threeCNOT gates and 15 one-qubit gates.
For elementary-gate libraries containing two out of the

three subgroupsRx,Ry,Rz, we give explicit universal two-
qubit circuit topologies matching this bound in Sec. VI.

Proposition 2. Using the basic-gate library, almost all
two-qubit operators require at least threeCNOT gates, and at
least basic nine gates total.

Proof. Proposition 1 implies that at least threeCNOT gates
are necessary in general; at least five one-qubit placeholders
are required for dimensional reasons. The resulting overall
lower bound of eight basic gates can be improved further by
observing that, given any placement of five one-qubit gates
around threeCNOTs, one can find two one-qubit gates on the
same wire, separated only by aCNOT. Using theRzRxRz or
RxRzRx decomposition as necessary, the five one-qubit gates
can be replaced by 15 one-parameter gates in such a way that
the closest parametrized gates arising from the adjacent one-
qubit gates can be combined. Thus, if five one-qubit place-
holders and threeCNOTs suffice, then so do 14 one-parameter
placeholders and threeCNOTs, which contradicts dimension-
based lower bounds. j

IV. INVARIANTS OF TWO-QUBIT OPERATORS

To study two-qubit operators that differ only by pre- or
post-composing with one-qubit operators, we use the termi-
nology ofcosets, common in abstract algebra[20]. Let G be
the group of operators that can be simulated entirely by one-
qubit operations. That is, G=SUs2d^n=ha1 ^ a2 ^ . . .
^ an:ai PSUs2dj. Then two operatorsu,v are said to be in
the same left coset of SU(4) moduloG (written asuG=vG)
if and only if u differs from v only by precomposing with
one-qubit operators; that is, ifu=vg for somegPG. Simi-
larly, we say thatu and v are in the same right cosetsGu
=Gvd if they differ only by postcomposition(u=hv for some
hPG), and we say thatu andv are in the same double coset
su=GvGd if they differ by possibly both pre- and postcom-
position (u=hvg for some g,hPG). In the literature, the
double cosets are often referred to aslocal equivalence
classes[4].

Polynomial invariants classifying the double cosets have
been proposed by Makhlin[9]. In what follows, we present
equivalent invariants which generalize ton qubits and are
more straight-forward to compute. Moreover, the proofs
given here detail an explicit constructive procedure to find
a,b,c,d such thatsa^ bdusc^ dd=v, once it has been deter-
mined by computing invariants thatu,v are in the same
double coset.

Definition 1. We definegn on 2n32n matrices by the for-
mula u°usy

^uTsy
^n When n is arbitrary or clear from the

context, we writeg for gn.
Proposition 3. g has the following properties:(1) gsId= I.

(2) gsabd=agsbdgsaTdTa−1. (3) gsa^ bd=gsad ^ gsbd. (4) g
PM232

^n ⇒gsgd=detsgd ·I. (5) g is constant on the left cosets
u·SUs2d^n. (6) xfgg is constant on double cosets
SUs2d^n·u·SUs2d^n.

Proof. Properties 1, 2, and 3 are immediate from the defi-
nition. Property 4 can be checked explicitly forn=1, and
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then the general case follows from(3). For property(5), note
first that gPSUs2d^n⇒gsgd= I by (4). Then expressing
gsagd andgsa3 Id using (1) and (2), we see they are equal.
For property 6, we use(2), (4), and (5) to see thatg,h
PSUs2d^n⇒gsgahd=g−1gsahdg=g−1gsadg and thus
xfgsgahdg=xfgsadg. Incidentally, (6) is closely related to
[[16], Theorem I.3]. j

While g is constant. on left cosets andxfgg on double
cosets, these invariants do not in general suffice to classify
cosets. Roughly, a parameter space for double cosets would
need dimension dimfSUs2ndg−2 dimfSUs2d^ng=4n−6n−1,
whereas the space of possiblexfgg has dimension 2n−1 (be-
cause the 2n roots ofxfgg must all have unit length and unit
product). The first dimension is much larger except forn
=1,2. In thecasen=1, there is only one left coset(and only
one double coset), so our invariants trivially suffice. Forn
=2, these numbers come out exactly equal, andg and xfgg
serve to classify, respectively, the left and double cosets.

Proposition 4. For u,vPSUs4d, G=SUs2d ^ SUs2d (1) u
PG⇔gsud= I; (2) uG=vG⇔gsud=gsvd; (3) GuG
=GvG⇔xfgsudg=xfgsvdg.

Proof. Recall that EPUs4d can be found such that
E SOs4dE†=G; such matrices are characterized by the prop-
erty thatEET=−sy ^ sy. This and related issues have been
exhaustively dealt with in several papers[10–13,16], where
it is shown thatE can be chosen as

1
Î21

1 i 0 0

0 0 i 1

0 0 i − 1

1 − i 0 0
2 .

Observe that the propertiesgsud= I, gsud=gsvd, xfgsudg
=xfgsvdg are not changed by replacingg with E†gE. Then
using the fact that −sy ^ sy=EET=sEETd† compute

E†gsgdE = E†gEETgTEt†E†E = sE†gEdsE†gEdT.

Therefore it suffices to prove the proposition after making
the following substitutions: g°u=E†gE, G°SOs4d,
gsgd°uuT. Now property 1 is immediate and property 2
follows from uuT=vvT⇔v†u=sv†udt†⇔v†uPSOs4d.

To prove property 3, note that forP symmetric unitary,

P−1= P̄; hencefP+ P̄,P− P̄g=0. It follows that the real and
imaginary parts ofP share an orthonormal basis of eigenvec-
tors. As they are moreover real symmetric matrices, we know
from the spectral theorem that their eigenvectors can be
taken to be real. Thus one can find anaPSOs4d such that
auuTa† is diagonal. By reordering(and negating) the colun-
mns ofa, we can reorder the diagonal elements ofauuTa† as
desired. Thus ifxfuuTg=xfvvTg, we can finda,bPSOs4d
such that auuTaT=bvvTbT by diagonalizing both; then
sv†bTaudsv†bTaudT= I. Let c=v†bTauPSOs4d. We have
aTbvc=u, as desired. j

The proof above gives an algorithm for computing
a,b,c,d for given two-qubitu andv so thatsa^ bdusc^ dd
=v. Also, u may be chosen as a relative phasing of Bell
states.

V. TECHNICAL LEMMAS

We present two parametrizations of the space of double
cosets described in Sec. IV. These will be used in the con-
structions of universal two-qubit circuit topologies to follow.

We will use the following general technique to compute
gsud. First, determine a circuitC simulating the operatoru.
Given C, it is straightforward to obtain a circuit simulating
sy

^2uTsy
^2: reverse the order of gates inC, and replace a

given gateg by sy
^2gTsy

^2. As will be shown below, ifg is a
one-qubit gate, thensy

^2gTsy
^2=g†. For theCNOT, we note

that sy
^2C1

2sy
^2=C1

2ssx ^ szd and similarly sy
^2C2

1sy
^2

=C2
1ssz^ sxd. Now, combine the circuits foru andsy

^2uTsy
^2

to obtain a circuit simulatinggsud.
Proposition 5. For any uPSUs4d, one can finda ,b ,d

such thatxfgsudg=xfgsC1
2(I ^ Rysad)C2

1(Rzsdd ^ Rysbd)C1
2dg.

Proof. Let v=C1
2(I ^ Rysad)C2

1(Rzsdd ^ Rysbd)C1
2. As v is

given explicitly by a circuit, we use the technique described
above to determine the following circuit forgsvd.

Here,Ry8=Rysad, Ry=Rysbd, andRz=Rzsdd. We now use
the circuit identities in Fig. 1 andsiRjsud=Rjs−udsi to push
all thesi gates to the left of the circuit, where they cancel up
to an irrelevant global phase of −1. All gates in the wake of
their passing become inverted, and we obtain the following
circuit.

For invertible matrices,xfABg=xfA−1sABdAg=xfBAg. In
view of the fact that we are ultimately interested only in
xfgsVdg we may move gates from the left of the circuit to the
right. ConglomeratingRy8 gates and canceling pairedCNOT

gates, in this way we obtain

We have shown thatxfgsvdg=xfC2
1(Rzsdd ^ Rysbd)C2

1(I
^ Rysad)g. Again, sincexfBg=xfA−1BAg, we conjugate byI
^ Sx. This fixes theCNOT gate and replacesRy gates withRz:

xfgsvdg = xfC2
1
„Rzsdd ^ Rzsbd…C2

1
„I ^ Rzsad…g.

Finally, we ensure that the entries of the diagonal matrix
C2

1(Rzsdd ^ Rzsbd)C2
1(I ^ Rzsad) match the spectrum ofgsUd

by specifyinga=sx+yd /2 , b=sx+zd /2, andd=sy+zd /2 for

FIG. 1. Circuit identities to movesx,sz pastCNOT. Thesx iden-
tity is standard in the theory of classical reversible circuits, where
sx is just theNOT gate, and amounts to the statement thats1% ad
% s1% bd=sa% bd. The sz identity can be obtained from it by con-
jugating byH ^ H.

SHENDE, MARKOV, AND BULLOCK PHYSICAL REVIEW A 69, 062321(2004)

062321-4



eix, eiy, andeiz any three eigenvalues ofgsUd. j

Proposition 6. For anyuPSUs4d, one can findu,f,c such
that xfgsuC2

1(I ^ Rzscd)C2
1dg=xfgsC2

1(Rxsud ^ Rzsfd)C2
1dg.

Proof. We setD=C2
1(I ^ Rzscd)C2

1 and compute trfgsuDdg.
By Proposition 3, this is trfgsuTdTgsDdg. Explicit computa-
tion as in the previous proposition givesgsDd=D2, and one
obtains trfgsuDdg=st1+ t4de−ic+st2+ t3deic, where t1,t2,t3,t4
are the diagonal entries ofgsuTdT. We may ensure that this
number is real by requiring tanscd=Imst1+ t2+ t3+ t4d /Rest1
+ t2− t3− t4d.

Now considermPSUsNd, xfmg=oȧiX
i =PsX−r id, where

the r i form the spectrum ofm. SincemPSUsNd, we must
have Pr i =1=Pr̄ i. Therefore, xfmg=xfmgPr̄ i =Psr̄ iX−1d.
Expanding the equalityPsX−r id=Psr̄ iX−1d gives āi =aN−i.
In particular, forN=4, a2PR, and trsmd=a3= ā1. Sincea4

=a0=1, xfmg has all real coefficients if and only if trfmg
PR. In this case, the roots ofxfmg must come in conjugate
pairs: xfmg=sX−eirdsX−e−irdsX−eisdsX−e−isd. On the other
hand, for w=C2

1sRx(sr +sd /2) ^ Rz(sr −sd /2)dC2
1, one can

verify that xfgswdg takes this form.
Taking m=gsUC2

1(I ^ Rzscd)C2
1d, with c as determined

above, we obtainu=sr +sd /2, f=sr −sd /2. j

VI. MINIMAL TWO-QUBIT CIRCUITS

We now construct universal two-qubit circuit topologies
that match the upper bounds of Table I. We consider three
different gate libraries: each contains theCNOT and two out
of the three one-parameter gateshRx,Ry,Rzj. We will refer to
these as theCXY, CYZ, andCXZ gate libraries.

In view of Lemma 1, one might think that there is no
significant distinction between these cases. Indeed, conjuga-
tion by the Hadamard gate transforms will allow us to move
easily between theCXY and CYZ gate libraries. However,
we will see that theCXZ gate library is fundamentally dif-
ferent from the other two. Roughly, the reason is thatRx and
Rz can be respectively moved past the target and control of
the CNOT gate, while no such identity holds for theRy gate.
While theCXY andCYZ libraries each contain only one of
hRx,Rzj, the CXZ gate library contains both, and conse-
quently has different characteristics. Nonetheless, gate
counts will be the same in all cases. We begin with theCYZ
case, which has been considered previously[5].

Theorem 1. FifteenhRy,Rzj gates and threeCNOTs suffice
to simulate an arbitrary two-qubit operator.

Proof. Choosea ,b ,d as in Proposition 5. Then by Propo-
sition 4 one can finda,b,c,dPSUs2d such that

U = sa ^ bdC1
2
„I ^ Rysad…C2

1
„Rzsdd ^ Rysbd…C1

2sc ^ dd.

Thus, the circuit topology depicted in Fig. 2 is universal.j

Theorem 2. FifteenhRx,Ryj gates and threeCNOTs suffice
to simulate an arbitrary two-qubit operator.

Proof. Conjugation byH^n fixes SUs2nd and Ry. It also
flips CNOT gatessH^2C1

2H^2=C2
1d and swapsRx with Rz. j

Unfortunately, no such trick transformsCYZ into CXZ.
Any such transformation would yield a universal two-qubit
circuit topology in theCXZ library in which only three one-
parameter gates occur in the middle. We show in the Appen-
dix that no such circuit can be universal and articulate the
implications of this distinction in Sec. VII. Nonetheless, we
demonstrate here a universal two-qubit circuit topology with
gates from the{Rx, Rz, CNQT} gate library that contains 15
one-qubit gates and threeCNOT gates.

Theorem 3. Fifteen{Rx, Rz} gates and threeCNOTs suffice
to simulate an arbitrary two-qubit operator.

Proof. Let U8 be the desired operator; setU=U8C2
1.

Chooseu ,f ,c for U8 as in Proposition 6. By Proposition 4,
one can finda,b,c,dPSUs2d such that

U„I ^ Rzscd…C2
1 = sa ^ bdC2

1
„Rzsu… ^ RxsfddC2

1sc ^ dd

Solving for U gives the overall circuit topology in Fig. 3.j
Unlike the circuit of Theorem 1, the circuit in Fig. 3 can

be adapted to both other gate libraries. We can replacec by
SzsSz

†cd and a by saSzdSz
† and then use theSz,Sz

† gates to
change theRx gate into anRz. A similar trick usingSx can
change the bottomRz gates intoRy; this yields a circuit in the
CYZ gate library. As in Theorem 2, conjugating byH ^ H
yields a circuit in theCXY gate library.

Given an arbitrary two-qubit operator, individual gates in
universal circuits can be computed by interpreting proofs of
Propositions 6, 5, and 4, and Theorems 1, 2, and 3 as algo-
rithms. By reordering eigenvalues in the proof of Proposition
4, one may typically produce several different circuits. Simi-
lar degrees of freedom are discussed in[5].

To complete Table I, countbasicgates in Figs. 2 or 3.

VII. CONCLUSIONS

Two-qubit circuit synthesis is relevant to ongoing physics
experiments and can be used in peephole optimization of
larger circuits, where small subcircuits are identified and
simplified one at a time. This is particularly relevant to quan-
tum communication, where protocols often transmit one qu-
bit at a time and use encoding/decoding circuits on three
qubits.

We constructively synthesize small circuits for arbitrary
two-qubit operators with respect to several gate libraries.
Most of our lower and upper bounds on worst-case gate
counts are tight, and rely on circuit identities summarized in
Table II. We also prove thatn-qubit circuits requiref 1

4s4n

−3n−1dg CNOT gates in the worst case.

FIG. 2. A universal two-qubit circuit with threeCNOT gates. It
requires 10 basic gates[3] or 18 gates from{CNOT, Ry,Rz}.

FIG. 3. Another universal two-qubit circuit with threeCNOT

gates. It requires 10 basic gates[3] or 18 gates from{CNOT, Rx,Rz}.
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While our techniques do not guarantee optimal circuits for
non-worst-case operators, they perform well in practice: one
run of our algorithm produced the circuit shown in Fig. 4 for
the two-qubit quantum Fourier transform. We show else-
where that this circuit has a minimal basic-gate count.

A somewhat surprising result of our work is the apparent
asymmetry betweenRx, Ry, andRz gates. While one would
expect any circuit topology forCNOT, Rz, and Ry to carry
over to other elementary-gate libraries, we prove a negative
result for the libraryCNOT, Rz, and Rx; namely, usingRy
gates appears essential for the minimal universal circuit to-
pology shown in Fig. 2, which exhibits the maximal possible
number of one-qubit gates that are not between any two
CNOT gates.

The asymmetry between elementary one-qubit gates di-
rectly impacts peephole optimization ofn-qubit circuits,
where decompositions like that in Fig. 2 are preferable to
that in Fig. 3. For example, consider a three-qubit circuit
consisting of two two-qubit blocks on lines(1) one and. two,
(2) two and three. If both blocks are decomposed as in Fig. 2,
then theb gate from the first block and thec gate from the
second block merge into one gate on line two. However, no
such reduction would happen if the decomposition from Fig.
3 is used.
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APPENDIX

We now illustrate the counterintuitive difference between
(i) the CXZ library and(ii ) librariesCYZandCXY. That is,
universal circuit topologies with certain properties exist only
for the CYZandCXY libraries.

The proof of Theorem 1 contains a universal generic cir-
cuit with threeCNOT gates and 15Ry or Rz gates with the
property that all but three of the one-qubit gates appear either
before the first or after the lastCNOT gate. This is minimal.

Proposition 7. Fix an elementary-gate library. There exist
unitary operatorsUPSUs4d that cannot be simulated by any
two-qubit circuit in which all but two of the one-qubit gates
appear either before the first or after the lastCNOT gate.

Proof. There are four places where the one-parameter
gates can appear: at the left or right of the first or second line.
If more than three gates appear in one such place, conglom-
erate them into a single one-qubit gate and decompose the
result into three one-parameter gates via Lemma 1. By this
method, any two-qubit circuit can be transformed into an

equivalent circuit with at most 12 one-parameter gates on its
sides. By Corollary 1, there exist operators that cannot be
simulated without 15 one-parameter gates; the remaining
three must go in the middle of the circuit. j

We have seen that for theCYZand theCXYgate libraries,
this lower bound is tight. We will show that this is not the
case for theCXZgate library. Before beginning the proof, we
make several observations about theCXZ gate library.

Note that conjugating a circuit identity byH ^ H ex-
changesRx andRz gates and flipsCNOTs. Two other ways to
produce new identities from old are swapping wires, and
inverting the circuit—reversing the order of gates and replac-
ing each with its inverse. For example, one may obtain one
of the commutativity rules below from the other by conju-
gating byH ^ H and then swapping wires.

When oneCNOT gate occurs immediately after another in
a circuit, we say that they areadjacent. When such pairs of
CNOTs share control lines, they cancel out, and otherwise
may still lead to reductions as discussed below. We will be
interested in circuits that do not allow such simplifications.
To this end, recall thatRx gates commute past the target of a
CNOT, andRz gates commute past the control. Moreover, we
have the following circuit identity:C2

1(Rxsad ^ Rzsbd)C2
1

=C1
2(Rzsbd ^ Rxsad)C1

2. We say that a given collection of
one-qubit gateseffectively separatesa chain ofCNOTs if and
only if there is no way of applying the aforementioned trans-
formation rules to force twoCNOT gates to be adjacent. For
example, there is no way to effectively separate twoCNOTs
of opposite orientation by a singleRx or Rz gate. This is
illustrated below.

On the other hand, twoCNOT gates of the same orientation
can be effectively separated by a singleRx or Rz gate, as
shown below. Up to swapping wires, these are the only ways
to effectively separate twoCNOTs with a singleRx or Rz.

Proposition 8. At least four gates fromhRx,Rzj are neces-
sary to effectively separate four or moreCNOT gates.

Proof. Clearly it suffices to check this in the case of ex-
actly four CNOTs. If three Rx,Rz gates sufficed, then one
would have to go between each pair ofCNOT gates. Suppose
all the CNOT gates have the same orientation, say with con-
trol on the bottom wire. Then the first pair must look like one
of the pairs above. In either case, we may use the identity
C2

1(Rxsad ^ Rzsbd)C2
1=C1

2(Rzsbd ^ Rxsad)C1
2 to flip these

CNOT gates, thus ensuring that there is a consecutive pair of
CNOT gates with opposite orientations. As remarked above,
there is no way to effectively separate these using the single
one-qubit gate allotted them. j

FIG. 4. The result of our algorithm applied to the two-qubit
quantum Fourier transform. The circuit contains three one-qubit
gates and threeCNOTs, but the one-qubit gates are broken up into
elementary gates for specificity. Here,Tz=Rzsp /4d is the T gate
defined in[1] up to a global phase.
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Denote byvi j theSWAPgate that exchanges theith andj th
qubits. It can be simulated usingCNOTs as Ci

jCj
iCi

j =vi j

=Cj
iCi

jCj
i . SWAP gates can be pushed through an elementary-

gate circuit without introducing new gates. So consider a
two-qubit circuit in which adjacentCNOT gates appear. If
they have the same orientation(e.g., C1

2C1
2 or C2

1C2
1), then

they cancel out and can be removed from the circuit. Other-
wise, use the identityC1

2C2
1=C2

1v12 or C2
1C1

2=C1
2v12 and push

theSWAP to the end of the circuit. We apply this technique at
the level of circuit topologies and observe thatQsTv12d is
measure zero(or universal) if and only if QsT d is. By the
above discussion, we can always reduce to an effectively
separated circuit before checking these properties.

Proposition 9. Almost all unitary operatorsUPSUs4d
cannot be simulated by any two-qubit circuit withCXZgates
in which all but three of theRx,Rz gates appear either before
the first or after the lastCNOT.

Proof. We show that any circuit topology of the form
above can simulate only. a measure-zero subset of SUs4d; the
result then follows from the fact that a countable union of
measure-zero sets is measure zero.

The assumption amounts to the fact that only three gates
are available to effectively separate theCNOT gates. By
Proposition 8 and the discussion immediately following it,
we need only consider circuit topologies with no more than
threeCNOTs. On the other hand, we know from Proposition 2
that any two-qubit circuit topology with fewer than three
CNOT gates can simulate only a measure-zero subset of
SUs4d. Thus it suffices to consider circuit topologies with
exactly threeCNOT gates. Moreover, we can require that they
be effectively separated, since otherwise we could reduce to
a two-CNOT circuit.

Three CNOTs partition a minimal two-qubit circuit into
four regions. We are particularly interested in the two regions
limited by CNOTs on both sides because single-qubit gates in
those regions must effectively separate theCNOTs. To this
end, we consider two pairs ofCNOTs (the centralCNOT is in
both pairs), and distinguish these three cases:(1) both pairs
of CNOTs consist of gates of the same orientation,(2) both
consist of gates of opposite orientations, or(3) one pair has
gates of opposite orientations and the other pair has gates of
the same orientation. In the second case, theCNOT gates
cannot be effectively separated, since each pair of gates with
opposite orientations requires two one-parameter gates to be
effectively separated, and only threeRx,Rz gates are avail-
able. In the third case, twoCNOTs with opposite orientations
must be separated by two one-parameter gates, leaving only
oneRx or Rz to separate the pair with the same orientation.
Thus, the pair with the same orientation may be flipped,
reducing to case 1, as shown below.

Finally, consider the case in which all threeCNOT gates
have the same orientation. Each pair of consecutiveCNOTs
must have at least oneRx or Rz between them, to be effec-
tively separated. Thus one of the pairs has a singleRx or Rz

between its members, and the other has two one-qubit gates.
We refer to these as the 1-pair and the 2-pair, respectively.

Suppose that the one-qubit gates separating the 2-pair of
CNOTs occur on different lines. If either one-qubit gate can
commute past theCNOTs of the 2-pair, then it can move to
the edge of the circuit; in this case Proposition 7 implies that
the circuit topology we are looking at can simulate only a
measure-zero subset of SUs4d (one can show that twoRx,Rz

gates cannot effectively separate threeCNOTs). Otherwise,
we use the identity C2

1(Rxsad ^ Rzsbd)C2
1=C1

2(Rzsbd
^ Rxsad)C1

2 to flip the 2-pair, and thus the 1-pair now have
opposite orientations. As there is only one one-qubit gate
between them, this pair is not effectively separated. For ex-
ample,

We are left with the possibility that all theCNOT gates
have the same orientation and that the 2-pair’s one-qubit
gates appear on the same line. BothRz,Rx must occur, or else
we could combine them and apply Proposition 7 to show that
such a circuit topology can simulate only a measure-zero
subset of SUs2nd. Now, if RxRz appears between twoCNOT

gates of the same orientation, then either theRx or theRz can
commute past one of them. If the outermost gate can com-
mute, Proposition 7 again implies that the circuit topology
simulates only a measure-zero subset of SUs2nd. Thus the
inner gate can commute with the 1-pair. We have now inter-
changed the roles of the 1-pair and the 2-pair; thus by the
previous paragraph the gate that originally separated the
1-pair must be on the same line as the commuting gate. It
follows that all gates are on the same line. Up to conjugating
by H ^ H, swapping wires, and inverting the circuit, this
leaves exactly one possibility:

Finally, we add the four one-qubit gates on the sides, de-
compose each intoRxRzRx via Lemma 1, and observe that an
Rx gate can commute across the top and be absorbed on the
other side. This leaves 14 one-parameter gates, and by
Lemma 2, such a circuit topology simulates only a measure-
zero subset of SUs4d. j
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