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We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to a global phase. For
several quantum gate libraries we prove that gate counts are optimal in the worst and average cases. Our lower
and upper bounds compare favorably to previously published results. Temporary storage is not used because it
tends to be expensive in physical implementations. For each gate library, the best gate counts can be achieved
by a single universal circuit. To compute the gate parameters in universal circuits, we use only closed-form
algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in
C++,
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I. INTRODUCTION n-qubit operator, which is tighter than the generic bound for
- L arbitrary two-qubit operatorf3,17).

Recent empirical work on quantum communication, Cryp-  The two lines in Table | give gate counts for circuits con-
tography, and computatiofi] resulted in a number of ex- gjsting of elementary and basic gates, respectively. Both
perimental systems that can implement two-qubit cwcwtstypeS were introduced ifi3], but basic gates better reflect
Thus, decomposing arbitrary two-qubit operators into feweraie costs in some physical implementations where all one-
gates from a universal library may simplify such physical it gates are equally accessible. Yet, when working with
implementations. While the universality of various gate li- g, traps,R, gates are significantly easier to implement than

braries has been established in the pas3], the minimiza- R, andR, gates[18]. Our work uncovers another asymmetry,

tion of gate counts has been studied only recently. Universajhich is of theoretical nature and does not depend on the
quantum circuits with six, four, and threeontrolledNOT)  jpplementation technology—a subtle complication arises
(cNoT) gates have been found that can simulate an arbitranygpen onlycNoT, R,, andR, gates are available.

two-qubit operator up to a phagé—7]. It has also been oy work shows that basic-gate circuits can be simplified
shown that if thecNOT gate is the only two-qubit gate avail- by temporarily decomposing basic gates into elementary

able, then threecNOT gates are require—8. Many of  gates 50 as to apply convenient circuit identities summarized
these results rely on the Makhlin invariaf® or the related  ;, Taple |11

magic basis and canonical decompositifi0-13. Similar Indeed, all lower bounds in Table | and theyubit cNOT
invariants have been investigated previough4,13 and  poung above rely on these circuit identities. Additionally,

more recently if16]. temporary decompositions into elementary gates may help in

Our work improves or broadens each of the above circuiyyiimizing pulse sequences in physical implementations.
constructions and lower bounds, as summarized in Table I." The remainder of this paper is structured as follows. Sec-

We rely on the Makhlin invariant§9] and simplify them for o || discusses gate libraries and circuit topologies. Section
mathematical and computational convenience—our Versiof)| gerives the lower bounds of Table 1. Section IV classifies

facilitates circuit synthesis algorithms. We have coded thgyo_qubit operators up to local unitaries. Section V develops
computation of specific gate parameters in several hundreghme technical lemmas, and Sec. VI constructs small circuits
lines of C++ and note that it involves only closed-form al- {hat match upper bounds in Table I. Subtle complications

gebraic expressipns in 'Fhe matrix elements of the originalysed by the lack of thig, gate are discussed in the Appen-
operator(no matrix logarithms or exponentsiVe articulate iy and in Sec. VII.

the degrees of freedom in our algorithm, and our program
produces multiple circuits for the same operator. This may be
useful with particular implementation technologies where
certain gate sequences are more likely to experience errors. \we recall that the Bloch sphere isomorphigthidentifies
Additionally, this paper cont(lbutes a .Iower bound fqr the 5 unit Vecto,ﬁz(nxyny,nz) with o, =noy+n,0y+n,0,. Under
number of CNOT gates required to simulate an arbitrary ts jgentification, rotation by the angtearound the vectoi

corresponds to the special unitary operd®gd)=eon?2,_ |t

is from this identification that the decomposition of an arbi-

Il. GATE LIBRARIES AND CIRCUIT TOPOLOGIES

*Electronic address: vshende@umich.edu trary one-qubit gatdJ =ei‘I’RZ(0)Ry(¢)RZ(¢) arises[1]. Of
"Electronic address: imarkov@umich.edu course, the choice of, z is arbitrary; one may take any pair
*Electronic address: stephen.bullock@nist.gov of orthogonal vectors in place gt Z

1050-2947/2004/68)/0623218)/$22.50 69 062321-1 ©2004 The American Physical Society



SHENDE, MARKOV, AND BULLOCK PHYSICAL REVIEW A 69, 062321(2004

TABLE I. Constructive upper bounds on gate counts for generic circuits using several gate libraries. Each
bound given for controlled-notcNoT) gates is compatible with the corresponding overall bound. These

bounds are tighter than those frdh 5] in all relevant cases.

Lower and upper bounds

Gate libraries CNOT Overall CNOT Overall

{cnot, any two or three of Ry Ry, R/}
{cNoT, arbitrary one-qubit gatés

18 3 18
9 3 10

Lemma 1LetA, me RS, nLm, andU e SU(2). Then one
can find 6, ¢, andy such thatU=R,(0)R(d)R,(¥).

In the case ofi L m, we haveo,Ry(#)o,=Ry(—60) and
Ry(m/2)R(#)R(-m/2)=Ry(¢p) for p=mxn. For conve-
nience, we se§,=R,(7/2); thenS, is the usuaB gate, up to
a phase. In the following, we always taken out of X,y,z

We denote b)C'j1 the controlledNoT gate with control on
the ath qubit and target on thbth. We recall thatR, gates
commute pastNOTs on the control line an®, gates com-

To formalize dimension-counting arguments, we intro-
duce the concept ofircuit topologies—underspecified cir-
cuits that may havelaceholdersnstead of some gates, only
with the gate type specified. Before studying a circuit topol-
ogy, we must fix a gate library and thus restrict the types of
fully specified(constant gates and placeholders. We say that
a fully specified circuitC conforms to a circuit topolog{ if
C can be obtained frorf by specifying values for the vari-
able gates. Alk-qubit gates are to be in ), i.e., normal-
ized. For an n-qubit circuit topology 7 we define

mute pastNoOTs on the target. Finally, for mathematical con- Q(7) C SU(2" to be the set of all operators that can be simu-

venience, we multiply theeNoT gate by a global phasé
such that&*=-1, to represent it as an element of ).

lated, up to a global phase, by circuits conforming/to/Ne
say that7 is universal if and only ifQ(7)=SU2"). In this

In this work we distinguish two types of gate libraries for work, constant gates a@noTs, and placeholders represent

quantum operators that are universal in the exact s@ase-

either all one-qubit gates or a given one-parameter subgroup

pare to approximate synthesis and the Solovay-Kitaev theqyt SU(2). We label one-qubit gate placeholdersap,c, ...,

rem). The basic-gatelibrary [3] contains thecNOT and all
one-qubit gatesElementary-gatdibraries also contain the

and one-parameter placeholders Ry with subscriptx, v,
or z.

CNOT gate and one-qubit gates, but we additionally require We also allow for explicit relations between placeholders.
that they contain only finitely many one-parameter sub-+or example, circuits conforming to the one-qubit circuit to-

groups of SW2). We call theseelementary-gatébraries, and

pology aba’ must contain three one-qubit gates and the first

Lemma 1 indicates that if such a library includes two one-and last must be inverse to each other.

parameter subgroups of &) (rotations around orthogonal

Circuit identities such aRR(0)R,(¢)=R.(6+¢) can be

axeg then the library is universal. In the literature, it is com- performed at the level of circuit topologies. This identity

mon to make assertions such as Bt(2")]=4"-1. Thus if

indicates that twdr, gates may always be combined into one

a given gate library contains only gates from one-parametdRr, gate; hence, anywhere we find two consecuRyeplace-

families and fully specified gates such asor, at least 4
-1 one-parameter gates are necessdByl7]. Such

holders in a circuit topology’, we may replace them with a
single one without shrinkin@(7). Of course Q(7) does not

dimension-counting arguments lower-bound the number ofirow either, sinc&,(#) =R,(0)R,(). We may similarly con-

R, Ry, R, gates required in the worst cakH.

glomerate arbitrary one-qubit gate placeholders, pagse-

TABLE II. Circuit identities used in our workV! represents an arbitrary one-quit operator on \jire

Circuit identities

Descriptions

k~k_
CiCj=1
w K k=1
CiRl(0)=R,(0)C|, ClS,=9Cl
ClRi(0)=Ri(0)C), Cls=sc]
OJ;C}(: CTO’&O";
Ci(ojf O'jZOJ;C:'(l
Crwik=@l*Cl
j k
Viwhk= @l kyk
Ra(0)Ry()) =Ry (6+ ¢)
N L MO SRy(0)=Rxm(0)S,

CNOT-gate cancellation

swapP-gate cancellation
CNOT-gate elimination
Moving R,, S, via CNOT target

Moving R,, S, via cNOT control
Moving gy via cNOT control

Moving o, via CNOT target
Moving CNOT via SWAP

Moving a one-qubit gate viawar
Merging R, gates
Changing axis of rotation
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spectively,R) placeholders through the contioéspectively, threecNOT gates and 15 one-qubit gates.
targey of cNOT gates, decompose arbitrary one-qubit gate For elementary-gate libraries containing two out of the
placeholders intd&r,R R, placeholders fon L. m, etc. three subgroup®R,,R,, we give explicit universal two-
We now formalize the intuition that the dimension of qubit circuit topologies matching this bound in Sec. VI.
SU(2") should match the number of one-parameter gates. Proposition 2.Using the basic-gate library, almost all
Lemma 2 Fix a gate library consisting of finitely many two-qubit operators require at least thieeoT gates, and at
constant gates and finitely many one-parameter subgroupast basic nine gates total.
Then almost alin-qubit operators cannot be simulated by a  Proof. Proposition 1 implies that at least threroT gates
circuit with fewer than 4-1 gates from the one-parameter are necessary in general; at least five one-qubit placeholders
subgroups. are required for dimensional reasons. The resulting overall
Proof. Fix a circuit topology 7 with ¢<4"-1 one- lower bound of eight basic gates can be improved further by
parameter placeholders. Observe that matrix multiplicatiorobserving that, given any placement of five one-qubit gates
and tensor products are infinitely differentiable mappingsaround threecNoTs, one can find two one-qubit gates on the
and letf: R¢— SU(2") be the smooth function that evaluates same wire, separated only bycaoT. Using theR,R,R, or
the operator simulated by for specific values of parameters RR,R, decomposition as necessary, the five one-qubit gates
in the placeholders. Accounting for the global phad®¢7) can be replaced by 15 one-parameter gates in such a way that
=Ugn; Imagdéf). Sard's theorenf[19], p. 39 demands the closest parametrized gates arising from the adjacent one-
that Image(&f) be a measure-zero subset of (80 for di- ~ qubit gates can be combir)ed. Thus, if five one-qubit place-
mension reasons, and a finite union of measure-zero sets fi9lders and threenots suffice, then so do 14 one-parameter
measure zero. placeholders and threenoTs, which contradicts dimension-
For a given library, there are only countably many circuitPased lower bounds. u
topologies. Each captures a measure-zero set of operators,

and their union is also a measure-zero set. [ |
IV. INVARIANTS OF TWO-QUBIT OPERATORS

Ill. LOWER BOUNDS To study two-qubit operators that differ only by pre- or
post-composing with one-qubit operators, we use the termi-
nology of cosets common in abstract algebfa0]. Let G be

the group of operators that can be simulated entirely by one-
E]ubit operations. That is,G=SU2)*"={a;®a,® ...
®a,:a € SU(2)}. Then two operatorsi,v are said to be in
the same left coset of S¥) moduloG (written asuG=vG)

if and only if u differs from v only by precomposing with
one-qubit operators; that is, if=vg for someg e G. Simi-
larly, we say thatu andv are in the same right coséGu
=Gv) if they differ only by postcompositiofu=hv for some

h e G), and we say that andv are in the same double coset
?’u:GvG) if they differ by possibly both pre- and postcom-
position (u=hvg for someg,he G). In the literature, the
double cosets are often referred to lagal equivalence
classed4].

Lemma 2 implies that for any given elementary gate li-
brary one can finah-qubit operators requiring at least-41
one-qubit gates. We use this fact to obtain a lower bound fo
the number oftNOT gates required.

Proposition 1 Fix any gate library containing only the
CNOT and one-qubit gates. Then almost @i¢gubit operators
cannot be simulated by a circuit with fewer th@rw‘—sn
-1)] cNOT gates.

Proof. Enlarging the gate library cannot increase the mini-
mum number ofCNOTs in a universal circuit. Thus we may
assume the library is the basic-gate library. We show that an
n-qubit circuit topologyZ” with k cNOT gates can always be
replaced with am-qubit circuit topology7 with gates from
the {R,, R,, CNOT} gate library such tha®(7)=Q(7") and

T" hask cNoTs and at most@+4k one-parameter gates. The Polynomial invariants classifying the double cosets have

proposition follows from 8+4k=4"-1. b .
. . . . . been proposed by Makhlif9]. In what follows, we present
We begin by conglomerating neighboring one-qubit gates; ~ " . . . : .
this leaves at most+2k one-qubit gates in the circuit. Now gquivalent invariants which generalize toqubits and are

observe that the following three circuit topologies param-o. < straight-forward to_compute. Moreover, the proofs
) 9 ) polog P given here detail an explicit constructive procedure to find
etrize the same sets of operators:

a,b,c,d such thatta® b)u(c® d)=v, once it has been deter-

Ci(a® b) = C3(RRR, ® RRR,) mined by computing invariants that,v are in the same
double coset.
— 2
= (R®@RJCIRR@ RR). Definition 1 We definey, on 2 x 2" matrices by the for-

We use this identity iteratively, starting at the left of the mulau—ueyu'ey" Whenn is arbitrary or clear from the
circuit topology. This ensures that eachioT has exactly —context, we writey for y,. _ _
four one-parameter gates to its laftlote that we apply gates ~ Proposition 3 y has the following propertieg1) ¥(1)=1.
in circuits left to right, but read formulas for the same cir- (2) Y(@ab)=ay(b)y@")’a™. (3) fa®b)=y@® yb). (4 g
cuits from right to left) The n one-qubit gates at the far right € M5%,0 »(g@)=detg)-I. (5) y is constant on the left cosets
of the circuit can be decomposed into three one-parameter-SU2)“". (6) x[y] is constant on double cosets
gates apiece. H SUQ2)®"-u-SuU2)°®n

Corollary 1. Fix an elementary-gate library. Then almost  Proof. Properties 1, 2, and 3 are immediate from the defi-
all two-qubit operators cannot be simulated without at leashition. Property 4 can be checked explicitly for1, and
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then the general case follows frai®). For property(5), note = _ oz} _ {5}
first that g e SU(2)®"0 y(g)=I by (4). Then expressing S ol “

y(ag) and y(aX|) using(1) and(2), we see they are equal.

For property 6, we u_sle2), (4, 6_“;d (5) to see thatg,h FIG. 1. Circuit identities to movey, o, pastcNoT. The gy iden-

€ SU2)°"0 y(gah=gy@ahig=g~¢@ag and  thus i is standard in the theory of classical reversible circuits, where

x[v(gah]=x[¢(@)]. Incidentally, (6) is closely related to 4 is just thenoT gate, and amounts to the statement tHab a)

[[16], Theorem 1.3. | @ (l®b)=(a®b). The o, identity can be obtained from it by con-
While y is constant. on left cosets andy] on double jugating byH®H.

cosets, these invariants do not in general suffice to classify

cosets. Roughly, a parameter space for double cosets would V. TECHNICAL LEMMAS
need dimension difgU(2"]-2 dimSU(2)®"]=4"-6n-1, o
whereas the space of possilfley] has dimension 2-1 (be- We present two parametrizations of the space of double

cause the 2roots of x[y] must all have unit length and unit COSets described in Sec. IV. These will be used in the con-
producy. The first dimension is much larger except for ~ Structions of universal two-qubit circuit topologies to follow.
=1,2. In thecasen=1, there is only one left coséand only We will use the following general technique to compute

one double cosgtso our invariants trivially suffice. Fan ~ (U)- First, determine a circui€ simulating the operatou.

=2, these numbers come out exactly equal, grahd [ ] Gl\gen C,2|t is straightforward to obtain a circuit simulating
! ! ®2,, T K2, 1

serve to classify, respectively, the left and double cosets. 7y U 0y : TEVerse tThe®20rder of gates @, and replace a
Proposition 4 For u,v < SU4), G=SU2) &SU2) () u  Iven gaey PY 7y 8 0y, A3, pe shown below, T 1s 2

eGoyu=l; (20 uG=vG+- yu=yv); () GuG ?h”aet'q“ggcgzatgé_tc‘gg"y @9 ‘3 ‘fna osrir;ilz(r:INOT,@Vg(e:lngge

=GuG = x[HW]=x[¥w)]. 1 Ty 10y mRIOX® O s N g 5
Proof Recall thatE e U(4) can be found such that —C2(0z®0y). Now, combine the circuits far ando, “u'o,

E SO4)E'=G; such matrices are characterized by the prop{0 0btain & circuit simulating/(u).

erty thatEE"=-0,® oy. This and related issues have been PopOsition 5 For anyue SU(4),lone can ﬁnd“*f’&
exhaustively dealt with in several papgfd—13,16, where  SUCh that W)= x[1Ci(l ® R (a))C3(R(0) ® R/(B))C]-

it is shown thatE can be chosen as Proof. Let v=C}(1 ®R(a))C5(R{) ® R/(B))C;. As v is
given explicitly by a circuit, we use the technique described
1 i 0 O above to determine the following circuit foi(v).
oo i1 oo TR Eefh—o
V2|0 0 i -1 IR S-GH R+ Rl
1 -i0 0

Here,R/=R(a), R,=R/(f), andR,=R/(4). We now use
Observe that the properties(u)=I, ¥ (uW)=yv), (W]  the circuit identities in Fig. 1 and;R;(6)=R;(-6)o; to push
=x[¥(v)] are not changed by replacingwith E'yE. Then  all the o; gates to the left of the circuit, where they cancel up

using the fact that o, ® o, =EE"=(EE")" compute to an irrelevant global phase of —1. All gates in the wake of
their passing become inverted, and we obtain the following
E'y(g)E=E'gEE'g'"E''E'E = (E'gE)(E'gE)". circuit.
Therefore it suffices to prove the proposition after making & R}p—R] &
the following substitutions: g—u=E'gE, G—SQ4), VN Rl R l
y(g)—uu'. Now property 1 is immediate and property 2 ] ]
follows from uu™=vo" < vTu=(vTu)" < vTu e SO4). For invertible matricesy[AB]=x[A"X(AB)A]=x[BA]. In

To prove property 3, note that fd® symmetric unitary, view of the fact that we are ultimately interested only in
P~1=pP; hence[P+P,P-P]=0. It follows that the real and X[ (V)] we may move gates from the left of the circuit to the

imaginary parts oP share an orthonormal basis of eigenvec-ight. ConglomeratingR| gates and canceling pairezhoT
tors. As they are moreover real symmetric matrices, we knov@ates, in this way we obtain

from the spectral theorem that their eigenvectors can be R]
taken to be real. Thus one can find ae SO(4) such that ‘_
auu'a' is diagonal. By reorderingand negatingthe colun- Eﬂ{ i

mns ofa, we can reorder the diagonal elementsioti'a’ as o 1
desired. Thus ify[uu"]=x[vv"], we can finda,b e SO(4) We have shown thatx[y(v)]= X C5(R(8) ®R/(B))CA(l

such that auu'a’=bvo ™" by diagonalizing both; then 2 Ry(@))]. Again, sincex| B]=x[A'BAJ, we conjugate by
(w'b'au)(v'b’au)’=l. Let c=v'b'aue SO4). We have ® S This fixes thecNOT gate and replaceR, gates withR,:
a'bvc=u, as desired. [ | _ rel 1

The proof above gives an algorithm for computing Myw)]= X CARAS) ® RB)C(1 © Re(a))]
a,b,c,d for given two-qubitu andv so that(a® b)u(c®d) Finally, we ensure that the entries of the diagonal matrix
=v. Also, u may be chosen as a relative phasing of BellC3(R{8) ® R,(B))Ci(I ® R(a)) match the spectrum of(U)
states. by specifyinga=(x+y)/2, B=(x+2)/2, and5=(y+2)/2 for

062321-4



MINIMAL UNIVERSAL TWO-QUBIT CONTROLLED-NOT-... PHYSICAL REVIEW A 69, 062321(2004)

[aH—Rle-RH1{o} R&-{dtofRIo{b}

FIG. 3. Another universal two-qubit circuit with threenoT

FIG. 2. A universal two-qubit circuit with threenoT gates. It gates. It requires 10 basic gaf& or 18 gates fron{cNOT, R ,R,}.

requires 10 basic gatgS] or 18 gates fron{cNOT, R),R,}.

Theorem 2Fifteen{R,,R } gates and threeNnoTs suffice

iX Ay iz i
e ¢, angl.e' any three eigenvalues ofU). , u to simulate an arbitrary two-qubit operator.
Proposmlon 6 For an)iu € SU(4),lone can f|nd9,¢,ib such Proof. Conjugation byH®" fixes SU2") andR,. It also
that X[')’(UCZ(I ® Rz(lﬂ))cz)]:X[')’(Cz(Rx(a) ® Rz(d’))cz)]- flips cNoOT gates(H@’szH@Z:C%) and swapR, Wlilh R, N

—1 1
Proof. We setA=Cy(l ® R,(#))C; and compute fry(ud)]. Unfortunately, no such trick transforntSYZ into CXZ

By Proposition 3, this is fry(u")"»(4)]. Epr|C|t2computa- Any such transformation would yield a universal two-qubit
tion as in the previous proposition givegA)=A®, and one  ¢jrcit topology in theCXZ library in which only three one-
obtains tfy(uA)]=(ti+t)e" '+ (t+15)e”, wherety tr,t3.ts  parameter gates occur in the middle. We show in the Appen-
are the diagonal entries ofu")’. We may ensure that this dix that no such circuit can be universal and articulate the
number is real by requiring tam) =Im(ty+t;+t3+ty)/Relt;  implications of this distinction in Sec. VII. Nonetheless, we
+r—t3—ty). _ demonstrate here a universal two-qubit circuit topology with

Now consideme SU(N), xIm]=2aX'=II(X-r;), where  gates from theR,, R,, CNQT} gate library that contains 15
the r; form the spectrum ofm. Sinceme SU(N), we must  one-qubit gates and thremoT gates.

have IIr;=1=IIr;. Therefore, y[m]=x[mJIIr;=II(r;X-1). Theorem 3Fifteen{R,, R,} gates and threeNoTs suffice
Expanding the equalityI(X-r;)=II(r;X-1) givesa=ay_;.  to Simulate an arbitrary two-qybit operator. )
In particular, forN=4, a, € R, and t(m)=agz=a;. Sincea, Proof. Let U’ be the desired operator; sét=U’'Cs.

=a,=1, x[m] has all real coefficients if and only if[m] Choosed, ¢, s for U’ as in Proposition 6. By Proposition 4,
e R. In this case, the roots gffm] must come in conjugate ©ne can finda,b,c,d e SU(2) such that

pairs: xIm]=(X-€")(X-e ") (X-€%)(X-e™). On the other ) ) .

hand, for w=C3(R((r+s)/2) ® R((r-s)/2))C}, one can U(l ® R(#))C5=(a® b)Cx(RL6) ® R(¢))C;(c ® d)
verify that [ v(w)] takes this form.

; _ ; ; Solving for U gives the overall circuit topology in Fig. B
Taking m=4(UC(I ® R(#))C3), with  as determined _ ves A
above, we obtairg=(r +)/2, ¢=(r-s)/2. - Unlike the circuit of Theorem 1, the circuit in Fig. 3 can

be adapted to both other gate libraries. We can repidng
S(Slc) and a by (aS)S! and then use th&,, S| gates to
change theR, gate into anR,. A similar trick usingS, can
change the bottorR, gates intdR; this yields a circuit in the

We now construct universal two-qubit circuit topologies CYZ gate library. As in Theorem 2, conjugating by H
that match the upper bounds of Table I. We consider threields a circuit in theCXY gate library.

VI. MINIMAL TWO-QUBIT CIRCUITS

different gate libraries: each contains theoT and two out Given an arbitrary two-qubit operator, individual gates in
of the three one-parameter ga{@& Ry, R,}. We will refer to universal circuits can be computed by interpreting proofs of
these as th€XY, CYZ andCXZ géte libraries. Propositions 6, 5, and 4, and Theorems 1, 2, and 3 as algo-

In view of Lemma 1, one might think that there is no rithms. By reordering eigenvalues in the proof of Proposition
significant distinction between these cases. Indeed, conjug4- ©ne may typically produce several different circuits. Simi-
tion by the Hadamard gate transforms will allow us to movelar degrees of freedom are discussedsp
easily between th€XY and CYZ gate libraries. However, To complete Table |, courtiasicgates in Figs. 2 or 3.
we will see that theCXZ gate library is fundamentally dif-
ferent from the other two. Roughly, the reason is tRaand
R, can be respectively moved past the target and control of
the cNOT gate, while no such identity holds for ti& gate. Two-qubit circuit synthesis is relevant to ongoing physics
While the CXY and CYZ libraries each contain only one of experiments and can be used in peephole optimization of
{Ry,R}, the CXZ gate library contains both, and conse- |arger circuits, where small subcircuits are identified and
quently has different characteristics. Nonetheless, gatsimplified one at a time. This is particularly relevant to quan-
counts will be the same in all cases. We begin with@¥€Z  tum communication, where protocols often transmit one qu-

VII. CONCLUSIONS

case, which has been considered previo(iS]y bit at a time and use encoding/decoding circuits on three
Theorem 1Fifteen{R,,R,} gates and threeNoTs suffice qubits.

to simulate an arbitrary two-qubit operator. We constructively synthesize small circuits for arbitrary
Proof. Choosen, 8, 6 as in Proposition 5. Then by Propo- two-qubit operators with respect to several gate libraries.

sition 4 one can find,b,c,d e SU(2) such that Most of our lower and upper bounds on worst-case gate

_ 2 1 2 counts are tight, and rely on circuit identities summarized in
U=(@2 b)Ci(l ® R(a))C3(R,(9) @ R(B)Ci(c @ d). Table Il. We also prove that-qubit circuits require[‘—11(4n

Thus, the circuit topology depicted in Fig. 2 is univerdll. -3n-1)] cNOT gates in the worst case.
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DT e—a—THST} equivalent circuit with at most 12 one-parameter gates on its
& sides. By Corollary 1, there exist operators that cannot be
simulated without 15 one-parameter gates; the remaining
FIG. 4. The result of our algorithm applied to the two-qubit three must go in the middle of the circuit. [

quantum Fourier transform. The circuit contains three one-qubit \\je have seen that for th&Y Zand theCXY gate libraries,
gates and threenots, but the one-qubit gates are broken up into yis |ower bound is tight. We will show that this is not the
elementary gates for specificity. Her€,=Ry(w/4) is the T gate ;544 for thacXZ gate library. Before beginning the proof, we
defined in[1] up to a global phase. make several observations about ©¥Z gate library.

, . ) o Note that conjugating a circuit identity bid®H ex-
While our techniques do not guarantee opt|.mal circuits forchangeﬁx andR, gates and flipeNoTs. Two other ways to
non—worst—caseloperators, they perform well in praqtlce: On‘;rf)roduce new identities from old are swapping wires, and
[ﬁg ?\tvztj(;fkl;‘i]togtuham tﬂﬁdggﬁﬂé?igﬂgﬂom '2:(')%\/ A'erger_inverting the circuit—reversing the order of gates and replac-

' ing each with its inverse. For example, one may obtain one

where that this circuit has a minimal basic-gate count. of the commutativity rules below from the other by coniu-
A somewhat surprising result of our work is the apparent Y y J

asymmetry betweeR,, R, andR, gates. While one would gating byH®H and then swapping wires.
expect any circuit topology focNoOT, R,, andR, to carry 4 _ —~—R} _ {7
over to other elementary-gate libraries, we prove a negative >R T R & T4
result for the librarycNoT, R,, and R,; namely, usingR, aa

gates appears essential for the minimal universal circuit to- \When onecnOT gate occurs immediately after another in
pology shown in Fig. 2, which exhibits the maximal possible 5 circuit, we say that they amdjacent When such pairs of

number of one-qubit gates that are not between any Weyors share control lines, they cancel out, and otherwise

CNOT gates. may still lead to reductions as discussed below. We will be

The asymmetry between elementary one-qubit gates dityaresteqd in circuits that do not allow such simplifications.
rectly impacts peephole optimization a@fqubit circuits,

where decompositions like that in Fig. 2 are preferable toTo this end, recall thak, gates commute past the target of a
o P 9. preterable t CNOT, andR, gates commute past the control. Moreover, we
that in Fig. 3. For example, consider a three-qubit circuit

; et N 1
consisting of two two-qubit blocks on ling4) one and. two, have the following circuit identity:Cy(Ri(a) ®R,(5))C;

— 2 2 H ;
(2) two and three. If both blocks are decomposed as in Fig. 2. C1(RdB) ®R(a))C;. We say that a given collection of

then theb gate from the first block and thegate from the ~One-qubit gatesffectively separates chain ofcNoTs if and
second block merge into one gate on line two. However, n@nly if there is no way of applying the aforementioned trans-

such reduction would happen if the decomposition from Figformation rules to force twa@nOT gates to be adjacent. For
3 is used. example, there is no way to effectively separate ttwoTs

of opposite orientation by a singlB, or R, gate. This is
illustrated below.
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On the other hand, twoNOT gates of the same orientation
APPENDIX can be effectively separated by a sindle or R, gate, as
shown below. Up to swapping wires, these are the only ways

We now illustrate the counterintuitive difference betweento effectively separate twoNOTs with a singleR, or R,

(i) the CXZ library and(ii) librariesCYZand CXY. That is,

universal circuit topologies with certain properties exist only -4 P - P
for the CYZand CXY libraries. — 4
The proof of Theorem 1 contains a universal generic cir-
cuit with threecNOT gates and 1R, or R, gates with the Proposition 8 At least four gates froniR,, R,} are neces-
property that all but three of the one-qubit gates appear eithesary to effectively separate four or mozeoT gates.
before the first or after the lasNOT gate. This is minimal. Proof. Clearly it suffices to check this in the case of ex-

Proposition 7 Fix an elementary-gate library. There exist actly four cNnoOTs. If three R,R, gates sufficed, then one
unitary operatord) e SU(4) that cannot be simulated by any would have to go between each pairafoT gates. Suppose
two-qubit circuit in which all but two of the one-qubit gates all the cNOT gates have the same orientation, say with con-
appear either before the first or after the lasbT gate. trol on the bottom wire. Then the first pair must look like one

Proof. There are four places where the one-parametepf the pairs above. In either case, we may use the identity
gates can appear: at the left or right of the first or second IineC%(Rx(a) ® Rz(,B))C§=C§(RZ(,B) ® Rx(a))Cf to flip these
If more than three gates appear in one such place, congloneNOT gates, thus ensuring that there is a consecutive pair of
erate them into a single one-qubit gate and decompose tleNOT gates with opposite orientations. As remarked above,
result into three one-parameter gates via Lemma 1. By thithere is no way to effectively separate these using the single
method, any two-qubit circuit can be transformed into anone-qubit gate allotted them. |
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Denote byw' theswap gate that exchanges tité andjth ——{R4 - — <>
qubits. It can be simulated usingNoTs as CIC,Cl=w" bo— R, —

=C|C|C}. swaP gates can be pushed through an elementary-

gate circuit without introducing new gates. So consider a Finally, consider the case in which all threaoT gates

two-qubit circuit in which adjacentNoT gates appear. If have the same orientation. Each pair of consecutivets

they have the same orientatiga.g., C3C2 or C3C3), then ~ must have at least o, or R, between them, to be effec-

they cancel out and can be removed from the circuit. Othertively separated. Thus one of the pairs has a siRjler R,

wise, use the identit€?C}=Clw!? or CiC3=C2w'?and push  between its members, and the other has two one-qubit gates.

the swap to the end of the circuit. We apply this technique atWe refer to these as the 1-pair and the 2-pair, respectively.

the level of circuit topologies and observe ti@t7w' is Suppose that the one-qubit gates separating the 2-pair of

measure zergor universal if and only if Q(7) is. By the ~ CNOTS occur on different lines. If either one-qubit gate can

above discussion, we can always reduce to an effectivelfommute past thenoTs of the 2-pair, then it can move to

separated circuit before checking these properties. the edge of the circuit; in this case Proposition 7 implies that
Proposition 9 Almost all unitary operatord) e SU4)  the circuit topology we are looking at can simulate only a

cannot be simulated by any two-qubit circuit willXZ gates ~ Measure-zero subset of 84 (one can show that twi,, R,

in which all but three of th®,, R, gates appear either before gates cannot effectively separate theeoTs). Otherwise,

the first or after the lastNOT. we use the identity C3(R(a)®R/B)C;=C5(Rp)
Proof. We show that any circuit topology of the form ®Rd(@)Ci to flip the 2-pair, and thus the 1-pair now have

above can simulate only. a measure-zero subset (4)Sthe ~ Opposite orientations. As there is only one one-qubit gate

result then follows from the fact that a countable union ofbetween them, this pair is not effectively separated. For ex-

measure-zero sets is measure zero. ample,
The assumption amounts to the fact that only three gates i _—+aRHR:
are available to effectively separate tlmioT gates. By & SRl b i

Proposition 8 and the discussion immediately following it,

we need only consider circuit topologies with no more than e are left with the possibility that all thenoT gates
threecNOTs. On the other hand, we know from Proposition 2paye the same orientation and that the 2-pair’s one-qubit
that any two-qubit circuit topology with fewer than three gates appear on the same line. BR{hR, must occur, or else
CNOT gates can simulate only a measure-zero subset Qfe could combine them and apply Proposition 7 to show that
SU(4). Thus it suffices to consider circuit topologies with gych a circuit topology can simulate only a measure-zero
exactly threecNOT gates. Moreover, we can require that they sypset of S(R2"). Now, if R.R, appears between twoNOT
be effectively separated, since otherwise we could reduce fgates of the same orientation, then eitherRer theR, can
a two-CNOT circuit. commute past one of them. If the outermost gate can com-
Three cNOTs partition @ minimal two-qubit circuit into  mute, Proposition 7 again implies that the circuit topology
four regions. We are particularly interested in the two regionssimulates only a measure-zero subset of &) Thus the
limited by cNOTs on both sides because single-qubit gates innner gate can commute with the 1-pair. We have now inter-
those regions must effectively separate teoTs. To this  changed the roles of the 1-pair and the 2-pair; thus by the
end, we consider two pairs @iNOTs (the centralcNOT is in previous paragraph the gate that originally separated the
both pairg, and distinguish these three casgly:both pairs  1-pair must be on the same line as the commuting gate. It
of cNOTs consist of gates of the same orientati(®), both  follows that all gates are on the same line. Up to conjugating
consist of gates of opposite orientations,(8y one pair has by H®H, swapping wires, and inverting the circuit, this
gates of opposite orientations and the other pair has gates tgfaves exactly one possibility:
the same orientation. In the second case, ¢heT gates 4

Y Y IAY
J A\
cannot be effectively separated, since each pair of gates with ] . "]
opposite orientations requires two one-parameter gates to be - -
effectively separated, and only thrég, R, gates are avail- Finally, we add the four one-qubit gates on the sides, de-

able. In the third case, twoNOTs with opposite orientations compose each intB,R,R, via Lemma 1, and observe that an
must be separated by two one-parameter gates, leaving ony, gate can commute across the top and be absorbed on the
oneR, or R, to separate the pair with the same orientation.other side. This leaves 14 one-parameter gates, and by
Thus, the pair with the same orientation may be flippedLemma 2, such a circuit topology simulates only a measure-
reducing to case 1, as shown below. zero subset of SU4). [ |

062321-7



SHENDE, MARKOV, AND BULLOCK PHYSICAL REVIEW A 69, 062321(2004)

[1] M. A. Nielsen and I. L. ChuangQuantum Computation and [12] N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Re\63\

Quantum Information(Cambridge University Press, Cam- 032308(2001.
bridge, England, 2000 [13] M. Lewensteinet al, Phys. Rev. A63, 044304(2000).
[2] D. P. DiVincenzo, Phys. Rev. A1, 1015(1995. [14] E. M. Rains, e-print quant-ph/9704042.
[3] A. Barencoet al, Phys. Rev. A52, 3457(1995. [15] M. Grasslet al, Phys. Rev. A58, 1833(1998.
[4] J. Zhanget al, Phys. Rev. Lett.91, 027903(2003. [16] S. S. Bullock and G. K. Brennen, J. Math. Phy&5, 2447
[5] S. S. Bullock and I. L. Markov, Phys. Rev. A8, 012318 (2004).
(2003. [17] E. Knill, e-print quant-ph/9508006.
[6] F. Vatan and C. Williams, Phys. Rev. 89, 032315(2004). [18] D. Winelandet al,, J. Res. Natl. Inst. Stand. Techndl03 259
[7] G. Vidal and C. M. Dawson, Phys. Rev. 89, 010301(2004). (1998.
[8] J. Zhanget al., e-print quant-ph/0308167. [19] V. Guillemin and A. PollackDifferential Topology(Prentice-
[9] Yu. Makhlin, Quantum Inf. Processl, 243(2002. Hall, Englewoods Cliffs, NJ, 1974
[10] C. H. Bennettet al, Phys. Rev. A54, 3824,(1996. [20] M. Artin, Algebra (Prentice-Hall, Englewood Cliffs, NJ,
[11] S. Hill and W. K. Wootters, Phys. Rev. Letf8, 5022,(1997). 1991).

062321-8



