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We propose a realizable architecture using one-dimensional transmission line resonators to reach the strong-
coupling limit of cavity quantum electrodynamics in superconducting electrical circuits. The vacuum Rabi
frequency for the coupling of cavity photons to quantized excitations of an adjacent electrical circuit(qubit)
can easily exceed the damping rates of both the cavity and qubit. This architecture is attractive both as a
macroscopic analog of atomic physics experiments and for quantum computing and control, since it provides
strong inhibition of spontaneous emission, potentially leading to greatly enhanced qubit lifetimes, allows
high-fidelity quantum nondemolition measurements of the state of multiple qubits, and has a natural mecha-
nism for entanglement of qubits separated by centimeter distances. In addition it would allow production of
microwave photon states of fundamental importance for quantum communication.
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I. INTRODUCTION

Cavity quantum electrodynamics(CQED) studies the
properties of atoms coupled to discrete photon modes in high
Q cavities. Such systems are of great interest in the study of
the fundamental quantum mechanics of open systems, the
engineering of quantum states, and measurement-induced de-
coherence[1–3] and have also been proposed as possible
candidates for use in quantum information processing and
transmission[1–3]. Ideas for novel CQED analogs using na-
nomechanical resonators have recently been suggested by
Schwab and collaborators[4,5]. We present here a realistic
proposal for CQED via Cooper pair boxes coupled to a one-
dimensional (1D) transmission line resonator, within a
simple circuit that can be fabricated on a single microelec-
tronic chip. As we discuss, 1D cavities offer a number of
practical advantages in reaching the strong-coupling limit of
CQED over previous proposals using discreteLC circuits
[6,7], large Josephson junctions[8–10], or 3D cavities
[11–13]. Besides the potential for entangling qubits to realize
two-qubit gates addressed in those works, in the present
work we show that the CQED approach also gives strong
and controllable isolation of the qubits from the electromag-
netic environment, permits high-fidelity quantum nondemo-
lition (QND) readout of multiple qubits, and can produce
states of microwave photon fields suitable for quantum com-
munication. The proposed circuits therefore provide a simple
and efficient architecture for solid-state quantum computa-
tion, in addition to opening up a new avenue for the study of
entanglement and quantum measurement physics with mac-
roscopic objects. We will frame our discussion in a way that
makes contact between the language of atomic physics and
that of electrical engineering.

We begin in Sec. II with a brief general overview of
CQED before turning to a discussion of our proposed solid-
state realization of cavity QED in Sec. III. We then discuss in
Sec. IV the case where the cavity and qubit are tuned in
resonance and in Sec. V the case of large detuning which

leads to lifetime enhancement of the qubit. In Sec. VI, a
quantum nondemolition readout protocol is presented. Real-
ization of one-qubit logical operations is discussed in Sec.
VII and two-qubit entanglement in Sec. VIII. We show in
Sec. IX how to take advantage of encoded universality and
decoherence-free subspace in this system.

II. BRIEF REVIEW OF CAVITY QED

Cavity QED studies the interaction between atoms and the
quantized electromagnetic modes inside a cavity. In the op-
tical version of CQED[2], schematically shown in Fig. 1(a),
one drives the cavity with a laser and monitors changes in
the cavity transmission resulting from coupling to atoms fall-
ing through the cavity. One can also monitor the spontaneous
emission of the atoms into transverse modes not confined by
the cavity. It is not generally possible to directly determine
the state of the atoms after they have passed through the
cavity because the spontaneous emission lifetime is on the
scale of nanoseconds. One can, however, infer information
about the state of the atoms inside the cavity from real-time
monitoring of the cavity optical transmission.

In the microwave version of CQED[3], one uses a very-
high-Q superconducting 3D resonator to couple photons to
transitions in Rydberg atoms. Here one does not directly
monitor the state of the photons, but is able to determine
with high efficiency the state of the atoms after they have
passed through the cavity(since the excited state lifetime is
of the order of 30 ms). From this state-selective detection
one can infer information about the state of the photons in
the cavity.

The key parameters describing a CQED system(see Table
I) are the cavity resonance frequencyvr, the atomic transi-
tion frequencyV, and the strength of the atom-photon cou-
pling g appearing in the Jaynes-Cummings Hamiltonian[14]
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H = "vrSa†a +
1

2
D +

"V

2
sz + "gsa†s− + s+ad + Hk + Hg.

s1d

Here Hk describes the coupling of the cavity to the con-
tinuum which produces the cavity decay ratek=vr /Q, while
Hg describes the coupling of the atom to modes other than
the cavity mode which cause the excited state to decay at rate
g (and possibly also produce additional dephasing effects).
An additional important parameter in the atomic case is the

transit timettransit of the atom through the cavity.
In the absence of damping, exact diagonalization of the

Jaynes-Cumming Hamiltonian yields the excited eigenstates
(dressed states) [15]

u+ ,nl = cosunu↓,nl + sin unu↑,n + 1l, s2d

u− ,nl = − sin unu↓,nl + cosunu↑,n + 1l, s3d

and ground stateu↑ ,0l with corresponding eigenenergies

E ±,n = sn + 1d"vr ±
"

2
Î4g2sn + 1d + D2, s4d

E↑,0 = −
"D

2
. s5d

In these expressions,

un =
1

2
tan−1S2gÎn + 1

D
D , s6d

andD;V−vr the atom-cavity detuning.
Figure 1(b) shows the spectrum of these dressed states for

the case of zero detuning,D=0, between the atom and cavity.
In this situation, degeneracy of the pair of states withn+1
quanta is lifted by 2gÎn+1 due to the atom-photon interac-
tion. In the manifold with a single excitation, Eqs.(2) and(3)
reduce to the maximally entangled atom-field statesu±,0l
=su↑ ,1l± u↓ ,0ld /Î2. An initial state with an excited atom and
zero photonsu↑ ,0l will therefore flop into a photonu↓ ,1l and
back again at the vacuum Rabi frequencyg/p. Since the
excitation is half atom and half photon, the decay rate of
u±,0l is sk+gd /2. The pair of statesu±,0l will be resolved in
a transmission experiment if the splitting 2g is larger than
this linewidth. The value ofg=Ermsd/" is determined by the
transition dipole momentd and the rms zero-point electric
field of the cavity mode. Strong coupling is achieved when
g@k ,g [15].

FIG. 1. (Color online) (a) Standard representation of a cavity
quantum electrodynamic system, comprising a single mode of the
electromagnetic field in a cavity with decay ratek coupled with a
coupling strengthg=Ermsd/" to a two-level system with spontane-
ous decay rateg and cavity transit timettransit. (b) Energy spectrum
of the uncoupled(left and right) and dressed(center) atom-photon
states in the case of zero detuning. The degeneracy of the two-
dimensional manifolds of states withn−1 quanta is lifted by
2gÎn+1. (c) Energy spectrum in the dispersive regime(long-
dashed lines). To second order ing, the level separation is indepen-
dent ofn, but depends on the state of the atom.

TABLE I. Key rates and CQED parameters for optical[2] and microwave[3] atomic systems using 3D cavities, compared against the
proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limitsnRabi@1d. For the 1D
superconducting system, a full-wavesL=ld resonator,vr /2p=10 GHz, a relatively lowQ of 104, and couplingb=Cg/CS=0.1 are assumed.
For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box
decay rate is unknown; a conservative value equal to the current experimental upper boundgø1/s2 msd is assumed.

Parameter Symbol 3D optical 3D microwave 1D circuit

Resonance or transition frequency vr /2p, V /2p 350 THz 51 GHz 10 GHz

Vacuum Rabi frequency g/p, g/vr 220 MHz, 3310−7 47 kHz, 1310−7 100 MHz, 5310−3

Transition dipole d/ea0 ,1 13103 23104

Cavity lifetime 1/k ,Q 10 ns, 33107 1 ms, 33108 160 ns, 104

Atom lifetime 1/g 61 ns 30 ms 2ms

Atom transit time ttransit ù50 ms 100ms `

Critical atom number N0=2gk /g2 6310−3 3310−6 ø6310−5

Critical photon number m0=g2/2g2 3310−4 3310−8 ø1310−6

Number of vacuum Rabi flops nRabi=2g/ sk+gd ,10 ,5 ,102
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For large detuning,g/D!1, expansion of Eq.(4) yields
the dispersive spectrum shown in Fig. 1(c). In this situation,
the eigenstates of the one excitation manifold take the form
[15]

u− ,0l , − sg/Ddu↓,0l + u↑,1l, s7d

u+ ,0l , u↓,0l + sg/Ddu↑,1l. s8d

The corresponding decay rates are then simply given by

G− ,0 . sg/Dd2g + k, s9d

G+ ,0 . g + sg/Dd2k. s10d

More insight into the dispersive regime is gained by mak-
ing the unitary transformation

U = expF g

D
sas+ − a†s−dG s11d

and expanding to second order ing (neglecting damping for
the moment) to obtain

UHU† < "Fvr +
g2

D
szGa†a +

"

2
FV +

g2

D
Gsz. s12d

As is clear from this expression, the atom transition is ac
Stark/Lamb shifted bysg2/Ddsn+1/2d. Alternatively, one
can interpret the ac Stark shift as a dispersive shift of the
cavity transition byszg2/D. In other words, the atom pulls
the cavity frequency by ±g2/kD.

III. CIRCUIT IMPLEMENTATION OF CAVITY QED

We now consider the proposed realization of cavity QED
using the superconducing circuits shown in Fig. 2. A 1D
transmission line resonator consisting of a full-wave section
of superconducting coplanar waveguide plays the role of the
cavity and a superconducting qubit plays the role of the
atom. A number of superconducting quantum circuits could
function as artificial atom, but for definiteness we focus here
on the Cooper-pair box[6,16–18].

A. Cavity: Coplanar stripline resonator

An important advantage of this approach is that the zero-
point energy is distributed over a very small effective volume
(<10−5 cubic wavelengths) for our choice of a quasi-one-
dimensional transmission line “cavity.” As shown in Appen-
dix A, this leads to significant rms voltagesVrms

0 ,Î"vr /cL
between the center conductor and the adjacent ground plane
at the antinodal positions, whereL is the resonator length and
c is the capacitance per unit length of the transmission line.
At a resonant frequency of 10 GHzshn /kB,0.5 Kd and for
a 10mm gap between the center conductor and the adjacent
ground plane,Vrms,2 mV corresponding to electric fields
Erms,0.2 V/m, some 100 times larger than achieved in the
3D cavity described in Ref.[3]. Thus, this geometry might
also be useful for coupling to Rydberg atoms[19].

In addition to the small effective volume and the fact that
the on-chip realization of CQED shown in Fig. 2 can be
fabricated with existing lithographic techniques, a
transmission-line resonator geometry offers other practical
advantages over lumpedLC circuits or current-biased large
Josephson junctions. The qubit can be placed within the cav-
ity formed by the transmission line to strongly suppress the
spontaneous emission, in contrast to a lumpedLC circuit,
where without additional special filtering, radiation and para-
sitic resonances may be induced in the wiring[20]. Since the
resonant frequency of the transmission line is determined
primarily by a fixed geometry, its reproducibility and immu-
nity to 1/f noise should be superior to Josephson junction
plasma oscillators. Finally, transmission-line resonances in
coplanar waveguides withQ,106 have already been dem-
onstrated[21,22], suggesting that the internal losses can be
very low. The optimal choice of the resonatorQ in this ap-
proach is strongly dependent on the intrinsic decay rates of
superconducting qubits which, as described below, are pres-
ently unknown, but can be determined with the setup pro-
posed here. Here we assume the conservative case of an
overcoupled resonator with aQ,104, which is preferable for
the first experiments.

B. Artificial atom: The Cooper-pair box

Our choice of “atom,” the Cooper-pair box[6,16], is a
mesoscopic superconducting island. As shown in Fig. 3, the

FIG. 2. (Color online). Schematic layout and equivalent lumped
circuit representation of proposed implementation of cavity QED
using superconducting circuits. The 1D transmission line resonator
consists of a full-wave section of superconducting coplanar wave-
guide, which may be lithographically fabricated using conventional
optical lithography. A Cooper-pair box qubit is placed between the
superconducting lines and is capacitively coupled to the center trace
at a maximum of the voltage standing wave, yielding a strong elec-
tric dipole interaction between the qubit and a single photon in the
cavity. The box consists of two smalls,100 nm3100 nmd Joseph-
son junctions, configured in a,1 mm loop to permit tuning of the
effective Josephson energy by an external fluxFext. Input and out-
put signals are coupled to the resonator, via the capacitive gaps in
the center line, from 50V transmission lines which allow measure-
ments of the amplitude and phase of the cavity transmission, and
the introduction of dc and rf pulses to manipulate the qubit states.
Multiple qubits (not shown) can be similarly placed at different
antinodes of the standing wave to generate entanglement and two-
bit quantum gates across distances of several millimeters.
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island is connected to a large reservoir through a Josephson
junction with Josephson energyEJ and capacitanceCJ. It is
voltage biased from a lead having capacitanceCg to the is-
land. If the superconducting gap is larger than both the
charging energyEc=e2/2CS (whereCS=CJ+Cg is the total
box capacitance) and temperature, the only relevant degree
of freedom is the number of Cooper pairsN on the island. In
this basis, the Hamiltonian describing the superconducting
island takes the form

HQ = 4Eco
N

sN − Ngd2uNlkNu−
EJ

2 o
N

suN + 1lkNu + H.c.d,

s13d

whereNg=CgVg/2e is the dimensionless gate charge repre-
senting the total polarization charge injected into the island
by the voltage source.

In the charge regime 4Ec@EJ and restricting the gate
charge to the rangeNgP f0,1g, only a pair of adjacent charge
states on the island are relevant and the Hamiltonian then
reduces to a 232 matrix

HQ = −
Eel

2
s̄z −

EJ

2
s̄x, s14d

with Eel=4ECs1−2Ngd. The Cooper-pair box can in this case
be mapped to a pseudospin-1/2 particle, with effective fields
in the x andz directions.

Replacing the Josephson junction by a pair of junctions in
parallel, each with energyEJ/2, the effective field in thex
direction becomesEJcosspFext/F0d /2. By threading a flux
Fext in the loop formed by the pair of junctions and changing
the gate voltageVg, it is possible to control the effective
fields acting on the qubit. In the setup of Fig. 2, application
of dc gate voltage on the island can be conveniently achieved
by applying a bias voltage to the center conductor of the
transmission line. The resonator coupling capacitanceC0, the
gate capacitanceCg (the capacitance between the center con-
ductor of the resonator and the island), and the capacitance to
ground of the resonator then act as a voltage divider.

C. Combined system: Superconducting cavity QED

For a superconducting island fabricated inside a resonator,
in addition to a dc partVg

dc, the gate voltage has a quantum

partv. As shown in Appendix A, if the qubit is placed in the
center of the resonator, this latter contribution is given by
v=Vrms

0 sa†+ad. Taking into account bothVg
dc and v in

Eq. (14), we obtain

HQ = − 2ECs1 − 2Ng
dcds̄z −

EJ

2
s̄x − e

Cg

CS

Î"vr

Lc
sa† + ad

3s1 − 2Ng − s̄zd. s15d

Working in the eigenbasishu↑ l , u↓ lj of the first two terms of
the above expression[23] and adding the Hamiltonian of the
oscillator mode coupled to the qubit, the Hamiltonian of the
interacting qubit and resonator system takes the form

H = "vrSa†a +
1

2
D +

"V

2
sz − e

Cg

CS

Î"vr

Lc
sa† + ad

3f1 − 2Ng − cossudsz + sinsudsxg. s16d

Here, sx and sz are Pauli matrices in the eigenbasis
hu↑ l , u↓ lj, u=arctanfEJ/4ECs1−2Ng

dcdg is the mixing angle,
and the energy splitting of the qubit isV
=ÎEJ

2+f4ECs1−2Ng
dcdg2/" [23]. Note that contrary to the

case of a qubit fabricated outside the cavity where theNg
2

term in Eq.(13) has no effect, here this term slightly renor-
malizes the cavity frequencyvr and displaces the oscillator
coordinate. These effects are implicit in Eq.(16).

At the charge degeneracy point(where Ng
dc=CgVg

dc/2e
=1/2 andu=p /2), neglecting rapidly oscillating terms and
omitting damping for the moment, Eq.(16) reduces to the
Jaynes-Cummings Hamiltonian(1) with V=EJ/" and cou-
pling

g =
be

"
Î"vr

cL
, s17d

whereb;Cg/CS. The quantum electrical circuit of Fig. 2 is
therefore mapped to the problem of a two-level atom inside a
cavity. Away from the degeneracy point, this mapping can
still be performed, but with a coupling strength reduced by
sinsud and an additional term proportional tosa†+ad.

In this circuit, the “atom” is highly polarizable at the
charge degeneracy point, having transition dipole moment
d;"g/Erms,23104 atomic unitssea0d, or more than an
order of magnitude larger than even a typical Rydberg atom
[15]. An experimentally realistic[18] couplingb,0.1 leads
to a vacuum Rabi rateg/p,100 MHz, which is three orders
of magnitude larger than in corresponding atomic microwave
CQED experiments[3] or approximately 1% of the transition
frequency. Unlike the usual CQED case, these artificial “at-
oms” remain at fixed positions indefinitely and so do not
suffer from the problem that the couplingg varies with po-
sition in the cavity.

A comparison of the experimental parameters for imple-
mentations of cavity QED with optical and microwave
atomic systems and for the proposed implementation with
superconducting circuits is presented in Table I. We assume
here a relatively lowQ=104 and a worst case estimate, con-

FIG. 3. Circuit diagram of the Cooper-pair box. The gate volt-
age is connected to the island through an environmental impedance
Zsvd.
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sistent with the bound set by previous experiments with su-
perconducting qubits(discussed further below), for the in-
trinsic qubit lifetime of 1/gù2 ms.

The standard figures of merit[24] for strong coupling are
the critical photon number needed to saturate the atom on
resonance,m0=g2/2g2ø1310−6, and the minimum atom
number detectable by measurement of the cavity output,N0
=2gk /g2ø6310−5. These remarkably low values are
clearly very favorable and show that superconducting cir-
cuits could access the interesting regime of very strong cou-
pling.

IV. ZERO DETUNING

In the case of a low-Q cavity sg,kd and zero detuning,
the radiative decay rate of the qubit into the transmission line
becomes stronglyenhancedby a factor ofQ relative to the
rate in the absence of the cavity[15]. This is due to the
resonant enhancement of the density of states at the atomic
transition frequency. In electrical engineering language, the
,50V external transmission-line impedance is transformed
on resonance to a high value which is better matched to
extract energy from the qubit.

For strong couplingg.k ,g, the first excited state be-
comes a doublet with linewidthsk+gd /2, as explained in
Sec. II. As can be seen from Table I, the coupling in the
proposed superconducting implementation is so strong that,
even for the low Q=104 we have assumed, 2g/ sk+gd
,100 vacuum Rabi oscillations are possible. Moreover, as
shown in Fig. 4, the frequency splittingsg/p,100 MHzd
will be readily resolvable in the transmission spectrum of the
resonator. This spectrum, calculated here following Ref.
[25], can be observed in the same manner as employed in
optical atomic experiments, with a continuous-wave mea-
surement at low drive, and will be of practical use to find the
dc gate voltage needed to tune the box into resonance with
the cavity.

Of more fundamental importance than this simple avoided
level crossing, however, is the fact that the Rabi splitting
scales with the square root of the photon number, making the
level spacing anharmonic. This should cause a number of
novel nonlinear effects[14] to appear in the spectrum at
higher drive powers when the average photon number in the
cavity is largesknl.1d.

A conservative estimate of the noise energy for a 10 GHz
cryogenic high-electron-mobility(HEMT) amplifier is namp
=kBTN/"vr ,100 photons, whereTN is the noise tempera-
ture of the amplification circuit. As a result, these spectral
features should be readily observable in a measurement time
tmeas=2namp/ knlk or only ,32 ms for knl,1.

V. LARGE DETUNING: LIFETIME ENHANCEMENT

For qubitsnot inside a cavity, fluctuation of the gate volt-
age acting on the qubit is an important source of relaxation
and dephasing. As shown in Fig. 3, in practice the qubit’s
gate is connected to the voltage source through external wir-
ing having, at the typical microwave transition frequency of
the qubit, a real impedance of value close to the impedance
of free spaces,50 Vd. The relaxation rate expected from
purely quantum fluctuations across this impedance(sponta-
neous emission) is [18,23]

1

T1
=

EJ
2

EJ
2 + Eel

2 S e

"
D2

b2SVs+ Vd, s18d

where SVs+Vd=2"V RefZsVdg is the spectral density of
voltage fluctuations across the environmental impedance(in
the quantum limit). It is difficult in most experiments to pre-
cisely determine the real part of the high-frequency environ-
mental impedance presented by the leads connected to the
qubit, but reasonable estimates[18] yield values ofT1 in the
range of 1ms.

For qubits fabricated inside a cavity, the noise across the
environmental impedance does not couple directly to the qu-
bit, but only indirectly through the cavity. For the case of
strong detuning, coupling of the qubit to the continuum is
therefore substantially reduced. One can view the effect of
the detuned resonator as filtering out the vacuum noise at the
qubit transition frequency or, in electrical engineering terms,
as providing an impedance transformation which strongly
reducesthe real part of the environmental impedance seen by
the qubit.

Solving for the normal modes of the resonator and trans-
mission lines, including an input impedanceR at each end of
the resonator, the spectrum of voltage fluctuations as seen by
the qubit fabricated in the center of the resonator can be
shown to be well approximated by

SVsVd =
2"vr

Lc

k/2

D2 + sk/2d2 . s19d

Using this transformed spectral density in Eq.(18) and as-
suming a large detuning between the cavity and qubit, the
relaxation rate due to vacuum fluctuations takes a form that
reduces to 1/T1;gk=sg/Dd2k,1/s64 msd, at the qubit’s
degeneracy point. This is the result already obtained in Eq.
(10) using the dressed-state picture for the coupled atom and
cavity, except for the additional factorg reflecting a loss of
energy to modes outside of the cavity. For large detuning,
damping due to spontaneous emission can be much less
thank.

One of the important motivations for this CQED experi-
ment is to determine the various contributions to the qubit

FIG. 4. Expected transmission spectrum of the resonator in the
absence(dashed line) and presence(solid line) of a superconducting
qubit biased at its degeneracy point. Parameters are those presented
in Table I. The splitting exceeds the line width by two orders of
magnitude.
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decay rate so that we can understand their fundamental
physical origins as well as engineer improvements. Besides
gk evaluated above, there are two additional contributions to
the total damping rateg=gk+g'+gNR. Hereg' is the decay
rate into photon modes other than the cavity mode andgNR is
the rate of other(possibly nonradiative) decays. Optical cavi-
ties are relatively open andg' is significant, but for 1D
microwave cavities,g' is expected to be negligible(despite
the very large transition dipole). For Rydberg atoms the two
qubit states are both highly excited levels andgNR represents
(radiative) decay out of the two-level subspace. For Cooper-
pair boxes,gNR is completely unknown at the present time,
but could have contributions from phonons, two-level sys-
tems in insulating[20] barriers and substrates, or thermally
excited quasiparticles.

For Cooper box qubitsnot inside a cavity, recent experi-
ments [18] have determined a relaxation time 1/g=T1
,1.3 ms despite the backaction of continuous measurement
by a SET electrometer. Vionet al. [17] found T1,1.84ms
(without measurement backaction) for their charge-phase qu-
bit. Thus, in these experiments, if there are nonradiative de-
cay channels, they are at most comparable to the vacuum
radiative decay rate(and may well be much less) estimated
using Eq.(18). Experiments with a cavity will present the
qubit with a simple and well-controlled electromagnetic en-
vironment, in which the radiative lifetime can be enhanced
with detuning to 1/gk.64 ms, allowing gNR to dominate
and yielding valuable information about any nonradiative
processes.

VI. DISPERSIVE QND READOUT OF QUBITS

In addition to lifetime enhancement, the dispersive regime
is advantageous for readout of the qubit. This can be realized
by microwave irradiation of the cavity and then probing the
transmitted or reflected photons[26].

A. Measurement protocol

A drive of frequencyvmw on the resonator can be mod-
eled by[15]

Hmwstd = "«stdsa†e−ivmwt + ae+ivmwtd, s20d

where«std is a measure of the drive amplitude. In the dis-
persive limit, one expects from Fig. 1(c) peaks in the trans-
mission spectrum atvr−g2/D and V+2g2/D if the qubit is
initially in its ground state. In a frame rotating at the drive
frequency, the matrix elements for these transitions are, re-
spectively,

k↑,0uHmwu− ,nl , «,

k↑,0uHmwu+ ,nl ,
«g

D
. s21d

In the large detuning case, the peak atV+2g2/D, corre-
sponding approximatively to a qubit flip, is highly sup-
pressed.

The matrix element corresponding to a qubit flip from the
excited state is also suppressed and, as shown in Fig. 5,

depending on the qubit being in its ground or excited states,
the transmission spectrum will present a peak of widthk at
vr−g2/D or vr+g2/D. With the parameters of Table I, this
dispersive pull of the cavity frequency is ±g2/kD= ±2.5 line-
widths for a 10% detuning. Exact diagonalization(4) shows
that the pull is power dependent and decreases in magnitude
for cavity photon numbers on the scalen=ncrit;D2/4g2. In
the regime of nonlinear response, single-atom optical bista-
bility [14] can be expected when the drive frequency is off
resonance at low power but on resonance at high power[29].

The state-dependent pull of the cavity frequency by the
qubit can be used to entangle the state of the qubit with that
of the photons transmitted or reflected by the resonator. For
g2/kD.1, as in Fig. 5, the pull is greater than the linewidth,
and irradiating the cavity at one of the pulled frequencies
vr±g2/D, the transmission of the cavity will be close to
unity for one state of the qubit and close to zero for the other
[30].

Choosing the drive to be instead at the bare cavity fre-
quencyvr, the state of the qubit is encoded in the phase of
the reflected and transmitted microwaves. An initial qubit
state uxl=au↑ l+bu↓ l evolves under microwave irradiation
into the entangled stateucl=au↑ ,ul+bu↓ ,−ul, where tanu
=2g2/kD and u±ul are (interaction representation) coherent
states with the appropriate mean photon number and oppo-
site phases. In the situation whereg2/kD!1, this is the most
appropriate strategy.

It is interesting to note that such an entangled state can be
used to couple qubits in distant resonators and allow quan-
tum communication[31]. Moreover, if an independent mea-
surement of the qubit state can be made, such states can be
turned into photon Schrödinger cats[15].

To characterize these two measurement schemes corre-
sponding to two different choices of the drive frequency, we
compute the average photon number inside the resonatorn̄
and the homodyne voltage on the 50V impedance at the
output of the resonator. Since the power coupled to the out-
side of the resonator isP=knl"vrk /2=kVoutl2/R, the homo-
dyne voltage can be expressed askVoutl=ÎR"vrkka+a†l /2
and is proportional to the real part of the field inside the
cavity.

FIG. 5. (Color online) Transmission spectrum of the cavity,
which is “pulled” by an amount ±g2/D= ±2.5vr310−4, depending
on the state of the qubit(red for the excited state, blue for the
ground state). To perform a measurement of the qubit, a pulse of
microwave photons, at a probe frequencyvmw=vr or vr±g2/D, is
sent through the cavity. Additional peaks nearV corresponding to
qubit flips are suppressed byg/D.
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In the absence of dissipation, the time dependence of the
field inside the cavity can be obtained in the Heisenberg
picture from Eqs.(12) and(20). This leads to a closed set of
differential equations fora, sz, and asz which is easily
solved. In the presence of dissipation, however[i.e., per-
forming the transformation(11) on Hk and Hg, and adding
the resulting terms to Eqs.(12) and(20)], the set is no longer
closed and we resort to numerical stochastic wave function
calculations[32]. See Appendix B for a brief presentation of
this numerical method.

Figures 6 and 7 show the numerical results for the two
choices of drive frequency and using the parameters of Table
I. For these calculations, a pulse of duration,15/k with a
hyperbolic tangent rise and fall is used to excite the cavity.
Figure 6 corresponds to a drive at the pulled frequencyvr
+g2/D. In Fig. 6(a) the probabilityP↓ to find the qubit in its
excited state(right axis) is plotted as a function of time for
the qubit initially in the ground(blue) or excited state(red).
The dashed lines represent the corresponding number of pho-

tons in the cavity(left axis). Figure 6(b) shows, in a frame
rotating at the drive frequency, the real part of the cavity
electric field amplitude(left axis) and transmitted voltage
phase(right axis) in the output transmission line, again for
the two possible initial qubit states. These quantities are
shown in Fig. 7 for a drive at the bare frequencyvr.

As expected, for the first choice of drive frequency, the
information about the state of the qubit is mostly stored in
the number of transmitted photons. When the drive is at the
bare frequency, however, there is very little information in
the photon number, with most of the information being
stored in the phase of the transmitted and reflected signal.
This phase shift can be measured using standard heterodyne
techniques. As also discussed in Appendix C, both ap-
proaches can serve as a high-efficiency quantum nondemoli-
tion dispersive readout of the state of the qubit.

B. Measurement time and backaction

As seen from Eq.(12), the backaction of the dispersive
CQED measurement is due to quantum fluctuations of the
number of photonsn within the cavity. These fluctuations
cause variations in the ac Stark shiftsg2/Ddnsz, which in
turn dephase the qubit. It is useful to compute the corre-
sponding dephasing rate and compare it with the measure-

FIG. 6. (Color online) Results of numerical simulations using
the quantum-state diffusion method. A microwave pulse of duration
,15/k and centered at the pulled frequencyvr+g2/D drives the
cavity. (a) The occupation probability of the excited state(right
axis, solid lines), for the case in which the qubit is initially in the
ground(blue) or excited(red) state and intracavity photon number
(left axis, dash lines), are shown as a function of time. Though the
qubit states are temporarily coherently mixed during the pulse, the
probability of real transitions is seen to be small. Depending on the
qubit’s state, the pulse is either on or away from the combined
cavity-qubit resonance and therefore is mostly transmitted or mostly
reflected.(b) The real component of the cavity electric field ampli-
tude(left axis) and the transmitted voltage phasor(right axis) in the
output transmission line for the two possible initial qubit states. The
parameters used for the simulation are presented in Table I.

FIG. 7. (Color online) Same as Fig. 6 for the drive at the bare
cavity frequencyvr. Depending on the qubit’s state, the pulse is
either above or below the combined cavity-qubit resonance and so
is partly transmitted and reflected but with a large relative phase
shift that can be detected with homodyne detection. In(b), the op-
posing phase shifts cause a change in sign of the output, which can
be measured with high signal to noise to realize a single-shot, QND
measurement of the qubit.
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ment rate—i.e., the rate at which information about the state
of the qubit can be acquired.

To determine the dephasing rate, we assume that the cav-
ity is driven at the bare cavity resonance frequency and that
the pull of the resonance is small compared to the linewidth
k. The relative phase accumulated between the ground and
excited states of the qubit is

wstd = 2
g2

D
E

0

t

dt8nst8d, s22d

which yields a mean phase advancekwl=2u0N with u0

=2g2/kD andN=kn̄t /2 the total number of transmitted pho-
tons[14]. For weak coupling, the dephasing time will greatly
exceed 1/k and, in the long-time limit, the noise inw in-
duced by the ac Stark shift will be Gaussian. Dephasing can
then be evaluated by computing the long-time decay of the
correlator

ks+stds−s0dl =KexpSiE
0

t

dt8wst8dDL
. expF−

1

2
S2

g2

D
D2E

0

t E
0

t

dt1dt2knst1dnst2dlG .

s23d

To evaluate this correlator in the presence of a continuous-
wave (cw) drive on the cavity, we first perform a canonical
transformation on the cavity operatorsas†d by writing them in
terms of a classicalas* d and a quantum partds†d:

astd = astd + dstd. s24d

Under this transformation, the coherent state obeyingaual
=aual is simply the vacuum for the operatord. It is then easy
to verify that

kfnstd − n̄gfns0d − n̄gl = a2kdstdd†s0dl = n̄e−kutu/2. s25d

It is interesting to note that the factor of 1/2 in the exponent
is due to the presence of the coherent drive. If the resonator
is not driven, the photon number correlator rather decays at a
ratek. Using this result in Eq.(23) yields the dephasing rate

Gw = 4u0
2k

2
n̄. s26d

Since the rate of transmission on resonance iskn̄/2, this
means that the dephasing per transmitted photon is 4u0

2.
To compare this result to the measurement timeTmeas, we

imagine a homodyne measurement to determine the transmit-
ted phase. Standard analysis of such an interferometric setup
[14] shows that the minimum phase change which can be
resolved usingN photons isdu=1/ÎN. Hence the measure-
ment time to resolve the phase changedu=2u0 is

Tm =
1

2kn̄u0
2 , s27d

which yields

TmGw = 1. s28d

This exceeds the quantum limit[33] TmGw=1/2 by afactor
of 2. Equivalently, in the language of Ref.[34] (which uses a
definition of the measurement time twice as large as that
above) the efficiency ratio isx;1/sTmGwd=0.5.

The failure to reach the quantum limit can be traced[35]
to the fact that that the coupling of the photons to the qubit is
not adiabatic. A small fractionR<u0

2 of the photons incident
on the resonator are reflected rather than transmitted. Be-
cause the phase shift of the reflected wave[14] differs by p
between the two states of the qubit, it turns out that, despite
its weak intensity, the reflected wave contains precisely the
same amount of information about the state of the qubit as
the transmitted wave which is more intense but has a smaller
phase shift. In the language of Ref.[34], this “wasted” infor-
mation accounts for the excess dephasing relative to the mea-
surement rate. By measuring also the phase shift of the re-
flected photons, it could be possible to reach the quantum
limit.

Another form of possible backaction is mixing transitions
between the two qubit states induced by the microwaves.
First, as seen from Fig. 6(a) and 7(a), increasing the average
number of photons in the cavity induces mixing. This is sim-
ply caused by dressing of the qubit by the cavity photons.
Using the dressed states(2) and(3), the level of this coherent
mixing can be estimated as

P↓,↑ =
1

2
k±,n̄u1 ± szu±,n̄l s29d

=
1

2S1 ±
D

Î4g2sn + 1d + D2D . s30d

Exciting the cavity ton=ncrit yields P↓,0.85. As is clear
from the numerical results, this process is completely revers-
ible and does not lead to errors in the readout.

The drive can also lead to real transitions between the
qubit states. However, since the coupling is so strong, large
detuningD=0.1 vr can be chosen, making the mixing rate
limited not by the frequency spread of the drive pulse, but
rather by the width of the qubit excited state itself. The rate
of driving the qubit from ground to excited state whenn
photons are in the cavity isR<nsg/Dd2g. If the measure-
ment pulse excites the cavity ton=ncrit, we see that the ex-
citation rate is still only 1/4 of the relaxation rate. As a result,
the main limitation on the fidelity of this QND readout is the
decay of the excited state of the qubit during the course of
the readout. This occurs(for small g) with probability
Prelax,gtmeas,15g /k,3.75% and leads to a small error
Perr,5g /k,1.5% in the measurement, where we have
takeng=gk. As confirmed by the numerical calculations of
Fig. 6 and 7, this dispersive measurement is therefore highly
nondemolition.

C. Signal to noise

For homodyne detection in the case where the cavity pull
g2/Dk is larger than 1, the signal-to-noise ratio(SNR) is
given by the ratio of the number of photons,nsig=nkDt /2,
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accumulated over an integration periodDt, divided by the
detector noisenamp=kBTN/"vr. Assuming the integration
time to be limited by the qubit’s decay time 1/g and exciting
the cavity to a maximal amplitudencrit=100,namp, we ob-
tain SNR5 sncrit /nampdsk /2gd. If the qubit lifetime is longer
than a few cavity decay timess1/k=160 nsd, this SNR can
be very large. In the most optimistic situation whereg=gk,
the signal-to-noise ratio is SNR=200.

When taking into account the fact that the qubit has a
finite probability to decay during the measurement, a better
strategy than integrating the signal for a long time is to take
advantage of the large SNR to measure quickly. Simulations
have shown that in the situation whereg=gk, the optimum
integration time is roughly 15 cavity lifetimes. This is the
pulse length used for the stochastic numerical simulations
shown above. The readout fidelity, including the effects of
this stochastic decay, and related figures of merit of the
single-shot high efficiency QND readout are summarized in
Table II.

This scheme has other interesting features that are worth
mentioning here. First, since nearly all the energy used in
this dispersive measurement scheme is dissipated in the re-
mote terminations of the input and output transmission lines,
it has the practical advantage of avoiding quasiparticle gen-
eration in the qubit.

Another key feature of the cavity QED readout is that it
lends itself naturally to operation of the box at the charge
degeneracy pointsNg=1/2d, where it has been shown thatT2

can be enormously enhanced[17] because the energy split-
ting has an extremum with respect to gate voltage and isola-
tion of the qubit from 1/f dephasing is optimal. The deriva-
tive of the energy splitting with respect to gate voltage is the
charge difference in the two qubit states. At the degeneracy
point this derivative vanishes and the environment cannot

distinguish the two states and thus cannot dephase the qubit.
This also implies that a charge measurement cannot be used
to determine the state of the system[4,5]. While the first
derivative of the energy splitting with respect to gate voltage
vanishes at the degeneracy point, the second derivative, cor-
responding to the difference in chargepolarizability of the
two quantum states, ismaximal. One can think of the qubit
as a nonlinear quantum system having a state-dependent ca-
pacitance(or in general, an admittance) which changes sign
between the ground and excited states[36]. It is this change
in polarizability which is measured in the dispersive QND
measurement.

In contrast, standard charge measurement schemes
[37,18] require moving away from the optimal point. Sim-
mondset al. [20] have recently raised the possibility that
there are numerous parasitic environmental resonances
which can relax the qubit when its frequencyV is changed
during the course of moving the operating point. The disper-
sive CQED measurement is therefore highly advantageous
since it operates best at the charge degeneracy point. In gen-
eral, such a measurement of an ac property of the qubit is
strongly desirable in the usual case where dephasing is domi-
nated by low-frequencys1/ fd noise. Notice also that the pro-
posed quantum nondemolition measurement would be the
inverse of the atomic microwave CQED measurement in
which the state of the photon field is inferred nondestruc-
tively from the phase shift in the state of atoms sent through
the cavity[3].

VII. COHERENT CONTROL

While microwave irradiation of the cavity at its resonance
frequency constitutes a measurement, irradiation close to the
qubit’s frequency can be used to coherently control the state
of the qubit. In the former case, the phase shift of the trans-
mitted wave is strongly dependent on the state of the qubit
and hence the photons become entangled with the qubit, as
shown in Fig. 8. In the latter case, however, driving isnot a
measurement because, for large detuning, the photons are
largely reflected with a phase shift which is independent of
the state of the qubit. There is therefore little entanglement
between the field and qubit in this situation and the rotation
fidelity is high.

To model the effect of the drive on the qubit, we add the
microwave drive of Eq.(20) to the Jaynes-Cumming Hamil-
tonian (1) and apply the transformation(11) (again neglect-
ing damping) to obtain the effective one-qubit Hamiltonian

H1q =
"

2
FV + 2

g2

D
Sa†a +

1

2
D − vmwGsz + "

g«std
D

sx

+ "svr − vmwda†a + "«stdsa† + ad s31d

in a frame rotating at the drive frequencyvmw. Choosing
vmw=V+s2n+1dg2/D, H1q generates rotations of the qubit
about thex axis with Rabi frequencyg« /D. Different drive
frequencies can be chosen to realize rotations around arbi-
trary axes in thex−z plane. In particular, choosingvmw=V
+s2n+1dg2/D−2g« /D andt=pD /2Î2g« generates the Had-
amard transformationH. SinceHsxH=sz, these two choices

TABLE II. Figures of merit for readout and multiqubit entangle-
ment of superconducting qubits using dispersive(off-resonant) cou-
pling to a 1D transmission-line resonator. The same parameters as
Table I and a detuning of the Cooper-pair box from the resonator of
10% sD=0.1vrd are assumed. Quantities involving the qubit decay
g are computed both for the theoretical lower boundg=gk for
spontaneous emission via the cavity and(in parentheses) for the
current experimental upper bound 1/gù2 ms. Though the signal to
noise of the readout is very high in either case, the estimate of the
readout error rate is dominated by the probability of qubit relaxation
during the measurement, which has a duration of a few cavity life-
times f,s1–10dk−1g. If the qubit nonradiative decay is low, both
high-efficiency readout and more than 103 two-bit operations could
be attained.

Parameter Symbol 1D circuit

Dimensionless cavity pull g2/kD 2.5

Cavity-enhanced lifetime gk
−1=sD /gd2k−1 64 ms

Readout SNR SNR5 sncrit /nampdk /2g 200 (6)

Readout error Perr,53g /k 1.5%s14%d
One-bit operation time Tp.1/D .0.16 ns

Entanglement time tÎiSWAP=pD /4g2 ,0.05ms

Two-bit operations Nop=1/fg tÎiSWAPg .1200s40d
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of frequency are sufficient to realize any one-qubit logical
operation.

Assuming that we can take full advantage of lifetime en-
hancement inside the cavity(i.e., thatg=gk), the number of
p rotations about thex axis which can be carried out isNp

=2«D /pgk,105« for the experimental parameters assumed
in Table I. For large«, the choice of drive frequency must
take into account the power dependence of the cavity fre-
quency pulling.

Numerical simulation shown in Fig. 9 confirms this
simple picture and that single-bit rotations can be performed
with very high fidelity. It is interesting to note that since
detuning between the resonator and the drive is large, the
cavity is only virtually populated, with an average photon

numbern̄<«2/D2,0.1. Virtual population and depopulation
of the cavity can be realized much faster than the cavity
lifetime 1/k and, as a result, the qubit feels the effect of the
drive rapidly after the drive has been turned on. The limit on
the speed of turn on and off of the drive is set by the detun-
ing D. If the drive is turned on faster than 1/D, the frequency
spread of the drive is such that part of the drive’s photons
will pick up phase information(see Fig. 8) and dephase the
qubit. As a result, for large detuning, this approach leads to a
fast and accurate way to coherently control the state of the
qubit.

To model the effect of the drive on the resonator an alter-
native model is to use the cavity-modified Maxwell-Bloch
equations[25]. As expected, numerical integration of the
Maxwell-Bloch equations reproduce very well the stochastic
numerical results when the drive is at the qubit’s frequency
but donot reproduce these numerical results when the drive
is close to the bare resonator frequency(Figs. 6 and 7)—i.e.,
when entanglement between the qubit and photons cannot be
neglected.

VIII. RESONATOR AS QUANTUM BUS: ENTANGLEMENT
OF MULTIPLE QUBITS

The transmission-line resonator has the advantage that it
should be possible to place multiple qubits along its length
s,1 cmd and entangle them together, which is an essential
requirement for quantum computation. For the case of two
qubits, they can be placed closer to the ends of the resonator
but still well isolated from the environment and can be sepa-
rately dc biased by capacitive coupling to the left and right
center conductors of the transmission line. Additional qubits
would have to have separate gate bias lines installed.

For the pair of qubits labeledi and j , both coupled with
strengthg to the cavity and detuned from the resonator but in
resonance with each other, the transformation(11) yields the
effective two-qubit Hamiltonian[3,38,39]

H2q < "Fvr +
g2

D
ssi

z + s j
zdGa†a +

1

2
"FV +

g2

D
Gssi

z + s j
zd

+ "
g2

D
ssi

+s j
− + si

−s j
+d. s32d

In addition to ac Stark and Lamb shifts, the last term couples
the qubits through virtual excitations of the resonator.

In a frame rotating at the qubit’s frequencyV, H2q gen-
erates the evolution

U2qstd = expF− i
g2

D
tSa†a +

1

2
Dssi

z + s j
zdG

31
1

cos
g2

D
t i sin

g2

D
t

i sin
g2

D
t cos

g2

D
t

1

2 ^ 1r , s33d

where 1r is the identity operator in resonator space. Up to

FIG. 8. (Color online) Phase shift of the cavity field for the two
states of the qubit as a function of detuning between the driving and
resonator frequencies. Obtained from the steady-state solution of
the equation of motion forastd while only taking into account
damping on the cavity and using the parameters of Table I. Readout
of the qubit is realized at, or close to, zero detuning between the
drive and resonator frequencies where the dependence of the phase
shift on the qubit state is largest. Coherent manipulations of the
qubit are realized close to the qubit frequency which is 10% de-
tuned from the cavity(not shown on this scale). At such large de-
tunings, there is little dependence of the phase shift on the qubit’s
state.

FIG. 9. (Color online) Numerical stochastic wave function
simulation showing coherent control of a qubit by microwave irra-
diation of the cavity at the ac Stark- and Lamb-shifted qubit fre-
quency. The qubit(red line) is first left to evolve freely for about
40 ns. The drive is turned on fort=7pD /2g«,115 ns, correspond-
ing to 7p pulses, and then turned off. Since the drive is tuned far
away from the cavity, the cavity photon number(black line) is small
even for the moderately large drive amplitude«=0.03vr used here.
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phase factors, this corresponds att=pD /4g2,50 ns to a
ÎiSWAP logical operation. Up to one-qubit gates, this opera-
tion is equivalent to the controlled-NOT gate. Together with
one-qubit gates, the interactionH2q is therefore sufficient for
universal quantum computation[40]. Assuming again that
we can take full advantage of the lifetime enhancement in-
side the cavity, the number ofÎiSWAP operations which can
be carried out isN2q=4D /pk,1200 for the parameters as-
sumed above. This can be further improved if the qubit’s
nonradiative decay is sufficiently small and higherQ cavities
are employed.

When the qubits are detuned from each other, the off-
diagonal coupling provided byH2q is only weakly effective
and the coupling is for all practical purposes turned off. Two-
qubit logical gates in this setup can therefore be controlled
by individually tuning the qubits. Moreover, single-qubit and
two-qubit logical operations on different qubits and pairs of
qubits can both be realized simultaneously, a requirement to
reach presently known thresholds for fault-tolerant quantum
computation[41].

It is interesting to point out that the dispersive QND read-
out presented in Sec. VI may be able to determine the state
of multiple qubits in a single shot without the need for addi-
tional signal ports. For example, for the case of two qubits
with different detunings, the cavity pull will take four differ-
ent values ±g1

2/D1±g2
2/D2, allowing single-shot readout of

the coupled system. This can in principle be extended toN
qubits provided that the range of individual cavity pulls can
be made large enough to distinguish all the combinations.
Alternatively, one could read them out in small groups at the
expense of having to electrically vary the detuning of each
group to bring them into strong coupling with the resonator.

IX. ENCODED UNIVERSALITY
AND DECOHERENCE-FREE SUBSPACE

Universal quantum computation can also be realized in
this architecture under the encodingL=hu↑↓l , u↓↑lj by con-
trolling only the qubit’s detuning and, therefore, by turning
on and off the interaction term inH2q [42].

An alternative encoded two-qubit logical operation to the
one suggested in Ref.[42] can be realized here by tuning the
four qubits forming the pair of encoded qubits in resonance
for a time t=pD /3g2. The resulting effective evolution op-

erator can be written asÛ2q=expf−ispD /3g2dŝx1ŝx2g, where
ŝxi is a Pauli operator acting on theith encoded qubit. To-

gether with encoded one-qubit operations,Û2q is sufficient
for universal quantum computation using the encodingL.

We point out that the subspaceL is a decoherence-free
subspace with respect to global dephasing[43] and use of
this encoding will provide some protection against noise.

The application ofÛ2q on the encoded subspaceL, however,
causes temporary leakage out of this protected subspace.
This is also the case with the approach of Ref.[42]. In the
present situation, however, since the Hamiltonian generating

Û2q commutes with the generator of global dephasing, this
temporary excursion out of the protected subspace does not
induce noise on the encoded qubit.

X. SUMMARY AND CONCLUSIONS

In summary, we propose that the combination of one-
dimensional superconducting transmission-line resonators,
which confine their zero-point energy to extremely small vol-
umes, and superconducting charge qubits, which are electri-
cally controllable qubits with large electric dipole moments,
constitutes an interesting system to access the strong-
coupling regime of cavity quantum electrodynamics. This
combined system is an advantageous architecture for the co-
herent control, entanglement, and readout of quantum bits
for quantum computation and communication. Among the
practical benefits of this approach are the ability to suppress
radiative decay of the qubit while still allowing one-bit op-
erations, a simple and minimally disruptive method for read-
out of single and multiple qubits, and the ability to generate
tunable two-qubit entanglement over centimeter-scale dis-
tances. We also note that in the structures described here, the
emission or absorption of a single photon by the qubit is
tagged by a sudden large change in the resonator transmis-
sion properties[29], making them potentially useful as
single-photon sources and detectors.
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APPENDIX A: QUANTIZATION OF THE 1D
TRANSMISSION-LINE RESONATOR

A transmission line of lengthL, whose cross-section di-
mension is much less then the wavelength of the transmitted
signal, can be approximated by a 1D model. For relatively
low frequencies it is well described by an infinite series of
inductors with each node capacitively connected to ground,
as shown in Fig. 2. Denoting the inductance per unit lengthl
and the capacitance per unit lengthc, the Lagrangian of the
circuit is

L =E
−L/2

L/2

dxS l

2
j2 −

1

2c
q2D , sA1d

where jsx,td andqsx,td are the local current and charge den-
sity, respectively. We have ignored for the moment the two
semi-infinite transmission lines capacitively coupled to the
resonator. Defining the variableusx,td,

usx,td ; E
−L/2

x

dx8qsx8,td, sA2d

the Lagrangian can be rewritten as

CAVITY QUANTUM ELECTRODYNAMICS FOR… PHYSICAL REVIEW A 69, 062320(2004)

062320-11



L =E
−L/2

L/2

dxS l

2
u̇2 −

1

2c
s¹ud2D . sA3d

The corresponding Euler-Lagrange equation is a wave equa-
tion with the speedv=Î1/lc. Using the boundary conditions
due to charge neutrality,

us− L/2,td = usL/2,td = 0, sA4d

we obtain

usx,td =Î2

L
o
ko=1

ko,cutoff

fko
stdcos

kopx

L

+Î2

L
o
ke=2

ke,cutoff

fke
stdsin

kepx

L
, sA5d

for odd and even modes, respectively. For finite lengthL, the
transmission line acts as a resonator with resonant frequen-
ciesvk=kpv /L. The cutoff is determined by the fact that the
resonator is not strictly one dimensional.

Using the normal-mode expansion(A5) in (A3), one ob-
tains, after spatial integration, the Lagrangian in the form of
a set of harmonic oscillators:

L = o
k

l

2
ḟk

2 −
1

2c
Skp

L
D2

fk
2. sA6d

Promoting the variablefk and its canonically conjugated
momentumpk= lḟk to conjugate operators and introducing
the boson creation and annihilation operatorsak

† andak sat-
isfying fak,ak8

† g=dkk8, we obtain the usual relations diagonal-
izing the Hamiltonian obtained from the Lagrangian(A6):

f̂kstd =Î"vkc

2

L

kp
fakstd + ak

†stdg, sA7d

p̂kstd = − iÎ"vkl

2
fakstd − ak

†stdg. sA8d

From these relations, the voltage on the resonator can be
expressed as

Vsx,td =
1

c

] usx,td
] x

= − o
ko=1

` Î"vko

Lc
sinSkopx

L
Dfako

std + ako

† stdg

+ o
ke=1

` Î"vke

Lc
cosSkepx

L
Dfake

std + ake

† stdg.

sA9d

In the presence of the two semi-infinite transmission lines
coupled to the resonator, the Lagrangian(A3) and the bound-
ary conditions(A4) are modified to take into account the
voltage drop on the coupling capacitorsC0. Assuming no
spatial extent for the capacitorsC0, the problem is still solv-
able analytically. Due to this coupling, the wave function can

now extend outside of the central segment which causes a
slight redshift, of orderC0/Lc, of the cavity resonant fre-
quency.

As shown in Fig. 2, we assume the qubit to be fabricated
at the center of the resonator. As a result, at low tempera-
tures, the qubit is coupled to the modek=2 of the resonator,
which as an antinode of the voltage in its center. The rms
voltage between the center conductor and the ground plane is
thenVrms

0 =Î"vr /cL with vr=v2 and the voltage felt by the
qubit is Vs0,td=Vrms

0 fa2std+a2
†stdg. In the main body of this

paper, we work only with this second harmonic and drop the
mode index on the resonator operators.

APPENDIX B: TREATMENT OF DISSIPATION

The evolution of the total density matrix, including the
qubit, cavity mode, and baths, is described by the von Neu-
man equation

ṙtot = −
i

"
fHsys+ Hk + Hg,rtotg, sB1d

whereHsys stands for the first three terms of Eq.(1) plus the
drive Hamiltonian of Eq.(20). An explicit expression forHk

can be found in Ref.[14]. When the coupling between the
system(qubit plus cavity mode) and the baths is weak, the
reduced density operator for the system can be shown to
obey the master equation[14]

ṙ = −
i

"
fHsys,rg −

1

2 o
m=hk,gj

sLm
† Lmr + rLm

† Lm − 2LmrLm
† d

sB2d

in the Markov approximation. Here,Lm are Lindblad opera-
tors describing the effect of the baths on the system and can
be expressed asLk=Îka andLg=Îgs−. The effect of finite
temperature and pure dephasing, for example, can also be
taken into account easily by introducing additional Lindblad
operators.

The master equation is solved numerically by truncating
the cavity Hilbert space toN photons. This leads tos2Nd2

coupled differential equations which, for largeN, can be dif-
ficult to solve in practice. An alternative approach is to write
an equivalent stochastic differential equation for the wave
function [32,44]. There exist different such “unravelings” of
the master equation and here we use the quantum state dif-
fusion equation[32,44]

udcl = −
i

"
Hsysucldt + o

m

sLm − kLmlcducldjm

−
1

2o
m

sLm
† Lm + kLm

† lckLmlc − 2kLm
† lcLmducldt.

sB3d

The djm are complex independent Wiener processes satisfy-
ing for their ensemble averages

djm = djmdjn = 0, sB4d
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djm
* djn = dmndt. sB5d

An advantage of this approach is that now only 2N
coupled differential equations have to be solved. A drawback
is that the results must be averaged over many realizations of
the noise to obtain accurate results. Still, this leads to much
less important memory usage and to speedup in the numeri-
cal calculations[32,45].

APPENDIX C: QUANTUM NONDEMOLITION
MEASUREMENTS

Readout of a qubit can lead to both mixing and dephasing
[23,33]. While dephasing is unavoidable, mixing of the mea-
sured observable can be eliminated in a QND measurement
by choosing the qubit-measurement apparatus interaction
such that the measured observable is a constant of motion. In
that situation, the measurement-induced mixing is rather in-
troduced in the operator conjugate to the operator being mea-
sured.

In the situation of interest in this paper, the operator being
probed issz and, from Eq.(12), the qubit-measurement ap-
paratus interaction Hamiltonian is given for large detuning
by Hint=sg2/Ddsza†a, such thatfsz,Hintg=0. For sz to be a
constant of motion also requires that it commute with the
qubit Hamiltonian. This condition is also satisfied in Eq.
(12).

That the measured observable is a constant of motion im-
plies that repeated observations will yield the same result.
This allows for the measurement result to reach arbitrary
large accuracy by accumulating signal. In practice, however,
there are always environmental dissipation mechanisms act-
ing on the qubit independently of the readout. Even in a
QND situation, these will lead to a finite mixing rate 1/T1 of
the qubit in the course of the measurement. Hence, high fi-
delity can only be achieved by a strong measurement com-
pleted in a timeTm!T1. This simple point is not as widely
appreciated as it should be.
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