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Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Re-
centlyXXXspin chain was discussed in relation to information theory. Here we consider localizable entangle-
ment. It is how much entanglement can be localized on two spins by performing local measurements on other
individual spins(in a system of many interacting spins). We consider the ground state of antiferromagnetic spin
chain. We study localizable entanglement[represented by concurrence] between two spins. It is a function of
the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We
conclude that anisotropy increases the localizable entanglement. We discovered high sensitivity to a magnetic
field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to
illustrate that the measurement raises the concurrence.
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I. INTRODUCTION

Spin chains play an important role in solid state physics
[1–6]. For example, inelastic neutron scattering on SrCuO2
[7] can be explained by spin 1/2 Heisenberg chain[8]. Spin
chains are also important for information theory. Recently,
many-body systems have attracted a lot of attention in the
field of quantum information[9–12]. Special attention has
been paid to the entanglement in these systems. Entangle-
ment plays the main role as a physical resource for quantum
information and quantum computation. There is a lot in com-
mon between quantum statistical mechanics and quantum in-
formation theory. The role of phase transitions for quantum
information was emphasized in Ref.[11]. The most direct
relation between correlation functions and entanglement was
discovered by Verstraete, Popp, and CiracsVPCd in Ref. [9].
They found that correlation function provides a bound for
localizable entanglementsLEd.

The LE of two spins is defined as the maximal amount of
entanglement that can be localized on two marked spins on
average by doing local measurements on the rest of the spins
(assisting spins). Here we assume that we consider a pure
stateufl of all these spins. The LE has an operational mean-
ing applicable to situations in which one would like to con-
centrate as much entanglement as possible between two par-
ticular particles out of multi-particle entangled state. Good
examples are quantum repeater[13] and spinotronics(micro-
electronic devices that function by using the spin of the elec-
tron) [14]. Let us consider an example ofN qubits in GHZ
state:

uGHZl =
1
Î2

su00 . . . 0l + u11 . . . 1ld. s1d

We can measure assisting qubits inu± l basis. This will force
two marked spins into a Bell state(maximally entangled
state of two qubits).

Let us proceed to the formal definition for localizable en-
tanglementEij between two spins marked byi and j . Con-
sider a pure state ofN spinsufl [it is normalizedkf ufl=1].

Every measurement basis specifies an ensemble of pure
statesE=hps, ucslj. The indexs enumerates different mea-
surement outcomes. It runs through 2sN−2d values. Hereucsl
is a two-spin state after the measurement andps is its prob-
ability. The LE is defined as

Eij = max
E o

s

psEsucsld. s2d

Here Esucsld is the entanglement ofucsl, characterized by
concurrence. The concurrenceC was suggested by Wooters
[15] as a measure of entanglement[16]. By definition it is
0øCø1. VPC noticed that it is in particular a convenient
measure for LE. It is important for us that concurrence for
two qubits stateufl=au00l+bu01l+cu10l+du11l coincides
with maximum correlationCsufld=2uad−bcu.

It is difficult to calculate LE. Instead, VPC found bounds
for LE. The upper bound comes out of considering a global
(joint) measurement on all assisting spins. It can be related to
the entanglement of assistance, which is the maximum en-
tanglement over all possible states ofN spins consistent with
the density matrix of two marked spins. It was introduced by
DiVincenzo, Fuchs, Mabuchi, Smolin, Thapliyal, and Uhl-
mann[17]. A simple formula for entanglement of assistance
was found in Ref.[18]. Let us denote the density matrix of
two marked spins byri j . Matrix X is a square root of the
density matrix: ri j =XX†. The entanglement of assistance
measured by concurrence is given by the trace norm
trfXTssy ^ sydXg. Hence, the upper bound of LE is

Eij ø
Îs+

i j + Îs−
i j

2
, s3d

where

s±
i j = s1 ± kfusz

sidsz
s jdufld2 − skfusz

sidufl ± kfusz
s jdufld2.

The lower bound on LE is expressed in terms of correlation
functions:
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Qab
i j = kkfusa

sidsb
s jdufll;kfusa

sidsb
s jdufl − kfusa

siduflkfusb
s jdufl.

s4d

The lower bound on LE is based on the following observa-
tion [9]. Given a state ofN spins with fixed correlation func-
tions Qab

i j between two spins(marked byi and j) and direc-
tions a and b, there exist directions in which one can
measure other spins(assisting spins), such that this correla-
tion does not decrease. Using this observation, VPC found a
lower bound for LE:

Eij ù max
a

suQaa
i j ud. s5d

VPC explicitly evaluated these bounds for the ground state
of the Ising model and showed that actual value of LE is
close to the lower bound.

In this paper we consider the ground state of infinite an-
tiferromagneticXXXspin chain at zero temperature. We also
consider anisotropic version:XXZ chain. We calculated the
concurrence before the measurement(see Appendix A) and
compare it to LE. Measurement raises the concurrence.

II. XXX ANTIFERROMAGNETIC SPIN CHAIN

The Hamiltonian for antiferromagneticXXX spin chain
can be written as

HXXX
0 = o

m

hsx
smdsx

sm+1d + sy
smdsy

sm+1d + sz
smdsz

sm+1dj. s6d

Heresx
smd,sy

smd,sz
smd are Pauli matrix, which describe spin op-

erators onmth lattice site. Summation goes through the
whole infinite lattice. The density of the Hamiltonian is a
linear function of the swap gate.

Hans Bethe found eigenfunctions of the Hamiltonian of
the model in 1931[19]. The ground stateufl was found by
Hulten in Ref.[20]. We shall normalize it to 1. Correlations
are defined as averages with respect to the ground state. They
are isotropic

kfusa
sidsb

s jdufl = dabkfusz
sidsz

s jdufl. s7d

There is no magnetizationsa (a=x,y or z),

sa = kfusa
s jdufl = 0. s8d

This simplifies the lower bound(5) of LE [21]:

1 ù Eij ù kfusz
sidsz

s jdufl. s9d

Let us now use the explicit expression for correlations
kfusz

sidsz
s jdufl to calculate the lower bound:

kfusz
smdsz

sm+1dufl =
1

3
−

4

3
ln 2 . − 0.5908629072,s10d

kfusz
smdsz

sm+2dufl =
1

3
−

16

3
ln 2 + 3zs3d.0.2427190798,

s11d

kfusz
smdsz

sm+3dufl =
1

3
− 12 ln 2 +

74

3
zs3d −

56

3
zs3dln 2

− 6zs3d2 −
125

6
zs5d +

100

3
zs5dln 2

. − 0.2009945090, s12d

kfusz
smdsz

sm+4dufl =
1

12
−

16

3
ln 2 − 54 ln 2zs3d −

293

4
z2s3d

−
875

12
zs5d +

145

6
zs3d +

1450

3
ln 2 zs5d

−
275

16
zs3dzs5d −

1875

16
z2s5d +

3185

64
zs7d

−
1715

4
ln 2zs7d +

6615

32
zs3dzs7d

. 0.0346527769. s13d

It took a long time to evaluate correlations functions. Nearest
neighbor correlation can be extracted from the ground state
energy[20]. Next to nearest neighbor correlation was calcu-
lated by Takahashi in 1977, see Ref.[22]. Recently it was
established that all correlations can be expressed as polyno-
mials of ln 2 and the values of Riemann zeta function[23] at
odd arguments[24–29]. These polynomials have only ratio-
nal coefficients. Third neighbor correlation was calculated by
Sakai, Shiroishi, Nishiyama, and Takahashi, see[30]. These
results give us the following bounds for localizable entangle-
ment fLEg:

Ej ,j+1 ù 0.5908629072, s14d

Ej ,j+2 ù 0.2427190798, s15d

Ej ,j+3 ù 0.2009945090. s16d

Ej ,j+4 ù 0.0346527769. s17d

At large distances correlation functions exhibit critical be-
havior. Asymptotic was obtained in[31] and [32]

kfusz
sidsz

s jdufl → s− 1di−jH s2 lnui − j ud1/2

spd3/2ui − j u J . s18d

This helps us to estimate localizable entanglement asymp-
totically for two spins, which are far away, i.e.,ui − j u→`:

Eij ù H s2 lnui − j ud1/2

spd3/2ui − j u J . s19d

Even better, but more complicated expression for lower
bound of LE, can be extracted from the paper[33]:
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Eij ùÎ 2

p3

1

ui − j uÎg
H1 +S3

8
−

c

2
Dg + S 5

128
−

c

16
−

c2

8
Dg2

+ S 21

1024
+

7c

256
−

7c2

64
−

c3

16
+

13 zs3d
32

Dg3 + Osg4dJ
−

s− 1dui−j u

p2ui − j u2H1 +
g

2
+ Sc +

3

4
Dg2

2
+

csc + 2d
2

g3 + Osg4dJ
+ . . . . s20d

Here the coupling constantg depends on the distanceui − j u. It
is defined by

Îge1/g = 2Î2pegE+cui − j u. s21d

HeregE=0.5772 is the Euler’s constant andc is a parameter
[normalization point]. A good choice forc is c=−1. This
boundary for LE is suitable for the full range of distances. In
Appendix A we calculated concurrence before the measure-
ment. It is nonzero only for nearest neighbors, see Ref.[34]
and Eq.(A26). Clearly, the measurement raises the concur-
rence.

III. CRITICAL XXZ ANTIFERROMAGNET

Let us consider effects of anisotropy of interaction of
spins. The Hamiltonian of theXXZ spin chain is

HXXZ
0 = − o

m

hsx
smdsx

sm+1d + sy
smdsy

sm+1d+ D ssz
smdsz

sm+1d − 1dj.

s22d

We shall consider critical regimes−1øD,1d and we use
parametrization:

D = cossphd, 0 , h , 1. s23d

Let us recall that the caseh=0 corresponds to ferromagnetic
XXX, which we are not considering here. Another caseh
=1 corresponds to antiferromagneticXXX, see the previous
section.

The caseh=2/3 corresponds toD=−1/2. In this case the
model admits much simpler solution than generic Bethe An-
zats, see Refs.[35–37]. In this case the model is super-
symmetric, see Ref.[38].

Later we shall see that all these special casesh
=0,2/3,1have high sensitivity to magnetic field interacting
with spins.

For general values ofh (23) there is no magnetization:

sa = kfusa
smdufl = 0. s24d

LE is bounded by maximal correlation function:

1 ù Eij ù max
a

ukfuusa
sidsa

s jduflu. s25d

Correlation functions decays as power laws at large distances
lnui − j u@1/s2−2hd. Leading terms of correlations are

kfusx
sidsx

s jdufl = kfusy
sidsy

s jdufl = Fui − j u−h,

kfusz
sidsz

s jdufl = −
1

p2h
ui − j u−2 + As− 1di−jui − j u−1/h.

Many people worked on the subject. Important results are
obtained in [31]. A good collection of references can be
found in [39], see pages 512, 549–553. Since 0,h,1, it
becomes clear thatsx correlations asymptotically dominate
the lower bound:

uQxx
ij u = uQyy

ij u . uQzz
ij u. s26d

Finally we got the following bound for LE:

Eij ù Fui − j u−h. s27d

This shows that anisotropy raises the lower bound forLE.
The coefficientF was calculated[31,32]

F =
1

2s1 − hd23 GS h

2 − 2h
D

2ÎpGS 1

2 − 2h
D4

h

3expH−E
0

` dt

t
S sinhshtd

sinhstdcoshss1 − hdtd
− he−2tDJ .

s28d

The plot is shown in Fig. 1. There is singularity in functionF
for h near 1:

F , s1 − hd−1/2 when h → 1 − 0 s29d

Special caseh=1 corresponds toXXX antiferromagnet.
In Appendix A, we evaluated concurrence before the mea-

surement. It vanishes at finite distance, see Eq.(A32).

IV. XXX ANTIFERROMAGNET IN A MAGNETIC FIELD

Let us come back toXXX model,

HXXX
0 = o

m

sx
smdsx

sm+1d + sy
smdsy

sm+1d + sz
smdsz

sm+1d. s30d

But now let us add magnetic field

FIG. 1. F (Eq. (28)) vs h.
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HXXX
h = HXXX

0 − o
m

hsz
smd. s31d

This introduce anisotropy in a different way. In small mag-
netic field h→0, small magnetization develops:sz=h/p2.
For stronger magnetic field, magnetization increases. As
magnetic field approaches its critical valuehc=4, magnetiza-
tion approaches 1(ferromagnetic state with all spins up):

sz = 1 −
2

p
Îhc − h, h → hc − 0. s32d

Exact expression for magnetizationsz at arbitrary value of
magnetic field is given on pp. 70–71 of[39]. Averages of
other spin components over ground state are zero:sx=sy
=0.

In this section, we are considering moderate magnetic
field 0øhøhc. Asymptotic of correlation functions at large
distances can be described as follows:

kkfusz
sidsz

s jdufll = A1
1

si − jd2 + A2
coshps1 − szdui − j uj

ui − j uu
.

s33d

Here double angular brackets on the left-hand side mean that
we subtractedsz

2, see(4). The coefficientsA1 andA2 depend
on magnetic field. For small magnetic field, critical indexu
is close to 1:

u = 1 + f2 lnshx/hdg−1 h → 0; hx =Î8p3

e
s34d

and for the values of magnetic field close to critical point,u
is close to 2:

u = 2S1 −
1

p
Îhc − hD, h → hc;h ø hc = 4. s35d

In Appendix B we discuss the dependence ofu on magnetic
field for intermediate fields. Figure 4 forh=1 shows thatu is
a monotonic function of the magnetic field. Asymptotic of
other correlation functions are

kfusx
sidsx

s jdufl = kfusy
sidsy

s jdufl = Ashdui − j u−1/u. s36d

CoefficientAshd vanishes as magnetic field approaches the
critical value. Exact formula foru at any value of magnetic
field can be found on pages 73–76 of(Ref. [39] and in Ref.
[31]. It shows that 1/2ø1/uø1øuø2. This means that the
lower bound of LE is dominated bysx correlations again

Eij ù Ashdui − j u−1/u. s37d

Now let us discuss the upper bound(3) of LE. Because of
translational invariance we have

s+
i j = s1 + kfusz

sidsz
s jdufld2 − 4s z

2,

s−
i j = s1 − kfusz

sidsz
s jdufld2. s38d

At large space separationsui − j u→`, correlations can be sim-
plified kfusz

sidsz
s jdufl→s z

2. This means that boths±
i j approach

s1−s z
2d2. Finally the bounds for LE for largeui − j u are

Ashdui − j u−1/u ø Eij , 1 − s z
2. s39d

So magnetic field increases lower bound and deceases upper
bound. When magnetic fields are close to the critical value,
the bounds become

Ashdui − j u−1/2 ø Eij ,
4

p
Îhc − h. s40d

In Appendix A we evaluated concurrence before the mea-
surement. It vanishes at finite distance, see Eq.(A39).

In the most general case ofXXZ magnetic field correla-
tions can be described by similar formulas, but parameters
hc,sz,u are different. We shall elaborate in the next section.

V. XXZ ANTIFERROMAGNET IN A
MAGNETIC FIELD

Let us add interaction with a magnetic field toXXZ spin
chain:

HXXZ
h = HXXZ

0 − o
m

hsz
smd. s41d

Small magnetic field leads to a small magnetizationsz=xh.
The magnetic susceptibilityx is

x =
1 − h

ph sin ph
. s42d

Here we used parameterh related to anisotropyD=cosph.
The dependence ofx on h is illustrated in Fig. 2. Let us
discuss the plot. The meaning of a singularity ath=0 is the
following: The caseh=0 corresponds to ferromagneticXXX.
At zero magnetic field it has spontaneous magnetization
pointed in an arbitrary direction. Weak magnetic field will
align spins to the direction of the magnetic field. This makes
susceptibility infinite. Ash approaches 1, susceptibility ap-
proaches 1/p2 (antiferromagneticXXX case).

For stronger magnetic field, magnetization increases. As
magnetic field approaches its critical valuehc=2s1−Dd,
magnetization approaches 1:

sz = 1 −
2

p
Îhc − h, h → hc − 0. s43d

Averages of other spin components over ground state are
zero:sx=sy=0. Here we are considering moderate magnetic
field 0øhøhc. Asymptotic of correlation functions at large
distances can be described by the formulas similar toXXX in
a magnetic field case see(33) and(36), but critical indexu is
different. A formula for u depends on anisotropyD
=cosph. Let us first discuss small magnetic fieldh→0.
Critical index is quadratic in magnetic field for 0øhø2/3:

u =
1

h
s1 + a1h

2d. s44d

The coefficient
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a1 =
s1 − hd2

4ph tanS ph

2s1 − hdDsin2ph

s45d

shows singularity at pointsh=0 (ferromagneticXXX) and
h=2/3 [D=−1/2 case]:

a1 ,
1

p4

1

h4 for h → 0 + 0. s46d

a1 ,
1

81p2

1

sh − 2/3d
for h → S2

3
D − 0. s47d

The nature of dependence of the coefficienta1 is illustrated
in Fig. 3. In case 2/3øhø1 smallh behavior is more com-
plicated:

u =
1

h
s1 + a2h

4sh−1−1dd. s48d

Notice that the power of magnetic field changes monotoni-
cally from 2 ath=2/3 to 0 ath=1. An expression for the
coefficienta2 is more complicated:

a2 = 2he
2b
h h0

4s1−h−1d tanSp

h
D G2S1 +

1

h
D

G2S1

2
+

1

h
D . s49d

Here

b = s1 − hdlns1 − hd + h ln h s50d

and

h0 =
4hÎp sin ph

s1 − hd
expS b

2s1 − hdD
GS 3 − 2h

2s1 − hdD
GS 2 − h

2s1 − hdD
. s51d

a2shd shows singularity at pointh=2/3,

a2 ,
1

81p2

1

sh − 2/3d
for h → S2

3
D + 0. s52d

The nature of dependence ofa2 on h is illustrated in Fig. 3.
We see that ath=2/3 critical index u strongly depends on
weak magnetic field. It also depends strongly on weak mag-
netic field forh=1, which is antiferromagneticXXX case.

For magnetic field close to critical, the indexu approaches
2:

u = 2 +
4Îhc − h

p tanSph

2
Dtan ph

. s53d

In Appendix B we discuss the dependence ofu on magnetic
field for intermediate fields. Figure 4 shows the dependence

FIG. 2. x (Eq. (42)) vs h (Eq. (23)).

FIG. 3. a1 (Eq. (45)), a2 (Eq. (49)) vs h (Eq. (23)).

FIG. 4. Critical exponentu (Eqs. (33) and (36)) vs magnetic
field h for different values of anisotropyh.
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of u on magnetic field for different values ofh. Note that the
dependence is monotonic.

For XXZ in a magnetic field the lower bound of localiz-
able entanglement is also given bysx correlations

Eij ù kfusx
sidsx

s jdufl. s54d

Asymptotic of thesx correlations is still given by the for-
mula (36) with u described in this section.

VI. SUMMARY

In this paper we showed that correlations in spin chains
are important not only for condensed mater physics and sta-
tistical mechanics but also for quantum information. We con-
sidered boundaries for localizable entanglement in the
ground state of antiferromagnetic spin chains. We showed
that anisotropy raises the localizable entanglement. We also
calculated concurrence before the measurement to illustrate
that the measurement raises the concurrence.

There are still two open problems left:(i). to prove that
localizable entanglement coincide with the lower boundEij
=maxasuQaa

i j ud, (ii ) to calculate localizable entanglement for
positive temperature.
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APPENDIX A

In this Appendix, we calculate the concurrence between
two marked spins before measurement. We show that the
concurrence betweenith andj th qubits vanishes at finite dis-
tanceui − j u before the measurement. The density matrixr of
ith and j th spins can be represented as

r =
1

4o
mi

o
m j

ssmi

sid
^ sm j

s jddksmi

sidsm j

s jdl. sA1d

To calculate concurrence we need

r̃ = ssy ^ sydrpssy ^ syd. sA2d

Here rp is the complex conjugate ofr. Subindexm runs
though four different valuesm=0,x,y,z. Pauli matrixsm are

s0 = I = S1 0

0 1
D, sx = S0 1

1 0
D , sA3d

sy = S0 − i

i 0
D, sz = S1 0

0 − 1
D . sA4d

Following Wooters[15] we define

R= ÎÎrr̃Îr. sA5d

We shall denote the eigenvalues ofR by lk in a decreasing
order

l1 ù l2 ù l3 ù l4.

Then concurrencesCd can be expressed as

C = maxh0,l1 − l2 − l3 − l4j.

Let us start with the most general caseXXZ in a magnetic
field:

ksx
s jdl = ksy

s jdl = 0; ksz
s jdl = s and 0ø s , 1;

sA6d

ksx
sidsy

s jdl = 0; ksx
sidsz

s jdl = ksy
sidsz

s jdl = 0; sA7d

ksx
sidsx

s jdl = ksy
sidsy

s jdl = gxsi − jd; sA8d

ksz
sidsz

s jdl = Gsi − jd = s2 + gzsi − jd; sA9d

0 , ugzsi − jdu , ugxsi − jdu , 1 for large ui − j u.
sA10d

Hence density matrixr for ith and j th qubits(spins) can be
expressed as

r =
1

4
I ^ I +

gxsi − jd
4

ssx ^ sx + sy ^ syd+
Gsi − jd

4
sz ^ sz

+
s

4
sI ^ sz + sz ^ Id. sA11d

All coefficientss, gxsi − jd, Gsi − jd are real, so

rp = r, sA12d

r̃ = ssy ^ sydrssy ^ syd. sA13d

The first three terms in Eq.(A11) commute withsy ^ sy and
the last term anti-commutes. Let us define

r0 =
I ^ I

4
+

gxsi − jd
4

ssx ^ sx + sy ^ syd+
Gsi − jd

4
sz ^ sz

sA14d

and

m=
s

4
sI ^ sz + sz ^ Id. sA15d

Notice thatfI ^ sz+sz^ I ,sx ^ sx+sy ^ syg=0. So we have

r = r0 + m, r̃ = r0 − m, fr0,mg = 0, sA16d

fr,mg = 0, fr̃,mg = 0, fr,r̃g = 0. sA17d

Now we can simplify the expression for the matrixR:

R= ÎÎrr̃Îr = Îr̃r = Îr0
2 − m2. sA18d

Using this representation we can diagonalizeR. Correspond-
ing four eigenvalueshlkj are:
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H1

4
Îs1 + Gsi − jdd2 − 4s2,

1

4
Îs1 + Gsi − jdd2 − 4s2,

sA19dH1 − Gsi − jd
4

+
gxsi − jd

2
,
1 − Gsi − jd

4
−

gxsi − jd
2

J
Now let us consider separately the following special case

I. XXX model with h=0.
In this case,s=0 and

Gsi − jd = gxsi − jd = gzsi − jd = g,

The set of eigenvalues ofR becomes

hlkj = H1 + g

4
,
1 + g

4
,
1 + g

4
,
1 − 3g

4
J . sA20d

To get an explicit expression for concurrence we need to
consider separately two cases:

A: g.0 sfor ui − j u=evend:

l1 = l2 = l3 =
1 + g

4
, l4 =

1 − 3g

4
. sA21d

We can calculate the concurrenceC,

C = maxH0,−
1 − g

2
J = 0, sA22d

sinceugu,1.
B: g,0 (for ui − j u=odd);

l1 =
1 − 3g

4
,l2 = l3 = l4 =

1 + g

4
. sA23d

The concurrence

C = maxH0,
− 3g − 1

4
J sA24d

is non-zero only ifg,−1
3. This happens only forj = i ±1 with

g = ks j
zs j+1

z l =
1 − 4 ln2

3
< − 0.591. sA25d

Hence we have

Cj ,j+1 = ln 2 − 1
2 < 0.193,

Cj ,j+k = 0 if k . 1. sA26d

So, concurrence is non-zero only for nearest neighborssfor
ground state ofXXX model without magnetic fieldd. It was
first discovered in Ref.f34g.

II. XXZ model at h=0.
In this cases=0. At ui − j u→`

gxsi − jd . 0, gxsi − jd . ugzsi − jdu sA27d

and bothgxsi − jd andgzsi − jd decay as a function of the dis-
tanceui − j u. Eigenvalues ofR become

l1 =
1 − gzsi − jd

4
+

gxsi − jd
2

; sA28d

l2 = l3 =
1 + gzsi − jd

4
; sA29d

l4 =
1 − gzsi − jd

4
−

gxsi − jd
2

. sA30d

Now we can calculate the concurrence:

C = maxh0,− 1
2 + gxsi − jd − 1

2gzsi − jdj . sA31d

It vanishes at distance larger thanui − j umin,

1

2
. gxsui − j umind .

F

ui − j umin
h ;

ui − j umin . s2Fd1/h. sA32d

III. XXX in a magnetic field:

Gsi − jd = s 2 + gzsi − jd. sA33d

For largeui − j u both gzsi − jd andgxsi − jd become small. For
magnetic field smaller than critical

gzsi − jd
1 + s 2

s1 − s 2d2 ! 1,

ugxsi − jdu . ugzsi − jdu. sA34d

Eigenvalues ofR in Eq. sA19d become

l1 =
1 − s 2

4
−

gzsi − jd
4

+ Ugxsi − jd
2

U; sA35d

l2 = l3 =
1 − s 2

4
+

gzsi − jd
4

1 + s 2

1 − s 2; sA36d

l4 =
1 − s 2

4
−

gzsi − jd
4

− Ugxsi − jd
2

U , sA37d

and concurrence becomes

C = maxH0,ugxsi − jdu −
1 − s 2

2
−

gzsi − jd
2

1 + s 2

1 − s 2J .

sA38d

Hence concurrence vanishes at distance lager thanui − j umin,

1 − s 2

2
= ugxsui − j umindu = uAshduui − j umin

−1/u

ui − j umin = U 2Ashd
1 − s 2Uu

. sA39d

APPENDIX B

In this Appendix, we discuss the dependence of critical
exponentu on the magnetic fieldh. We follow Ref. [39].

I. Let us start fromXXX model.
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Energy of a magnonesld is defined by a set of equations:

esld −
1

2p
E

−L

L

Ksl,mdesmddm = e0sld, sB1d

Ksl,md =
− 2

1 + sl − md2, e0sld = 2h −
2

1

4
+ l2

. sB2d

With extra conditiones±Ld=0. This set of equations deter-
mines the dependence ofL on magnetic fieldh. HereL is a
value of a spectral parameter at the Fermi edge. An impor-
tant object is the fractional chargeZsld:

Zsld −
1

2p
E

−L

L

Ksl,mdZsmddm = 1. sB3d

The critical exponent is equal to

u = 2Z2sLd. sB4d

For XXXmodel, the critical fieldhc=4. For large magnetic
field suhu .hcdL=0. If magnetic field approaches the criti-
cal value from below, then

L =
1

2
Îhc − uhu and u = 2 −

4

p
L → 2. sB5d

If the magnetic field is smalluhu→0 then

L =
1

2p
lnS s2pd3

eh2 D → ` and u = 1 +
1

2pL
→ 1

sB6d

II. Now let us discussXXZ model.
In this case we can use the same set of equations(B1) and

(B2) with Ksl ,md ande0sld replaced by

Ksl,md =
sins2phd

sinhsl − m + iphdsinhsl − m − iphd
,

e0sld = 2h −
2 sin2sphd

coshSl +
iph

2
DcoshSl −

iph

2
D . sB7d

For small magnetic field

L = s1 − hdlnSh0

h
D → ` when h → 0 sB8d

Hereh0 is given by(51).
But for magnetic field close to critical:

L =
Îhc − uhu

2 tanSph

2
D → 0 when h → ± hc. sB9d

The critical value of the magnetic field is

hc = 2s1 − D d = 2s1 − cossphdd. sB10d

For general magnetic fieldh, we solved these equations nu-
merically and found that bothLshd andushd are monotonic
functions ofh. The numerical solution forushd was shown in
Fig. 4.
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