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Localizable entanglement in antiferromagnetic spin chains
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Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Re-
cently XXX spin chain was discussed in relation to information theory. Here we consider localizable entangle-
ment. It is how much entanglement can be localized on two spins by performing local measurements on other
individual sping(in a system of many interacting sp)nsVe consider the ground state of antiferromagnetic spin
chain. We study localizable entanglemérgpresented by concurrefjdeetween two spins. It is a function of
the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We
conclude that anisotropy increases the localizable entanglement. We discovered high sensitivity to a magnetic
field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to
illustrate that the measurement raises the concurrence.
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[. INTRODUCTION Every measurement basis specifies an ensemble of pure
Spin chai | . tant role | lid state phvsi states€={ps,|o}. The indexs enumerates different mea-
L B e I o Sate Py SiCSsurement outcomes. It uns thiougf ) values. Herd
: Pe, . . 9 . is a two-spin state after the measurement pais its prob-

[7] can be explained by spin 1/2 Heisenberg cH&In Spin o ) .

: ) : . ability. The LE is defined as
chains are also important for information theory. Recently,
many-body systems have attracted a lot of attention in the
field of quantum informatior{9-12. Special attention has Ej = mgaxZ PE(4s)). ()
been paid to the entanglement in these systems. Entangle- s

ment plays the main role as a physical resource for quantu . .
information and quantum computation. There is a lot in comtﬁere E(|4s) is the entanglement difjy), characterized by

mon between quantum statistical mechanics and quantum igoncurrence. The concurrenGewas suggested by Wooters
formation theory. The role of phase transitions for quantuni1® @ a measure of entanglemgs]. By definition it is
information was emphasized in Refl1]. The most direct 0=C=<l1. VPC notu_:et_j that it is in particular a convenient
relation between correlation functions and entanglement wa@€asure for LE. It is important for us that concurrence for
discovered by Verstraete, Popp, and Cife®C) in Ref.[9]. WO dubits state|¢)=a|00)+b|01)+c|10)+d[11) coincides
They found that correlation function provides a bound forWith maximum correlatiorC(|¢)) = 2|lad—bd|.
localizable entanglemerLE). It is difficult to calculate LE. Instead, VPC found bounds
The LE of two spins is defined as the maximal amount of" LE- The upper bound comes out of considering a global

entanglement that can be localized on two marked spins offoint) measurement on all assisting spins. It can be related to

average by doing local measurements on the rest of the spifid€ éntanglement of assistance, which is the maximum en-
(assisting spins Here we assume that we consider a puretanglement over all possible statesNbEpins consistent with

state| ) of all these spins. The LE has an operational meanthe density matrix of two marked spins. It was introduced by

ing applicable to situations in which one would like to con- PiVincenzo, Fuchs, Mabuchi, Smolin, Thapliyal, and Uhl-
centrate as much entanglement as possible between two p&2nN[17]. A simple formula for entanglement of assistance
ticular particles out of multi-particle entangled state. GoodVaS found in Ref[18]. Let us denote the density matrix of

examples are quantum repedte8] and spinotronicgmicro- W0 marked ;pins_bypi-. Matrix X is a square root of the
electronic devices that function by using the spin of the elecdensity matrix: py=XX'. The entanglement of assistance

tron) [14]. Let us consider an example bf qubits in GHZ mee%sured by concurrence is given by the trace norm
state: tr[ X' (o, ® 0y)X]. Hence, the upper bound of LE is

Vel +4/d!
P L

1
|GHZ)=E(|OO...Q+|11...])). (1) Ej =< > 3

We can measure assisting qubitg 4 basis. This will force ~Where
two marked spins into a Bell statgnaximally entangled B o ' .
state of two qubits sl = (1 +(glol o )2~ (BloY| ) £ (oY | ).
Let us proceed to the formal definition for localizable en-
tanglementt;; between two spins marked byandj. Con-  The lower bound on LE is expressed in terms of correlation
sider a pure state df spins|¢) [it is normalized(¢| $)=1].  functions:
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Qlp=dloy g |on=(dlo.)af |4 - (dloy)|8)(dlof ). (o™ gy =L 12 1n 24 243) - Ly@n 2
£z 3 3 3

(4)
The lower bound on LE is based on the following observa- - 61(3)? - £§(5) + 1—{(5)In 2
tion [9]. Given a state oN spins with fixed correlation func-
t?ons Qgﬁ between two sp_inSm(firke_d byi _andj)_and direc- ~ —0.2009945090, (12)
tions @ and B, there exist directions in which one can
measure other spin@ssisting spins such that this correla-
tion does not decrease. Using this observation, VPC found a ), m+4 16 293 ,
lower bound for LE: (¢loy ) = 1—2— g'n 2-541InZ(3) - 7 ¢ ()
E; = max|Q )). (5) 875 145 1450
T EETTOAR R T'” 25

VPC explicitly evaluated these bounds for the ground state

of the Ising model and showed that actual value of LE is - E‘:’g@)g (5) - 1875§2(5) £855(7)
close to the lower bound.

In this paper we consider the ground state of infinite an- 1715 15
tiferromagneticXXX spin chain at zero temperature. We also - Tln 20(7) + 32 {(3)¢(7)
consider anisotropic versiolXXZ chain. We calculated the
concurrence before the measurem@ee Appendix A and = 0.0346527769. (13

compare it to LE. Measurement raises the concurrence.

It took a long time to evaluate correlations functions. Nearest
1. XXX ANTIFERROMAGNETIC SPIN CHAIN neighbor correlation can be extracted from the ground state
energy[20]. Next to nearest neighbor correlation was calcu-
The Hamiltonian for antiferromagneti&XX spin chain  |ated by Takahashi in 1977, see RE22]. Recently it was
can be written as established that all correlations can be expressed as polyno-
mials of In 2 and the values of Riemann zeta funcf{i28] at
><><><— 2 {U 0_(m+1) + 0, (m) (m+l) + cr(m) (m+l)}- (6) odd argument$24—29. These polynomials have only ratio-
nal coefficients. Third neighbor correlation was calculated by
(m) Sakai, Shiroishi, Nishiyama, and Takahashi, 8. These

(m) _(m) i ; i i i -
Hereo, "0, "0, are Pqull matrix, W.h'Ch describe spin op results give us the following bounds for localizable entangle-
erators onmth lattice site. Summation goes through the ment[LE]:

whole infinite lattice. The density of the Hamiltonian is a
linear function of the swap gate.

Hans Bethe found eigenfunctions of the Hamiltonian of Ejj+1=0.5908629072, (14
the model in 193119]. The ground statép) was found by
Hulten in Ref.[20]. We shall normalize it to 1. Correlations

are defined as averages with respect to the ground state. They Ejj+2=0.2427190798, (15)
are isotropic
S =0, .

(¢laVad|p) = 5%l ad)| ). (7) Fij+a= 02009345050 (16

There is no magnetization, (a=x,y or z), E; j+4 = 0.0346527769. 17)
7o =(dlod|$) =0. (8) | . . N
At large distances correlation functions exhibit critical be-
This simplifies the lower boun¢b) of LE [21]: havior. Asymptotic was obtained {i81] and[32]
1=E; = (gloo?)|¢). )

RS (2 Inli =i 12
(Pload| ) — (- 1)"’{%}. (18)

This helps us to estimate localizable entanglement asymp-
totically for two spins, which are far away, i.6i;-j| — c:

(2 Infi - j)*
Eij = { (77)3/2“ _]| ) (19

Even better, but more complicated expression for lower
(11 bound of LE, can be extracted from the pap@s3]:

Let us now use the explicit expression for correlations
<¢|0'g)0'(zj)|¢>) to calculate the lower bound:

4
(B o) gy = = - 5~ 5l 2= -0.5008629072,(10)

1 16
(@|aMoi™2)| gy = 5~ 31N 2+3((3)=0.2427190798,
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E = 3 1 1+(§_E> +<i_£_c_2) 2 20
=NZiSjgl 8 2)9 (1287 16 8 /9 e

1.6 4

2 .3
(£+£_7i_c_+]-3—g(3)>gs+o(g4) 1.4
1024 256 64 16 32 F 12
(G ( 3)92 clc+2) 4 10
-1+ +(c+ - | =+ ———g+0O(g* :
T 2)27 2 90E@ 05 |
+ ... (20 0.6
Here the coupling constagtdepends on the distange-j|. It 047
is defined by 02 1
— 0.0 T T T T T T v T T
\get = 22mereri - j|. (22) 00 01 02 03 04 05 06 07 08 08 10

Here y¢=0.5772 is the Euler’s constant ands a parameter n

[normalization point A good choice forc is c=-1. This FIG. 1. F (Eq. (28)) vs 7.

boundary for LE is suitable for the full range of distances. In

Appendix A we calculated concurrence before the measure-

ment. It is nonzero only for nearest neighbors, see F3i. (¢lo o)y =~ i“ =2+ A= 1) = [,
and Eq.(A26). Clearly, the measurement raises the concur- 7

rence. Many people worked on the subject. Important results are

obtained in[31]. A good collection of references can be
lll. CRITICAL XXZ ANTIFERROMAGNET found in [39], see pages 512, 549-553. Since& <1, it
becomes clear that, correlations asymptotically dominate

Let us consider effects of anisotropy of interaction Ofthe lower bound:

spins. The Hamiltonian of th¥XZ spin chain is

i =1Ql) >1qQlJ. 26
HOp= = 3 (oMol 4 ol M)y A (M me) _ gy - |Ql .|ny| Q) (26)
m oy Finally we got the following bound for LE:
We shall consider critical regime-1<A<1) and we use This shows that anisotropy raises the lower bound L&
parametrization: The coefficient= was calculated31,32
A=cogmy), 0<np<1. (23) ( 7 ) 7
1 2-2
Let us recall that the casg=0 corresponds to ferromagnetic F= > f
XXX, which we are not considering here. Another cage 21=7) 2\/;1~<_>
=1 corresponds to antiferromagnelXX see the previous 2-2q
section. o ;
. dt sinh(xt
The casep=2/3 corresponds ta=-1/2. In this case the Xexp{—f —( - 1) - ne‘zt)}.
model admits much simpler solution than generic Bethe An- o t\sinh(t)cosH(1-nt)
zats, see Refg[35-37. In this case the model is super- (29)

symmetric, see Ref38]. . - . o .
Later we shall see that all these special cases The plot is shown in Fig. 1. There is singularity in functibn

=0,2/3, 1have high sensitivity to magnetic field interacting for » near 1.
with spins. (1 _ -2 _
For general values of; (23) there is no magnetization: F~@-m when 7—1-0 (29
Special casey=1 corresponds t&XXX antiferromagnet.
o, =(pld™|¢) = 0. (24 In Appendix A, we evaluated concurrence before the mea-
) ) _ . surement. It vanishes at finite distance, see(Bg2).
LE is bounded by maximal correlation function:

N (i IV. XXX ANTIFERROMAGNET IN A MAGNETIC FIELD
1= E; = max(¢llo?oV|g)). (25)

Let us come back t&XXX model,

ngx: 2 0'§<m)0'§<m+1) + ‘Tilm)o'gfmﬂ) + O'(zm)o'gnﬂ)- (30)
m

Correlation functions decays as power laws at large distances
In|i—j|>1/(2—-27). Leading terms of correlations are

(ool = (gloy ol)| ) = Fli = |77, But now let us add magnetic field
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H% = Hixx— 2 hal™. (31) Ai = j[ M < E;j<1 -al. (39
m

So magnetic field increases lower bound and deceases upper

Thi_s in_troduce anisotropy in a gliffe_rent way. In small mag-ound. When magnetic fields are close to the critical value,
netic field h—0, small magnetization develops;,=h/7>.  the bounds become

For stronger magnetic field, magnetization increases. As

magnetic field approaches its critical value=4, magnetiza- o 4 ——
tion approaches fferromagnetic state with all spins yp Ahi-j " <Ej< ;th‘ h. (40)
2 — .
o0,=1-—vVh.—h, h—h.-0. (32 In Appendix A we evaluated concurrence before the mea-
m surement. It vanishes at finite distance, see(Bg§9).
Exact expression for magnetization at arbitrary value of In the most general case 8XZ magnetic field correla-

magnetic field is given on pp. 70-71 §89]. Averages of tions can be described by similar formulas, but parameters
other spin components over ground state are zejgoy hC,O'Z,H are different. We shall elaborate in the next section.
=0.

~ In this section, we are considering moderate magnetic V. XXZ ANTIFERROMAGNET IN A

field O=<h=h.. Asymptotic of correlation functions at large MAGNETIC FIELD

distances can be described as follows:
o Let us add interaction with a magnetic field XXZ spin
1 A Coiw(l—az)h —]|} chain:

(i-p? * li-jl?

(pla o)) =
(33) HYxz= Hoz— > hat™. (41)

Here double angular brackets on the left-hand side mean that
we subtracted?, see(4). The coefficientsA; andA, depend ~ Small magnetic field leads to a small magnetizaiigr xh.
on magnetic field. For small magnetic field, critical indéx The magnetic susceptibility is
is close to 1:
1-79

87> X=———. (42)
6=1+[2In(h/N)]T h—0; h,=+ /% (34) my sin Ty

L - . Here we used parameterrelated to anisotropy=cos .
f':mdI for tthezv.alues of magnetic field close to critical potht, 4 dependence of on 7 is illustrated in Fig. 2. Let us
IS close 10 <. discuss the plot. The meaning of a singularityrat0 is the
1 —— following: The casep=0 corresponds to ferromagne¥eX
0=2{1-—Vh,-h], h—h;h<h=4. (35 At zero magnetic field it has spontaneous magnetization
pointed in an arbitrary direction. Weak magnetic field will
In Appendix B we discuss the dependencedafn magnetic  align spins to the direction of the magnetic field. This makes
field for intermediate fields. Figure 4 foy=1 shows thatis  susceptibility infinite. Asy approaches 1, susceptibility ap-
a monotonic function of the magnetic field. Asymptotic of proaches 142 (antiferromagneticXX casg.
other correlation functions are For stronger magnetic field, magnetization increases. As
L o o magnetic field approaches its critical vallg=2(1-A),
(Bloyol| ¢y = (loy'o)|) =AM - ][, (36) magnetization approaches 1:

CoefficientA(h) vanishes as magnetic field approaches the

criical value. Exact formula fop at any value of magnetic o,=1- E\;hc_ h, h—h.-0. (43)
field can be found on pages 73-76(8%ef. [39] and in Ref. ™

[31]. It shows that 1/Z1/8< 1< §<2. This means that the

lower bound of LE is dominated by, correlations again Averages of other spin components over ground state are
zero:o,=0,=0. Here we are considering moderate magnetic

E; = A(h)i - j| ™. (37)  field 0<h<h,. Asymptotic of correlation functions at large

distances can be described by the formulas simila¢XXin

a magnetic field case s€&3) and(36), but critical indexd is

different. A formula for 6 depends on anisotropyA

Sl = (1 +(¢|oV 0| $))? - 402, =cosw. Let us first discuss small magnetic fietd— 0.
Critical index is quadratic in magnetic field for<Onp=<2/3:

Now let us discuss the upper bou(®) of LE. Because of
translational invariance we have

g =(1-(g|ada| ). (39)

At large space separatiofis-j| — o, correlations can be sim-
plified (#|o" Y| ) — o 2. This means that bottfl approach
(1-0 2?2 Finally the bounds for LE for largg-j| are The coefficient

0= 1(]_ + alhz). (44)
n

062314-4



LOCALIZABLE ENTANGLEMENT IN....

12

0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0

n

FIG. 2. x (Eq. (42)) vs 7 (Eq. (23)).

(1-7)?

a1 —
TN .
4yt 13
TN an<2(1_77))5| TN

shows singularity at point$=0 (ferromagneticXXX) and
n=2/3[A=-1/2 casg

(45)

11
ayv;l? for »— 0+0. (46)
11 2
= for p—|Z]-0. (4
g (-3 O (3) 47

The nature of dependence of the coefficientis illustrated
in Fig. 3. In case 2/% »<1 smallh behavior is more com-
plicated:

1.0

038 4

0.6

04 4

0.2

0.0

-0.2 A

-0.4

-0.8

-0.8 4

-1.0

0.0 0.2 04 0.6 0.8 1.0

n

FIG. 3. a; (EQ. (45)), a, (Eq. (49)) Vs 7 (Eq. (23)).
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127 / | Anti-ferromagnetic XXX case i.e. n«=1]|
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FIG. 4. Critical exponen® (Egs. (33) and (36)) vs magnetic
field h for different values of anisotropy.

1 _
9= =(1 + a,h®7 D) (48)
Y
Notice that the power of magnetic field changes monotoni-
cally from 2 atp=2/3 to 0 atyp=1. An expression for the
coefficienta, is more complicated:

F2<1 + 1)
ap = 2me T tar<z>—77. (49)
7 2( 1 1)
13 =+=
2 7
Here
B=1-nIn(l-n)+7ln 7y (50)
and
3-2y
4n\f’7_7 sin 7y B F( 2(1- 7;))
I exp( 2(1- n)) &Y

2-7 )
F(Z(l—n)

a5(7) shows singularity at poing=2/3,

1 1

2
a2~81—772(77_—2/3) for 7]~><§>+O. (52

The nature of dependence @ on 7 is illustrated in Fig. 3.
We see that aty=2/3 critical index 6 strongly depends on
weak magnetic field. It also depends strongly on weak mag-
netic field for »=1, which is antiferromagnetigXX case.

For magnetic field close to critical, the ind@approaches
2:

R
4yh.-h
T tar(%]>tan mn

In Appendix B we discuss the dependencedan magnetic
field for intermediate fields. Figure 4 shows the dependence

=2+ (53)
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of 6 on magnetic field for different values of. Note that the
dependence is monotonic.

PHYSICAL REVIEW A69, 062314(2004

A= Ao = N3 =\,

For XXZ in a magnetic field the lower bound of localiz- Then concurrencéC) can be expressed as

able entanglement is also given by correlations

E; = (Blo | ). (54)

Asymptotic of thea, correlations is still given by the for-

mula (36) with ¢ described in this section.

VI. SUMMARY

In this paper we showed that correlations in spin chains
are important not only for condensed mater physics and sta-
tistical mechanics but also for quantum information. We con-
sidered boundaries for localizable entanglement in the

C= ma){O,)\l— No—N3— )\4}

Let us start with the most general casXZ in a magnetic
field:

(@) =(o)=0; ()=c and O<o<1;

ground state of antiferromagnetic spin chains. We showed

that anisotropy raises the localizable entanglement. We also

calculated concurrence before the measurement to illustrate

that the measurement raises the concurrence.
There are still two open problems leff). to prove that
localizable entanglement coincide with the lower boud

(AB)

(@)a))=0; (ofod)=(a)al)=0; (A7)

(0VoD) = (o oy =g - }); (A8)

(00 o)y =Gli-j) = +gyli - }); (A9)
0<lgdi— Dl <lgi-)I<1 forlarge |i-jl.

(A10)

=max,(|QlL,)), (ii) to calculate localizable entanglement for Hence density matriy for ith andjth qubits(sping can be

positive temperature.
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APPENDIX A

expressed as

In this Appendix, we calculate the concurrence between

two marked spins before measurement. We show that the
concurrence betwedth andjth qubits vanishes at finite dis-

tanceli—j| before the measurement. The density matriof
ith andjth spins can be represented as

1 ) . o
p=72 Sl o aliolod).  (AD
Mi M
To calculate concurrence we need
p=(0y® ay)p(oy® ay). (A2)

Here p* is the complex conjugate gb. Subindexu runs
though four different valueg=0,x,y,z. Pauli matrixo, are

—|—<1 o) _(o 1) (A3)
70=""\o 1)0 ™*7\1 o)
(0 i (10
oy= i o) o,= 0 -1/ (A4)
Following Wooters[15] we define
=T
R=\\ppVp. (A5)

We shall denote the eigenvalues®ty A\, in a decreasing
order

p=3101+ 2 V0000000 g0,
+Z(|®0'Z+0'Z®I). (A11)

All coefficients o, g,(i—]j), G(i—j) are real, so
0 =p, (A12)
p=(0y® ay)p(oy ® ay). (A13)

The first three terms in EgA11) commute witho, ® o, and
the last term anti-commutes. Let us define

po= ot + ¥ 6 v g0 apr Do e 0,
(A14)

and
m:%(|®az+az®|). (A15)

Notice that[l ® o,+0,®1,0,® oy+0,® 0,]=0. So we have

p=po+m, p=po—m, [pp,m]=0,  (Al6)

[p,m]=0, [pm]=0, [p/p]=0.
Now we can simplify the expression for the matRx

r~ \’_ V/—
R=\\pp\p=pp= pa— .

(A17)

(A18)

Using this representation we can diagonakzeCorrespond-
ing four eigenvalue$\,} are:

062314-6
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{%\"l(l +G(i—j))?- 402,%1\e”(1 +G(i —j))2- 402,
(A19)

1-Gli-j)  gli=j) 1-Gli-j) gi-})
4 2 4 2

PHYSICAL REVIEW A 69, 062314(2004)

Now let us consider separately the following special case Now we can calculate the concurrence:

. XXX model with k0.
In this caseo=0 and

Gli-D=gdi - =gli-})=g,
The set of eigenvalues & becomes

1+4g 1+g 1+qg 1-
{m:{ 998 439

} . (A20)

To get an explicit expression for concurrence we need to m

consider separately two cases:

A: g>0 (for |i—j|=even):
1l+g 1-3
N =Ay=Ng= . Ng= . A21
1= =N= T A= (A21)
We can calculate the concurrenCe
1_
C:max{o,—Tg}:O, (A22)
since|g| <1.
B: g<0 (for |i—j|=0dd);
1-3 l+g
M=, A=N3=N\g= . A23
1 4 2 3 4 4 ( )
The concurrence
-39-1
C:max{o, i } (A24)

is non-zero only ifg< —%. This happens only for=i+1 with

1-41n2

g=(ofof)=——F— =~-0591.  (A25)
Hence we have
Cjj+1=In2-3~0.193,

So, concurrence is non-zero only for nearest neighkfors
ground state oKXX model without magnetic field It was
first discovered in Ref[34].

II. XXZ model at k0.

In this caser=0. At |i—j| —

O(i =) >0, g(i—])>|gi =) (A27)

and bothg,(i—j) andg,(i—j) decay as a function of the dis-

tanceli—j|. Eigenvalues oR become

_1_gz(i_j)+gx(i_j)_
- 4 2

\ (A28)

1+ai—i
Np=Ag= Lrod), (A29)
4
l_gz(i_j) gx(l_J)
Ay = - . A30
4 4 2 (A30)
C=max{0,-3+g(i-)-50. -}  (A3D)
It vanishes at distance larger thAs j|min,
1 o F
2_gx(|| ]|m|n)_ ||_J|r?.”n,
[i = ilmin=(2F)*"". (A32)
. XXX in a magnetic field:
Gli—j)=o?+gy(i—j). (A33)

For largeli—j| both g,(i—j) andg,(i—j) become small. For
magnetic field smaller than critical

. 1l+¢7?
|9x(i = DI > lgz(i = I (A34)
Eigenvalues oR in Eq. (A19) become
_1-0? gli-) gx<i—j>‘_
N = 2 2 + 5 ; (A35)
1-0% gli-j)l+o?
= = . A
Np=hg= =+ g (A36)
1-0% gfi—j) |gi-])
= - - A37
Ag 2 2 5 , (A37)

and concurrence becomes

1
C=maX{0.lgx(i -I-

-o?_gfl —j>1+02}

2 2 1-0?
(A38)
Hence concurrence vanishes at distance lager [th&iin,
1-02 o A
2 = |gx(|| _]|min)| = |A(h)||| _J|m%{10

== | 2201 (A39)

Hmin= 1-0g2

APPENDIX B

In this Appendix, we discuss the dependence of critical

exponentd on the magnetic fielth. We follow Ref.[39].
I. Let us start fromXXX model

062314-7
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Energy of a magnor(\) is defined by a set of equations: II. Now let us discuss<XZ model.
1 (A In this case we can use the same set of equat®hsand
e\ - Z-rf KON, ) e(w)di = V), (B1) (B2) with K(\, 1) and gy(\) replaced by
-A
sin(2wn)
-2 2 K = sinh\ — w+imy)sinh\ - u—-iwn)’
KOww) = 73, &(\)=2h~- (B2)
1+ —p) 1, .
2 si
eo\) = 2h— 2sim(my) (B7)
With extra conditione(+A)=0. This set of equations deter- cosf()\ + ﬂ)(;osr()\ - ”T—n)
mines the dependence Afon magnetic fielch. HereA is a 2 2
value of a spectral parameter at the Fermi edge. An impor= -
tant object is the fractional charg&\): For small magnetic field
1 A=(1- )|n(@ o when h—0  (B8)
Z(\) - ZJ KO\, W Z(pw)du=1. (B3) P h
-A
The critical exponent is equal to Hereh, is given by(51). N
But for magnetic field close to critical:
0=2Z%(A). (B4)
For XXXmodel, the critical fielch,=4. For large magnetic =—< 0 when h— *h,. (B9)
field (Jh| >hy)A=0. If magnetic field approaches the criti- > tar<ﬂ>
cal value from below, then 2
A= %\”hc_ I and 6=2 —EA Y (B5) The critical value of the magnetic field is
aa
h.=2(1-A)=2(1-co . B10
If the magnetic field is smallh| — 0 then o= 2 )= gm) (B10)
1 2m)° 1 For general magnetic field, we solved these equations nu-
A= — In(—) o and A=1+— =1 merically and found that both (h) and #(h) are monotonic
2m eff 27A functions ofh. The numerical solution fofi(h) was shown in

(B6)  Fig. 4.
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