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We consider quantum error correction against correlated noise using simple and concatenated Calderbank-
Shor-Steane codes as well asn-qubit repetition codes. We characterize the performance of various codes by
means of the fidelity following the error correction of a single logical qubit in a quantum register. For
concatenated codes we find a threshold in the single-qubit error rate below which the encoded qubit is perfectly
protected. The threshold depends on the correlation strength of the noise and goes to zero for perfect correla-
tion. Finally, we concatenate the traditional error correcting codes with a decoherence free subspace and
evaluate the performance over the whole range from uncorrelated noise to perfectly correlated noise.
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I. INTRODUCTION

It is clear by now that the operation of a large-scale quan-
tum computer will require some form of protection from
decoherence arising from the interaction with a noisy envi-
ronment, imperfect logical gates, and noisy control fields.
There are three methods known to provide such protection—
quantum error correcting codes[1–8], decoherence free sub-
spaces[9–13], and dynamical suppression of decoherence
[14]. The quantum error correcting codes have been devel-
oped under the assumption that errors affect different qubits
independently. On the other hand, decoherence free sub-
spaces arise due to the symmetric coupling of the environ-
ment to all the qubits when errors are perfectly correlated. In
a physical realization of a quantum information processor the
sources of noise will generally have a finite correlation
length and time leading to partially correlated errors affect-
ing qubits at different locations and different times. In this
paper we focus on spatially correlated errors and investigate
the performance of error correcting codes and decoherence
free subspaces in both simple and concatenated forms for
arbitrary correlations of the environment.

This work is a preliminary characterization of the effects
of correlated noise using the simplest possible model for the
environment and quantum information processor. In particu-
lar, we restrict our attention to a single logical qubit in a
quantum register. Furthermore, we assume that the process
of syndrome extraction and error correction proceeds
perfectly—i.e., without introducing any additional errors.
The environment is modeled as a set of fluctuating classical
fields. Despite these simplifications we are able to assess the
effect of partially correlated errors on the performance of
error correcting codes and decoherence free subspaces. Our
results—an enhanced probability for multiple-qubit errors—
can be applied in the context of a fault-tolerant error correc-
tion protocol in a straightforward manner, providing a lower
bound on the enhancement of the failure probability due to
the correlations.

The layout of the paper is as follows. In Sec. II we inves-
tigate several error correcting codes in their simple(uncon-
catenated) form. We consider concatenation of the three-bit
repetition code, thev7,1,3b Hamming code, and the
v23,1,7b Golay code in Sec. III, where the notationvn,k,db
indicatesk logical qubits encoded inton physical qubits us-

ing a distanced code. In Sec. IV we consider concatenating
a decoherence free subspace with the three-bit repetition
code and we conclude in Sec. V.

II. SIMPLE CALDERBANK-SHOR-STEANE CODES

A. Physical model

In order to explore the effects of correlated noise in quan-
tum error correction we consider the simplest possible ex-
ample. We consider a quantum register consisting of a single
logical qubit in an arbitrary state encoded inton physical
qubits by means of an error correcting code. We assume that
the encoding proceeds perfectly. The physical qubits interact
with a noisy environment through the interaction Hamil-
tonian

HI = g"o
i=1

n

Eistdsi+ + Ei
*stdsi−, s1d

where the fieldsEistd=Eistdexpfifstdg are a set of Gaussian
random variables characterized by the correlations
kEi

*stdE jst+tdl. In order to analyze repetition codes we re-
strict the phase of the noise tofistd=0 while for general
Calderbank-Shor-Steane(CSS) codes we do not restrict the
phase.

The use of classical noise fields simplifies the calculations
but should not be viewed as a fundamental limitation of our
treatment. It is quite likely that in a physical implementation
of a quantum computer there will be external electric or mag-
netic fields used as control fields which would essentially be
classical in nature. Any fluctuations of these fields would be
well represented in our treatment. In addition, a quantum
computer will always be subject to a bath of electromagnetic
fields modes in either a thermal state or the vacuum state. In
Appendix A we show that our results are unchanged for an
environment of quantized field modes.

B. Calculation of the fidelity

We characterize the performance of the various error cor-
recting codes by means of the fidelity of the density operator
representing the quantum register after a single application
of error correction. The fidelity is defined as
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F2 = kcs0durecstducs0dl, s2d

where the density operatorrec represents the state following
the evolution of the register and the application of the error
correction protocol. The density operator is necessary to rep-
resent the system when we wish to consider an ensemble of
many different realizations of the classical noise fields.

In our model we consider only one application of the error
correction protocol, so the density operator has the form

recstd = Ĉ„rstd…, s3d

where the notationCs·d represents the application of the error
correction protocol and the density operator prior to error
correction is

rstd = lim
N→`

1

No
k=1

N

Ukst,0ducs0dlkcs0duUk
†st,0d. s4d

The unitary time evolution operatorUkst ,0d represents the
time evolution from time 0 to timet for thekth realization of
the noise fields.

The error correction operationĈs·d has the form
o j=0

t Pj ·Pj
† wherePj is a projection corresponding to the mea-

surement of thej th error syndrome and the application of a
unitary operator correcting the error indicated by the mea-
sured syndrome. The fidelity in this model can quite gener-
ally be written

F2 = lim
N→`

1

No
k=1

N

o
j=1

t

ukcs0duuPjUkst,0ducs0du2. s5d

C. Three-qubit repetition code

In general, an exact expression for the density operator
may be unattainable, particularly for larger error correcting
codes. We can, however, find the leading-order(in single-
qubit error probability) correction to the fidelity for many
codes. To motivate this we explicitly consider the three-qubit
repetition code which can protect a single logical qubit
against a single-bit-flip error or a single-bit phase error de-
pending on the choice of the encoding. We consider an en-
coding

u0lL = u000l, s6ad

u1lL = u111l, s6bd

which protects against a bit flip on one of the physical qubits.
The time evolution operator for a given realizationk of the
noise is

Ukst,0d = p
i=1

3

Ukist,0d, s7d

where

Ukist,0d = cosVkit − i sin Vkitsix s8d

is the time evolution for theith physical qubit and

Vki = gEki, s9d

where we have taken the noise fields to be constant in time
for each realization. This code can correct three different
single-qubit errors as well as the trivial null-error condition.
There are four projectors which correspond to the outcomes
of the error correction protocol:

P0 = su000lk000u + u111lk111ud, s10ad

P1 = s1xsu100lk100u + u011lk011ud, s10bd

P2 = s2xsu010lk010u + u101lk101ud, s10cd

P3 = s3xsu001lk001u + u110lk110ud. s10dd

Physically these projectors are realized by the appropriate
series of interactions between the data qubits and ancilla qu-
bits, the measurement of the ancilla qubits to determine the
error syndrome, and subsequent application of a bit-flip op-
erator to correct the error. Here we assume that this process
occurs perfectly—i.e., without introducing further errors—
and effectively instantaneously on the time scale of the sys-
tem evolution.

The projectors in this case have the property that

kcs0duPjUkst,0ducs0dl = kcs0dus jxUkst,0ducs0dl, s11d

where we defines0x; I. Noting this property and the struc-
ture of the most general initial state

ucs0dl = au000l + bu111l s12d

for the data qubits, it is clear that the only contributions to
the fidelity are those terms with zeross jx

2 = Id or three bit flips
ss1xs2xs3xd including the flip applied during error correction.
Then the fidelity is

F2 = lim
N→`

1

No
k=1

N HucosVk1t cosVk2t cosVk3t

+ iA sin Vk1t sin Vk2t sin Vk3tu2

+ o
j=1

3

u− i cosVkpt cosVkqt sin Vkjt

− A cosVkjt sin Vkpt sin Vkqtu2J , s13d

where pÞqÞ j and A=ab* +a*b. Multiplying terms and
taking the average over the realizations of noise fields yields

F2 =Kcos2V1t cos2V2t cos2V3t

+ A2 sin2V1t sin2V2t sin2V3t

+ o
j=1

3

fcos2Vpt cos2Vqt sin2V jt
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+ A2 cos2V jt sin2Vpt sin2VqtgL , s14d

and noting that forA2=1 this is pi=1
3 scos2Vit+sin2Vitd=1,

we find

F2 = 1 −gksin2V1t sin2V2t sin2V3t

+ cos2V1t sin2V2t sin2V3t + sin2V1t cos2V2t sin3V3t

+ sin2V1t sin2V2t sin2V3tl, s15d

whereg=1−A2. To lowest order in time this is

F2 = 1 −gsgtd4skE2
2E3

2l + kE1
2E3

2l + kE1
2E2

2ld, s16d

which is simply unity minus the probabilities for the lowest-
order noncorrectable errors to occur.

D. Larger error correcting codes

We generalize the above result for larger error correcting
codes. The assumption that the noise fields can be repre-
sented by Gaussian random variables ensures that all mo-
ments of the fields can be derived from the second-order
moment kEistdEjst+tdl. We further assume that the spatial
and temporal correlations factorize askEistdEjst+tdl
=kEiEjlfstd. In addition we note that the single-qubit error
probability in this model isp=sghstddd2 wherekEi

2l=d 2 and

hstd =E
0

t

dt1E
0

t

dt2fsut1 − t2ud. s17d

We consider two different CSS codes—the well-known
v7,1,3b Hamming code and av23,1,7b Golay code which
correct all one- and three-qubit errors, respectively. These
codes are particularly simple in that the set of lowest-order
uncorrectable errors is exactly the set of allfsd+1d /2g-bit X
errors andfsd+1d /2g-bit Z errors (where d, the code dis-
tance, equals 3 and 7 for the 7-qubit Hamming and 23-qubit
Golay code, respectively). The fidelities for these codes are

Fv7,1,3b
2 = 1 − p2 o

hi1,i2j
kEi1

2 Ei2
2 l s18d

and

Fv23,1,7b
2 = 1 − p4 o

hi1,i2,i3,i4j
kEi1

2 Ei2
2 Ei3

2 Ei4
2 l, s19d

respectively.(A more careful calculation yields terms of the
form kEi1

Ei2
Ei3

Ei4
l for the v7,1,3b code. See Appendix B for

details.) For independent noise the field correlations factor-
ize. This will not generally be valid, and correlations in the
noise will enhance the failure probability and decrease the
fidelity. In fact, we will show in Sec. III that strong correla-
tions can completely destroy the ability of a code to protect a
quantum computer from decoherence.

E. Results

We now make a specific choice for the form of the noise
field correlations and demonstrate the effect of the correla-

tions on the performance of these codes. As we stated above
we assume the noise fields are represented by Gaussian ran-
dom variables with spatial correlations of the form

kEiEjl = e−uxi−xj u/l0, s20d

where l0 is the correlation length. Higher-order correlations
are calculated by means of the Gaussian moment theorem.
While this is a convenient choice for the correlations the
general features presented here are not dependent on the spe-
cific form. Any type of positive correlation in the noise af-
fecting different qubits will enhance the failure probability
over that for independent noise. Furthermore, classical noise
fields are representative of a thermal environment for both
zero and finite temperature. The fidelity of a quantum regis-
ter interacting with a reservoir of quantized field modes in
the vacuum state is calculated in Appendix A.

We consider a regular linear array of qubits so that the
field correlations can be expressed in terms of powers ofx
=exps−sd wheres is the spacing of the qubits in units of the
correlation length. Then the fidelity for a code correctingr
−1 errors can be written

F2 = 1 − prCsxd, s21d

where Csxd is a polynomial (with positive coefficients)
which depends on the particular code. The independent error
results are equivalent to takingx=0. The effect of the corre-
lations is to enhance the rate at which uncorrectable errors
are produced. This is easily seen for the three-qubit repetition
code where evaluating the correlations in Eq.(16) yields
C3sxd=3+4x2+2x4. In the limit of perfect correlationssx
=1d the failure rate is tripled over the rate for independent
errors. From Eq.(18), the v7,1,3b code has

Cv7,1,3b = 21 + 12x2 + 10x4 + 8x6 + 6x8 + 4x10 + 2x12,

s22d

which also triples the failure rate for perfect correlations. For
larger codes the enhancement is more pronounced. For ex-
ample, the failure rate for thev23,1,7b Golay code is in-
creased by a factor of 105 for perfect correlation.

In practice the enhanced failure rate in the presence of
correlated noise does not necessarily have a large impact on
the feasibility of carrying out error correction. Even the
maximal enhancement needs only to be offset by a decrease
in p by a factor of 31/2 and 1051/4 for the Hamming code and
Golay code, respectively. This requires the error correction to
be applied at more frequent intervals but is unlikely to prove
fatal to quantum error correction. On the other hand, one of
the authors has shown that the minimum energy requirement
per logical gate scales with the threshold aspth

−5/2 [15]. From
this point of view the reduction in the threshold required to
protect against correlated noise(to be exhibited in the fol-
lowing section) could represent a significant restriction on
the physical implementations of quantum error correction.

The enhancementfCsxd /Cs0dg of the failure rates for the
three codes is plotted in Fig. 1. While thev7,1,3b code has
the same failure rate as the repetition code atx=0 andx=1,
it is has a weaker dependence on the correlations for inter-
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mediate values. However, the larger Golay code which cor-
rects up to three-qubit errors has a stronger dependence onx.
We expect this will be a general feature of larger correcting
codes. They will be more sensitive to correlations because
the rate forr-bit errors which are necessary to cause a failure
will comparatively be enhanced more strongly.

The fidelity, including thep dependence, is plotted in Fig.
2 for all three codes considered. Note that these surfaces are
approximations to the fidelity because we include only the
lowest order inp. They do, however, include all contribu-
tions in x to this order inp. TheF2=0 portions of the graph
are imposed by hand wherever our formula givesF2,0. In
reality the fidelity must go smoothly to zero asp increases to
1. The enhancement of the failure rate seen in Fig. 1 is re-
flected in thex dependence of the fidelity with thev23,1,7b
code showing the sharpest dependence. Comparing Figs.

2(b) and 2(c) it is interesting to note that the fidelity falls to
zero more quickly inp for the larger code while for smallp
the fidelity is flatter.

III. THRESHOLD RESULTS FOR CONCATENATED
CODES

There is a well-known threshold result for fault-tolerant
quantum computing[16–18]. The threshold can be derived
by concatenating Calderbank-Shor-Steane codes many times
while taking account of the scale-up in the number of funda-
mental operations which are needed to implement logic gates
acting on encoded qubits in a fault-tolerant manner. Here we
encode a single qubit by concatenating CSS codes an arbi-
trary number of times. For simplicity use the same code at
each level of concatenation. Using anvn,1 ,db code, at the
kth level of concatenation we havenk physical qubits with all
errors onfsd+1d /2gk−1 or fewer qubits corrected. Our ap-
proach does not include the scale-up in the number of opera-
tions which are needed to extract the error syndrome and
apply the error correction because we assume these are car-
ried out perfectly.

The error correction protocol is more complicated for
concatenated codes because the errors must be corrected at
each level of the concatenation in order to get the maximum
protection. That is, we first correct errors on each block ofn
physical qubits at the lowest level. We then move up to the
next level and apply error correction, now treating each
block of n qubits as a single logical qubit. Repeating this
procedure at each level of concatenation allows any error of
fsd+1d /2gk−1 or fewer physical qubits to be corrected.

We should note that we have presented an extremely ide-
alized version of the error correction protocol for concat-
enated codes. In practice we are always physically interact-
ing with the lowest level of the concatenation and the logic
gates between blocks must be implemented in a fault-tolerant
manner. This is feasible, but it takes many physical gates to
implement a single logic gate and each gate introduces an-
other opportunity for errors to occur. In a practical realiza-
tion of error correction the procedure we have described is
unlikely to be the optimal procedure[5]. Nonetheless, our
procedure gives an estimate which represents a lower bound
on the effect of correlations on the failure rate for concat-
enated codes.

Just as for fault-tolerant quantum computing, we find a
threshold when we concatenate to arbitrary levels. That is,
there is a single-qubit error ratepth such that the fidelity, in
the limit as the concatenation depth goes to infinity, becomes

F2 = H1, p , pth,

0, p . pth,
s23d

where pth→pthsxd when correlated noise is allowed. For a
codeC correctingt−1=sd−1d /2 errors concatenatedk times
the fidelity is

FC,k
2 = 1 − ptk o kEi1

2
¯ Eitk

2 l, s24d

where the sum accounts for all thetk-bit errors which cause a
failure. As k is increased it quickly becomes unmanageable

FIG. 1. The enhancement of the failure rate for the three-qubit
repetition code(i), the v7,1,3b code (ii ), and thev23,1,7b code
(iii ). The full curve for thev23,1,7b code is plotted in the inset.

FIG. 2. The fidelity of the three-qubit repetition code(a), the
v7,1,3b code(b), and thev23,1,7b code(c).

CLEMENS, SIDDIQUI, AND GEA-BANACLOCHE PHYSICAL REVIEW A69, 062313(2004)

062313-4



to directly evaluate this sum. However, the structure of the
code allows us to evaluate the sum approximately. Consider
working from the top level of concatenation down to the
bottom. In order to have a failure(error at the top level) we
must have an error int blocks at the level below and there
ares n

t
d ways to choose those blocks. This repeats through the

hierarchy of levels so that going down to thesk− jdth level
there are

Sn

t
Do i=0

k−j ti

= Sn

t
Dtk−j−1

s25d

ways to choose blocks with errors which propogate up to
cause a failure. There remainj levels of the concatenation for
which we have performed the sum. We approximate the fi-
delity as

FC,k
2 = 1 − ptkSn

t
Dtk−j−1F o

t j bits

kEi1
2
¯ Eitj

2 lGtk−j

, s26d

where the sum is more manageable but we have assumed
that correlations factorize into blocks ofnj qubits. Obviously
for j =0 we neglect correlations altogether. However, we are
able to carry out the sums forj= 1, 2, and 3 and evaluate to
some approximation the contributions to the fidelity from the
correlations.

It is now straightforward to derive a threshold condition
from the fidelity. Writing the fidelity as

FC,k
2 = 1 −Sn

t
D−1

spBdtk, s27d

it is clear that forpB,1 the fidelity goes to unity and for
pB.1 it goes to zero ask is increased. This yields a thresh-
old curve

pth = FSn

t
D o

t jbits

kEi1
2
¯ Eitj

2 lG−t−j

, s28d

which approaches the true threshold asj →`.
We first consider the threshold for the three-qubit repeti-

tion code. This code is small enough that we are able to
calculate the correlations explicitly forj= 1, 2, or 3. In other
words we include the correlations within a block of 3, 9, or
27 qubits, respectively, while neglecting correlations be-
tween qubits in different blocks. For thev7,1,3b code we are
able to find curves forj =1 and 2 and for thev23,1,7b code
we are only able to calculate forj =1.

The threshold curves are plotted in Fig. 3. The presence of
correlations in the noise lowers the threshold value below
which the code perfectly protects the logical qubit from er-
rors. The curves show a typical reduction of the threshold by
a factor of 2 for perfect correlations. However, thej =3 curve
for the three-qubit code hints that there may be a larger effect
when more correlations are included. In particular, as we
shall show below, the true curve must go to zero asx→1.

Another code which exhibits a type of threshold behavior
is then-bit repetition code. This is analogous to the three-bit
code discussed previously, protecting a single logical qubit

against either bit-flip or phase-flip errors onsn−1d /2 or
fewer qubits. Note that this code makes more efficient use of
qubits than the concatenated three-bit code. The fidelity for
the n-bit code to lowest order inp has the form

F2 = 1 − psn+1d/2 o kEi1
2
¯ Eisn+1d/2

2 l, s29d

where the sum includes allfsn+1d /2g-bit errors. In order to
see that this code has a thresholdlike behavior asn is in-
creased we define a set of curves

pnsxd = fBnsxdg−2/sn−1d, s30d

where the fidelity of then-bit code is equal to the fidelity of
a single qubit. HereBnsxd results from the summation over
fsn+1d /2g-bit errors. These curves, shown in Fig. 4 up to

FIG. 3. The threshold curve for the three qubit code(a) for j
=1 (i), 2 (ii ), and 3(iii ). The threshold curves(b) for the v7,1,3b
code for j =1 (i) and 2(ii ) and for thev23,1,7b code for j =1 (iii ).

FIG. 4. A set of curves where the fidelity of then-bit repetition
code is equal to the fidelity of a single qubit. Shown forn
=3,5, . . . ,15, withn=3 the uppermost curve andn=15 the lower-
most curve.
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n=15, shift steadily downward asn increases. They are as-
ymptotically approaching a threshold curve asn→` with
the end pointspths0d=1/4 andpths1d=0.

These curves can be better understood in the following
way. For any point below one of these curves, the total fail-
ure probability is reduced if the logical qubit is encoded in
the corresponding number of physical qubits. For points be-
tween two curves, the failure probability is reduced for the
upper curve and enhanced for the lower curve. Physically,
even though the probability ofn qubits failing decreases with
n, the number of combinations increases withn. These two
competing effects account for the structure of these curves
with increasingn.

We can calculate the correlations exactly forx=1. The
fidelity for a concatenatedvn,1 ,db code in this case is

FC,k
2 = 1 − ptkSn

t
Dtk−1

s2tk − 1d !! , s31d

which leads topth→0 asx→1 because of the double facto-
rial of tk. This suggests that perfect correlations completely
destroy the ability of the error correcting code to protect
against errors. To put this another way, we can make the
threshold arbitrarily small by takingx arbitrarily close to 1.
For finite x we estimate that, for the repetition code, the
threshold may be decreased by an order of magnitude or
more if x*0.8, which corresponds to a qubit separation of
the order of 0.22 coherence lengths.

A different strategy for error correction in the presence of
strongly correlated noise is already known—that of decoher-
ent free subspaces(DFS’s). This is the subject of the next
section.

IV. CSS CODES CONCATENATED WITH A DFS

In this section we explore the possibility that concatenat-
ing the error correcting codes of the previous section with a
decoherence free subspace provides good protection against
partially correlated noise. It should be noted that this has
been considered previously[10], although without an ex-
plicit noise model.

We first consider encoding our logical qubit with a simple
decoherence free subspace. For simplicity we restrict our at-
tention to bit-flip noise. In this case there is a decoherence
free subspace of two qubits defined as

u0lL =
1

2
su0l + u1ldsu1l − u0ld, s32ad

u1lL =
1

2
su0l − u1ldsu1l + u0ld, s32bd

where the first(second) term in parentheses refers to the first
(second) physical qubit. For perfectly correlated noise this
encoding will provide perfect protection of the logical qubit.
For partially correlated noise we need the following proper-
ties of this DFS:

s1xu0lL = u0lL, s33ad

s2xu0lL = − u0lL, s33bd

s1xu1lL = − u1lL, s33cd

s2xu1lL = u1lL. s33dd

A bit-flip error on one physical qubit acts as a phase error on
the logical qubit. The fidelity of the bare DFS is

FDFS
2 = 1 − 2ps1 − xd. s34d

Since the repetition code can correct either bit flips or phase
errors, it is straighforward to generalize the analysis of the
previous section to account for one additional level of con-
catenation using this DFS to encode each physical qubit. The
fidelity can be found by making the replacements

kEiEjl → 2x2u j−i u − x2u j−i u+1 − x2u j−i u−1, s35ad

kEi
2l → 2 − 2x, s35bd

in the equations from the previous section. This is justified in
Appendix C.

Figure 5 shows the fidelity of the DFS alone and the
three-bit code concatenated with the DFS. We see that the
bare DFS yields perfect protection forx=1 but poor protec-
tion for partial correlations. Concatenating the three-bit code
with the DFS combines the properties of both codes; i.e., it
yields perfect fidelity forx=1, but also gives some protection
for a range of partial correlations. Compared with the bare
three-bit code forx=0 the fidelity falls off twice as quickly
in p, reflecting the fact there are twice as many physical
qubits interacting with the uncorrelated noise fields. In gen-

FIG. 5. The fidelity of the bare DFS(a) and the three-bit code
concatenated with the DFS(b).
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eral concatenating with ak-bit DFS yields a worst-case re-
duction in the threshold by a factor ofk for independent
errors. Again, see Appendix C for the proof.

Concatenating the three-bit code many times and then
adding the DFS yields a threshold curve just as before, al-
though with a different dependence onx. The simplest ap-
proximation is to make the replacements from Eqs.(35) and
keeping only correlations within a single(six-bit) block. This
yields a threshold curve

pth = f3s12 − 24x + 16x2 − 16x3 + 24x4 − 16x5 + 6x6 − 8x7

+ 12x8 − 8x9 + 2x10dg−1/2, s36d

which is shown in Fig. 6 along with the threshold for the
three-bit code without DFS’s for comparison. This illustrates
that there is a crossover pointxc<0.4 in the correlation
strength below which traditional error correction provides
the best protection and above which concatenating with a
DFS is favorable.

V. CONCLUSION

We have evaluated the performance of quantum error cor-
rection in the presence of correlated noise, considering both
traditional error correcting codes and decoherence free sub-
spaces. We find that the presence of correlations can enhance
the failure probability of traditional error correcting codes by
several orders of magnitude for large codes and perfect cor-
relations. This leads to a correlation-dependent threshold in
the single-qubit error probability for concatenated codes,
with the threshold going to zero for perfectly correlated
noise. For intermediate correlations we find that the thresh-
old may be reduced by an order of magnitude for qubit spac-
ings on the order of 0.22 correlation lengths. Finally, concat-
enating a decoherence free subspace with a traditional code
yields perfect protection in the limit of perfect correlation
and a maximum reduction in the threshold for independent
noise by a factor equal to the number of qubits which define
the DFS.

While we have not considered a fault-tolerant scheme for
implementing error correction, we believe that a similar
model can be applied in a straightforward manner to yield a
lower bound on the effect of correlations when the scale-up

in the number of fundamental operations is taken into ac-
count.

APPENDIX A: QUANTIZED FIELD MODES

We consider a single logical qubit encoded with the three-
bit repetition code correcting a single-bit-flip error. The en-
vironment is a bath of quantized field modes. The interaction
Hamiltonian is

HI = "o
i=1

3

sixBi , sA1d

where the environment operator is

Bi = o
j

gjsbje
−ikjxi + bj

†eikjxid. sA2d

Herebj andbj
† are annihilation and creation operators for the

j th field mode. The time evolution operator is

Ustd = expS−
i

"
HItD , sA3d

and the fidelity following error correction is

FEC
2 = kcs0duTrFHo

n=0

3

s jxPjUstducs0dlxFkcs0dU†stdPjs jxJ
3ucs0dl, sA4d

wherexF is the initial density operator representing the state
of the environment anducs0dl is the initial state of the qubits.
Keeping all terms to fourth order in time this is

FEC
2 = 1 −g

t4

4 o
m.n=1

3

fkBnBmBnBml + kBnBmBmBnl

+ kBmBnBnBml + kBmBnBmBnlg. sA5d

Assuming the environment is initially in the vacuum state
this becomes

FEC
2 = 1 −g

t4

4 o
m.n=1

3

f4kBn
2lkBm

2 l + 6kBnBmlkBmBnl + kBnBml2

+ kBmBnl2g, sA6d

and under the assumption that each qubit interacts equally
with left-and right-going waves this reduces to

FEC
2 = 1 − 2gt4skB1B3lkB3B1l + kB1B2lkB2B1l + kB2B3l

3kB3B2ld − gt4skB1
2lkB3

2l + kB1
2lkB2

2l + kB2
2lkB3

2ld

= 1 −gg4t4f3 + 2se−2ux1−x2u/l0 + e−2ux1−x3u/l0

+ e−2ux2−x3u/l0dg, sA7d

where we have assumedkBiBjl=g2exps−uxi −xju / l0d. The fi-
delity has the same form as for classical noise fields.

FIG. 6. The threshold curve for the three-bit code concatenated
with DFS’s (solid line). The threshold for the three-bit code without
DFS’s (dashed line).
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APPENDIX B: FIDELITY FOR THE v7,1,3b CODE

We calculate the fidelity for thev7,1,3b Hamming code in
a manner analogous to the three-bit repetition code. The time
evolution operator is

Ustd = p
i=1

7

fcosVit + i sin Vitscosfisix + sin fisiydg,

sB1d

wherefi is the phase of theith noise field. We have used
Mathematica to explicitly calculate the fidelity following er-
ror correction as

F2 = ukcuUstduclu2 + o
i=1

7

ukcusixUstduclu2 + o
i=1

7

ukcusiyUstduclu2.

sB2d

The result to lowest order inp is

F2 = 1 −
1

2o
iÞ j

Vi
2V j

2 − 6 o
hi,j ,k,lj

ViV jVkVlscosficosf j cosfk cosfl + sin fi sin f j sin fk sin fld, sB3d

wherehi , j ,k, lj in the second sum consists of the set

hh2,4,5,7j,h3,4,5,6j,h2,3,6,7j,h1,2,3,4j,h1,2,5,6j,h1,3,5,7j,h1,4,6,7jj. sB4d

The first sum is just what we got by counting all the two-bit
errors. The second sum is a new set of terms arising from the
partial coherence of the errors and the structure of the
v7,1,3b code. These terms do not contribute in the case of
independent errors. Averaging over many realizations of the
noise fields and assuming Gaussian correlations, the fidelity
is

F2 = 1 − p2s21 + 24x2 + 31x4 + 14x6 + 30x8 + 4x10 + 2x12d.

sB5d

Comparing with Eq.(22) we see that the contribution of the
new terms is the same size as the contribution from counting
two-bit errors.

APPENDIX C: FIDELITY USING A DFS

The effect of concatenating the three-bit repetition code
with a DFS can be accounted for by making the substitution
Ei →Ei1−Ei2 in the expressions for the fidelity. This form
comes from the particular DFS used, but clearly if the fields
are perfectly correlated, there will be no decoherence. Mak-
ing this substitution we have the correlations

kEiEjl = ksEi1 − Ei2dsEj1 − Ej2dl

= kEi1Ej1l + kEi2Ej2l − kEi1Ej2l − kEi2Ej1l

= 2x2u j−i u − x2u j−i u+1 − x2j−i−1 sC1d

and

kEi
2l = ksEi1 − Ei2d2l = kEi1

2 l + kEi2
2 l − 2kEi1Ei2l = 2 − 2x.

sC2d

For a different DFS, for example, the four-bit DFS of Za-
nardi and Rasetti[9], a different substitution will be neces-
sary. However, in the limit of independent errors we can find
the fidelity for a concatenation with anyk-bit DFS. The ap-
propriate substitution will replaceEi with a sum overk
fields. Because the noise is independent, only correlations of
the form kEij

2l will contribute. Then the appropriate correla-
tions following substitution are

kEiEjl → 0 sC3d

and

kEi
2l → kkEi

2l. sC4d

This yields a worst-case reduction in the threshold by a fac-
tor of k for independent noise.
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