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Quantum error correction against correlated noise
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We consider quantum error correction against correlated noise using simple and concatenated Calderbank-
Shor-Steane codes as well mgjubit repetition codes. We characterize the performance of various codes by
means of the fidelity following the error correction of a single logical qubit in a quantum register. For
concatenated codes we find a threshold in the single-qubit error rate below which the encoded qubit is perfectly
protected. The threshold depends on the correlation strength of the noise and goes to zero for perfect correla-
tion. Finally, we concatenate the traditional error correcting codes with a decoherence free subspace and
evaluate the performance over the whole range from uncorrelated noise to perfectly correlated noise.
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I. INTRODUCTION ing a distancal code. In Sec. IV we consider concatenating
It is clear by now that the operation of a large-scale quan@ decoherence free subspace with the three-bit repetition

tum computer will require some form of protection from code and we conclude in Sec. V.
decoherence arising from the interaction with a noisy envi-

ronment, imperfect Iogical gates, and noisy control fields. Il. SIMPLE CALDERBANK-SHOR-STEANE CODES
There are three methods known to provide such protection— .
quantum error correcting codés—8|, decoherence free sub- A. Physical model

spaces[9-13, and dynamical suppression of decoherence |n order to explore the effects of correlated noise in quan-
[14]. The quantum error correcting codes have been devetum error correction we consider the simplest possible ex-
oped under the assumption that errors affect different qubitample. We consider a quantum register consisting of a single
independently. On the other hand, decoherence free sulpgical qubit in an arbitrary state encoded intophysical
spaces arise due to the symmetric coupling of the environqubits by means of an error correcting code. We assume that
ment to all the qubits when errors are perfectly correlated. Inhe encoding proceeds perfectly. The physical qubits interact

a physical realization of a quantum information processor thgyith a noisy environment through the interaction Hamil-
sources of noise will generally have a finite correlationtonian

length and time leading to partially correlated errors affect-

ing qubits at different locations and different times. In this "

paper we focus on spatially correlated errors and investigate H, = ghz &0, + & (Do, (1)

the performance of error correcting codes and decoherence =1

free subspaces in both simple and concatenated forms favhere the fields<;(t)=E;(t)exdi¢(t)] are a set of Gaussian

arbitrary correlations of the environment. random variables characterized by the correlations
This work is a preliminary characterization of the effects(¢](t)&;(t+7)). In order to analyze repetition codes we re-

of correlated noise using the simplest possible model for thgrict the phase of the noise i(t)=0 while for general

environment and quantum information processor. In particucg|derbank-Shor-Stea€S9 codes we do not restrict the
lar, we restrict our attention to a single logical qubit in appage.

quantum register. Furthermore, we assume that the process The yse of classical noise fields simplifies the calculations
of syndrome extraction and error correction proceedgyt should not be viewed as a fundamental limitation of our
perfectly—i.e., without introducing any additional errors. yeatment. It is quite likely that in a physical implementation
The environment is modeled as a set of fluctuating classicalt 3 quantum computer there will be external electric or mag-
fields. Despite these simplifications we are able to assess thstic fields used as control fields which would essentially be
effect of partially correlated errors on the performance Of¢assical in nature. Any fluctuations of these fields would be
error correcting codes and decoherence free subspaces. Qug|| represented in our treatment. In addition, a quantum
results—an enhanced probability for multiple-qubit errors—computer will always be subject to a bath of electromagnetic
can be applied in the context of a fault-tolerant error correcfie|ds modes in either a thermal state or the vacuum state. In

tion protocol in a straightforward manner, providin.g. a |0W9rAppendix A we show that our results are unchanged for an
bound on the enhancement of the failure probability due tQnvironment of quantized field modes.

the correlations.

The layout of the paper is as follows. In Sec. Il we inves-
tigate several error correcting codes in their simgiacon-
catenategiform. We consider concatenation of the three-bit We characterize the performance of the various error cor-
repetition code, the[7,1,3 Hamming code, and the recting codes by means of the fidelity of the density operator
[23,1,7 Golay code in Sec. lll, where the notatifpm,k,d] representing the quantum register after a single application
indicatesk logical qubits encoded into physical qubits us- of error correction. The fidelity is defined as

n

B. Calculation of the fidelity
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F2 = ((0)| pedD)| 440)), 2 O =gk, 9

where the density operatpg, represents the state following where we have taken the noise fields to be constant in time
the evolution of the register and the application of the erroffor each realization. This code can correct three different
correction protocol. The density operator is necessary to regsingle-qubit errors as well as the trivial null-error condition.
resent the system when we wish to consider an ensemble @here are four projectors which correspond to the outcomes
many different realizations of the classical noise fields. of the error correction protocol:

In our model we consider only one application of the error

correction protocol, so the density operator has the form Po=(/000{000 +[111)(111)), (109
pedt) = Clp(1), ® P1= 03,(|100(100 + [011(011),  (10b)

where the notatiod(-) represents the application of the error

correction protocol and the density operator prior to error P, = 0,,(/010¢010 +]101)(101)), (100

correction is
P3= 03(]001)(001] +[110¢110). (100

Physically these projectors are realized by the appropriate

] ] ] series of interactions between the data qubits and ancilla qu-

The unitary time evolution operatdd(t,0) represents the pjis the measurement of the ancilla qubits to determine the

time evolution from time 0 to timé for the kth realization of error syndrome’ and Subsequent app"cation of a blt_f"p op-

the noise fields. R erator to correct the error. Here we assume that this process
The error correction operatiorC(-) has the form occurs perfectly—i.e., without introducing further errors—

E}:OPJ- -PJT whereP; is a projection corresponding to the mea- and effectively instantaneously on the time scale of the sys-

surement of thgth error syndrome and the application of a tem evolution.

unitary operator correcting the error indicated by the mea- The projectors in this case have the property that

sured syndrome. The fidelity in this model can quite gener-

N
o) = M =3 Ut Ol HONHOIUL.0.  (4)
N—=Nj=p

ally be written (WO)[P;U(t,0)[410)) = (4 0)| o Ui(t, 0)[440)), (1)
LN where we defineryp,=1. Noting this property and the struc-
F2= |lim NE > (H(0)]|P;U(t,0)|(0)|2. (5)  ture of the most general initial state
N—ooN=1 j=1
|44(0)) = /000 + B[111) (12)
C. Three-qubit repetition code for the data qubits, it is clear that the only contributions to

| | ¢ ion for the densit ‘ the fidelity are those terms with zefojzle) or three bit flips
N general, an exact expression for the density operato O1x09¢T3y) Including the flip applied during error correction.
may be unattainable, particularly for larger error correctlng.l_hen the fidelity is

codes. We can, however, find the leading-ordarsingle-

qubit error probability correction to the fidelity for many 1 N
codes. To motivate this we explicitly consider the three-qubit F2= lim =2, | [cosQt cosQ,t cos st
repetition code which can protect a single logical qubit N—= Nz

against a single-bit-flip error or a single-bit phase error de-

. . . . 2
pending on the choice of the encoding. We consider an en- +iA sin Dyt sin Qiat sin Dy

coding i |
+ 2, |- cosQyt cosQt sin Ot
|0), =(000), (6a) j=1 P ! .
DL =111D, (6b) — A cosQyit sin Qyt sin Yt (, (13

which protects against a bit flip on one of the physical qubits.
The time evolution operator for a given realizatibrof the  where p#q#j and A=a +a’ 8. Multiplying terms and

noise is taking the average over the realizations of noise fields yields
3
Uk(tvo) = 1_,!:. Uki(t, O)! (7) F2 = Coszﬂlt COS"Q{( C0§Q3t
=
where + A? sirfQ,t sirfQ,t sinfQ,t
Ui(t,0) = cosQyit — i sin Qyito; (8) 3
K K K + > [co2Qt cofQt sirfQt
is the time evolution for théth physical qubit and =1
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tions on the performance of these codes. As we stated above

+AZ cog )t sirfQt sirfQt] ), (14  we assume the noise fields are represented by Gaussian ran-
dom variables with spatial correlations of the form
: 2_1 thic ic 13 - _
and noting that forA?=1 this is [T (cogQ;t+sirQ;t) =1, (EEE;) = e hiillo, (20)

we find
21 e . . wherely is the correlation length. Higher-order correlations
F2= 1 p(sirPQyt sinfQ,t sinfQst are calculated by means of the Gaussian moment theorem.
+ coS Ot SiPQ,t SirfQat + sirfQt coSQ,t sin*Q,t While this is a convenient choice for the correlations the
general features presented here are not dependent on the spe-

+ SiPQt sifQ,t sinfyt), 19 Gific form. Any type of positive correlation in the noise af-

where y=1-A2. To lowest order in time this is fecting different qubits will enhance the failure probability
) P s - over that for independent noise. Furthermore, classical noise
Fo=1-9(g)"(E3E3 +(E1E9) +(E1EY),  (16)  fields are representative of a thermal environment for both

zero and finite temperature. The fidelity of a quantum regis-
ter interacting with a reservoir of quantized field modes in
the vacuum state is calculated in Appendix A.

We consider a regular linear array of qubits so that the
D. Larger error correcting codes field correlations can be expressed in terms of powers of

We generalize the above result for larger error correcting=®XP—S) wheres is the spacing of the qubits in units of the
codes. The assumption that the noise fields can be repréorrelation length. Then the fidelity for a code correcting
sented by Gaussian random variables ensures that all mo-l errors can be written
ments of the fields can be derived from the second-order 5

: Fe=1-p'C(x) (21
moment(E;(t)E;(t+7)). We further assume that the spatial '

and temporal correlations factorize aéE(t)Ej(t+7))  where C(x) is a polynomial (with positive coefficients
=(EiE))f(7). In addition we note that the single-qubit error which depends on the particular code. The independent error
probability in this model igp=(gh(t) 5)? where(Ei2>:52 and results are equivalent to taking=0. The effect of the corre-
. . lations is to enhance the rate at which uncorrectable errors
h(t) :f dtlf dt,f(|t, - t)). (17) are produced. This is easily seen for the three-qubit repetition
0 0 code where evaluating the correlations in Ef|6) yields

_ _ C3(x)=3+4x*+2x*. In the limit of perfect correlationgx
We consider two different CSS codes—the well-known _

. X =1) the failure rate is tripled over the rate for independent
[7.1,9 Hamming code and @2.3’1'7]] Golay cod_e which errors. From Eq(18), the[7,1,3 code has
correct all one- and three-qubit errors, respectively. These
codes are particularly simple in that the set of lowest-order Cpra.q=21+ 123+ 10¢* + 8x8 + 6x8 + 4x10+ 2x12,
uncorrectable errors is exactly the set of[éatl+1)/2]-bit X .

errors and[(d+1)/2]-bit Z errors (where d, the code dis- (22)

tance, equals 3 and 7 for the 7-qubit Hamming and 23-qubifyhich also triples the failure rate for perfect correlations. For
Golay code, respectivelyThe fidelities for these codes are |arger codes the enhancement is more pronounced. For ex-
ample, the failure rate for thf23,1,7 Golay code is in-

which is simply unity minus the probabilities for the lowest-
order noncorrectable errors to occur.

2 — 2 2 =2
Firag=1-p {izi:} <Ei1Eiz (18) creased by a factor of 105 for perfect correlation.
vz In practice the enhanced failure rate in the presence of
and correlated noise does not necessarily have a large impact on
5 4 5 o s the feasibility of carrying out error correction. Even the
Fiig=1-p" 2 (EECELED), (19 maximal enhancement needs only to be offset by a decrease
livizigial in p by a factor of 32 and 10%/* for the Hamming code and

respectively(A more careful calculation yields terms of the Golay code, respectively. This requires the error correction to
form (E; E; E;E,) for the[7,1,9 code. See Appendix B for be applied at more frequent intervals but is unlikely to prove
details) For independent noise the field correlations factor-fatal to quantum error correction. On the other hand, one of
ize. This will not generally be valid, and correlations in the the authors has shown that the minimum energy requirement
noise will enhance the failure probability and decrease thé@er logical gate scales with the thresholdpgs? [15]. From
fidelity. In fact, we will show in Sec. Ill that strong correla- this point of view the reduction in the threshold required to

tions can completely destroy the ability of a code to protect rotect against correlated nois® be exhibited in the fol-
quantum computer from decoherence. lowing section could represent a significant restriction on

the physical implementations of quantum error correction.
The enhancemenC(x)/C(0)] of the failure rates for the

three codes is plotted in Fig. 1. While thé, 1,3 code has
We now make a specific choice for the form of the noisethe same failure rate as the repetition code=ad andx=1,

field correlations and demonstrate the effect of the correlait is has a weaker dependence on the correlations for inter-

E. Results
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2(b) and Zc) it is interesting to note that the fidelity falls to
zero more quickly inp for the larger code while for smafi
the fidelity is flatter.

IIl. THRESHOLD RESULTS FOR CONCATENATED
CODES

Cx/C©O)

There is a well-known threshold result for fault-tolerant
) ) ) ) quantum computing16—18. The threshold can be derived
0 02 0.4 0.6 0.8 | by concatenating Calderbank-Shor-Steane codes many times
x while taking account of the scale-up in the number of funda-
mental operations which are needed to implement logic gates
FIG. 1. The enhancement of the failure rate for the three-qubiracting on encoded qubits in a fault-tolerant manner. Here we
repetition code(i), the [7,1,3 code(ii), and the[23,1,7 code  encode a single qubit by concatenating CSS codes an arbi-
(iii ). The full curve for thd]23,1,7 code is plotted in the inset. trary number of times. For simplicity use the same code at

mediate values. However, the larger Golay code which cor?ach level of concatenation. Using fm, 1.d] code, at the

rects up to three-qubit errors has a stronger dependenxe onkth level of concatenation we hav& physical qubits with all

k_ i -
We expect this will be a general feature of larger correctingerrors on[(d+1)/_2] 1 or fewer QUb't_S corrected. Our ap
codes. They will be more sensitive to correlations becausBroach does notinclude the scale-up in the number of opera-

the rate forr-bit errors which are necessary to cause a failurd!onS Which are needed to extract the error syndrome and
will comparatively be enhanced more strongly apply the error correction because we assume these are car-

The fidelity, including thep dependence, is plotted in Fig. "ed out perfectly.

2 for all three codes considered. Note that these surfaces are 1€ errordcor(rjectl(l;n protoc?]l IS more comg)hcated ford
approximations to the fidelity because we include only theoncatenated codes because the errors must be corrected at

lowest order inp. They do, however, include all contribu- each level of the concatenation in order to get the maximum
tions inx to this order inp. ']'he F2=0 bortions of the graph protection. That is, we first correct errors on each block of
are imposed by hand wherever our formula gi#és<0. In physical qubits at the lowest level. We then move up to the
reality the fidelity must go smoothly to zero psncreases to "€t level and apply error correction, now treating each
1. The enhancement of the failure rate seen in Fig. 1 is re2!0Ck Of n qubits as a single logical qubit. Repeating this
flected in thex dependence of the fidelity with tHe3,1,7 procedure at each level of concatenation allows any error of

k_ . .
code showing the sharpest dependence. Comparing Figdd*1)/2]‘~1 or fewer physical qubits to be corrected.
We should note that we have presented an extremely ide-

alized version of the error correction protocol for concat-
enated codes. In practice we are always physically interact-
ing with the lowest level of the concatenation and the logic
gates between blocks must be implemented in a fault-tolerant
manner. This is feasible, but it takes many physical gates to
implement a single logic gate and each gate introduces an-
other opportunity for errors to occur. In a practical realiza-
tion of error correction the procedure we have described is
unlikely to be the optimal procedur®]. Nonetheless, our
procedure gives an estimate which represents a lower bound
on the effect of correlations on the failure rate for concat-
enated codes.

Just as for fault-tolerant quantum computing, we find a
D threshold when we concatenate to arbitrary levels. That is,

( there is a single-qubit error raf®, such that the fidelity, in

the limit as the concatenation depth goes to infinity, becomes
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where py— pi(X) when correlated noise is allowed. For a
codeC correctingt—1=(d-1)/2 errors concatenatddtimes
the fidelity is
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FIG. 2. The fidelity of the three-qubit repetition codm, the  where the sum accounts for all tHebit errors which cause a
[7,1,3 code(b), and the[23, 1,7 code(c). failure. Ask is increased it quickly becomes unmanageable
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to directly evaluate this sum. However, the structure of the 0.35 - - ' —c
code allows us to evaluate the sum approximately. Consider 03
working from the top level of concatenation down to the 025 |
bottom. In order to have a failur@rror at the top levelwe 02 |
must have an error ih blocks at the level below and there g ’
are(?) ways to choose those blocks. This repeats through the 015 1
hierarchy of levels so that going down to tfie-j)th level 01
there are 0.05 1
(n)xik;éti <n>tk_j—l 0
) ¢ (25
. . 0.05
ways to choose blocks with errors which propogate up to
cause a failure. There remgitevels of the concatenation for 0.04 |
which we have performed the sum. We approximate the fi-
delity as 0.03 |
_ &
, o[\t , i 002 |
Few=1-¢ (t) {E (BB, } (26 001 F i ]
tl bits \
where the sum is more manageable but we have assumed O o2 o4 o8 o 1

that correlations factorize into blocks of qubits. Obviously
for j=0 we neglect correlations altogether. However, we are
able to carry out the sums f¢e 1, 2, and 3 and evaluate to FIG. 3. The threshold curve for the three qubit cqdgfor j
some approximation the contributions to the fidelity from the=1 (i), 2 (i), and 3(iii). The threshold curveg) for the[7,1,3
correlations. code forj=1 (i) and 2(ii) and for the[23,1,7 code forj=1 (iii).
It is now straightforward to derive a threshold condition
from the fidelity. Writing the fidelity as against either bit-flip or phase-flip errors gn-1)/2 or
-1 fewer qubits. Note that this code makes more efficient use of
Fék: 1- (n) (pB)tk, (27) qubits than the concatenated three-bit code. The fidelity for
' t the n-bit code to lowest order ip has the form

X

it is clear that forpB<<1 the fidelity goes to unity and for F2=1 - pMi2 E2...E2 29
pB>1 it goes to zero ak is increased. This yields a thresh- P 2 "1 '(n+1>/2>’ (29)

old curve where the sum includes dlin+1)/2]-bit errors. In order to

i see that this code has a thresholdlike behavion as in-
] , (29) creased we define a set of curves

t tipits

Pin= [(n) > (E K
pa(X) = [Bp(x)] 2D, (30)

which approaches the true thresholdjas . o . : o

: . . - where the fidelity of then-bit code is equal to the fidelity of
. We first cor_13|der th? threshold for the three-qubit repetl-a single qubit. Herd3,(x) results from the summation over
tion code. This code is small enough that we are able t

calculate the correlations explicitly fg= 1, 2, or 3. In other (f(n+1)/2]-b|t errors. These curves, shown in Fig. 4 up to
words we include the correlations within a block of 3, 9, or

27 qubits, respectively, while neglecting correlations be- 03
tween qubits in different blocks. For tfi¢, 1,3 code we are 03
able to find curves foj=1 and 2 and for th§23,1,7 code 0.25 |

we are only able to calculate fgr1.

The threshold curves are plotted in Fig. 3. The presence of
correlations in the noise lowers the threshold value below
which the code perfectly protects the logical qubit from er-
rors. The curves show a typical reduction of the threshold by
a factor of 2 for perfect correlations. However, {3 curve 0
for the three-qubit code hints that there may be a larger effect
when more correlations are included. In particular, as we
shall show below, the true curve must go to zeroxasl. FIG. 4. A set of curves where the fidelity of tiebit repetition

Another code which exhibits a type of threshold behaviorcode is equal to the fidelity of a single qubit. Shown for
is then-bit repetition code. This is analogous to the three-bit=3,5, ... ,15, withn=3 the uppermost curve ant:=15 the lower-
code discussed previously, protecting a single logical qubitnost curve.

02 r
0.15 ¢
0.1 r
0.05 ¢

P

0 0.2 0.4 0.6 0.8 1

X
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n=15, shift steadily downward as increases. They are as-
ymptotically approaching a threshold curve s> with
the end point,,(0)=1/4 andpy,(1)=0.

These curves can be better understood in the following
way. For any point below one of these curves, the total fail-
ure probability is reduced if the logical qubit is encoded in
the corresponding number of physical qubits. For points be-
tween two curves, the failure probability is reduced for the
upper curve and enhanced for the lower curve. Physically,
even though the probability of qubits failing decreases with
n, the number of combinations increases withThese two
competing effects account for the structure of these curves
with increasingn.

We can calculate the correlations exactly forl. The
fidelity for a concatenatefh, 1,d] code in this case is

n
iy \)
W Ry

Ry
\:\:‘::\
N
W

\ A\
ALY

N \\
: \ \\‘

\\\\\\\‘\ )

AT
W

\\\\\\\\\\\‘ W

\\“\

N
NN
N

Y
\\‘T\\k

) «n tk-1 )
Fexk=1-p ¢ (2=, (31)

which leads topy,— 0 asx— 1 because of the double facto-
rial of t. This suggests that perfect correlations completely
destroy the ability of the error correcting code to protect
against errors. To put this another way, we can make the
threshold arbitrarily small by taking arbitrarily close to 1. FIG. 5. The fidelity of the bare DF&) and the three-bit code
For finite x we estimate that, for the repetition code, theconcatenated with the DF®).
threshold may be decreased by an order of magnitude or
more if x=0.8, which corresponds to a qubit separation of 020 == |0y, (33b)
the order of 0.22 coherence lengths.

A different strategy for error correction in the presence of

strongly correlated noise is already known—that of decoher- oD ==[1, (339
ent free subspaca®FS’s). This is the subject of the next
section. oo DL =1y (33d
A bit-flip error on one physical qubit acts as a phase error on
IV. CSS CODES CONCATENATED WITH A DFS the logical qubit. The fidelity of the bare DFS is
In this section we explore the possibility that concatenat- FZDFS: 1-2p(1-%). (34)

ing the error correcting codes of the previous section with a

decoherence free subspace provides good protection agairsihce the repetition code can correct either bit flips or phase

partially correlated noise. It should be noted that this hagrrors, it is straighforward to generalize the analysis of the

been considered previouspl0], although without an ex- previous section to account for one additional level of con-

plicit noise model. catenation using this DFS to encode each physical qubit. The
We first consider encoding our logical qubit with a simple fidelity can be found by making the replacements

decoherence free subspace. For simplicity we restrict our at- N N N

tention to bit-flip noise. In this case there is a decoherence (EE) — 221 = y@li=i+ L y2j=il-1 (359

free subspace of two qubits defined as

1 (E?) — 2 -2, (35b)
\0>L=5(|0>+|1>)(|1>-|0>), (328 . : : AR
in the equations from the previous section. This is justified in
Appendix C.
1 Figure 5 shows the fidelity of the DFS alone and the
.= §(|0>— D) (1) +10)), (32b)  three-hit code concatenated with the DFS. We see that the

bare DFS vyields perfect protection fee1 but poor protec-

where the firs{second term in parentheses refers to the first tion for partial correlations. Concatenating the three-bit code
(second physical qubit. For perfectly correlated noise this With the DFS combines the properties of both codes; i.e., it
encoding will provide perfect protection of the logical qubit. Yields perfect fidelity fox=1, but also gives some protection

For partially correlated noise we need the following proper-for a range of partial correlations. Compared with the bare
ties of this DFS: three-bit code fox=0 the fidelity falls off twice as quickly

in p, reflecting the fact there are twice as many physical
01,00 =|0),, (339 qubits interacting with the uncorrelated noise fields. In gen-
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1

in the number of fundamental operations is taken into ac-

08 | count.
& 06 ¢ APPENDIX A: QUANTIZED FIELD MODES
Q,
04 1 We consider a single logical qubit encoded with the three-
02 | bit repetition code correcting a single-bit-flip error. The en-
’ vironment is a bath of quantized field modes. The interaction
0 - . - . Hamiltonian is
0 02 04 06 08 1
3
X
H =%, oyB, (A1)
FIG. 6. The threshold curve for the three-bit code concatenated i=1
with DFS’s(solid line). The threshold for the three-bit code without ) ]
DFS's (dashed ling where the environment operator is
. . . . = (b.ekiXi + hTakix
eral concatenating with &-bit DFS yields a worst-case re- Bi= E 0j(bye™ 7 + by &'™). (A2)
j

duction in the threshold by a factor & for independent

errors. Again, see Appendix C for the proof. Hereb; andb! are annihilation and creation operators for the
Concatenating the three-bit code many times and the']‘th field mode. The time evolution operator is

adding the DFS vyields a threshold curve just as before, al-

though with a different dependence &nThe simplest ap- i
proximation is to make the replacements from E&§) and U(t) =exp - - Ht], (A3)
keeping only correlations within a sing(six-bit) block. This
yields a threshold curve and the fidelity following error correction is
P =[3(12 — 24 + 16x% — 16x3 + 24x* — 16x° + 6x° - 8x’ 3
+12¢ - 8x% + 2x19 112, (36) FEc=(WO)[Trs) X oixPUO |0 xe(HOUT ()P0
n=0
which is shown in Fig. 6 along with the threshold for the
three-bit code without DFS’s for comparison. This illustrates X[y10)), (A4)

that there is a crossover point=0.4 in the correlation
strength below which traditional error correction provides
the best protection and above which concatenating with
DFS is favorable.

where xg is the initial density operator representing the state
of the environment anfd(0)) is the initial state of the qubits.
?(eeping all terms to fourth order in time this is

4 3

t
Fec=1-7, 2 [(BiBnBiBuw +(BiBrBnBy)
V. CONCLUSION m>n=1
We have evaluated the performance of quantum error cor- +(ByBB B + (BBrBrBn]- (A5)

rection in the presence of correlated noise, considering both ) , o ,

traditional error correcting codes and decoherence free Su@gsummg the environment is initially in the vacuum state
spaces. We find that the presence of correlations can enhanftis becomes

the failure probability of traditional error correcting codes by y 3

several orders of magnitude for large codes and perfect corr2 _, _ b 2\/p2 2
relations. This leads to a correlation-dependent threshold inFEC_ 1-7, > [4BY)(B}) + 6(B.Br)(BrBy) + (BB

the single-qubit error probability for concatenated codes, )
with the threshold going to zero for perfectly correlated + (BB, (AB)
noise. For intermediate correlations we find that the thresh-

old may be reduced by an order of magnitude for qubit spacgnd under the assumption that each qubit interacts equally

ings on the order of 0.22 correlation lengths. Finally, concatVith left-and right-going waves this reduces to
enating a decoherence free subspace with a traditional code

yields perfect protection in the limit of perfect correlation

m>n=1

FEc=1 - 2pt*(B,B3)(B3By) + (B1B,)(B,By) + (B,B3)

and a maximum reduction in the threshold for independent X (B3By)) — ®A((B2)(B2) + (B)(B3) + (B3)(B3))
noise by a factor equal to the number of qubits which define ol iy
the DF%I_ q q =1- ,y94.t4[3 + 2(8 2/xq xz\/lo+ e 2|x1-X3l/lg

While we have not considered a fault-tolerant scheme for + g dx2xgllloy ] (A7)

implementing error correction, we believe that a similar
model can be applied in a straightforward manner to yield avhere we have assumé8;B;)=gexp(—|x;—x;|/lp). The fi-
lower bound on the effect of correlations when the scale-umelity has the same form as for classical noise fields.
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APPENDIX B: FIDELITY FOR THE [7,1,3 CODE 7 7
2_ 2 ] 2 ) 2
We calculate the fidelity for thf7, 1,3 Hamming code in FE=[uumll +§1 (ol ®)]4)] +§l Ko UOIHI.
a manner analogous to the three-bit repetition code. The time

evolution operator is (B2)
7
U(t) =[] [cosQit +i sin Qt(cos ¢aiy + sin o)1,
i=1 The result to lowest order ip is
(B1)
where ¢, is the phase of théh noise field. We have used
Mathematica to explicitly calculate the fidelity following er-
ror correction as
|
1
F2=1- 52 0207 - 6{_2“} Q0,0 (COS oS ¢ COS ¢y COS Py + SiN ¢ SiN B SiN ¢y sin ), (B3)
i#] 1,],K,
where{i,j,k,I} in the second sum consists of the set
{{214!51}1{31415165{21316521{1!213141{11215161{113!51}1{114161E}- (B4)
[
The firs_lt_hsum is jug,t what we got bytcc;tinting all the tfwo-b'i{th (EE) =((Ei1 - E)(Ej1 — Ejp)
errors. The second sum is a new set of terms arising from the _ B e e
partial coherence of the errors and the structure of the = (EiEj0) + (EioEj2) ~ (BiEj2) ~ (EioEj0)
[7.1,3 code. These terms do not contribute in the case of = 211l — 52l 1 y2i-i-1 (CY
independent errors. Averaging over many realizations of the nd
noise fields and assuming Gaussian correlations, the fidelit@
is (ED) = (B~ Ep)?) = (EQ) +(ER) - 2(EEp) =2 - 2.
(C2

F2=1-p?(21 + 24¢ + 31x* + 148 + 308 + 4x1%+ 2x19).
(B5) For a different DFS, for example, the four-bit DFS of Za-
nardi and Rasett9], a different substitution will be neces-

c ; ith Eq(22 that th tributi f the Sary- However, in the limit of independent errors we can find
omparing with Eq(22) we see that the contribution of the e fidelity for a concatenation with arkybit DFS. The ap-

new terms is the same size as the contribution from countin : e : ;
ropriate substitution will replac&; with a sum overk

two-bit errors. fields. Because the noise is independent, only correlations of
the form(Eﬁ) will contribute. Then the appropriate correla-

APPENDIX C: FIDELITY USING A DFS tions following substitution are
The effect of concatenating the three-bit repetition code (EE)—0 (€3
with a DFS can be accounted for by making the substitutiorand
E,— E;;—E;, in the expressions for the fidelity. This form <Ei2> . k(Ei2>. (ca)

comes from the particular DFS used, but clearly if the fields
are perfectly correlated, there will be no decoherence. MakThis yields a worst-case reduction in the threshold by a fac-
ing this substitution we have the correlations tor of k for independent noise.

[1] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. (1996.
Rev. Lett. 77, 198(1996. [4] P. W. Shor, Phys. Rev. 52, R2493(1995.
[2] A. M. Steane, Phys. Rev. Let?7, 793(1996. [5] A. M. Steane, Phys. Rev. &8, 042322(2003.
[3] A. R. Calderbank and P. W. Shor, Phys. Rev.54, 1098 [6] D. P. DiVincenzo and P. W. Shor, Phys. Rev. Let7, 3260

062313-8



QUANTUM ERROR CORRECTION AGAINST CORRELATED NOISE PHYSICAL REVIEW 89, 062313(2004)

(1996. Rev. Lett. 85, 1758(2000).
[7] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.[13] D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev. 0,
Sloane, Phys. Rev. LetZ8, 405(1997. 1944(1999.

[8] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Le®4, 2525  [14] L. Viola and S. Lloyd, Phys. Rev. /68, 2733(1998.

o gOZOQ- i and M. Rasetti. Phve. Rev. a6, 3306(160 [15] J. Gea-Banacloche, Phys. Rev. Leg, 217901(2002.
[9] P. Zanardi and M. Rasetti, Phys. Rev. Let®, (1999 [16] C. Zalka, e-print quant-ph/9612028.

[10] D. A. Lidar, D. Bacon, and K. B. Whaley, Phys. Rev. Leie, [17] E. Knill, R. Laflamme, and W. H. Zurek, Proc. R. Soc. Lon-

4556(1999. q
[11] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. on, Ser. A454, 365(1998. _
81, 2594(1998. [18] E. Knill, R. Laflamme, and W. H. Zurek, Scienc&79, 342

[12] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys. (1998.

062313-9



