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We analyze a quantum-computer design based on nuclear spin qubits in a quasi-one-dimensional chain of
non-Kramers doublet atoms. We explore the use of spatial symmetry breaking to obtain control over the local
dynamics of a qubit. We also study the decoherence mechanisms at the single qubit level and the interactions
mediated by the magnetic media. The design can be realized in PrBr3−xFx with nuclear magnetic resonance
techniques.
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I. INTRODUCTION

Nuclear magnetic resonance(NMR) is the framework of a
very promising quantum-computing architecture[1]. NMR is
a natural choice because nuclei are protected from many
sources of decoherence, and therefore produce robust qubits.
Successful realizations of quantum algorithms implemented
on a NMR quantum computer(QC) have been realized in
liquid solutions of molecules[2,3]. Nevertheless, a liquid
NMR QC is not easily scalable, that is, there is a practical
limit in the number of qubits that can be constructed in a
molecule. From a handful of qubits already achieved one
must scale the QC to several thousands before a nontrivial
algorithm can be run[2,3]. Though other limitations can also
be argued to the use of NMR[4], scalability is an undeniable
problem.

A possible route to deal with the scalability problem is to
consider NMR in crystals[5]. There are several different
proposed designs, but all of them share two common ele-
ments. First, a gradient magnetic field is used to shift the
nuclear resonance frequencies of different nuclei, allowing
qubits to be addressed independently. Secondly, as the num-
ber of qubits increases, a second decoherence channel is in-
troduced by the low energy excitations of the interacting qu-
bits. In any crystal, the direct dipolar interaction between
nuclei produces secular broadening. To a certain extent this
broadening can be reduced by NMR techniques. Thus, it is
usually assumed that a perfect selective decoupling of the
qubits from the dipolar interaction can be achieved.

Although very promising, there are technical problems
with the use of NMR in crystals. For example, in the pro-
posed materials CaF2 and MnF2, qubits are the nuclear spin
1/2 of the F ions[5]. To obtain a measurable frequency shift
from one qubit to another a homogeneous gradient field of
more than 1 T/mm is required. The obvious solution is to
separate qubits from each other. However, by distancing the
qubits to work with an experimentally feasible value of the
field gradient, another problem is created by weakening the
qubit-qubit interactions.

Interacting qubits are a necessary condition for quantum
computation. A quantum algorithm is a sequence of unitary
transformations in the Hilbert space spanned by all the qu-
bits. A given transformation in a subspace ofn qubits is
called an-qubit gate. A quantum-computing scheme must
provide a complete set of such quantum gates, in other
words, it must be possible to construct any unitary transfor-

mation with a sequence of building block operations pro-
vided by the design. One of the most useful results in
quantum-information theory is that from all one-qubit gates
and almost any two-qubit gate is possible to find a complete
set of gates[6]. In a NMR QC, the one-qubit gates are easily
produced. The two-qubit gate is the time evolution of two
qubits under an interaction.

The viability of a solid state NMR QC relies on interac-
tions available to construct the two-qubit gate and the corre-
spondent decoherence times. On the one hand, in CaF2, the
only available interaction is the direct dipolar coupling be-
tween nuclear moments. In most cases this interaction is ef-
fectively short ranged for quantum-computational purposes.
The small nuclear moments and the 1/r3 dependence makes
the operation time of a gate(composed by two qubits far
apart) much larger than the decoherence times. On the other
hand, in MnF2, the relevant interaction is the Suhl-Nakamura
coupling [7]. This is an indirect coupling of nuclear spins
mediated by magnons of the Mn electronic spins. Below its
Néel temperature the magnon spectrum has a gap. At the
same time that a gap reduces decoherence, it implies that the
interaction strength has an exponential decay with the dis-
tance. Thus, it is unlikely that a considerable separation be-
tween qubits can be obtained in both cases. The search for
long-range interactions has motivated several recent publica-
tions [8,9]. Unfortunately, long-range interactions are tied to
low-energy modes and, consequently, short decoherence
times.

In this paper, we discuss nuclear-nuclear interactions me-
diated by an anisotropic quantum-pseudo-spin chain. We
analyze how the breaking of spatial symmetries in a system
of non-Kramers ions can be used to gain control over local
properties of a QC. We show that one can reduce decoher-
ence and/or construct different two-qubit gates as a function
of external electromagnetic fields. Although our ideas are
general, we propose a specific realization in the compounds
PrCl3−xFx and PrBr3−xFx. Both materials are equally suitable
to our discussion, but we use the parameters of the latter in
our estimates. We start by summarizing the properties of the
parent compoundx=0. Subsequently, we discuss the chemi-
cal doping with F. Finally, we explore the use of the nuclear
spin from the F ions as qubits.

II. THE PHYSICS OF PrBr 3 AND THE CONSTRUCTION
OF QUBITS

PrBr3 is a one-dimensional(1D) ionic insulator made out
of Pr chains separated by 5 Å. The Pr ions are subjected to a
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crystal field withC3h symmetry. Their ground state is a non-
Kramers doublet that is separated from the first excited state
by a gap of 17 K[10]. A Jahn-Teller transition takes place at
0.1 K [11], it lifts the doublet degeneracy, and sets a low-
temperature limit to the applicability of this material to our
design. A convenient way to model this system is via a
pseudo-spin-1/2 representation[12]. We focus on the phys-
ics of two adjacent chains and we label the pseudospins of
each of these chains astz andsz (see Fig. 1). The single ion
Hamiltonian at sitei is written as

Hion = o
i

"gs
zBzSi

z + gs
xExSi

x + gs
yEySi

y,

whereSW =hsW ,tWj, gs
z=1.431011 T−1 s−1, BW is an external mag-

netic field andEW an applied electric field[10]. We are un-
aware of published values for the electric dipolar constants in
PrBr3, however, they should not be very different from the
ones in PrCl3 wheregs

x,y=4.0310−31 C m [13]. It is impor-
tant to stress that there is no off-diagonal matrix element that
couples the doublet state to the magnetic field. Therefore, a
magnetic field cannot induce transitions between the doublet
states. The ionic magnetic moments are coupled by a dipolar
term, however the most relevant contribution to the interac-
tion Hamiltonian comes from transitions due to the trans-
verse electric dipoles that are strongly coupled to the lattice.
Although the only real magnetic moment is oriented along
the chain(z direction), this family of compounds is regarded
asXY chains described by the Hamiltonian

Hxy = J'o
i

Si
xSi+1

x + Si
ySi+1

y , s1d

whereJ'u3 K [14].
In order to construct a qubit, we propose the use of the

nuclear spins of F ions in the diluted salt PrBr3−xFx. There
are two main components to nuclear decoherence, connected
with the two strongest interactions that a nucleus is subjected
to the electric quadrupolar and the magnetic dipolar[15]. We
are ultimately interested in the decoherence channels in a F
nucleus in PrBr3−xFx. Nuclear quadrupole resonance experi-
ments have measuredT1,2 for the Br nuclei in the parent
compound. They established fairly well that the spin-lattice

relaxation timeT1 is due to magnetic interactions[14,16] and
it is of order of 100 ms at 1 K. Moreover, the nuclear spin-
spin decoherence timeT2 was found to beu40 ms at 1 K.
The decoherence sources that lead to this value forT2 are not
yet well understood[11]. If we use the Van Vleck formula
[15] to estimate the secular broadening of resonance lines,
we find that the direct dipolar interaction among the nuclei
leads to a broadening of the order of 102 ms. Further consid-
ering the quadrupolar effects it is clear that the direct dipolar
interaction gives a sizable contribution to decoherence. Thus,
as usual in solid state NMR designs, we can conclude that
decoupling is very important in order to make this family of
compounds useful to a QC.

Each F introduces a local lattice distortion, hence lower-
ing the crystal field symmetry at neighboring Pr ions. The
distortion introduced by the F ion has its strongest effect on
the Pr ions labeled 2, 4, 5 in Fig. 1. In the pseudospin rep-
resentation, a local symmetry breaking corresponds to the

addition of transverse fieldsD̄ and D on each one of these
sites. Moreover, the Prs4,5d no longer have a plane of inver-
sion perpendicular to the chain axis. Thus, these ions can
develop electric dipoles perpendicular to that plane. The
Hamiltonian for the pseudospin chains can be written as

HPr = Hion + Hxy + Ds 0
x + D̄st 0

x + t 1
xd + gs

zEzst 0
z − t 1

zd.

s2d

We consider the case where sD̄ ,Dd
!maxs"gs

zBz,kBTd,J', otherwise the moments at Prs2,4,5d
would be completely quenched by the symmetry breaking
and the analysis below would need to be extended to include
next-near-neighbor interactions. Notice that in Eq.(2) the
transverse fields introduce matrix elements between the two
magnetic states of Prs2,4,5d. Thus, an oscillating magnetic
field parallel to the chain axis would reveal two distinct reso-
nant linesvD̄ andvD associated with the splitting of the Pr
doublet state.

III. THE QUBIT HAMILTONIAN

The use of F as a qubit has two advantages. There is no
decoherence due to electric field gradients because it does
not have a quadrupolar moment. In addition, there is only
one isotope of F in nature, so all qubits experiencing the
same magnetic field are identical. By assuming perfect de-
coupling, we can disregard the direct dipolar interaction be-
tween nuclei. This is a much less stringent condition than in
other NMR QC schemes because the qubit resonance fre-
quency is very distinct from the other ions. Therefore,
straightforward pulse sequences can be used to perform the
decoupling. The remaining contribution to the nuclear
Hamiltonian comes from the magnetism of the surrounding
Pr atoms. Hence, the nuclear hyperfine interaction of each F
ion in first approximation can be written as

HF = F"gNBz + dSs0
z −

t 0
z + t 1

z

2
D − d̃ss −1

z + s 1
zdGI z

+ 3dst 0
z − t 1

zdI x + Î2d̃ss −1
z − s 1

zdIy, s3d

where d=sm0
2"gs

zgNd / s4pr0
3du10−4 K, d̃<d/5, gN=25

FIG. 1. Two adjacent chains in PrBr3−xFx.
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3107 T−1 s−1, andIW is the nuclear spin-1/2 operator of the F
nucleus.

The pseudospin physics described by Eq.(2) presents us
with a very interesting situation. An applied magnetic field
with frequencyvD̄ and/or an electric fieldEz only affect the
Prs4,5d, and therefore can be used to act locally in the qubit.
For example, a sufficiently large electric field forcest0 and
t1 into a singlet configuration, freezing their dynamics. The
net result is decoupling of the F ion from thet chain. In this
case the hyperfine Hamiltonian simplifies to

HFu f"gNBz + ds 0
z − d̃ss −1

z + s 1
zdgI z + Î2d̃ss −1

z − s 1
zdI y.

s4d

This is a particularly interesting effect. It cancels the stron-
gest transverse part of Eq.(3), and consequently, corresponds
to a reduction in the dissipation ratesT 1,2

−1 .

A. Dissipation rates

In order to estimate the dissipation rates due to the Pr
magnetic moments, we will focus on the low-energy physics
of Eq. (2). Therefore, we can use Abelian bosonization[17]
to obtain simple analytical expressions forT 1,2

−1 .
Bosonization is a well stablished method to study spin

chains. In a concise way, we first use the Jordan-Wigner
transformation, mapping the pseudospins in spinless fermi-
ons. Then, we linearizing the dispersion relations around the
two Fermi points,pF=arccoss"g s

zBz/J'd, and define the
Fermi velocity v=J'sinspFd. The result is thatHxy can be
rewritten as a free bosonic Hamiltonian. In this language, it
is straighforward to evaluate the pseudospin correlation func-
tion at zero temperature[17]

kSj
zstdS0

zs0l =
1

2p2

x2 − svtd2

fx2 + svtd2g2

coss2pKxd
2p2

1

x2 + svtd2 , s5d

wheret is the imaginary time,x=a0j , anda0<4.4 Å is the
lattice spacing.

For a sufficiently large magnetic fieldsBz@0.1 Td, T 1
−1 is

given by [18]

T1
−1 =

1

2
E

−`

`

dt8kH'stdH'st + t8dle−iv0t8, s6d

where, if we focus in the regime described by Eq.(4), we
defined

v0 = gNBz,

H' = Î2d̃ss−1
z − s 1

zd.

An equivalent expression forT2 is obtained when we match
the results of a random phase approximation(RPA) calcula-
tion for the transverse suceptibility with the solution of the
Boch’s equations[19]. Using Eq.(5) in Eq. (6) or the RPA
result, we evaluate the zero-temperature decoherence rates
due to the pseudospins as

T 1
−1 = T 2

−1u 8p−1gNs"d̃g s
zd2Bz

3J '
−4. s7d

The unusual dependence of the relaxation time with the mag-
netic field, scaling asBz

3, can be used to assert Eqs.(3) and
(4). Finally, an applied transverse electric fieldsEx,yÞ0d can
be used to open a gap in the pseudospin spectrum. This fur-
ther isolates the qubit by quenching the pseudospins mag-
netic moments, and therefore, even smaller values ofT 1,2

−1

can be achieved.
In general, nuclear spins interacting with a gapless spin

chain would have super-ohmic dissipation. However, the hy-
perfine Hamiltonian,(4) that we derive depends exclusively
on thez component of the pseudospins. This restricted dipo-
lar interaction implies an ohmic dissipation. We emphasize
that this is somewhat unique feature of pseudospins. If Eq.
(4) would have flip-flop terms, then the transverse correla-
tions of the spseudo spins would imply a super-ohmic behav-
ior.

B. Construction of quantum gates

Now that we have studied the single qubit problem, we
turn our attention to the qubit-qubit interaction. We focus in
the regime described by Eq.(4) because it is the most favor-
able for QC. Consider a second F atom along the chain as
shown in Fig. 2. By integrating out thes spins we obtain a
retarded interaction between the two nuclei. This is very
similar to the Ruderman-Kittel-Kasuya-Yosida(RKKY ) in-
teraction, but mediated by the pseudospins[20].

Exactally as in the RKKY problem, the F nuclear spins
have a much slower dynamics than the pseudospinssgNBz

!J' /"d. Therefore, it is reasonable to consider an instanta-
neous approximation to the interaction. At zero temperature,
we use Eq.(5) to calculate its form.

For the RKKY, finite-temperature corrections are usually
irrelevant because the Fermi energy is much larger than the
temperatures under consideration. However, in the pseu-
dospin chain we are assuming temperatures only one order of
magnitude smaller thanJ'. We can easily rewrite the zero-
temperature correlation function(5) in its finite-temperature
form by using the conformal invariance of theXY model
[21]. The final result is the effective interaction between to
qubits

Heffu fzzI 1
zI 2

z + fyzsI 1
yI 2

z + I 1
zI 2

yd + fyyI 1
yI 2

y, s8d

where we have defined the nuclear exchange couplings

fzz= d2GsDxd − dd̃fGsDx − 1d + GsDx + 1dg

+ d̃ 2f2GsDxd + GsDx + 2d + GsDx − 2dg,

FIG. 2. Interaction between two nuclear spins of F ions is me-

diated by the pseudospin chain of Pr.d andd̃ are the strength of the
hyperfine coupling defined in Eq.(3).
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fyz= Î2hdd̃fGsDx − 1d − GsDx + 1dg

+ d̃ 2fGsDx + 2d − GsDx − 2dgj,

fyy = 2d̃ 2f2GsDxd − GsDx + 2d − GsDx − 2dg. s9d

GsDxd is the finite-temperature pseudospin propagator given
by

GsDxdu
1 − coss2pFDxd

2p2v3b2 FsinhSDx

vb
DG−2

, s10d

whereDx is the distance between qubits in units of lattice
spacinga0 and b=1/skBTd. For distances smaller than the
thermal coherence lengthjT=vb, the interaction decays as a
power lawGsDxdu s1−cosf2pFDxgd / s2p2vDx2d, leading to
long-range interaction between qubits. It is also interesting to
consider the consequences of applying transverse electric
fields. Since the pseudospin propagator acquires a gap, there
is an additional exponential decay in Eq.(8) which is a func-
tion of Esx,yd. Thus, we can use transverse fields to switch on
and off the interaction between qubits.

Equation(8) is a two-qubit gate. In conjunction with the
possibility to perform arbitrary rotations, it generates a com-
plete set of quantum gates[6]. The inverse of the gate op-
eration time is given byT G

−1sDxd="−1minsufzzu , ufyzud. In or-
der to compareTG with T1,2 we consider a particular case.
TakeBz<2 T and a temperatureT=0.1 K, so that the pseu-
dospin chain is partially polarized. Low-temperature correc-
tions to Eq.(7) are very small, and we use it as an upper
bound estimate to the decoherence timesT 1,2

−1 ,10−2 s−1.
These values are much smaller than the rates in PrBr3 due to
three facts: the absence of quadrupolar effects, the reduction
of pseudospin fluctuation int0,1 and the assumption of de-
coupling. Two qubits separated by 13 Å haveTGs3d
,10−1 s, thus leading to a quantum gate at the edge of the
error correction threshold of 10−4 [3,22].

Another important aspect of Eqs.(2) and (3) is that sev-
eral different gates can be constructed as a function of the
magnetic fieldBz, the resonance frequenciesvD,D̄ and the
electric fieldsEx,z. For instance, the pseudospin propagator
(10) has an oscillatory behavior withBz. This can be used to
change the relative strength off ij in Eq. (8). In order to make
this point clear, we now pause and consider a concrete ex-
ample.

One of the most simple quantum circuits is the one that
creates entangle pairs of qubits(Bell’s states). From the
quantum-logic perspective, this is accomplished by the use
of a Hadamard gate followed by a controlled-NOT (CNOT)
gate [23]. Since the production of entangle pairs is funda-
mental to perform quantum computation and quantum comu-
nication, this straightforward circuit is a conerstone in any
design. The key element here is theCNOT gate. It is a two
qubit gate and, consequently its implementation depends
upon the avaiable interaction. In liquid state NMR the stron-
gest component in the Hamiltonian that a pair of qubits is
subjected is[3]

Hz > JI 1
zI 2

z. s11d

This Hamiltonian can also be approximated by Eq.(8). For
the sake of argument, let us assume two F atoms separated
by four lattice sitess,18 Åd. In addition, let us consider the
external conditions that we considered before: a largeEz to
freeze the pseudospin dynamics int0,1 andT=0.1 K.

From Eq.(8) and the definition of the pseudospin propa-
gator we can plot Fig. 3, where we can see that forBz

>1.01 T the effective coupling constants are

fzz

d̃ 2
> 0.06,

fyz

d̃ 2
> 0.001,

fyy

d̃ 2
> 0.001.

Thus, as in liquid NMR, the strongest component in the
interaction is given by Eq.(11). In order to produce aCNOT

gate with this Hamiltonian in an NMR setup[3], one must
first apply a radio frequency pulse to rotateI2 about x̂
(+ẑ goes to −ŷ). Then the spin system evolves with Eq.(11)
for a timet=p" /4J. Then, a second pulse is sent to rotateI2
by 90° about the −ŷ axis. Finally, an additional phase shift on
both spins is used to obtain theCNOT gate. If we add the
initial Hadamard gate, it is necessary to use a total of five
radio frequency pulses(one-qubit gates) and the time evolu-
tion of the Hamiltonian(11).

Let us analyze another possibility. Consider the same con-
dictions as before, but with an external magnetic fieldBz

=2.02 T. In this case, the effective coupling constants are

fzz

d̃ 2
> − 0.005,

fyz

d̃ 2
> 0.0003,

FIG. 3. The coupling constantsfzz, fyz, and fyy as a function of

the magnetic fieldBz in units of d̃2 for two F atoms separated by
four lattice spacing.
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fyy

d̃ 2
> − 0.025.

In contrast with the previous case, the strongest part of the
interaction is

Hy > fyyI 1
yI 2

y. s12d

If we allow a free evolution of the system by Eq.(12) for
a time t=p" /2fyy, the unitary transformation that is imple-
mented is

R= 3
1 0 0 − i

0 1 i 0

0 i 1 0

− i 0 0 1
4 .

Acting on the computational basis with this rotation we
automatically generate the entangled states

ub1l =
Î2

2
su00l − i u11ld,

ub2l =
Î2

2
su01l + i u10ld,

ub3l =
Î2

2
su01l − i u10ld,

ub4l =
Î2

2
su00l + i u11ld.

Hence, one can fine tune the experimental setup to obtain
a desired quantum circuit using less resources. In the above
example, the simple tuning of the magnetic field replace the
one qubit gates on the previous setting. However, this is just
one of many possible ways to control the interaction Hamil-
tonian. A more subtle(and potentially more interesting way)
is related to the frequencyvD andvD̄. In presence of a gra-
dient magnetic field they have a site indexs"vD

>Îf"gs
zBzsxWdg2+D2d. Thus, one could act in the magnetic

environment of each individual qubit.

IV. DISCUSSION AND CONCLUSIONS

Until this point we discussed how single qubits can be
constructed and how a pair of qubits can interact. We now
discuss how to use these building blocks in a QC.

The natural geometry is to consider a magnetic field gra-
dient applied along the chain direction. Nuclei in the same
equipotential line belong to different copies of the QC, and
we assume that they can be periodically arranged(see be-
low).

Initialization is a very hard problem in QC’s based on
nuclear spin qubits. However, there are some possible solu-
tions already available in the literature[9,24]. At first sight
one could imagine that the initialization could be done by
optical pumping(Pound-Overhauser effect) with the pseu-

dospins, as it is done in MnF2 with electronic spin. Unfortu-
nately, the same property that gives a lower decoherence rate
than in other gapless magnetic systems hinders this option.
Since there is no flip-flop termsS+I−d in the hyperfine Hamil-
tonian, one cannot use the pseudospins to pump the nuclear
spins. There are two other possible “hardware” solutions that
can be used to solve the initialization problem. A diluted set
of magnetic impurities can be used to refrigerate the qubits.
The general idea is to add a small amount of an ion with a
large magnetic moment(such as Gd replacing some Pr) to
the sample. This set of impurities can be used to pump en-
ergy out of the nuclear systems and after some polarization is
achieved a sufficiently large magnetic field would “freeze”
the impurities. There are two setbacks in this approach. First,
the Gd ion would “break” the pseudospin chains and the F
ions in each side might not interact. Secondly, virtual flips of
the Gd spin could introduce an additional decoherence chan-
nel. The second “hardware” solution is based on the fact that
the crystals can be grown on a semiconductor substrate. By
exciting the electron gas in the semiconductor, it is possible
to use “cross-polarization-coherent transfer techniques.” The
latter is the solution found in Ref.[9] to the initialization
procedure in a QC based on 1D organic molecules. Finally, if
only partial polarization is obtained by one of the “hardware”
methods cited above, the Schulman-Vazirani procedure[24]
can be used as a “software” method to initialize the state.

The final element in a QC design is the read-out mecha-
nism. All QC’s based on NMR of impurities have the com-
mon problem of low signal due to the small density of qubit
copies. However, nuclear polarization can increase consider-
ably the NMR sensitivity. In this case, the read-out of a qubit
with only 1012 copies is possible with current NMR technol-
ogy [9].

There are some relevant experimental questions that are
open and can foster new theoretical work. In the first place,
the simplest way to produce crystals of a salt such as
PrBr3−xFx is through dehydration of a liquid solution[25].
This straightforward process creates samples with the F ions
in random positions. Although this is sufficient to infer our
results for a single qubit, further developments in ionic crys-
tal growth should be accomplished before the full range of
possibilities that we discuss can be experimentally studied.
One possible research avenue is a molecular-beam epitaxial
growth (MBEG). MBEG is a well established technique in
semiconductors and metals. Although from a historical per-
spective the growth of ionic crystals is an old field, the tech-
nology is much less mature. Nevertheless, it shows unique
characteristics that are worth exploring[26–28]. The most
interesting feature is that the incoming molecule has a very
weak bound with the surface terrace and strong bounding to
the ledge. This can be simply understood in electrostatic
terms, and as a consequence, leads to a large surface diffu-
sion until the molecule reaches the ledge. We speculate that
this fact can be used to obtain a higher degree of control in
the impurity placement than in any other kind of material.
Another interesting characteristic is that large lattice misfits
are also allowed in the growth of layers. Thus, it is natural to
propose experiments with a crystal composed of a superlat-
tice of PrBr3 and layers of PrBr2F. This setup is feasible with
the current technology and many of our results for the qubit-
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qubit interaction can be experimentally tested. Another pos-
sibility is a super-lattice of PrBr3 with layers of PrF3, how-
ever, the large lattice misfit will probably prevent the layer
growth [28]. A final remark is that ionic crystals grow well
on semiconductors surfaces. This has two main conse-
quences:(1) the semiconducting substrate can be integrated
in other quantum computer schemes(similar to Si/P propos-
als) and with current electronics and(2) a semiconductor
substrate can be used to initialize the quantum computer by
optical pumping as we argued above.

There is another issue that is common to all solid state
NMR designs: it is unlikely that perfect decoupling can be
achieved. Therefore, the experimental value ofT2 is poten-
tially smaller than the prediction of Eq.(7). Although we are
probably overestimatingT2, we are also underestimating the
gate timeTG. In order to derive Eq.(3), we assumed an
specific form to the hyperfine interaction. Following the ex-
perimental results in PrBr3 and PrCl3, we assumed that the
dipolar part is the most relevant component in the hyperfine
Hamiltonian. This conclusion arises from the hypothesis that
the chemical bound is truly ionic. In general there are some
covalent components to the bound and this leads to a much
stronger interaction with the electronic moments of adjacent
ions. For instance, this is precisely what happens in MnF2

[12,29]. Whereas our hypothesis is based on the experimen-
tal facts in PrBr3 [11,14,16], a thorough experimental study
should be done to assert the hyperfine Hamiltonian.

In summary, we showed how a non-Kramers ionic crystal
has unique properties that can be exploited in a solid state
NMR QC. We propose that chemical substitutions in such
system can be used to encode quantum information and, at
the same time, break the spatial symmetries. This control-
lable symmetry breaking can be used to act locally in the
magnetic environment of the qubit, thus, having important
consequences to decoherence and the construction of quan-
tum gates. We based our discussion in a well known family
of materials. However, the general principle that we put for-
ward can be applied in a much broader context. In PrBr3−xFx,
we showed that a QC based on our ideas is scalable, the
decoherence rates are low, the interactions between qubits
can be long ranged, and the qubits can be individually ac-
cessed with moderate magnetic field gradients.
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