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Graph states are multiparticle entangled states that correspond to mathematical graphs, where the vertices of
the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body
spin states of distributed quantum systems that play a significant role in quantum error correction, multiparty
quantum communication, and quantum computation within the framework of the one-way quantum computer.
We characterize and quantify the genuine multiparticle entanglement of such graph states in terms of the
Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples
and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster
states of different dimensions, graphs that occur in quantum error correction, such as the concatenated[7,1,3]-
CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. We also
present general transformation rules for graphs when local Pauli measurements are applied, and give criteria
for the equivalence of two graphs up to local unitary transformations, employing the stabilizer formalism. For
graphs of up to seven vertices we provide complete characterization modulo local unitary transformations and
graph isomorphisms.
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I. INTRODUCTION

In multipartite quantum systems one can in many cases
identify constituents that directly interact with each other,
whereas other interactions play a minor role and can largely
be neglected. For example, next-neighbor interactions in
coupled systems are often by far dominant. Such quantum
systems may be represented by a graph[1,2], where the ver-
tices correspond to the physical systems and the edges rep-
resent interactions. The concept of a graph state—which ab-
stracts from the actual realization in a physical system—is
based on this intuition.

A graph state, as it is used in this paper, is a special pure
multiparty quantum state of a distributed quantum system. It
corresponds to a graph in that each edge represents an Ising
interaction between pairs of quantum spin systems or qubits
[3–6]. Special instances of graph states are codewords of
various quantum error correcting codes[7], which are of
central importance when protecting quantum states against
decoherence in quantum computation[8]. Other examples
are multiparty Greenberger-Horne-Zeilinger(GHZ) states
with applications in quantum communication, or cluster
states of arbitrary dimensions, which are known to serve as a
universal resource for quantum computation in the one-way
quantum computer[9,10]. Yet, not only the cluster state itself
is a graph state, but also a pure state that is obtained from
this universal resource after the appropriate steps have been
taken to implement operations taken from the Clifford group.
This resource is then no longer universal, but the specific
resource for a particular quantum computation[3].

In this paper we address the issue of quantifying and char-
acterizing the entanglement of these multiparticle entangled
states of an arbitrary number of constituents. The aim is to

apply the quantitative theory of multiparticle entanglement to
the study of correlations in graph states. The underlying mea-
sure of entanglement is taken to be the Schmidt measure
[11], which is a proper multiparticle entanglement monotone
that is tailored to the characterization of such states. As holds
true for any known measure of multiparticle entanglement,
its computation is exceedingly difficult for general states, yet
for graph states this task becomes feasible to a very high
extent. We start by presenting general transformation rules of
graphs when local Pauli measurements are applied locally on
physical systems represented by vertices. We present various
upper and lower bounds for the Schmidt measure in graph
theoretical terms, which largely draw from the stabilizer
theory. These bounds allow for an evaluation of the Schmidt
measure for a large number of graphs of practical impor-
tance. We discuss these rules for the class of 2-colorable
graphs, which is of special practical importance in the con-
text of entanglement purification[5]. For this class we give
bounds to the Schmidt measure, that are particularly easy to
compute. Moreover, we provide criteria for the equivalence
of graph states under local unitary transformations entirely
on the level of the underlying graphs. Finally, we present
several examples, including trees, cluster states, states that
occur in the context of quantum error correction, such as the
CSS code, and the graph that is used to realize the QFT on
three qubits in the one-way quantum computer. The vision
behind this is to flesh out the notion of entanglement as an
algorithmic resource, as it has been put forward in Ref.[3].

The paper is structured as follows. We start by introducing
the notion of graph states of multiqubit systems: we set the
notation concerning graph theoretical terms, and proceed by
showing how graph states are in correspondence to graphs.
Then, we recapitulate relevant properties of the Schmidt
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measure as a measure of multiparticle entanglement. In Sec.
III we then state the general upper and lower bounds that are
formulated in the language of graph theory. We also investi-
gate the equivalence class for connected graphs up to seven
vertices under local unitaries and graph isomorphisms. These
statements are the main results of the paper. They are proved
in Sec. IV. We proceed by discussing the above mentioned
examples, where we use the developed methods. Finally, we
summarize what has been achieved, and sketch further inter-
esting steps of future research.

This paper is concerned with entanglement in multipar-
ticle distributed quantum systems, with some resemblance to
Refs. [13–20]. However, here we are less interested in the
connection between quantum correlations and quantum
phase transition, but rather in the entanglement of graph
states that have definite applications in quantum information
theory. Entangled states associated with graphs have also
been studied in Refs.[19,21–23], where bounds on shared
bipartite entanglement in multipartite quantum systems have
been studied, in order to find general rules for sharing of
entanglement in a multipartite setting. It should, however, be
noted that the way in which we represent entangled states by
mathematical graphs is entirely different from the way this is
done in Refs.[19,21–23]. Furthermore, in the present paper,
we are not only concerned with bipartite entanglement be-
tween two constituents or two groups of constituents, but
with multiparticle entanglement between many constituents.
In turn, the interaction that gives rise to the entangled graph
states is more specific, namely the one corresponding to an
Ising interaction. Finally, as discussed above, graph states
provide an interesting class of genuine multipartite entangled
states that are relatively easy to survey even in the regime of
many parties. Since the graph essentially encodes a prepara-
tion procedure of the state, we will mainly examine the ques-
tion of how the entanglement in a graph state is related to the
topology of its underlying graph.

II. GRAPHS, GRAPH STATES, AND THE SCHMIDT
MEASURE

A. Graphs

At the basis of our analysis lies the concept of a graph
[1,2]. A graph is a collection of vertices and a description of
which vertices are connected by an edge. Each graph can be
represented by a diagram in a plane, where each vertex is
represented by a point and each edge by an arc joining two
not necessarily distinct vertices. In this pictorial representa-
tion many concepts related to graphs can be visualized in a
transparent manner. In the context of the present paper,
physical systems will take the role of vertices, whereas edges
represent an interaction.

Formally, an(undirected, finite) graph is a pair

G = sV,Ed s1d

of a finite setV,N and a setE, fVg2, the elements of which
are subsets ofV with two elements each[1]. The elements of
V are calledvertices, the elements ofE edges. In the follow-
ing we will only considersimplegraphs, which are graphs

that contain neither loops(edges connecting vertices with
itself) nor multiple edges.

When the verticesa,bPV are the endpoints of an edge,
they are referred to as beingadjacent. The adjacency relation
gives rise to anadjacency matrixGG associated with a graph.
If V=ha1, . . . ,aNj, thenGG is a symmetricN3N matrix, with
elements

sGGdi j = H1 if hai,ajj P E,

0 otherwise.
s2d

We will make repeated use of the neighborhood of a given
vertexaPV. This neighborhood Na,V is defined as the set
of verticesb for which ha,bjPE. In other words, the neigh-
borhood is the set of vertices adjacent to a given vertex. A
vertexaPV with an empty neighborhood will be callediso-
lated vertex.

For the purpose of later use, we will also introduce the
concept of a connected graph. Anha,bj path is an ordered
list of verticesa=a1,a2, . . . ,an−1,an=b, such that for alli, ai
andai+1 are adjacent. Aconnected graphis a graph that has
an ha,bj path for any twoa,bPV. Otherwise it is referred to
asdisconnected.

When a vertexa is deleted in a graph, together with the
edges incident witha, one obtains a new graph. For a subset
of verticesV8,V of a graphG=sV,Ed, let us denote with
G−V8 the graph that is obtained fromG by deleting the set
V8 of vertices and all edges which are incident with an ele-
ment of V8. In a mild abuse of notation, we will also write
G−E8 for the graph that results from a deletion of all edges
ePE8, whereE8,E, fVg2 is a set of edges. For a set of
edgesF, fVg2 we will write G+F=sV,EøFd, and GDF
=sV,EDFd, where

EDF = sE ø Fd − sE ù Fd s3d

is the symmetric difference ofE and F. Note that the sym-
metric difference corresponds to the addition modulo 2 or the
componentwiseXOR, if the sets are considered as binary vec-
tors. Moreover, with

EsA,Bd = hha,bj P E: a P A,b P B, a Þ bj, s4d

we denote the set of edges between setsA,B,V of vertices.

B. Graph states

With each graphG=sV,Ed we associate a graph state. A
graph state is a certain pure quantum state on a Hilbert space
HV=sC2d^V. Hence each vertex labels a two-level quantum
system or qubit—a notion that can be extended to quantum
systems of finite dimensiond [4]. To every vertexaPV of
the graphG=sV,Ed is attached a Hermitian operator,

KG
sad = sx

sad p
bPNa

sz
sbd. s5d

In terms of the adjacency matrix this can be expressed as
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KG
sad = sx

sad p
bPV

ssz
sbddGab. s6d

As usual, the matricessx
sad ,sy

sad ,sz
sad are the Pauli matrices,

where the upper index specifies the Hilbert space on which
the operator acts.KG

sad is an observable of the qubits associ-
ated with the vertexa and all of its neighborsbPNa. The
N= uVu operatorshKG

sadjaPV are independent and they com-
mute.

Using standard terminology of quantum mechanics, they
define a complete set of commuting observables of the sys-
tem of qubits associated with the vertex setV (that they
commute can be found immediately by direct inspection, in
order to demonstrate completeness the argument of Ref.[3]
may be used). They thus have a common set of eigenvectors,
the graph states[3,5,7], which form a basis of the Hilbert
spaceHV. For our present purposes, it is sufficient to choose
one of these eigenvectors as a representative of all graph
states associated withG. We denote byuGl the common
eigenvector of theKG

sad associated with all eigenvalues equal
to unity, i.e.,

KG
saduGl = uGl s7d

for all aPV. Note that any other common eigenvector of the
set KG

sad with some eigenvalues being negative are obtained
from uGl by simply applying appropriatesz transformations
at those verticesa, for which KG

sad gives a negative eigen-
value. In the context of quantum information theory, the fi-
nite Abelian group,

SG = khKG
sadjaPVl, s8d

generated by the sethKG
sadjaPV is also called thestabilizer[8]

of the graph state vectoruGl. If the number of independent
operators inSG is less thanuVu, then the common eigenspaces
are degenerate and can, for certain graphsG, be used as
quantum error correcting codes, the so-calledgraph codes
[7]. In this caseG also describes a certain encoding proce-
dure.

The graph state vectoruGl can also be obtained by apply-
ing a sequence of commuting unitary two-qubit operations
Usa,bd to the state vectorux,+l^V corresponding to the empty
graph:

uGl = p
sa,bdPE

Uha,bjux, +l^V, s9d

where E denotes the set of edges inG, and ux,+l is the
eigenvector ofsx with eigenvalue +1. The unitary two-qubit
operation on the verticesa,b, which adds or removes the
edgeha,bj, is given by

Usa,bd = Pz,+
sad

^ 1sbd + Pz,−
sad

^ sz
sbd = Usa,bd†, s10d

and is simply a controlledsz on qubitsa andb, i.e.,

Usa,bd=̇1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
2 .

Here,

Pz,±
sad =

1 ± sz
sad

2
s11d

denotes the projector onto the eigenvectoruz,±l of sz
sad with

eigenvalue ±1(similarly for sx
sad and sy

sad). Usa,bd as in Eq.
(10) is the unitary two-qubit operation which removes or
adds the edges. This is easily seen by noting that forcPV
−ha,bj, KG

scd commutes withUsa,bd, whereas

Usa,bdKG
sadUsa,bd†=Usa,bdsPz,−

sad + Pz,+
sadsz

sbddKG
sad=sz

sbdKG
sad,

s12d

because ofsxPz,±=Pz,7sx. SinceUsa,bd=Usb,ad, similarly

Usa,bdKG
sbdUsa,bd† = sz

sadKG
sbd s13d

holds, so that the transformed stabilizer corresponds to a
graphG8, where the edgeha,bj is added modulo 2. Up to the
local unitarysz

sbd, this corresponds to the Ising interaction.
An equivalence relation for graphs is inherited by the cor-

responding equivalence of state vectors. We will call two
graphsG=sV,Ed andG8=sV,E8d LU-equivalent, if there ex-
ists a local unitaryU such that

uGl = UuG8l. s14d

Locality here refers to the systems associated with vertices of
G=sV,Ed andG8=sV,E8d. Note that LU equivalence is dif-
ferent from equivalence of graphs in the graph theoretical
sense, i.e., permutations of the vertices that map neighbored
vertices onto neighbored vertices.

C. Schmidt measure

Graph states are entangled quantum states that exhibit
complex structures of genuine multiparticle entanglement. It
is the purpose of the present paper to characterize and quan-
tify the entanglement present in these states that can be rep-
resented as graphs. Needless to say, despite considerable re-
search effort there is no known computable entanglement
measure that grasps all aspects of multiparticle entanglement
in an appropriate manner, if there is any way to fill such a
phrase with meaning. Several entanglement measures for
multiparticle systems have been suggested and their proper-
ties studied[11,24–28].

We will, for the purposes of the present paper, use a mea-
sure of entanglement that is tailored for characterizing the
degree of entanglement present in graph states: this is the
Schmidt measure, as introduced in Ref.[11]. Any state vec-
tor uclPHs1d ^ ¯ ^ HsNd of a composite quantum system
with N components can be represented as
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ucl = o
i=1

R

jiuci
s1dl ^ ¯ ^ uci

sNdl, s15d

where ji PC for i =1, . . . ,R, and uci
sndlPHsnd for n

=1, . . . ,N. TheSchmidt measureassociated with a state vec-
tor ucl is then defined as

ESsucld = log2srd, s16d

wherer is the minimal numberR of terms in the sum of Eq.
(15) over all linear decompositions into product states. It can
be extended to the entire state space(and not only the ex-
treme points) via a convex roof extension. This paper will
merely be concerned with pure states. More specifically, we
will evaluate the Schmidt measure for graph states only. It
should be noted, however, that the Schmidt measure is a
general entanglement monotone with respect to general local
operations and classical communication(LOCC), which
typically leave the set of graph states.

In the multipartite case it is useful to compare the Schmidt
measure according to different partitionings, where the com-
ponents 1, . . . ,N are grouped into disjoint sets. Any sequence
sA1, . . . ,ANd of disjoint subsets Ai ,V with øi=1

N Ai

=h1, . . . ,Nj will be called apartition of V. We will write

sA1, . . .ANd ø sB1, . . . ,BMd, s17d

if sA1, . . .ANd is a finer partition than sB1, . . . ,BMd, which
means that everyAi is contained in someBj. The latter is
then acoarser partitionthan the former.

Among the properties that are important for the rest of the
paper are the following:

(i) ES vanishes on product states, i.e.,ESsucld=0 is
equivalent to

ucl = ucs1dl ^ ¯ ^ ucsNdl. s18d

(ii ) ES is nonincreasing under stochastic local operations
with classical communication(SLOCC) [11,29]. Let
Ls1d , . . . ,LsNd be operators acting on the Hilbert spaces
Hs1d , . . . ,HsNd satisfying sLsidd†Lsidø1, and setL=Ls1d ^ ¯

^ LsNd, then

ESS Lucl
kcuL†Lucl1/2D ø ESsucld.

This can be abbreviated as the statement that if

ucl →
SLOCC

uc8l, s19d

thenESsuc8ldøESsucld. Similarly,

ucl↔
LU

uc8l s20d

implies thatESsuc8ld=ESsucld holds, where↔LU denotes the
interconversion via local unitaries. Moreover, for any se-
quence of local projective measurements that finally com-
pletely disentangles the state vectorucl in each of the
measurement results, we obtain the upper bound

ESsucld ø log2smd, s21d

wherem is the number of measurement results with nonzero
probability.

(iii ) ES is nonincreasing under a coarse graining of the
partitioning. If two components are merged in order to form
a new component, then the Schmidt measure can only de-
crease. If the Schmidt measure of a state vectorucl is evalu-
ated with respect to a partitioningsA1, . . . ,ANd, meaning that
the respective Hilbert spaces are those of the grains of the
partitioning, it will be appended,

ES
sA1,. . .,ANdsucld, s22d

in order to avoid confusion. The nonincreasing property of
the Schmidt measure then manifests as

ES
sA1,. . .,ANdsucld ù ES

sB1,. . .,BMdsucld, s23d

if sA1, . . . ,ANdø sB1, . . . ,BMd. For a graphG=sV,Ed, the
partitioning wheresA1, . . . ,AMd=V will be referred to asfin-
est partitioning. If no upper index is appended to the
Schmidt measure, the finest partitioning will be implicitly
assumed.

(iv) ES is subadditive, i.e., for the partitionings
sA1, . . . ,ANd andsB1, . . . ,BMd of two different Hilbert spaces,
over whichuc1l and uc2l are states,

ES
sA1,. . .,AN,B1,. . .,BMdsuc1l ^ uc2ld

øES
sA1,. . .,ANdsuc1ld + ES

sB1,. . .,BMdsuc2ld. s24d

Moreover, for any state vectorufl that is a product state with
respect to the partitioningsB1, . . . ,BMd, we have that

ES
sA1,. . .,AN,B1,. . .,BMdsucl ^ ufld=ES

sA1,. . .,ANdsucld. s25d

(v) For any bipartitionsA,Bd,

ESsucld = log2„rankstrAfuclkcugd…. s26d

MoreoverES is additive within a given bipartitioning, i.e., if
A=A1øA2 andB=B1øB2, then

ES
sA,Bdsuc1l ^ uc2ld = ES

sA1,B1dsuc1ld + ES
sA2,B2dsuc2ld. s27d

The Schmidt measure is a measure of entanglement that
quantifies genuine multiparticle entanglement. Yet, it is a
coarse measure that divides pure states into classes, each of
which is associated with the logarithm of a natural number or
zero. But more detailed information can be obtained by con-
sidering more than one split of the total quantum system. As
stated in property(ii ), the Schmidt measure is a multiparticle
entanglement monotone[11]. The fact that it is a noncontinu-
ous functional on state space is a weakness when considering
bipartite entanglement(where it merely reduces to the loga-
rithm of the Schmidt rank for pure states) and in those few-
partite cases where other measures are still feasible to some
extent. However, for the present purposes it turns out to be
just the appropriate tool that is suitable for characterizing the
multiparticle entanglement of graph states associated with
potentially very many vertices.

Moreover, it should be noted that for general pure states
of multipartite quantum systems the Schmidt measure is—
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as any other measure of multipartite entanglement—
exceedingly difficult to compute. In order to determine the
Schmidt measureES, one has to show that a given decompo-
sition in Eq.(15) with R is minimal. The minimization prob-
lem involved is, as such, not even a convex optimization
problem. SinceES is discrete, the minimization has to be
done by ruling out that any decomposition inR−1 product
terms exists. According to a fixed basishu0lsad , u1lsadj for each
of theN qubit systems, the decomposition in Eq.(15) can be
written as

o
i=1

R

jisai
s1du0ls1d + bi

s1du1ls1dd ^ ¯ ^ sai
sNdu0lsNd + bi

sNdu1lsNdd.

s28d

Not taking normalization into account, which would increase
the number of equations while decreasing the number of pa-
rameters, Eq.(15) can therefore be rewritten as a system of
nonlinear equations in the variablesji ,ai

sad ,bi
sadPC with i

=1, . . . ,R anda=1, . . . ,N. In this way one would essentially
arrive at testing whether a system of 2N polynomials in
s2N+1d32ES complex variables has common null spaces.
This illustrates that the determination of the Schmidt mea-
sure for a general state can be a very difficult problem of
numerical analysis, which scales exponentially in the number
of partiesN as well as in the degree of entanglement of the
state itself(in terms of the Schmidt measureES).

Remember, however, that the graph states themselves rep-
resent already a large class of genuine multipartite entangled
states that are relatively easy to survey even in the regime of
many parties. A numerical analysis[30] seems still unrealis-
tic in this regime, at least until simpler procedures or generic
arguments are found. In the following, we will provide lower
and upper bounds for the Schmidt measure of graph states in
graph theoretic terms, which will coincide in many cases.
Because of the complexity of the numerical reformulation
given above, we will omit the computation of the exact value
for the Schmidt measure in those cases, where lower and
upper bounds do not coincide. We will now turn to formu-
lating general rules that can be applied when evaluating the
Schmidt measure on graph states for a given graph.

III. GENERAL RULES FOR THE EVALUATION
OF THE DEGREE OF ENTANGLEMENT

FOR GRAPH STATES

In this section we will present general rules that give rise
to upper and lower bounds for the Schmidt measure, that
render the actual evaluation of the Schmidt measure feasible
in most cases. We will also present rules that reflect local
changes of the graph. We will first merely state the bounds;
the proofs can then be found Sec. IV. For clarity, we will
state the main results in the form of propositions. In Sec. V
we will then apply these rules, and calculate the Schmidt
measure for a number of graphs.

A. Local Pauli measurements

It is well known that any unitary operation or projective
measurement associated with operators in the Pauli group

can be treated within the stabilizer formalism[8], and there-
fore be efficiently simulated on a classical computer[31].
Moreover, since any stabilizer code(over a finite field) can
be written as a graphical quantum code[6,12], any measure-
ment of operators in the Pauli group turns a given graph state
into a new one. More precisely, consider a graph state vector
uGl which is stabilized bySG=khKG

sadjaPVl and on which a
Pauli measurement is performed. The transformed stabilizer
S8 of the new graph state vector

uG8l = PuGl, s29d

after the projective measurement associated with the projec-
tor P, is up to local unitariesU a stabilizerSG8 according to
a new graphG8. Here and in the following, we will consider
unit rays corresponding to state vectors only, and for simplic-
ity of notation, we will writeucl= uc8l for Hilbert space vec-
tors, if ucl and uc8l are identical up to a scalar complex
factor, disregarding normalization. We obtain

S8 = USG8U
† = khUKG

sadU†jaPVl. s30d

It will be very helpful to specify into which graphG is
mapped under such a measurement, without the need of for-
mulating the measurement as a projection applied on Hilbert
space vectors. This is the content of the following proposi-
tion:

Let aPV denote the vertex corresponding to the qubit of
which the observablesz

sad, sy
sad, or sx

sad is measured. Corre-
sponding to this measurement we define unitariesUi,±

sad:

Uz,+
sad = 1, Uz,−

sad = p
bPNa

sz
sbd, s31d

Uy,+
sad = p

bPNa

s− isz
sbdd1/2, Uy,−

sad = p
bPNa

sisz
sbdd1/2, s32d

and, depending furthermore on a vertexb0PNa,

Ux,+
sad = s+ isy

sb0dd1/2 p
bPNa−Nb0

−hb0j
sz

sbd, s33d

Ux,−
sad = s− isy

sb0dd1/2 p
bPNb0

−Na−haj
sz

sbd. s34d

Proposition 1 (Local Pauli measurements). Let G
=sV,Ed be a graph, and letuGl be its graph state vector. If a
measurement ofsx

sad, sy
sad, or sz

sad on the qubit associated
with vertexaPV is performed, then the resulting state vec-
tor, depending on the outcome ±1, is given by

Pi,±
saduGl = ui, ±lsad

^ Ui,±
saduG8l, i = x,y,z. s35d

The resulting graph is given by

G8 = HG − haj, for sz
sad,

G − EsNa,Nad, for sy
sad,

s36d

and forsx
sad by
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G8 = GD EsNb0
,NadD EsNb0

ù Na,Nb0
ù Nad

3DEshb0j,Na − hb0jd, s37d

for any b0PNa, if aPV is not an isolated vertex. Ifa is an
isolated vertex, then the outcome of thesx

sad measurement is
+1, and the state is left unchanged.

A similar set of rules has been found independently by
Schlingemann[4].

Note that in case of a measurement ofsy, the resulting
graph can be produced as well by simply replacing the sub-
graph GfNag by its complementGfNagc. An inducedsub-
graph GfAg of a graphG=sV,Ed with A,V is the graph that
is obtained when deleting all vertices but those contained in
A, and the edges incident to the deleted vertices. For a mea-
surement ofsx, like the resulting graphG8, the local unitary
Ux,± depends on the choice ofb0. But the resulting graph
states arising from different choices ofb0 and b08 will be
equivalent up to the local unitaryUb08

Ub0

† (see Sec. III E).
Note also that the neighborhood ofb0 in G8 is simply that of
a in G (except fromb0). For a sequence of local Pauli mea-
surements, the local unitaries have to be taken into account,
if the measured qubit is affected by the unitary. For the sake
of completeness, we therefore summarize the necessary com-
mutation relations in Table I, which denote the transforma-
tion of the measurement basis, if a subsequent measurement
is applied to a unitarily transformed graph state.

Figure 1 shows two subsequent applications of the rather
complicatedsx measurement. We will give a simplified ver-
sion of this rule in Sec. III E. Apart from the trivial case of a
sx measurement at an isolated vertex, both measurement re-
sults ±1 of a local Pauli measurement are attained with prob-
ability 1/2 and yield locally equivalent graph state vectors
uG8l and uG9l. Therefore, we have

ESsuG8ld ø ESsuGld ø ESsuG8ld + 1. s38d

According to Eq.(21), for any measurement sequence ofsx,
sy, or sz that yields an empty graph, the number of local

measurements in this sequence gives an upper bound on the
Schmidt measure of the corresponding graph state. In the
following we will call the minimal number of local Pauli
measurements to disentangle a graph state itsPauli persis-
tency(see Ref.[9]). Since eachsz measurement deletes all
edges incident to a vertex, any subsetV8#V of vertices in a
graphG, to which any edge ofG is incident, allows for a
disentangling sequence of local measurements. In graph
theory those vertex subsets are calledvertex covers.

Proposition 2 (Upper bound via persistency). The
Schmidt measure of any graph state vectoruGl is bounded
from above by the Pauli persistency. In particular, the
Schmidt measure is less than or equal to the size of the
minimal vertex cover of the corresponding graphG.

For graphs with many edges, a combination ofsz andsy
will give better bounds than restricting tosz measurements
only. For example, due to Eq.(36), any complete graph(in
which all vertices are adjacent) can be disentangled by just
one sy measurement at any vertex. As we will show, this
corresponds to the fact that these graph states are LU-
equivalent to the GHZ-type graph states, in which every ver-
tex is adjacent to the same central vertex(see Fig. 2).

B. Schmidt measure for bipartite splits

For a bipartitionsA,Bd of the graphG=sV,Ed let GAB

=sV,EABd denote the subgraph ofG, which is induced by the
edgesEAB;EsA,Bd betweenA and B. Moreover,GAB will
denote theuAu 3 uBu-off-diagonal submatrix of the adjacency
matrix GG according toG, which represents the edges be-
tweenA andB:

S GA GAB
T

GAB GB
D = GG, s39d

and similarly

S 0 GAB
T

GAB 0
D = GGAB

. s40d

Proposition 3 (Bipartitioning). The partial trace with re-
spect to any partitionA is

TABLE I. The relevant commutation relations for Pauli projec-
tions and Clifford operators.

Px,±sz=szPx,7,

Py,±sz=szPy,7,

Pz,±sz=szPz,±,

Px,±s−iszd1/2=s−iszd1/2Py,7,

Px,±sisyd1/2=sisyd1/2Pz,7,

Px,±s−isyd1/2=s−isyd1/2Pz,±,

Px,±siszd1/2=siszd1/2Py,±,

Py,±s−iszd1/2=s−iszd1/2Px,±,

Py,±sisyd1/2=sisyd1/2Py,±,

Py,±s−isyd1/2=s−isyd1/2Py,±,

Py,±siszd1/2=siszd1/2Px,7,

Pz,±s−iszd1/2=s−iszd1/2Pz,±,

Pz,±sisyd1/2=sisyd1/2Px,±,

Pz,±s−isyd1/2=s−isyd1/2Px,7,

Pz,±siszd1/2=siszd1/2Pz,±,

FIG. 1. Example for asx measurement at vertex 1 in graph No.
1, which is followed by asz measurement at vertex 2. In graph No.
1 asx measurement is performed at the vertex 1. For the application
of the rule in Eq.(37), vertex 2 was chosen as the special neighbor
b0, yielding graph No. 2 up to a local unitaryUx,±

s1d =s±isy
s2dd1/2. As

stated in Table I, the subsequentsz measurement on the new graph
state is therefore essentially anothersx measurement, now at vertex
2 with a single neighborb0=5. The final graph is then graph No. 3.
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trAfuGlkGug =
1

2uAu o
zPF2

A

UszduG − AlkG − AuUszd†, s41d

whereF2 denotes the integer fieldh0,1j with addition and
multiplication modulo 2. The local unitaries are defined as

Uszd = p
aPA

S p
bPNa

sz
sbdDza. s42d

Therefore, the Schmidt measure of a graph state vectoruGl
with respect to an arbitrary bipartitionsA,Bd is given by the
rank of the submatrixGAB of the adjacency matrixGG,

ESsuGld ù ES
sA,BdsuGld=log2„rankstrAfuGlkGugd…=rankF2

sGABd

=
1

2
rankF2

sGGAB
d. s43d

From Eq.(41) one may as well compute that the reduced
entropy of uGl, according to the bipartitionsA,Bd and the
Schmidt rank, coincide if the base-2 logarithm is taken. This
simply expresses the fact that, for a nonempty graph,uGl is

the “maximally” sA,Bd-entangled state vector with 2ES
sA,Bd

Schmidt coefficients. If one maximizes over all bipartition-
ings sA,Bd of a graphG=sV,Ed, then according to Eq.(23)
one obtains a lower bound for the Schmidt measure with
respect to the finest partitioning.

Note that the Schmidt rank of a graph state is closely
related to error correcting properties of a corresponding
graph code. LetA be a partition, according to whichuGl has
maximal Schmidt rank. Then, according to Ref.[7], choosing
a subsetX#A, the graph code, which encodes an input on
vertices X in output on verticesY=V−X according toG,
detects the error configurationE=A−X, i.e., any errors oc-
curring on only one half of the vertex setE can be corrected.
In particular, all strongly error correcting graph codesin
Ref. [7] must have Schmidt measureuVu /2.

Proposition 4 (Maximal Schmidt rank). A sufficient crite-
rion for a bipartite splitsA,Bd to have maximal Schmidt rank

is that the graphGAB contains no cycles, and that the smaller
partition contains at most one leaf with respect to the sub-
graphGAB. If GAB is not connected, then it is sufficient that
the above criterion holds for every connected component of
GAB.

A leaf is a vertex of degree 1, i.e., a vertex to which
exactly one edge is incident[1]. It is finally important to note
that the maximum Schmidt measure with respect to all bipar-
tite partitions is essentially the quantity considered in Ref.
[32] in the context of an efficient simulation of a quantum
algorithm on a classical computer. If this quantity has the
appropriate asymptotic behavior in the numbern of spin sys-
tems used in the computation, then an efficient classical al-
gorithm simulating the quantum dynamics can be con-
structed.

Note finally that, as an immediate corollary of the above
considerations, the degree of entanglement depends only on
the area of the boundary between distinguished regions of
regular cluster states, i.e., graph states where in a regular
cubic lattice nearest neighbors are connected by an edge. If
one considers periodic boundary conditions, one may distin-
guish a cuboid forming partA from the rest of the graphB,
and ask for the bipartite entanglement. It follows immedi-
ately that since the interior regions may be completely dis-
entangled, the degree of entanglement is linear in the number
of vertices forming the boundary of the two regions. The
corners are then counted just as one maximally entangled
pair of two-spin systems.

C. Deleting edges and vertices

For graphs with a large number of vertices or edges, it is
useful to identify bounds for the Schmidt measure when lo-
cal changes to the graph are applied. As an example, we give
two rules that bound the changes to the Schmidt measure if
an edge or a vertex is deleted or added.

Proposition 5 (Edge rule). By deleting or adding edges
e=ha,bj between two verticesa,bPV of a graphG the
Schmidt measure of the resulting graphG8=G± hej can at
most decrease or increase by one, i.e.,

uESsuG8ld − ESsuGldu ø 1. s44d

Proposition 6 (Vertex rule). If a vertexa (including all its
incident edges) is deleted, the Schmidt measure of the result-
ing graphG8=G−haj cannot increase and will at most de-
crease by one, i.e.,

ESsuG8ld ø ESsuGld ø ESsuG8ld + 1. s45d

D. Bounds for 2-colorable graphs

Graphs may be colorable. A proper 2-coloring of a graph
is a labelingV→ h1,2j, such that all adjacent vertices are
associated with a different element fromh1,2j, which can be
identified with two colors. In graph theory these graphs are
also called “bipartite graphs,” since the set of vertices can be
partitioned into two disjoint sets, such that no two vertices
within the same set are adjacent. It is a well-known fact in

FIG. 2. A singlesy measurement at an arbitrary vertex in the
complete graph No. 7 suffices to disentangle the corresponding
state. Similarly, a singlesz measurement at the central vertex in
graph Nos. 1–6 or a singlesx measurement at the noncentral ver-
tices is a disentangling measurement. This is due to the fact that all
graphs(Nos. 1–7) are locally equivalent by local unitaries, which
transform the measurement basis correspondingly.
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graph theory that a graph is 2-colorable if it does not contain
any cycles of odd length.

As has been shown in Ref.[5], for every graph state cor-
responding to a 2-colorable graph, a multiparty entanglement
purification procedures exists: Given any 2-colorable graph
state vectoruGl on uVu qubits, by means of LOCC operations
a general mixed stater on uVu particles can be transformed
into a mixed state, which is diagonal in a basis of orthogonal
states that are LU-equivalent touGl. Given that the initial
fidelity is sufficient, an ensemble of those states can then be
purified to uGl. Thus, 2-colorable graph states provide a res-
ervoir of entangled states between a large number of par-
ticles, which can be created and maintained even in the pres-
ence of decoherence/noise. For the class of these graph states
the lower and upper bounds to the Schmidt measure can be
applied.

Proposition 7 (2-colorable graphs). For 2-colorable
graphsG=sV,Ed the Schmidt measure is bounded from be-
low by half the rank of the adjacency matrix of the graph,
i.e.,

ESsuGld ù
1

2
rankF2

sGGd, s46d

and from above by the size of the smaller partition of the
corresponding bipartition. In particular, for a 2-colorable
graph,

ESsuGld ø b uVu
2

c. s47d

If GG is invertible, then equality holds in Eq.(47).
Note that any graphG, which is not 2-colorable, can be

turned into a 2-colorable oneG8 simply by deleting the ap-
propriate vertices on cycles with odd length. Since this cor-
responds tosz measurements, by Eq.(38),

ESsuGld ø ESsuG8ld + M ø b uV − Mu
2

c + M ø b uVu + M

2
c,
s48d

whereM denotes the number of removed vertices. Moreover,
note that the number of induced cycles with odd length cer-
tainly boundsM from above.

We also note that whereas localsx or sz measurements in
2-colorable graphs will yield graph states according to
2-colorable graphs,sy measurements of 2-colorable graphs
can lead to graph states which are not even locally equivalent
to 2-colorable graphs. It is certainly true that a 2-colorable
graph remains 2-colorable after application of thesz mea-
surement rule Eq.(36), since after deletion of a vertex in a
2-colorable graph the graph still does not contain any cycles
of odd length.

Now let G be a 2-colorable graph with the bipartitionA of
sinks andB of sources, in which the observablesx is mea-
sured at vertexaPA. Then, the setEsNb0

ùNa,Nb0
ùNad in

Eq. (37) is empty andEsNb0
,Nad only consists of edges be-

tweenA andB. Moreover, after adding all edges of the last
set (modulo 2) to the edge set of the graphG, the measured

vertexaPA, as well as its special neighborb0PB, are iso-
lated, so that in the last step of addingEshb0j ,Na−hb0jd the
vertex b0 simply gets all neighborsNa−hb0j,B in G. So
after application of this rule the new graphG8 has the
2-coloring with partitions A8=A−hajø hb0j and B8=B
−hb0j. A counterexample to a corresponding assertion forsy

measurements is provided in Fig. 3. The resulting graph even
has no locally equivalent representation as a 2-colorable
graph. This is because the corresponding equivalence class
No. 8 in Table II has no 2-colorable representative.

E. Equivalence classes of graph states under local unitaries

Each graph state vectoruGl corresponds uniquely to a
graphG. However, two graph states can be LU-equivalent,
leading to two different graphs. Needless to say, this equiva-
lence relation is different from the graph isomorphisms in
graph theory. We have examined the graph states of all noni-
somorphic (connected) graphs with up to seven vertices.
More precisely, from the set of all possible graphs with seven

vertices(2s7
2

d<23106 possibilities), we have considered the
subset of all connected graphs on up to seven vertices which
are nonisomorphic with respect to graph isomorphisms, i.e.,
permutations of the vertices that map neighbored vertices
onto neighbored vertices. Of the 995 isomorphism classes of
corresponding graph states, 45 classes have turned out to be
not invariant under local unitary operations(with respect to
the finest partitioning). Moreover, within each of these
classes all graph states are equivalent modulo local unitaries
and additional graph isomorphisms, which corresponds to
the exchange of particles. If we exclude the graph isomor-
phisms, as, e.g., in quantum communication scenarios, the
number of inequivalent classes of graph states would even be
larger. In Figs. 4 and 5 we give a list of simple representa-
tives of each equivalence class.

To test for local equivalence we have only considered
local unitaries within the corresponding local Clifford group.
But, by considering the Schmidt rank with respect to all pos-
sible bipartitions, the corresponding lists of Schmidt ranks
for each representative turned out to be different even if we
allow arbitrary permutations of the vertices. This shows that
the found sets of locally invariant graph states are maximal.

Having this enormous reduction in mind, it is desirable to
find simple rules in purely graph theoretic terms, giving at

FIG. 3. Whereas graph No. 1 is 2-colorable, the resulting graph
No. 2 after asy measurement at the vertexj is not 2-colorable.
Also, none of the 132(or 3) representatives in the corresponding
equivalence class(if graph isomorphisms are included) is
2-colorable.
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least sufficient conditions for two graph states to be equiva-
lent by means of local unitaries. The subsequent rule implies
such a simplification: The inversion of the subgraph
GfNag°GfNagc, induced by the neighborhoodNa of any
vertex aPV, within a given graph, gives a LU-equivalent
graph state. In graph theory this transformation
ta:G°tasGd, where the edges setE8 of tasGd is obtained
from the edge setE of G by E8=EDEsNa,Nad, is known as
local complementation[33]. With this notation the corre-
sponding rule for graph states can be stated as follows:

Proposition 8 (LU equivalence). Let aPV be an arbitrary
vertex of two graphsG=sV,Ed, then utsGdl=UasGduGl with
local unitaries of the form

UasGd = s− isx
sadd1/2 p

bPNa

sisz
sbdd1/2 ~ ÎKG

sad. s49d

This rule was independently found by Van den Nest, who
was able to show that a successive application of this rule
suffices to generate the complete orbit of any graph state
under local unitary operations within the Clifford group[34].
Figure 6 shows an example of how to repeatedly apply this
rule in order to obtain the whole equivalence class of a graph
state. Note that the set of graphs in Fig. 6 do not exhaust the
entire class associated with graph No. 4 in Fig. 4. In Fig. 7
we show another set of graphs that is a proper subset of the
class No. 4 in Fig. 4. No graph in Fig. 6 is locally equivalent
to any graph in the equivalence class represented in Fig. 7,
though both belong to the same equivalence class when con-
sidering both, local unitary transformationsand graph iso-
morphisms, as depicted in Fig. 4.

TABLE II. The number of verticesuVu and edgesuEu, Schmidt
measureES, rank index(see Sec. V) RI3 andRI2 (for splits with 2 or
3 vertices in the smaller partition), number of nonisomorphic but
LU-equivalent graphsuLU classu, and the 2-colorable property 2-col
for the graph classes in Figs. 4 and 5.

No. uLU classu uVu uEu ES RI3 RI2 2-col

1 1 2 1 1 yes

2 2 3 2 1 yes

3 2 4 3 1 (0,3) yes

4 4 4 3 2 (2,1) yes

5 2 4 4 1 (0,10) yes

6 6 5 4 2 (6,4) yes

7 10 5 4 2 (8,2) yes

8 3 5 5 2,3 (10,0) no

9 2 6 5 1 (0,0,10) (0,15) yes

10 6 6 5 2 (0,6,4) (8,7) yes

11 4 6 5 2 (0,9,1) (8,7) yes

12 16 6 5 2 (0,9,1) (11,4) yes

13 10 6 5 3 (4,4,2) (12,3) yes

14 25 6 5 3 (4,5,1) (13,2) yes

15 5 6 6 2 (0,10,0) (12,3) yes

16 5 6 6 3 (4,6,0) (12,3) yes

17 21 6 6 3 (4,6,0) (14,1) yes

18 16 6 6 3 (6,4,0) (15,0) yes

19 2 6 9 3,4 (10,0,0) (15,0) no

20 2 7 6 1 (0,0,35) (0,21) yes

21 6 7 6 2 (0,20,15) (10,11) yes

22 6 7 6 2 (0,30,5) (12,9) yes

23 16 7 6 2 (0,30,5) (14,7) yes

24 10 7 6 2 (0,33,2) (15,6) yes

25 10 7 6 3 (12,16,7) (16,5) yes

26 16 7 6 3 (12,20,3) (16,5) yes

27 44 7 6 3 (12,21,2) (17,4) yes

28 44 7 6 3 (16,16,3) (18,3) yes

29 14 7 6 3 (20,12,3) (18,3) yes

30 66 7 6 3 (20,13,2) (19,2) yes

31 10 7 7 2 (0,34,1) (16,5) yes

32 10 7 7 3 (12,22,1) (16,5) no

33 21 7 7 3 (12,22,1) (18,3) no

34 26 7 7 3 (16,18,1) (18,3) yes

35 36 7 7 3 (16,19,0) (19,2) no

36 28 7 7 3 (20,14,1) (18,3) no

37 72 7 7 3 (20,15,0) (19,2) no

38 114 7 7 3 (22,13,0) (20,1) yes

39 56 7 7 3,4 (24,10,1) (20,1) no

40 92 7 7 3,4 (28,7,0) (21,0) no

41 57 7 8 3,4 (26,9,0) (20,1) no

42 33 7 8 3,4 (28,7,0) (21,0) no

43 9 7 9 3 (28,7,0) (21,0) yes

44 46 7 9 3,4 (32,3,0) (21,0) no

45 9 7 10 3,4 (30,5,0) (20,1) no

FIG. 4. List of connected graphs with up to six vertices that are
not equivalent under LU transformations and graph isomorphisms.
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For any partitionA the Schmidt rankES
sA,Acd is an invariant

under arbitrary local unitaries, which is formulated in purely
graph theoretic terms. Considering the list of Schmidt ranks
with respect to all partitions, one therefore obtains a set of
invariants for graphs under local complementationst, which
was already considered in graph theory, known as thecon-
nectivity function[33]. For the equivalence classes in Figs. 6
and 7, for example, the corresponding lists of Schmidt ranks
or connectivity functions do not coincide, implying that the
corresponding set of graph states are not equivalent either
under local Clifford group operations or under general local
unitaries. We note that the Schmidt rank list does not provide
a complete set of invariants that would characterize all
equivalence classes under local Clifford group operations.
For the Petersen graph shown in Fig. 8, and the isomorphic
graph, which is obtained by exchanging the labels at each
end of the five “spokes,” no local Clifford operation exists
(i.e., sequence of local complementations) that transforms

one graph into the other, although the Schmidt rank lists for
both graphs coincide. For a complete set of invariants the
polynomial invariants in Ref.[35] can be considered. For
example, the number of elementsIAsGd in the stabilizer of
the graph state vectoruGl, that act nontrivially exactly on the
vertices inA, corresponds to homogeneous polynomial in-
variants of degree 2. Moreover, one can show that

FIG. 5. List of connected graphs with seven vertices that are not
equivalent under LU transformations and graph isomorphisms.

FIG. 6. An example for an successive application of the LU
rule, which exhibits the whole equivalence class associated with
graph No. 1. The rule is successively applied to that vertex of the
precessor, which is written above the arrows of the following dia-

gram: No. 1→
3

No. 2→
2

No. 3→
3

No. 4→
1

No. 5→
3

No. 6→
1

No. 7

→
3

No. 8→
4

No. 9→
1

No. 10→
2

No. 11.

FIG. 7. An example of an equivalence class, which is a proper
subset of class No. 4 in Fig. 4.
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o
B#A

IBsGd = 2suAu−ES
sA,Acdd. s50d

Therefore, the list of invariantsIAsGd with respect to all par-
titions A essentially contains the same information for graph
states as the Schmidt rank list. But, as discussed in Refs.
[35,36], by considering more invariants corresponding to ho-
mogeneous polynomials of different degrees, one can(in
principle) obtain finite and complete sets of invariants for
local Clifford operations, as well as for arbitrary local uni-
taries.

Finally, the LU rule can be used to derive thex- and
y-measurement rule from the simplez-measurement rule:
With commutation relations similar to those in Table I, it is
easy to see that Px,±

sad =Ub0
sGdPy,±

sadUb0

† sGd and Py,±
sad

=UasGdPz,7
sad Ua

†sGd holds, whereb0 is a neighbor ofa. With
the notion of local complementation at hand, we can then
rewrite the resulting states in Proposition 1 after the Pauli
measurement in the simplified form:

Pz,±
saduGl = uz, ±lsad

^ Uz,±
saduG − al, s51d

Py,±
sad uGl = uy, ±lsad

^ Uy,±
sad utasGd − al, s52d

Px,±
sad uGl = ux, ±lsad

^ Ux,±
sad utb0

sta + tb0
sGd − adl, s53d

where the local unitariesUi,±
sad are defined as for Proposi-

tion 1.

IV. PROOFS

In this section we prove the statements that, for clarity of
presentation, have been summarized in the previous section
without proof.

Proof of Proposition 1. As already mentioned in Sec.
III E, with the LU rule at hand one could derive the graphG8
after anx or y measurement from thez-measurement rule,
which can be directly proven by disentangling the Ising in-
teractionsUsa,bd in Eq. (9). Here, we will instead take another
starting point for the proof, namely a well-known result from

stabilizer theory that we will then apply to the specific ques-
tion at hand. Consider a subspace ofCn, which is stabilized
by

khgijiPIl, gi P Pn, s54d

wherePn denotes the Pauli group onn qubits andI is an
index set. It is well known(see, e.g., Ref.[37]) that the
projected subspacePg,± corresponding to a measurement of
an operatorgPPn in the Pauli group(i.e., g is a product of
Pauli matrices) with outcome ±1 is stabilized by:

(i) khgijiPIl, if g commutes with all stabilizer generators
gi.

(ii ) kh±gjø hgkgj : j P I8−hkjjø hgs jdu j P I8cjl for some k
P I8 otherwise.I8 denotes the nonempty index set of the
generatorsgi that do not commute withg, andI8c= I \ I8 is the
complement ofI8.

We now turn to the specific case of graph state vectorsuGl
and measurements ofsx

sad ,sy
sad, or sz

sad at vertexaPV. Then,
each generatorKG

sad is associated with an elementaPV, and
for a giveng, the list I8 of generators that do not commute
with g is a subset ofV. For the measurements considered
here, only case(ii ) is relevant, as long assx

sad is not measured
at an isolated vertexa. In the latter situation, which corre-
sponds to case(i),

KG
sad = sx

sad, s55d

andsz
sad is not contained in anyKG

sbd for bÞa. Then, the state
is left unchanged and with probability 1 the result +1 is
obtained.

In case(ii ), in turn, the possible measurement results ±1
are always obtained each with probability 1/2. Let us start
with identifying the resulting state vector and graph after
measuringsz

sad. The index setI8 then is given byI8=haj, and
the state vectorPz,±

saduGl is stabilized by

kh±sz
sadj ø hKG

sbd:b P V − hajjl. s56d

Multiplying ±sz
sad to the elementsKG

sbd for bPV−haj, accord-
ing to the neighborsbPNa in G, yields

±sz
sadKG

sbd = ± sx
sbd p

b8PNb−haj

sz
sb8d, s57d

which is up to the sign the stabilizer generator according to
the vertexb in G−haj. Since the stabilizer generatorsKG

sbd

corresponding to verticesb outsideNaø haj in G coincide
with those inG−haj, the stabilizer may as well be seen gen-
erated by

h±sz
sadj ø h±KG−haj

sbd :b P Naj

øhKG−haj
sbd :b P V − haj − Naj. s58d

Hence, we have shown the validity of Eq.(35) for the case of
a positivesz measurement result. In the other case the sign
can be corrected for, as the stabilizer can be written as

FIG. 8. The Petersen graph. The depicted labeled graph is not
LU equivalent to the graph which is obtained from it by exchanging
the labels at each end of the five “spokes,” i.e., the graph isomor-
phism which permutes the vertices1,2,3,4, and 5 with 6,7,8,9,
and 10, respectively.
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kUz,−sh− sz
sadj ø hKG−haj

sbd :b P VG−hajjdUz,−
† l, s59d

which corresponds to the state vector

uz,− lsad
^ Uz,−

saduG − hajl. s60d

Here, it has been used thatUz,−
sad =pbPNa

sz
sbd anticommutes

exactly with the generators

hKG−haj
sbd :b P Naj. s61d

In a similar manner, the case of a measurement ofsy
sad can

be treated. The index setI8 is given by I8=Naø haj and, if
k=a is chosen, the new stabilizer is given by

kh±sy
sadj ø G1 ø G2l, s62d

where

G1 = hKG
sadKG

sbd:b P Naj, s63d

G2 = hKG
scd:c P V − Na − hajj. s64d

For G1 one computes

KG
sadKG

sbd = sy
sadsy

sbd p
b8PNbDNa−ha,bj

sz
sb8d

= ± sy
sadUy,±

sadSsx
sbd p

b8PNbDNa−ha,bj

sz
sb8dDUy,±

sad †

= ± sy
sadUy,±

sadKG8
sbdUy,±

sad †, s65d

where G8 denotes the graph with the edge setE8
=EGDEsNa,Nad and the unitariesUy,±

sad are defined as in Eq.
(32). Because the elements inG2 commute withUy,±

sad , we
arrive at the result for measurements ofsy

sad.
Finally, in the case of measurements ofsx

sad, we identifyI8
as I8=Na. If some b0PNa is chosen, the new stabilizer is
given by

kh±sx
sad,KG

sadj ø G1 ø G2 ø G3 ø G4l, s66d

where, because of the following argumentation the finer dis-
section is chosen,

G1 = hKG
sb0dKG

sbd:b P Na ù Nb0
j, s67d

G2 = hKG
sb0dKG

sbd:b P Na − Nb0
− hb0jj, s68d

G3 = hKG
sbd:b P Nb0

− Na − hajj, s69d

G4 = hKG
scd:c P V − Na − Nb0

j. s70d

Instead ofKG
sad, the generator

±sx
sadKG

sad = ± p
bPNa

sz
sbd = Ux,±

sadSsx
sb0d p

bPNa−hb0j
sz

sbdDUx,±
sad†

s71d

can be chosen, whereUx,±
sad is defined as above. Instead of

KG
sb0dKG

sbd in G1, we choose, forb0PNa andbPNb0
,

±sx
sadKG

sadKG
sb0dKG

sbd

= 7 sx
sb0dsx

sbd p
b8PNbDNaDNb0

sz
sb8d

=Ux,±
sadS7s7 isy

sb0ddsx
sb0ds+ sx

sbdd p
b8PNbDNaDNb0

sz
sb8dDUx,±

sad†

=Ux,±
sadSsx

sbd p
b8PNbDNaDNb0

øhb0j

sz
sb8dDUx,±

sad†,

where the second equality holds, becauseb0¹NbDNaDNb0

and s7isx
sb0dd1/2 therefore anticommutes only withsx

sb0d.
Moreover, the positive sign of +sx

sbd is due tob¹Na−Nb0
−hb0j, as well asb¹Nb0

−Na−haj, since in both cases ± the
termsz

sbd of Ux,±
sad commutes withsx

sbd. For KG
sb0dKG

sbd of G2 one
computes, forb¹Nb0

, b0¹NbDNb0
, bPNa−Nb0

−hb0j,

KG
sb0dKG

sbd = sx
sb0dsx

sbd p
b8PNbDNb0

sz
sb8d

=Ux,±
sadSs7 isy

sb0ddsx
sb0ds7sx

sbdd p
b8PNbDNb0

sz
sb8dDUx,±

sad†

=Ux,±
sadSsx

sbd p
b8PNbDNb0

øhb0j

sz
sb8dDUx,±

sad†. s72d

Instead ofKG
sbd in G3 we choose, forb¹Na, b0¹NbDNa, b

PNb0
−Na−haj,

±sx
sadKG

sadKG
sbd = ± sx

sbd p
b8PNbDNa

sz
sb8d

=Ux,±
sadS±s±sx

sbdd p
b8PNaDNb

sz
sb8dDUx,±

sad†

=Ux,±
sadSsx

sbd p
b8PNbDNa

sz
sb8dDUx,±

sad†. s73d

Moreover, note thatKG
scd in G4 is not changed byUx,±

sad, since
cPV−sNaøNb0

d. To summarize, the new neighborhoodsNb8
are

Nb8 =5
Na − hb0j if b = b0,

NbDNaDNb0
ø hb0j if b P Nb0

ù Na,

NbDNb0
ø hb0j if b P Na − Nb0

− hb0j,

NbDNa if b P Nb0
− Na − haj,

Nb if b P VG − Na − Nb0
.

s74d

A comparison shows that these neighborhoods correspond
exactly to the graphG8 obtained from Eq.(37). This con-
cludes the proof. j

Proof of Proposition 2. This statement follows immedi-
ately from Eq.(21) in property(ii ) of the Schmidt measure,
and the fact that the different measurement results are ob-
tained with probability 1/2. j

Proof of Proposition 3. To show Eq.(41), the partial trace
over A can be taken according to the basis ofA given by
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huzl = ^
aPA

uz,s− 1dzalsadj. s75d

This corresponds to successive localsz measurements of all
vertices inA, yielding measurement outcomes ±1. According
to Sec. III A, after measurement ofsz

sad the state of the re-
maining vertices is the graph state vectoruG−hajl in the case
of the outcome +1, and

p
cPNa

sz
scduG − hajl, s76d

if the outcome is −1. This can be summarized as

S p
cPNa

sz
scdDzauG − hajl, s77d

wherezaP h0,1j denotes the measurement result ±1. Since
the following measurements commute with the previous lo-
cal unitaries, the final state vector according to the resultz
=szadaPAPF2

A is

p
aPA

p
cPNa

ssz
scddzauzl ^ uG − Al= p

aPA
p
cPV

ssz
scddGcazauzl ^ uG − Al

= p
aPA

ssz
saddkeauGG−Bzluzl

^ p
bPB

ssz
sbddkebuGABzluG − Al,

s78d

where the computation with respect toz is done inF2
A (i.e.,

modulo 2) andea
b=dab. Therefore, we arrive at the resulting

state vector associated with the resultz as

s− 1dkzuGG−Bzluzl ^ p
bPB

ssz
sbddkebuGABzluG − Al. s79d

Because the possible measurement results are attained with
probability 1/2, this proves the validity of Eq.(41) with
local unitaries as in Eq.(42), i.e.,

Uszd = p
aPA

S p
bPNa

sz
sbdDza = p

bPB

ssz
sbddkebuGABzl. s80d

To show the validity of Eq.(43), note that for anyz1,z2
PF2

A, the state vectorsUsz1duG−Al andUsz2duG−Al are or-
thogonal if and only if

Usz1 − z2d = Usz2d†Usz1d Þ 1, s81d

since pcPV8 sz
scd anticommutes with the stabilizer for any

graph state and for anyxÞV8#V, and therefore takes it
into its orthogonal complement. Hence,

log2„rankstrAfuGlkGugd…

=log2„dim spanhUszduG − Al:z P F2
Aj…, s82d

as for everyzPF2
A exactly thosez8PF2

A yield the same
Usz8d=Uszd, for which

z8 − z P hz P F2
A:Uszd = 1j s83d

holds. This gives

log2„rankstrAfuGlkGugd… = uAu − log2uhz P F2
A:kebuGABzl

=F2
0 ∀ b P Bju

= uAu − dim kerF2
sGABd = rankF2

sGABd.

s84d

Proof of Proposition 4. To see this, assume to the contrary
that GAB contains no cycles but that the Schmidt rank is not
maximal. Then, denote withA8#A any subset for which the
corresponding columnsnsad in GAB might add to 0 modulo 2,

o
aPA8

nsad=F2
0. s85d

Obviously, every vertexbPB8=øaPA8 Na must have an
even number of distinct neighbors inA8. For the moment, let
the single leafa1 be contained inA8 and

a1,b1,a2, . . . ,bn−1,an s86d

be a ha1,anj path with maximal length that alternately
crosses the setsA8 andB8 (starting ina1 and ending inA8 as
depicted in Fig. 9). Becausean is necessarily a vertex of
degree more than 1 inGAB and by construction also inGA8B8,
it must have a neighborbnÞbn−1 in B8. If bn=bi for some
i =1, . . . ,n−2, a contradiction is found. Otherwisebn itself
must have a neighboran+1Þan in A8, becausebn has even
degree inGA8B8. Now either an+1=ai for some i =1, . . . ,n
−2 or the path

a1,b1,a2, . . . ,bn−1,an,bn,an+1 s87d

is a longer path inGA8B8, both yielding to contradictions with
the previous assumptions.

If the single leafa1 is not contained inA8, or if A contains
no leaves, the previous argumentation still holds, because
now anyaPA8 must have a degree more than one, if one
allowsa1PA8 to be arbitrary. The sufficient criterion for the
connected components ofGAB then follows from the additiv-
ity of ES within the given bipartitionsA,Bd, as formulated in
Eq. (27), after deleting all edges withinGfAg and GfBg,
which is propersA,Bd-local unitary operation. j

Proof of Proposition 5. Let G=sVø ha1,b1j ,Ed be a

FIG. 9. A sufficient condition for a graph to have maximal
Schmidt rank.
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graph. The setV is the set of all vertices of the graphG,
except the two verticesa and b between which an edge is
supposed to be deleted or added. LetV also denote the se-
quence of partitions in the finest partitioning ofG and A1
=ha1j, B1=hb1j. G8 denotes the resulting graph, which differs
from G in the edgeha1,b1j. As has been shown in Refs.
[38–40], the unitary operation corresponding to the Ising in-
teraction, see Eq.(10), can be implemented with LOCC with
unit probability. The necessary and sufficient resources are
one maximally entangled pair of qubits and one bit of clas-
sical communication in each direction(see Fig. 10). The ver-
tices a2 and b2 correspond to the qubits that carry the en-
tanglementucl resource required to implement the Ising
interaction with LOCC. WithA2=ha2j andB2=hb2j, we can
conclude that

ES
sV,A1,B1dsuGld + 1 =ES

sV,A1,B1dsuGld + ES
sA2,B2dsucld

ù ES
sV,A1,B1,A2,B2dsuGl ^ ucld, s88d

due to subadditivity, and

ES
sV,A1,B1,A2,B2dsuGl ^ ucld ù ES

sV,A,BdsuGl ^ ucld, s89d

due to the nonincreasing property under coarse graining of
the partition A=A1øA2 and B=B1øB2. As the Schmidt
measure is an entanglement monotone, LOCC simulation of
the Ising interaction yields

ES
sV,A1,B1dsuGld + 1 ù ES

sV,A,BdsuG8l ^ uflsa2d
^ uvlsb2dd

= ES
sV,A1,B1dsuG8ld, s90d

where it has been used that local additional systems can al-
ways be appended without change in the Schmidt measure.
The state vectoruflsa2d ^ uvlsb2d corresponds to the state vec-
tor of the additional system after implementation of the Ising
gate. Since the Ising interaction gives rise to both a deletion
or the addition of an edge, we have arrived at the above

statement. Note that the whole argumentation also holds ifa1
andb1 are vertices in some coarser partitionsA1 andB1 of G.
In this case the same simulation with LOCC of the Ising
interaction can be used, but in the estimations now with re-
spect to coarser partitions. j

Proof of Proposition 6. If a vertexaPV is deleted from a
graph G=sV,Ed, the corresponding graph state vectoruG
−hajl is according to Proposition 1 up to local unitaries the
graph state that is obtained from a measurement ofsz

sad at the
vertexa. According to Eq.(19) the Schmidt measure cannot
increase, and because of Eq.(38) it can at most decrease by
one. j

Proof of Proposition 7. To see this, we can write the ad-
jacency matrixGG according to the partitions of sourcesA
and sinksB. Then, forGG in Eq. (39),

GGfAg = GGfBg = 0, s91d

and the number of linearly independent columns/rows inGG
is twice that ofGAB. Hence, a lower bound is

ES
sA,BdsuGld = b12rankF2

sGGdc. s92d

If GG is invertible, then

ESsuGld ù b uVu
2

c s93d

holds. On the other hand, each of the partitionA andB is a
vertex cover ofG andESsuGld is therefore bound from above
by the size of the smaller partition, which must be less than
buVu /2c. j

Proof of Proposition 8. Let cPV−Na, then

UKG
scdU† = KG

scd = KG8
scd . s94d

For bPNa, one computes

UKG
sbd U† = sisz

sbddsx
sbds− isx

saddsz
sad p

b8PNb−haj

sz
sb8d

= sx
sad p

b8PNa

sz
sb8dsx

sbd p
b9PNbDNa

sz
sb9d

= KG8
sad KG8

sbd. s95d

Therefore,

kUKG
scdU†lcPV = kKG8

scdlcPV, s96d

which had to be shown. j

V. EXAMPLES

In this section the findings of the previous two sections
will be applied to evaluating the Schmidt measure for a num-
ber of important graph states. Upper and lower bounds will
be investigated, and in most of the subsequently considered
cases, these bounds coincide, hence making the computation
of this multiparticle entanglement measure possible.

Example 1: The Schmidt measure of a tree is the size of its
smallest vertex cover.

FIG. 10. The situation before and after the LOCC simulation for
adding or deleting an edgeha1,b1j: the graph state vectoruGl can be
transformed bysA,Bd-local operations and classical communication
with probability 1 into the state vectoruG8l, where the edge be-
tween the partitionsA1 andB1 is added or deleted. This is possible
if one allows for an additional maximally entangled statej—j

betweenA2 andB2. After the LOCC operation the resource is con-
sumed, i.e., the state ofsA2,B2d is a pure product statej j.
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Proof.A tree is a graph that has no cycles. We claim that
a minimal vertex coverA of G can be chosen, such that the
graphGAB betweenA and its complementB=Ac fulfills the
sufficient criterion in Proposition 4 for maximal Schmidt
rank. To see this, letA be a minimal vertex cover. If a con-
nected componentC1 of GAB has more than one leafa in
AùC1, then this can be transferred to another(possibly new)
componentC2, by simply exchanging the leaves inA with
their unique neighborsb in B. One again obtains a vertex
cover of the same(hence minimal) size. Note that by this
exchange the new complementB8 receives no inner edges
with respect toG, since each of the exchanged vertex ofA
only had one neighbor inB.

Two distinct leavesa2 anda3 in A cannot be adjacent to
the same vertexbPB. Otherwise, takingb instead of botha2
anda3 in A would yield a vertex cover with fewer vertices.
Moreover, two distinct leavesa2 anda3 of AùC1 are neces-
sarily transferred to different connected componentsC2 and
C3 of GAB, because otherwise any two elementsa28 anda38 of
Na2

ùA andNa3
ùA are connected by ansA,Bd path, which

together with ansA,Bd path betweena2 anda3 and the edges
ha2,a28j and ha3,a38j would form a cycle ofG.

Starting with a componentC18 apart from one leafa1, all
other leavesa2, . . . ,ak can be transferred in this way to dif-
ferent componentsC28 , . . . ,Ck8. Let us fix these vertices, in-
cluding their unique neighborsb1, . . . ,bk for the following
reduction of the number of leaves in the components
C28 , . . . ,Ck8 in the sense that only vertices which differ from
a1, . . . ,ak,b1, . . . ,bk, are considered for a subsequent trans-
fer. SinceG is free of cycles, similar to the above argument,
none of the remaining leaves is transferred to a component
which was already obtained by a previous transfer. In a simi-
lar manner, for all remaining componentsC the minimal ver-
tex cover can be transformed into a new oneA8, for which
CùA8 contains only one leaf without affecting components
which were already considered in the transfer process. That
shows the validity of our claim. h

Figure 11 gives an example for a tree for which the
Schmidt measure does not coincide with the size of the
smaller bipartition, the upper bound according to Proposit-
ion 7.

Example 2: The Schmidt measure of a 1D-, 2D-, and
3D-cluster state is

ESsuGld = b uVu
2

c. s97d

Proof.To see this, we only consider the 3D case, since the
former can be reduced to this. Moreover, note that the 3D
cluster does not contain any(induced) cycles of odd length.
Therefore, it is 2-colorable and because of Eq.(47), we only
have to provide a bipartite split with Schmidt rankbuVu /2c.
For this we choose a cartesian numbering for the vertices
starting in one corner, i.e.,sx,y,zd with x=1, . . . ,X, y
=1, . . . ,Y, andz=1, . . . ,Z.

Let us first assume thatX is an even integer. Then, letA
=øx evenAx denote the partition consisting of vertices in
planesAx with evenx, and y and z being unspecified. The
graph GAAc consists ofY3Z parallel linear chains, which
alternately crossA and Ac (see Fig. 12). Since uAu
=sX/2d3Y3Z, we have to show that for no subsetA8#A,
Eq. (85) holds. This can easily be done, inductively showing,
that vertices inAx cannot be contained inA8 for all evenx
=2, . . . ,X, if Eq. (85) shall be satisfied.

For x=2 this holds, because for everyaPA8ùA2 there is
a unique adjacent leafbPA8ùA1. Moreover, sinceb is a
leaf, na

b=1 can only hold for oneaPA8. Therefore,

o
aPA8

na
bÞF2

0. s98d

For even xù2 note that, becauseG is a tree, any two
a1,a2PAx have disjoint neighborhoods inAx−1, i.e.,

Na1
ù Na2

ù Ax−1 = x . s99d

In order to fulfill Eq.(85), any occurrence ofaPA8ùAx can
therefore only be compensated by somea8PAx−2, which is
impossible by the inductive presumption.

In the case whereX, Y, as well asZ are odd integers, the
previous construction will yield a graphGAAc consisting of
separate linear chains on

A = ø
x=1,. . .,X−1

Ax s100d

ending in the planeAX (see Fig. 13). In this case we add
every second rowAXy, y=2, . . . ,Z−1, to the partitionA, as
well as of the last rowAXZ every second vertex, giving the
size

FIG. 11. Graph No. 1 represents a tree. Its bipartitioningsA,Bd, for which in graph No. 2 the vertices inA are depicted by large boxes
j, is neither a minimal vertex cover nor yields maximal partial rank. Instead, the set of verticesA, represented by large boxesj in graph
No. 3, is a minimal vertex cover with maximal partial rank. Here, the edges within the setA are drawn by thin lines in order to illustrate the
resulting graphGAAc betweenA and its complement, as considered in Sec. III B.
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uAu = bX
2

c 3 Y 3 Z + bY 3 Z

2
c = bX 3 Y 3 Z

2
c. s101d

The inductive argument from above now still holds for all
vertices inA, except from they-z planeAx and can be con-
tinued by a similar argument now considering the rowsAXy
instead of planes. Note that the results could as well be
obtained by simply applying the sufficient criterion in Propo-
sition 4 to the stated bipartitioningsA,Bd. However, this

inductive proof may be of interest also for other graph
classes. j

Example 3: The Schmidt measure of an entangled ring
with an even numberuVu of vertices is given byuVu /2.

Proof.This is a 2-colorable graph, which gives on the one
hand the upper bound ofuVu /2 for the Schmidt measure. On
the other hand, by choosing the partitionsA=h1,2j and B
=h3,4j on the first four vertices, which are increased(for
uVu.4) alternately by the rest of the vertices, yielding the
partitioning with

A = h1,2,5,7, . . . ,2k + 5, . . . ,uVu − 1j s102d

B = h3,4,6,8, . . . ,2k + 6, . . . ,uVuj, s103d

one obtains a bipartioningsA,Bd, which has maximal
Schmidt rankES

sA,Bd= uVu /2 according to Proposition 4(see
Fig. 14). j

Example 4: All connected graphs up to seven vertices.
We have computed the lower and upper bounds to the

Schmidt measure, the Pauli persistency, and the maximal
partial rank, for the nonequivalent graphs in Figs. 4 and 5.
They are listed in Table II, where we have also included the
rank index. By the rank index, we simply compressed the
information contained in the Schmidt rank list with respect to
all bipartite splittings, counting how many times a certain
rank occurs in splittings with either two or three vertices in
the smaller partition. For example, the rank indexRI3
=s20,12,3d of graph number 29 means that the rank 3 oc-
curs 20 times in all possible 3-4 splits, the rank 2 twelve
times, and the rank 1 only three times.(Note, that here we
use log2 of the actual Schmidt rank.) Similarly, because of
RI2=s18,3d the rank 2s1d occurs 18s3d times in all 2-5
splits of the graph number 29.

For connected graphs the Schmidt rank, 0 cannot occur
for any bipartite splittingsA,Bd, since this would correspond
to an empty graphGAB. Because the rank index is invariant
under permutations of the partitions, according to graph iso-
morphisms, it provides information about whether two graph
states are equivalent under local unitariesplusgraph isomor-
phisms as treated in Sec. III E. But note that graph numbers
40, 42, and 44 are examples for nonequivalent graphs with
the same rank index. Nevertheless, comparing the list of
Schmidt ranks with respect to all bipartitions in detail shows
that no permutation of the vertex set exists(especially none
which is induced by a proper graph isomorphism on both
sides), which would cause a permutation of the correspond-
ing rank list, such that two of the graphs could be locally
equivalent. In Table II we have also listed the sizes of the
corresponding equivalence classes under LU and graph iso-
morphisms, as well as whether 2-colorable representatives
exist. For 295 of 995 nonisomorphic graphs, the lower and
upper bound differs and that in these cases the Schmidt mea-
sure also noninteger values in log2h1, . . . ,2uVuj are possible.
As has been discussed in Sec. II C, in this paper we omit the
computation of the exact value for the Schmidt measure.

Moreover, note that only graph numbers 8 and 19 have
maximal partial rank with respect to all bipartite splits. En-
tanglement here is distributed symmetrically between all par-

FIG. 12. An example for thes4,5,3d-cluster state and its result-
ing graphGAAc betweenA and its complement as considered in Sec.
III B. Here, the vertices inA are depicted by small boxesj.
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FIG. 13. An example for thes7,5,5d-cluster state and its resulting graphGAAc betweenA and its complement as considered in Sec. III B.
Here, the vertices inA are depicted by small boxesj. The picture gives a rotated view on the cluster considered in the proof for the case,
that X, Y, andZ are odd integers. The front plane, consisting of the vertices 1 until 35, is they-z planeAX in the proof.
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ties, which makes it “difficult” to disentangle the state by
few measurements. From this one can understand why the
gap between the lower and upper bound occurs in such cases.
As discussed in Sec. III B of all graph codes with less than
seven vertices only these two are candidates for strongly er-
ror detecting graph codes introduced in Ref.[7].

Example 5. Concatenatedf7,1,3g-CSS code.
The graphG depicted in Fig. 15 represents an encoding

procedure for the concatenatedf7,1,3g-CSS code. The cor-
responding graph state has Schmidt measure 28. For encod-
ing, the qubit at the vertex+ can be in an arbitrary state. With
the rest of the vertices(initially prepared in the state corre-
sponding toux,+l), it is then entangled by the 2-qubit unitary
Usa,bd, introduced in Eq.(10). Encoding the state at vertex+
then means to performsx measurements at all vertices of the
inner square, yielding the corresponding encoded state on the
72=49 “outer” vertices. The encoding procedure may alter-
natively be realized by teleporting the bare qubit, initially
located on some ancillary particle, into the graph by per-
forming a Bell measurement on the ancilla and the vertex+
of the graph state vectoruG8l. Here uG8l denotes the graph

state vector obtained fromuGl by sevensx measurements at
all vertices of the inner square except+. In this senseG8
represents the resource for the alternative encoding proce-
dure. It has maximal Schmidt measure 25, whereas the cor-
responding 0 and 1 code words have Schmidt measure 24.
They can be obtained with probability 1/2 fromuG8l by asz
measurement at the vertex+.

Example 6. Quantum Fourier transform (QFT) on 3 qu-
bits.

The graph No. 1 in Fig. 16 is a simple example of an
entangled graph state as it occurs in the one-way computer of
Refs. [3,10]. This specific example represents the initial re-
source(part of a cluster) required for the quantum Fourier

FIG. 14. Graph No. 1 is an entangled ring on 18 vertices. Graph
No. 2 represents the resulting graph between the partitionsA, whose
vertices are depicted by boxes, and the partitionB, whose vertices
are depicted by discs.

FIG. 15. Resource graph state for the concatenatedf7,1,3g-CSS
code.

FIG. 16. The graph associated with the QFT on 3 qubits in the
one-way quantum computer is represented in graph No. 1, where
the boxes denote the input(left) and output(right) vertices. Graph
No. 3 is obtained from the first after performing all Pauli measure-
ments according to the protocol in Ref.[3], except from thesx

measurements at the input vertices. More precisely, it is obtained
from graph No. 1 after sy measurements on the vertices
22,23,24,26,27,28,30,31,32 andsx measurements on the verti-
ces 2,4,7,9,11,13,15,18,20have been performed.
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transform QFT on 3 qubits[3]. It has Schmidt measure 15,
where the partition

A = h2,4,7,9,11,13,15,18,20,22,24,26,28,30,32j
s104d

is a minimal vertex cover with maximal Schmidt rank. In the
process of performing the QFT, all vertices except the output
vertices 5,16,33, are measured locally. During this process,
the entanglement of the resource state(with respect to every
partitioning) can only decrease. Similar as with the graph
state vectoruG8l obtained from Fig. 15, graph No. 3 repre-
sents the input-independent resource needed for the essential
(non-Clifford) part of the QFT protocol[3]. It has Schmidt
measure 5, where the partitionA=h2,9,10,11,15j now pro-
vides a minimal vertex cover with maximal Schmidt rank.

VI. SUMMARY, DISCUSSION, AND OUTLINE
OF FURTHER WORK

In this paper we have developed methods that allow for a
qualitative and quantitative description of the multiparticle
entanglement that one encounters in graph states. Such graph
states capture the intuition of an interaction pattern between
quantum systems, with important applications in quantum
error correction, quantum communication, and quantum
computation in the context of the one-way quantum com-
puter. The Schmidt measure is tailored for a comparably de-
tailed account on the quantum correlations grasping genuine
multiparticle entanglement, yet it turns out to be computable
for many graph states. We have presented a number of gen-
eral rules that can be applied when approaching the problem
of evaluating the Schmidt measure for general graph states,
which are stated mostly in graph theoretical terms. These
rules have then been applied to a number of graph states that
appear in quantum computation and error correction. Also,
all connected graphs with up to seven vertices have been
discussed in detail. The formalism that we present here ab-
stracts from the actual physical realization, but as has been
pointed out in several instances, a number of well-
controllable physical systems, such as neutral atoms in opti-
cal lattices, serve as potential candidates to realize such
graph states[41,42].

In this paper, the Schmidt measure has been employed to
quantify the degree of entanglement, as a generalization of
the Schmidt rank in the bipartite setting. This measure is
sufficiently coarse to be accessible for systems consisting of
many constituents and to allow for an appropriate discussion
of multiparticle entanglement in graph states. The approach
of quantifying entanglement in terms of rates of asymptotic
reversible state transformations, as an alternative, appears
unfeasible in the many-partite setting. The question of the
minimal reversible entangling generating set(MREGS) in
multipartite systems remains unresolved to date, even for
quantum systems consisting of three qubits, and despite con-
siderable research effort[43,44]. These MREGS are the(not
necessarily finite) sets of those pure states from which any
other pure states can be asymptotically prepared in a revers-
ible manner under local operations with classical communi-

cation(LOCC). Hence, it seems unrealistic to date to expect
to be able to characterize multiparticle entanglement by the
rates that can be achieved in reversible asymptotic state
transformations, analogous to the entanglement cost and the
distillable entanglement under LOCC operations in bipartite
systems. In turn, such a description, if it was to be found,
could well turn out to be too detailed to capture entangle-
ment as an algorithmic resource in the context of error cor-
rection or the one-way quantum computer, where, needless
to say, distributed quantum systems with very many constitu-
ents are encountered.

For future investigations, a more feasible characterization
of LU equivalence would open up further possibilities. A
step that would go significantly beyond the treatment of the
present paper would be to consider measurements corre-
sponding to observables not contained in the Pauli group.
Unfortunately, in this case the stabilizer formalism is no
longer available, at least not in the way we used it in this
paper. Such an extension would, however, allow for a com-
plete monotoring of the entanglement resource as it is pro-
cessed during a quantum computation in the one-way com-
puter, where also measurements in tilded bases play a role.

Finally, taking a somewhat different perspective, one
could also extend the identification of edges with interactions
to weighted graphs, where a real positive number associated
with each edge characterizes the interaction strength(e.g.,
the interaction time). With such a notion at hand, one could
study the quantum correlations as they emerge in more natu-
ral systems. One example is given by a Boltzmann system of
particles, where each particle follows a classical trajectory
but carries a quantum degree of freedom that is affected
whenever two particles scatter. With techniques of random
graphs, it would be interesting to investigate what kind of
multiparticle correlations are being built up when the system
starts from a prescribed initial state, or to study the steady
state. The answer to these questions depends on the knowl-
edge of the interaction history. A hypothetical observer who
is aware of the exact distribution in classical phase space
(Laplacian damon perspective) would assign a definite graph
corresponding to a pure entangled state to the ensemble. An
observer who lacks all or part of this classical information
about the particles’ trajectories would describe the state by a
random mixture of graphs and corresponding quantum states.
One example of this latter situation would be a Maxwell
demon scenario in which one studies the bipartite entangle-
ment as it builds up between two parts of a container.
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