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Graph states are multiparticle entangled states that correspond to mathematical graphs, where the vertices of
the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body
spin states of distributed quantum systems that play a significant role in quantum error correction, multiparty
guantum communication, and quantum computation within the framework of the one-way quantum computer.
We characterize and quantify the genuine multiparticle entanglement of such graph states in terms of the
Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples
and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster
states of different dimensions, graphs that occur in quantum error correction, such as the condatdngted
CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. We also
present general transformation rules for graphs when local Pauli measurements are applied, and give criteria
for the equivalence of two graphs up to local unitary transformations, employing the stabilizer formalism. For
graphs of up to seven vertices we provide complete characterization modulo local unitary transformations and
graph isomorphisms.
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I. INTRODUCTION apply the quantitative theory of multiparticle entanglement to
In multipartite quantum systems one can in many caselhe study of correlations in graph states. The underlying mea-

identify constituents that directly interact with each other,5U'® o;.err:t_anglement is Flken.tlo be theISchmidt measure
whereas other interactions play a minor role and can largel 1], which is a proper multiparticle entanglement monotone
be neglected. For example, next-neighbor interactions i hat is tailored to the characterization of such states. As holds

coupled systems are often by far dominant. Such quanturﬂ’”e for any known measure of multiparticle entanglement,

svstems mav be represented by a ar “where the ver- s computation is exceedingly difficult for _general states, yet
y y P y a gre] g_r graph states this task becomes feasible to a very high

tices correspond to the physical systems and the edges re : .
resent interactions. The concept of a graph state—which a xtent. We start by presenting general transformation rules of

stracts from the actual realization in a physical system—i
based on this intuition.

raphs when local Pauli measurements are applied locally on
hysical systems represented by vertices. We present various
upper and lower bounds for the Schmidt measure in graph

fheoretical terms, which largely draw from the stabilizer

multiparty quantum state of a distributed quantum system. liheqry These bounds allow for an evaluation of the Schmidt
corresponds to a graph in that each edge represents an ISifgbasure for a large number of graphs of practical impor-

interaction between pairs of quantum spin systems or qubitgynce. We discuss these rules for the class of 2-colorable
[3-6]. Special instances of graph states are codewords @fraphs, which is of special practical importance in the con-
various quantum error correcting codgd, which are of text of entanglement purificatiof]. For this class we give
central importance when protecting quantum states againglounds to the Schmidt measure, that are particularly easy to
decoherence in quantum computatif8]. Other examples compute. Moreover, we provide criteria for the equivalence
are multiparty Greenberger-Horne-ZeilingéGHZ) states of graph states under local unitary transformations entirely
with applications in quantum communication, or clusteron the level of the underlying graphs. Finally, we present
states of arbitrary dimensions, which are known to serve as several examples, including trees, cluster states, states that
universal resource for quantum computation in the one-wayccur in the context of quantum error correction, such as the
quantum comput€i9,10]. Yet, not only the cluster state itself CSS code, and the graph that is used to realize the QFT on
is a graph state, but also a pure state that is obtained fromree qubits in the one-way quantum computer. The vision
this universal resource after the appropriate steps have bed&ehind this is to flesh out the notion of entanglement as an
taken to implement operations taken from the Clifford group.algorithmic resource, as it has been put forward in R&.
This resource is then no longer universal, but the specific The paper is structured as follows. We start by introducing
resource for a particular quantum computatiBh the notion of graph states of multiqubit systems: we set the
In this paper we address the issue of quantifying and chamotation concerning graph theoretical terms, and proceed by
acterizing the entanglement of these multiparticle entangledhowing how graph states are in correspondence to graphs.
states of an arbitrary number of constituents. The aim is tdhen, we recapitulate relevant properties of the Schmidt
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measure as a measure of multiparticle entanglement. In Sethat contain neither loopgedges connecting vertices with
[Il we then state the general upper and lower bounds that ari¢gself) nor multiple edges.
formulated in the language of graph theory. We also investi- When the vertices,b e V are the endpoints of an edge,
gate the equivalence class for connected graphs up to sevérey are referred to as beiagljacent The adjacency relation
vertices under local unitaries and graph isomorphisms. Thesgives rise to armmdjacency matrid'g associated with a graph.
statements are the main results of the paper. They are provéfdV={a, ... ,a\}, thenI'g is a symmetrid\N X N matrix, with
in Sec. IV. We proceed by discussing the above mentionedlements
examples, where we use the developed methods. Finally, we
summarize what has been achieved, and sketch further inter- 1 if {a,a} € E,
esting steps of future research. (Tg)ij =

This paper is concerned with entanglement in multipar-

ticle distributed quantum systems, with some resemblgnce e will make repeated use of the neighborhood of a given
Refs.[13-20. However, here we are less interested in the, ooy 5 < v/, This neighborhood NC V is defined as the set
connection between quantum  correlations and quanturis eticesh for which {a,b} e E. In other words, the neigh-

phase transition, bL.Jt. rather n _the ?”tang'emer.‘t of grapBorhood is the set of vertices adjacent to a given vertex. A
states that have definite applications in quantum information

theory. Entangled states associated with graphs have al%/gigngzfig(wnh an empty neighborhood will be calleso-
bgen .StUd'ed n Refs[19,21—2_3, where bounds on shared For the purpose of later use, we will also introduce the
bipartite entanglement in multipartite quantum systems havF

2

0 otherwise.

been studied, in order to find general rules for sharing o oncept of a connected graph. Aa,b} path is an ordered

. L : ist of verticesa=a,,ay, ...,a,-1,a,=, such that for all, a
entanglement in a r_nultlp_artlte setting. It should, however, beandam are adjacent. Aonnected graplis a graph that has
noted that the way in which we represent entangled states bé/ o

! ) . i —~.dn{a,b} path for any twaa,b € V. Otherwise it is referred to
mathematical graphs is entirely different from the way this 'Sasdisconnected
done in Refs[19,21-23. Furthermore, in the present paper, When a vertesa is deleted in a araph. toaether with the
we are not only concerned with bipartite entanglement be- graph, tog

: ; dges incident witla, one obtains a new graph. For a subset
tween two constituents or two groups of constituents, bugf verticesV' CV of a graphG=(V.E), let us denote with

with multiparticle entanglement between many constituents , _ _ )

In turn, the interaction that gives rise to the entangled grap@_\é thei_graph éhah |sd0bta|niq EOG b_y qgletltng_ttEe Setl

states is more specific, namely the one corresponding to a ot V?{/llce;s an .ﬁj eb ges V\; ICt ?re Inct en.”W: an .? e

Ising interaction. Finally, as discussed above, graph stat e?E’?‘Of theng?ar;)];] thi\turziu?tsnf(r)oﬁlo;aggtivc\)l; ;S{ﬁl Vg(r:ilgis
rovide an interesting class of genuine multipartite entangled® ;

P 9 9 b 9 e E’, whereE' CEC[V]? is a set of edges. For a set of

states that are relatively easy to survey even in the regime 5 ) , -
many parties. Since the graph essentially encodes a prepaf@9esF C[VI* we will write G+F=(V,EUF), and GAF

tion procedure of the state, we will mainly examine the ques= (V> EAF), where
tion of how the entanglement in a graph state is related to the

topology of its underlying graph. EAF=(EUF)-(ENF) (3
is the symmetric difference d& andF. Note that the sym-
Il. GRAPHS, GRAPH STATES, AND THE SCHMIDT metric difference Corresponds to the addition modulo 2 or the
MEASURE componentwis&oR, if the sets are considered as binary vec-
tors. Moreover, with
A. Graphs
At the basis of our analysis lies the concept of a graph E(A,B)={{a,b} e E:ae Abe B, a# b}, (4)

[1,2]. A graph is a collection of vertices and a description of

which vertices are connected by an edge. Each graph can M¢ denote the set of edges between 8eBC V of vertices.
represented by a diagram in a plane, where each vertex is
represented by a point and each edge by an arc joining two
not necessarily distinct vertices. In this pictorial representa-
tion many concepts related to graphs can be visualized in a With each grapiG=(V,E) we associate a graph state. A
transparent manner. In the context of the present papegraph state is a certain pure quantum state on a Hilbert space
physical systems will take the role of vertices, whereas edgek(,=(C?)®V. Hence each vertex labels a two-level quantum
represent an interaction. system or qubit—a notion that can be extended to quantum

Formally, an(undirected, finitg graphis a pair systems of finite dimensiod [4]. To every vertexae V of
G=(V.E) 0 the graphG=(V,E) is attached a Hermitian operator,

of a finite setv C N and a seE C[V]?, the elements of which K@=¢@ ] . (5)
are subsets df with two elements eacfl]. The elements of beN,

V are calledvertices the elements o edgesin the follow-

ing we will only considersimple graphs, which are graphs In terms of the adjacency matrix this can be expressed as

B. Graph states
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K@ = 6@ [T (o), (6) 100 O
beV
U@an= 010 O

an@ (@) (a) . , 001 O
As usual, the matrices,,o0,,0, are the Pauli matrices, 000 -1
where the upper index specifies the Hilbert space on which
the operator actsKg") is an observable of the qubits associ- Here,
ated with the vertexa and all of its neighbor® e N,. The
N=|V| operators{K(G"“)}aEV are independent and they com- 1+0@

P =——+ (11)

mute. 7+ 2

Using standard terminology of quantum mechanics, they

define a complete set of commuting observables of the sy$janotes the projector onto the eigenvedtot) of @ with
tem of qubits associated with the vertex 3ét(that they eigenvalue +1(similarly for @ and O_(a)) U(@b) asf in Eq
commute can be found immediately by direct inspection, in - x ' !

order to demonstrate completeness the argument of[Blef (10) is the unitary two-qubit operation which removes or
P 9 : [Bef. adds the edges. This is easily seen by noting that folv
may be useld They thus have a common set of eigenvectors,

i (c) ; (a,b)
the graph stateq3,5,7, which form a basis of the Hilbert {a,b}, K" commutes withU'>”, whereas

spac . For our present purposes, it is sufficient to choose
pacefty P purp UEbK @Y @DT=y@b)(p@ 4+ pa) o)K@= 5P @,

one of these eigenvectors as a representative of all graph z+%z
states associated wits. We denote by|G) the common (12
eigenvector of theK(Ga) associated with all eigenvalues equal i . b o
to unity, i.e., because ofr,P, =P, -a,. SinceU®?=U®a  similarly
U@bK b @bt = S@Kb 13
K2lG)=[6) ™ : 2 K 9

holds, so that the transformed stabilizer corresponds to a
for all ae V. Note that any other common eigenvector of thegraphG’, where the edgéa, b} is added modulo 2. Up to the
setkK@ with some eigenvalues being negative are obtainedocal unitaryo@, this corresponds to the Ising interaction.
from |G) by simply applying appropriate, transformations An equivalence relation for graphs is inherited by the cor-
at those vertices, for which KGa gives a negative eigen- responding equivalence of state vectors. We will call two

value. In the context of quantum information theory, the fi-graphsG=(V,E) andG’=(V,E’) LU-equivalenif there ex-
nite Abelian group, ists a local unitaryJ such that

S5 = (Ko, ®) 1©)=U1". (14
generated by the sélt(g")}aev is also called thestabilizer[8]

of the graph state vectdG). If the number of independent
operators ir; is less thanv|, then the common eigenspaces
are degenerate and can, for certain gra@hsbe used as
quantum error correcting codes, the so-caligdph codes
[7]. In this caseG also describes a certain encoding proce-
dure. C. Schmidt measure

The graph state vectd&) can also be obtained by apply- -
ing a sequence of commuting unitary two-qubit operations Graph states are entangled quantum states that exhibit

U®@b to the state vectdx, +)°V corresponding to the empty _complex structures of genuine multiparticle enta_nglement. It
graph: is the purpose of the present paper to characterize and quan-

tify the entanglement present in these states that can be rep-

resented as graphs. Needless to say, despite considerable re-
IGy= [ ufablx +yev, (9)  search effort there is no known computable entanglement

(ab)eE measure that grasps all aspects of multiparticle entanglement

in an appropriate manner, if there is any way to fill such a
where E denotes the set of edges ®, and |x,+) is the phrase with meaning. Several entanglement measures for
eigenvector ofr, with eigenvalue +1. The unitary two-qubit Multiparticle systems have been suggested and their proper-
operation on the verticea,b, which adds or removes the ties studied11,24-28.
edge{a,b}, is given by We will, for the purposes of the present paper, use a mea-
sure of entanglement that is tailored for characterizing the
degree of entanglement present in graph states: this is the

Locality here refers to the systems associated with vertices of
G=(V,E) andG'=(V,E’). Note that LU equivalence is dif-
ferent from equivalence of graphs in the graph theoretical
sense, i.e., permutations of the vertices that map neighbored
vertices onto neighbored vertices.

(ab) — p(a (b) (a) (b) — j@@abt . ! .
U =P @17 +P @0 =U ' (10 Schmidt measure, as introduced in Rdfl]. Any state vec-
tor [) e HY®---@HN of a composite quantum system
and is simply a controlled, on qubitsa andb, i.e., with N components can be represented as
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! Es(|4) < logo(m), (21)
=2 &l e - oY), (15) _ _
i=1 wherem is the number of measurement results with nonzero
probability.
where &eC for i=1,... R, and |¢i(”)>eH<“) for n (i) Eg is nonincreasing under a coarse graining of the
=1,... N. The Schmidt measurassociated with a state vec- partitioning. If two components are merged in order to form
tor |¢) is then defined as a new component, then the Schmidt measure can only de-
crease. If the Schmidt measure of a state veleipis evalu-
Es(|¥) = logy(r), (16)  ated with respect to a partitionin@\,, ... ,Ay), meaning that

the respective Hilbert spaces are those of the grains of the

wherer is the minimal numbeR of terms in the sum of Eq. rPartitioning, it will be appended,

(15) over all linear decompositions into product states. It cal
be extended to the entire state spgaed not only the ex- E(SAlv---AN)(W)), (22
treme pointy via a convex roof extension. This paper will ) ) ) )
merely be concerned with pure states. More specifically, wé order to avoid confusion. The nonincreasing property of
will evaluate the Schmidt measure for graph states only. "€ Schmidt measure then manifests as
should be noted, however, that the Schmidt measure is a (A .. AN (By....By)
general entanglement monotone with respect to general local Es (49 = Es (14, 23
operations and classical communicatighOCC), which if (A4, ..., Ay)=<(By,...,By). For a graphG=(V,E), the
typically leave the set of graph states. partitioning whergAq, ... ,Ay) =V will be referred to agdin-

In the multipartite case it is useful to compare the Schmidiest partitioning If no upper index is appended to the
measure according to different partitionings, where the comSchmidt measure, the finest partitioning will be implicitly
ponents 1, ...\ are grouped into disjoint sets. Any sequenceassumed.

(A,...,Ay) of disjoint subsets ACV with UN A (iv) Eg is subadditive, i.e., for the partitionings
={1,... N} will be called apartition of V. We will write (Aq,...,Ay) and(By, ... ,By) of two different Hilbert spaces,
over which|,) and|y,) are states,
(Alv"'AN)g(Bl!---!BM)I (17) (A An,B By)
. . i " . EgL NEL B (i) @ |hy))
if (Aq,...Ay) is afiner partition than (B4, ... ,By), which A ©. B
means that every is contained in somd;. The latter is <ESTN(lY) + Eg YW ([4). (24)

then acoarser partitionthan the former.

Among the properties that are important for the rest of th
paper are the following:

(i) Es vanishes on product states, i.€Eg(|#))=0 is E(S'A‘l'"'AN’Bl"--'BM)(|¢>®|¢>):E(S'°‘1v---AN)(|¢>). (25)
equivalent to

Moreover, for any state vectde) that is a product state with
erespect to the partitionin@B, ... ,By), we have that

(v) For any bipartition(A,B),
Es(|4)) = logy(ranktra[[#)(u(])) - (26)

?\/IoreoverES is additive within a given bipartitioning, i.e., if

=]y e - @ yM). (19

(il) Egis nonincreasing under stochastic local operation
with classical communication(SLOCCO [11,29. Let

LD, ... L™ be operators acting on the Hilbert spacesA:AlLJA2 andB=B, UB,, then
(1) (N) isfvi @yt =1 Vg-...
gL(&D..&,]H satisfying (L")'L" <1, and setL=L"® ELD(1yy) ® |ih)) = ELLBY(|y)) + EL2BD([y)). (27)
, then

The Schmidt measure is a measure of entanglement that
L|) quantifies genuine multiparticle entanglement. Yet, it is a
s < E4|¥).

W coarse measure that divides pure states into classes, each of
which is associated with the logarithm of a natural number or
This can be abbreviated as the statement that if zero. But more detailed information can be obtained by con-
sidering more than one split of the total quantum system. As
lyy — |, (19 stated in propertyii), the Schmidt measure is a multiparticle
sLocc entanglement monotorj&l]. The fact that it is a noncontinu-
, o ous functional on state space is a weakness when considering
thenEg(|y")) <E(¢)). Similarly, bipartite entanglemenitvhere it merely reduces to the loga-
ly—=|y') (20) rithm of the Schmidt rank for pure stajeand in those few-
LU partite cases where other measures are still feasible to some

extent. However, for the present purposes it turns out to be
implies thatEg(|/')) =E4(|¢)) holds, where— |, denotes the just the appropriate tool that is suitable for characterizing the
interconversion via local unitaries. Moreover, for any se-multiparticle entanglement of graph states associated with
guence of local projective measurements that finally compotentially very many vertices.
pletely disentangles the state vectgn in each of the Moreover, it should be noted that for general pure states
measurement results, we obtain the upper bound of multipartite quantum systems the Schmidt measure is—
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as any other measure of multipartite entanglement—ean be treated within the stabilizer formalig8], and there-
exceedingly difficult to compute. In order to determine thefore be efficiently simulated on a classical compuiet].
Schmidt measurg&g, one has to show that a given decompo-Moreover, since any stabilizer codever a finite field can
sition in EQ.(15) with R is minimal. The minimization prob- be written as a graphical quantum cdéel?], any measure-
lem involved is, as such, not even a convex optimizatiorment of operators in the Pauli group turns a given graph state
problem. Sincekg is discrete, the minimization has to be into a new one. More precisely, consider a graph state vector
done by ruling out that any decomposition R+ 1 product |G) which is stabilized bySG:<{K(G"")}a6V> and on which a
terms exists. According to a fixed ba$i€)@,[1)!@} for each  pauli measurement is performed. The transformed stabilizer
of the N qubit systems, the decomposition in Efi5) can be S’ of the new graph state vector
written as

|G") = P|G), (29

R
2 &)+ P @ - @ (MO +BNDN). after the projective measurement associated with the projec-
=1 tor P, is up to local unitaried) a stabilizerS;, according to
(28) a new graplG’. Here and in the following, we will consider
Not taking normalization into account, which would increase.L:nIt ][ays; ct(.)rrespond_“’lg t.? s|,tatf|vt?ctfors|_?ll1t!y, ?nd for simplic-
the number of equations while decreasing the number of pa't-y 0 ?o a |on,dwe,W| W”.s wi.' "f’ ) o: tioer sl,pace Veﬁ'
rameters, Eq(15) can therefore be rewritten as a system of ors, 1 |f'[’> an |f/’> are identical up 10 a scaiar compiex
; ; . . @ @) e factor, disregarding normalization. We obtain

nonlinear equations in the variablég o;”, 5" € C with i
:1., R andgzl, ....N. In this way one would es_sennglly S =Us U= <{UK(§‘)UT}aev>- (30)
arrive at testing whether a system of polynomials in
(2N+1) X 2Fs complex variables has common null spaces. It will be very helpful to specify into which grapls is
This illustrates that the determination of the Schmidt meamapped under such a measurement, without the need of for-
sure for a general state can be a very difficult problem ofmulating the measurement as a projection applied on Hilbert
numerical analysis, which scales exponentially in the numbespace vectors. This is the content of the following proposi-
of partiesN as well as in the degree of entanglement of thetion:
state itself(in terms of the Schmidt measuE). Let ae V denote the vertex corresponding to the qubit of

Remember, however, that the graph states themselves reghich the observable(za), o;a), or aff‘) is measured. Corre-
resent already a large class of genuine multipartite entangleshonding to this measurement we define unitalr,lé%
states that are relatively easy to survey even in the regime of "
many parties. A numerical analyqi80] seems still unrealis- u@=1, u@=TJ &P, (32)
tic in this regime, at least until simpler procedures or generic ’ " beN,
arguments are found. In the following, we will provide lower
and upper bounds for the Schmidt measure of graph states in ) )
graph theoretic terms, which will coincide in many cases. U(ﬂ= I1 (_"T(zb))llz' U(yé,llz I1 (|U§b>)1/2, (32
Because of the complexity of the numerical reformulation beNa beNa
given above, we will omit th_e computation of the exact valueand, depending furthermore on a vertaye N,,
for the Schmidt measure in those cases, where lower and
upper bounds do not coincide. We will now turn to formu- U@ = (+ io,(bo))1/2 H () (33)
lating general rules that can be applied when evaluating the X+ y beN—Ny ~{(bg} z
Schmidt measure on graph states for a given graph. 0

Ill. GENERAL RULES FOR THE EVALUATION U = (—igth2 [T o), (34)
OF THE DEGREE OF ENTANGLEMENT ’ Y beNy -Ny—fa)

FOR GRAPH STATES - .
Proposition 1 (Local Pauli measurementsjet G

In this section we will present general rules that give rise=(V,E) be a graph, and 1¢G) be its graph state vector. If a
to upper and lower bounds for the Schmidt measure, thgheasurement 06'®, ¢'@, or ¢'® on the qubit associated
render the actual evaluation of the Schmidt measure feasiblgith vertexa c V is per¥ormed,zthen the resulting state vec-
in most cases. We will also present rules that reflect locajoy depending on the outcome +1, is given by
changes of the graph. We will first merely state the bounds;
the proofs can then be found Sec. IV. For clarity, we will P§a+)|G): li, 5@ ® Ui(aﬂlG’), i =X,Y,z. (35)
state the main results in the form of propositions. In Sec. V " .
we will then apply these rules, and calculate the SchmidThe resulting graph is given by
measure for a number of graphs.

{G—{a}, for o,

36
G-E(N.Ny), for o, (36

! —

A. Local Pauli measurements =

It is well known that any unitary operation or projective
measurement associated with operators in the Pauli grougnd foro(xa) by

062311-5
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TABLE I. The relevant commutation relations for Pauli projec- No.1 No.2 No.3
tions and Clifford operators. e .
2 2.
Px,ta'zzo'sz,::
5 ® 5

I:)y,to'z: U'zpy,:v

P, +0,=0,P; 4, 1 3\.
Pra-ic) =100 %,
4 4

Px,i(i O'y) V2= (i O'y) 1/2Pz,1 )

Py +(=ioy)2=(=i0y) 2P, ., FIG. 1. Example for ar, measurement at vertex 1 in graph No.
Py (i) ?=(i0) %Py ., 1, which is followed by ar, measurement at vertex 2. In graph No.

P, ,(=io)Y2=(~ic,) V2P 1 ao, measurement is performed at the vertex 1. For the application
y,x X,+1 . . .

C s of the rule in Eq(37), vertex 2 was chosen as the special neighbor

Pyvi(!ay) _('(.Ty) Py b, vielding graph No. 2 up to a local unitatyf(liz(iiaf))l’z. As

Py,i(_"Ty)llzz(_"fy)llzpy,i- stated in Table I, the subsequentmeasurement on the new graph
Py(io)?=(io) VP, -, state is therefore essentially anotlgmeasurement, now at vertex

P,+(-io)Y2=(=ia) 2P, 4, 2 with a single neighboby=5. The final graph is then graph No. 3.
Pz,:(iU'y)llzz(io'y)llsz,tv

P,+(=iay)2=(~iay) 2Py -, measurements in this sequence gives an upper bound on the
P,:(io) 2= (ic) V%P, ,, Schmidt measure of the corresponding graph state. In the

following we will call the minimal number of local Pauli
measurements to disentangle a graph stat@aigli persis-
G'=GA E(Nbo'Na)A E(Nbo M Ng,Np, M No) tency(see Ref[9]). Since eachr, measurement deletes all
X AE({bg}, Ny — {bo}), (37) edges incident_to a vertex, any sgb‘s_/ét_;V of vertices in a
graph G, to which any edge ofs is incident, allows for a
for anyby e N,, if ae V is not an isolated vertex. His an  disentangling sequence of local measurements. In graph
isolated vertex, then the outcome of tb@) measurement is  theory those vertex subsets are calettex covers

+1, and the state is left unchanged. Proposition 2 (Upper bound via persistencyYhe
A similar set of rules has been found independently bySchmidt measure of any graph state ved@®y is bounded
Schlingemanri4]. from above by the Pauli persistency. In particular, the

Note that in case of a measurementogf the resulting Schmidt measure is less than or equal to the size of the
graph can be produced as well by simply replacing the subminimal vertex cover of the corresponding gra@h
graph G[N,] by its complementG[N,]°. An inducedsub- For graphs with many edges, a combinatiorvgfand o,
graph GA] of a graphG=(V, E) with AC V is the graph that will give better bounds than restricting 8 measurements
is obtained when deleting all vertices but those contained ionly. For example, due to E@36), any complete grapkin
A, and the edges incident to the deleted vertices. For a mesthich all vertices are adjacentan be disentangled by just
surement ofo,, like the resulting grapl®’, the local unitary ~ one o, measurement at any vertex. As we will show, this
U, . depends on the choice d&f. But the resulting graph corresponds to the fact that these graph states are LU-
states arising from different choices bf and by will be  equivalent to the GHZ-type graph states, in which every ver-
equivalent up to the local unitargdbéugo (see Sec. lIE  tex is adjacent to the same central ver{sge Fig. 2
Note also that the neighborhoodlafin G’ is simply that of
ain G (except frombg). For a sequence of local Pauli mea-
surements, the local unitaries have to be taken into account, o
if the measured qubit is affected by the unitary. For the sake FOr @ bipartition(A,B) of the graphG=(V,E) let Gag
of completeness, we therefore summarize the necessary comtV. Eag) denote the subgraph &, which is induced by the
mutation relations in Table I, which denote the transforma-edgesEag=E(A,B) betweenA and B. Moreover,I"ag will
tion of the measurement basis, if a subsequent measuremeignote thgA| x |B|-off-diagonal submatrix of the adjacency

B. Schmidt measure for bipartite splits

is applied to a unitarily transformed graph state. matrix I'g according toG, which represents the edges be-
Figure 1 shows two subsequent applications of the ratheiweenA andB:

complicatedo, measurement. We will give a simplified ver- r. 7

sion of this rule in Sec. Il E. Apart from the trivial case of a ( A AB) =TIg, (39

o, measurement at an isolated vertex, both measurement re- Fag I's

sults £1 of a local Pauli measurement are attained with prObénd similarly

ability 1/2 and vyield locally equivalent graph state vectors

|G’) and|G"). Therefore, we have ( 0 FXB> 20
E«(IG") <E4(G)) <E4|G") +1. (38) g O Cro 0

According to Eq.(21), for any measurement sequencesgf Proposition 3 (Bipartitioning) The partial trace with re-

gy, Or o, that yields an empty graph, the number of local spect to any partitior is
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No. 1 No.2 No.3 No. 4
2 1 2 1 2 1 2 1
3 63 63 63 6
4 5 4 5 4 5 4 5
No. 5 No. 6 No.7
2 1 2 1 2 1
3 63 63 6

4 5 4 5 4 5

PHYSICAL REVIEW A69, 062311(2004

is that the grapl@g contains no cycles, and that the smaller
partition contains at most one leaf with respect to the sub-
graphGpg. If Gpg is not connected, then it is sufficient that
the above criterion holds for every connected component of
A leaf is a vertex of degree 1, i.e., a vertex to which
exactly one edge is incideft]. It is finally important to note
that the maximum Schmidt measure with respect to all bipar-
tite partitions is essentially the quantity considered in Ref.
[32] in the context of an efficient simulation of a quantum
algorithm on a classical computer. If this quantity has the
appropriate asymptotic behavior in the numbef spin sys-

FIG. 2. A singlea, measurement at an arbitrary vertex in the tems used in the computation, then an efficient classical al-

complete graph No. 7 suffices to disentangle the correspondingorithm simulating the quantum dynamics can be con-
state. Similarly, a singler, measurement at the central vertex in Structed.

graph Nos. 1-6 or a single, measurement at the noncentral ver-

tices is a disentangling measurement. This is due to the fact that
graphs(Nos. 1-7 are locally equivalent by local unitaries, which
transform the measurement basis correspondingly.

1
rlIGX(El1= > U@|G-AXG-AU@)", (41)

A
zely

where ', denotes the integer fiekD, 1} with addition and
multiplication modulo 2. The local unitaries are defined as

U@ =11 ( I1 a;b>)za. (42)

aeA \beN,

Therefore, the Schmidt measure of a graph state véGlor
with respect to an arbitrary bipartitid#\, B) is given by the
rank of the submatriXsg of the adjacency matriXg,

E<(|G) = ES®(|G))=log,(rank(tr[|G)(G|]))=rank; (T ae)

= %ranl@z(FGAB). (43)

From Eg.(41) one may as well compute that the reduced

entropy of |G), according to the bipartitiofiA,B) and the

Schmidt rank, coincide if the base-2 logarithm is taken. Thi

simply expresses the fact that, for a nonempty grd@%n,is)
AB
the “maximally” (A,B)-entangled state vector withF2

Schmidt coefficients. If one maximizes over all bipartition-

ings (A,B) of a graphG=(V,E), then according to Eq23)

one obtains a lower bound for the Schmidt measure wit

respect to the finest partitioning.

Note finally that, as an immediate corollary of the above
atlonsiderations, the degree of entanglement depends only on
the area of the boundary between distinguished regions of
regular cluster states, i.e., graph states where in a regular
cubic lattice nearest neighbors are connected by an edge. If
one considers periodic boundary conditions, one may distin-
guish a cuboid forming par from the rest of the grapB,
and ask for the bipartite entanglement. It follows immedi-
ately that since the interior regions may be completely dis-
entangled, the degree of entanglement is linear in the number
of vertices forming the boundary of the two regions. The
corners are then counted just as one maximally entangled
pair of two-spin systems.

C. Deleting edges and vertices

For graphs with a large number of vertices or edges, it is
useful to identify bounds for the Schmidt measure when lo-
cal changes to the graph are applied. As an example, we give
two rules that bound the changes to the Schmidt measure if
an edge or a vertex is deleted or added.

Proposition 5 (Edge rule)By deleting or adding edges
e={a,b} between two verticeg,beV of a graphG the
Schmidt measure of the resulting gra@i=Gz+{e} can at
Smost decrease or increase by one, i.e.,

[E«(|IG") - Eg(G))[ < 1. (44)

Proposition 6 (Vertex rule)lf a vertexa (including all its
incident edgegsis deleted, the Schmidt measure of the result-
ing graphG’=G—{a} cannot increase and will at most de-
rI:rease by one, i.e.,

Note that the Schmidt rank of a graph state is closely E{|G") < E4|G)) < E4(|G")) + 1. (45)
related to error correcting properties of a corresponding

graph code. LeA be a partition, according to whids) has
maximal Schmidt rank. Then, according to Réf, choosing

a subseiXC A, the graph code, which encodes an input on

vertices X in output on verticesy=V-X according toG,
detects the error configuratidbi=A-X, i.e., any errors oc-
curring on only one half of the vertex sétcan be corrected.
In particular, all strongly error correcting graph codem
Ref. [7] must have Schmidt measund /2.

Proposition 4 (Maximal Schmidt ranki sufficient crite-
rion for a bipartite spli{ A, B) to have maximal Schmidt rank

D. Bounds for 2-colorable graphs

Graphs may be colorable. A properc@loring of a graph
is a labelingV—{1,2}, such that all adjacent vertices are
associated with a different element frdin, 2}, which can be
identified with two colors. In graph theory these graphs are
also called “bipartite graphs,” since the set of vertices can be
partitioned into two disjoint sets, such that no two vertices
within the same set are adjacent. It is a well-known fact in
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graph theory that a graph is 2-colorable if it does not contain No. 1 No.2

any cycles of odd length. ]
As has been shown in Rgb], for every graph state cor-

responding to a 2-colorable graph, a multiparty entanglement

purification procedures exists: Given any 2-colorable graph

state vectofG) on|V| qubits, by means of LOCC operations

a general mixed statg on |V| particles can be transformed

into a mixed state, which is diagonal in a basis of orthogonal

h re LU-equivalen . Given that the initial . .

Egaetﬁts)’/ ?s{j'lstu;’:lfigienttJ Zﬂuenas:mtbfg >of (t;hoge ;t;[te; ((:ean tthaen b FIG. 3. Whereas graph No. 1 s Z'COIOrab.Ie’ the resulting graph
e ’ - 0. 2 after ao,, measurement at the vertd is not 2-colorable.

purified to|G). Thus, 2-colorable graph states provide a res- Y

ir of led b | b f Also, none of the 132or 3) representatives in the corresponding
grvow o .entang ed states etween_ a _arge num. er o pa%’quivalence class(if graph isomorphisms are includedis
ticles, which can be created and maintained even in the pres: .o oraple.

ence of decoherence/noise. For the class of these graph states

he | h hmi . . . .
;peplgv;er and upper bounds to the Schmidt measure can t{/eertexae A, as well as its special neighbby € B, are iso-

Proposition 7 (2-colorable graphs)For 2-colorable lated, so that in the last step of addiBigbot, Na{bo}) the

graphsG=(V,E) the Schmidt measure is bounded from be-Verex bo simply gets all neighbort,~{bo}CB in G. So

low by half the rank of the adjacency matrix of the graph,2fter application of this rule the new grap®’ has the
ie. 2-coloring with partitions A’=A-{a}U{b,} and B'=B

—{bo}. A counterexample to a corresponding assertiorofor
measurements is provided in Fig. 3. The resulting graph even
E|G) = Eranlﬁ“z(FG)' (46) has no locally equivalent representation as a 2-colorable
graph. This is because the corresponding equivalence class
and from above by the size of the smaller partition of theNo. 8 in Table Il has no 2-colorable representative.
corresponding bipartition. In particular, for a 2-colorable
raph,
grap E. Equivalence classes of graph states under local unitaries
] (47) Each graph state vectd6) corresponds uniquely. to a
graphG. However, two graph states can be LU-equivalent,
o ) i ) leading to two different graphs. Needless to say, this equiva-
If I' is invertible, then equality holds in E¢47). lence relation is different from the graph isomorphisms in
Note that any grapl®, which is not 2-colorable, can be gyaph theory. We have examined the graph states of all noni-
turned into a 2-colorable on@’ simply by deleting the ap-  somorphic (connecteyl graphs with up to seven vertices.
propriate vertices on cycles with odd length. Since this coryjore precisely, from the set of all possible graphs with seven

responds tar, measurements, by E¢39), verticeS(Z(;) ~2 X 10° possibilitiey, we have considered the
subset of all connected graphs on up to seven vertices which
, are nonisomorphic with respect to graph isomorphisms, i.e.,
permutations of the vertices that map neighbored vertices
(48)  onto neighbored vertices. Of the 995 isomorphism classes of
corresponding graph states, 45 classes have turned out to be
whereM denotes the number of removed vertices. Moreovernot invariant under local unitary Operatio(\sith respect to
note that the number of induced cycles with odd length certhe finest partitioning Moreover, within each of these
tainly boundsM from above. classes all graph states are equivalent modulo local unitaries
We also note that whereas loeg] or o, measurements in - and additional graph isomorphisms, which corresponds to
2-colorable graphs will yield graph states according tothe exchange of particles. If we exclude the graph isomor-
2-colorable graphsgy, measurements of 2-colorable graphsphisms, as, e.g., in quantum communication scenarios, the
can lead to graph states which are not even locally equivalemumper of inequivalent classes of graph states would even be
to 2-colorable graphs. It is Certainly true that a 2'C0|0rab|Qarger_ In F|gs 4 and 5 we give a list of simp|e representa-
graph remains 2-colorable after application of #iemea-  tives of each equivalence class.
surement rule Eq(36), since after deletion of a vertex ina  To test for local equivalence we have only considered
2-colorable graph the graph still does not contain any cyclegycal unitaries within the corresponding local Clifford group.
of odd length. But, by considering the Schmidt rank with respect to all pos-
Now letG be a 2-colorable graph with the bipartitiénof  sible bipartitions, the corresponding lists of Schmidt ranks
sinks andB of sources, in which the observablg is mea-  for each representative turned out to be different even if we
sured at vertexa e A. Then, the seE(N, MNg,Np MN,) in - allow arbitrary permutations of the vertices. This shows that
Eqg. (37) is empty andE(Ny,,,N,) only consists of edges be- the found sets of locally invariant graph states are maximal.
tweenA andB. Moreover, after adding all edges of the last  Having this enormous reduction in mind, it is desirable to
set(modulo 2 to the edge set of the grajgh, the measured find simple rules in purely graph theoretic terms, giving at

M
Ele) <]

V| +M
2

M=

=

E<(|G) <E{|G') +M < [@JJ,
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TABLE II. The number of verticegv| and edges$E|, Schmidt
measureeg, rank index(see Sec. YRI; andRlI; (for splits with 2 or
3 vertices in the smaller partitignnumber of nonisomorphic but
LU-equivalent graphf_U clasg, and the 2-colorable property 2-col

for the graph classes in Figs. 4 and 5.

No. |[LUclass |V| |E] Eg Rl3 Rl,  2-col
1 1 2 1 1

2 2 3 2 1

3 2 4 3 1 0,3 yes
4 4 4 3 2 2,0 yes
5 2 4 4 1 (0,10 yes
6 6 5 4 2 (6,9 yes
7 10 5 4 2 (8,2 yes
8 3 5 5 X3 (10,0 no

9 2 6 5 1 (0,010 (0,15 yes
10 6 6 5 2 (0,6,% (8,7 yes
11 4 6 5 2 (0,9, (8,7 yes
12 16 6 5 2 (0,9,1 (11,9  yes
13 10 6 5 3 (4,4,2 (12,3  vyes
14 25 6 5 3 (4,50 (13,2  vyes
15 5 6 6 2 (0,10,0 (12,3 yes
16 5 6 6 3 (4,6,0 (12,3  vyes
17 21 6 6 3 (4,6,0 (14,1 vyes
18 16 6 6 3 (6,4,0 (15,0  vyes
19 2 6 9 3X4 (10,00 (150 no

20 2 7 6 1 (0,035 (0,2) yes
21 6 7 6 2 (0,20,15 (10,11 yes
22 6 7 6 2 (0,30,5 (12,9 yes
23 16 7 6 2 (0,30,5 (14,7 yes
24 10 7 6 2 (0,332 (15,6 yes
25 10 7 6 3 (12,16,5 (16,5 yes
26 16 7 6 3 (12,203 (16,5 yes
27 44 7 6 3 (12,21,2 (17,9 yes
28 44 7 6 3 (16,16,3 (18,3 yes
29 14 7 6 3 (20,12,3 (18,3 yes
30 66 7 6 3 (20,13,2 (19,2 yes
31 10 7 7 2 (0,34, (16,5 yes
32 10 7 7 3 (12,22, (16,95 no

33 21 7 7 3 (12,22, (18,3 no

34 26 77 3 (16,18, (18,3 yes
35 36 7 7 3 (16,19,0 (19,2 no

36 28 77 3 (20,14, (18,3 no

37 72 7 7 3 (20,150 (19,2 no

38 114 7 7 3 (22,130 (20,1 yes
39 56 7 7 X4 (2410, (20)) no

40 92 7 7 X4 (28,70 (21,0 no

41 57 7 8 X4 (2690 (20, no

42 33 7 8 X4 (28,70 (21,0 no

43 9 7 9 3 (28,70 (21,0 yes
44 46 7 9 X4 (3230 (210 no

45 9 7 10 X4 (30,50 (20,) no

PHYSICAL REVIEW A69, 062311(2004

No. 1 No. 2
1
*-—e
2

No.6 1

i\, :E/

No.9 No. 10 No. 11 No. 12
2 1 2 1 2 ; i 1 2 S 1
3 6 3 6 3 6 3 6
4 5 4 5 4 5 4 5
No. 13 No. 14 No. 15 No. 16
2 1 2 1 29 1 29—
3 6 3 6 3§§ s 3T %
4 5 4 5 4 5 s
No. 17 No. 18 No 19

2 \ 2 1 1
3 6 3 6 3 6
5 4 5 4 5

FIG. 4. List of connected graphs with up to six vertices that are
not equivalent under LU transformations and graph isomorphisms.

least sufficient conditions for two graph states to be equiva-
lent by means of local unitaries. The subsequent rule implies
such a simplification: The inversion of the subgraph
G[N,]—G[N,]° induced by the neighborhool, of any
vertex ae V, within a given graph, gives a LU-equivalent
graph state. In graph theory this transformation
7..G— 7,(G), where the edges s& of 7,(G) is obtained
from the edge seE of G by E'=EAE(N,,N,), is known as
local complementatiof33]. With this notation the corre-
sponding rule for graph states can be stated as follows:

Proposition 8 (LU equivalence).etae V be an arbitrary
vertex of two graph&=(V,E), then|{G))=U,(G)|G) with
local unitaries of the form

. [ (a)
U,(G) = (- IO’S(a))l/Z H (Io_(zb))l/Z - \"K(Ga)-
beN,

(49)

This rule was independently found by Van den Nest, who
was able to show that a successive application of this rule
suffices to generate the complete orbit of any graph state
under local unitary operations within the Clifford gro[g].
Figure 6 shows an example of how to repeatedly apply this
rule in order to obtain the whole equivalence class of a graph
state. Note that the set of graphs in Fig. 6 do not exhaust the
entire class associated with graph No. 4 in Fig. 4. In Fig. 7
we show another set of graphs that is a proper subset of the
class No. 4 in Fig. 4. No graph in Fig. 6 is locally equivalent
to any graph in the equivalence class represented in Fig. 7,
though both belong to the same equivalence class when con-
sidering both, local unitary transformatioasd graph iso-
morphisms, as depicted in Fig. 4.
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No. 20 No. 21 X X No. 3 No. 4
1 1
</ </4 2 T4 2 4
5
3
3 3
No. 7 No. 8
1 1
/.
Y% 4/4 2 /4 2 4
3 3
No. 10 No. 11

e

3 2 3 1 3 1
gram:  No. 2= No. 2— No. 3—No. 4— No. 5— No. 6—No. 7
3 4 1 2

— No. 8- No. 9— No. 10— No. 11.

polynomial invariants in Ref[35] can be considered. For
example, the number of elementgG) in the stabilizer of
the graph state vectd®), that act nontrivially exactly on the

variants of degree 2. Moreover, one can show that

FIG. 5. List of connected graphs with seven vertices that are not g, 1
equivalent under LU transformations and graph isomorphisms.

No.2 No. 3 No. 4
1 1 1 1
For any partitiorA the Schmidt ranIE )is an invariant : . . 3 . 4
under arbitrary local unitaries, which |s formulated in purely

graph theoretic terms. Considering the list of Schmidt ranks
with respect to all partitions, one therefore obtains a set of N, 5
invariants for graphs under local complementatiena/hich

was already considered in graph theory, known asctire
nectivity function33]. For the equivalence classes in Figs. 6
and 7, for example, the corresponding lists of Schmidt ranks

or connectivity functions do not coincide, implying that the
corresponding set of graph states are not equivalent either No. 10 No. 11
under local Clifford group operations or under general local

unitaries. We note that the Schmidt rank list does not provide
a complete set of invariants that would characterize all
equivalence classes under local Clifford group operations. 2
For the Petersen graph shown in Fig. 8, and the isomorphic

graph, which is obtained by exchanging the labels at each

FIG. 6. An example for an successive application of the LU
rule, which exhibits the whole equivalence class associated with
graph No. 1. The rule is successively applied to that vertex of the
precessor, which is written above the arrows of the following dia-

one graph into the other, although the Schmidt rank lists for
both graphs coincide. For a complete set of invariants the

vertices inA, corresponds to homogeneous polynomial in-

end of the five “spokes,” no local Clifford operation exists FIG. 7. An example of an equivalence class, which is a proper

(i.e., sequence of local complementatipitisat transforms subset of class No. 4 in Fig. 4.
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6 stabilizer theory that we will then apply to the specific ques-
tion at hand. Consider a subspace(8f which is stabilized
by

7 A 10 dgitic), @i € Pa, (54

where P, denotes the Pauli group am qubits andl is an
" index set. It is well known(see, e.g., Ref[37]) that the
projected subspacl . corresponding to a measurement of
an operatog € P, in the Pauli grougi.e., g is a product of
Pauli matriceswith outcome 1 is stabilized by:
8 9 () {gitic), if g commutes with all stabilizer generators

. . i« )
FIG. 8. The Petersen graph. The depicted labeled graph is noq (i) ({ig}U{gkgj:j c Ir_{k}}U{g(])“ e 1'%y for some k

LU equivalent to the graph which is obtained from it by exchangingE I otherwise.l” denotes the nonempty index set of the

the labels at each end of the five “spokes,” i.e., the graph isomor- . .
phism which permutes the verticds2,3,4, and 5 with 6,7,8,9, generatorsj, that do not commute witf, andl’®=I\I" is the

and 10, respectively. complement of’. 3
We now turn to the specific case of graph state ved¢®ys

and measurements of?, 0", or o at vertexa e V. Then,

_EAR) ) : .
> 15(G) = 20A-Es™) (50 each generatdr(g") is associated with an elemeat V, and
BCA for a giveng, the listl’ of generators that do not commute

Therefore, the list of invariants,(G) with respect to all par- With g is a subset oV. For the measu(g?_ments considered
titions A essentially contains the same information for graphl€re, only caséii) is relevant, as long as,” is not measured
states as the Schmidt rank list. But, as discussed in Ref@t an isolated verter. In the latter situation, which corre-
[35,36, by considering more invariants corresponding to ho-SPONds to casg),

mogeneous polynomials of different degrees, one @an
principle) obtain finite and complete sets of invariants for
local Clifford operations, as well as for arbitrary local uni-
taries.

Finally, the LU rule can be used to derive tke and
y-measurement rule from the simpfemeasurement rule:
With commutation relations similar to those in Table |, it is
easy to see thatP{)=U, (G)PUj (G) and P
=Ua(G)P(Za):U£(G) holds, whereb, is a neighbor ofa. With
the notion of local complementation at hand, we can the

K@ =@, (55)

andcr(za) is not contained in anb(g’) for b+# a. Then, the state
is left unchanged and with probability 1 the result +1 is
obtained.

In case(ii), in turn, the possible measurement results +1
are always obtained each with probability 1/2. Let us start
with identifying the resulting state vector and graph after
measuringr(za). The index set’ then is given by’ ={a}, and
"he state vectoP a)|G> is stabilized by

rewrite the resulting states in Proposition 1 after the Pauli zx
measurement in the simplified form: (0@ U (Kb e V- {a}). (56)
PAIG) =]z, )@ ® UR|G - a), (51)

Multiplying ta(za) to the elementKg)) for b e V-{a}, accord-
p(y§i|G> =y, 5@ U(y?ﬂTa(G) - a), (52) ing to the neighbord e N, in G, yields
sePKD =20 ] o), (57)

PRG) = |x, 5@ & U 7, (ra° 7(G) ~a)),  (53) b Nt

. . (a) . i
where the local unitariet);, are defined as for Proposi- ic js up to the sign the stabilizer generator according to

tion 1. the vertexb in G-{a}. Since the stabilizer generatoh(%))
corresponding to verticels outsideN,U{a} in G coincide
IV. PROOFS with those inG—{a}, the stabilizer may as well be seen gen-
] ) ) erated by
In this section we prove the statements that, for clarity of
presentation, have been summarized in the previous section ('@} U {J_,Kgg{a}:b e Ny

without proof.

Proof of Proposition 1 As already mentioned in Sec.
[l E, with the LU rule at hand one could derive the graph U{Kg’l{a}:b eV-{a}-Ng}. (598
after anx or y measurement from themeasurement rule,
which can be directly proven by disentangling the Ising in-Hence, we have shown the validity of E§5) for the case of
teractiondJ@® in Eq.(9). Here, we will instead take another a positives, measurement result. In the other case the sign
starting point for the proof, namely a well-known result from can be corrected for, as the stabilizer can be written as
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(Up(f= 0@} U {KE b € Vg h UL ), (59
which corresponds to the state vector
lz-)@ ® UR|G - {a}). (60)

Here, it has been used tha@:HDENaa(zb) anticommutes
exactly with the generators

{K& b e N,

In a similar manner, the case of a measurement dfcan
be treated. The index sét is given byl’=N,U{a} and, if
k=a is chosen, the new stabilizer is given by

(61)

{xaPUGLU Gy, (62)
where
G, ={KPKP:b e N}, (63)
G,={K¥:c e V-N,-{a}}. (64)
For G, one computes
Kg)Kg’) = 0'§,a) 0'§,b) H O'(Zb )
b’ eNyAN,~{a,b}
=+ a;wu;é;(agw 11 g;b'>>u<yé;f
b’ e NpAN,-{a,b}
=+ oPulaKDUA, (65)
where G’ denotes the graph W|th the edge sEt

=EgAE(N,,N,) and the un|tar|e$J are defined as in Eq
(32). Because the elements @, commute WIthU;a+,
arrive at the result for measurementsaé?.

Finally, in the case of measurementsof, we identifyl’
as|’=N,. If somebye N, is chosen, the new stabilizer is
given by

({xa@ KU G UG, UG UGy, (66)

PHYSICAL REVIEW A69, 062311(2004)

+ o PKIKDIKD

SO (b)

I1

b’ € NbANaANbO

I1

b, € NbANaANbO

)

where the second equality holds, becabge NpAN,AN,
and (+|(r<b0))1’2 therefore anticommutes only Wltltr(bo
Moreover, the positive sign ofo'gb) is due tob & N, Nbo
—{bo}, as well ash « Np,~Na —{a}, since in both cases * the
terma(b) of U("’1 commutes Wlthr(b> ForKé’O)K(b) of G, one

u;i( = (Fio)ol( o) o

U(a)T

X, £ !

11

b
b’ e NbANaANb U{bo}

computes 1‘0|t)¢N,J boaszANb beN,- ~Np, —{bg},
by (b) — (b b b’
KD = oo T o
b’ NpANp,
=UG((Fiood(=al?) 1 o Ui
b'ENbANbo
=U@(e? 11 of7|ud’ (72)
b/ € NbANbOU{bO}

Instead ong’) in Gz we choose, fob & N,, by & NyAN,, b
& Ny, ~Na—{al,

KPR = £ ]

b’ € NbANa

U xzo)

ol

11

b’ e N,ANy

[ st

up(e? 11 o
b’ € NbAN

Moreover, note thaK in G, is not changed byJ( since
ceV=(NaUN, ). To summanze the new nelghborhodﬂ{js

oA o

(73

where, because of the following argumentation the finer disz e

section is chosen,

G1={KGKE":b € Ny N Ny}, (67)
G2={KEKE":b € Ny~ Ny~ {bo}}, (69)

Ga=1{KE":b € Ny, = N~ {al}, (69)

Ga={K&:c e V=Na=Np}. (70)

Instead ong"), the generator
+o@K@ =+ [] o =02 ( o T] Ugb))u(ﬁf
beN, beNg—{bg}
(71)

can be chosen, wherld“ is defined as above. Instead of
K(bO)K(b) in G;, we choose foby e N, andb e Nb,;

— {bo} if b=hy,
NoANaAN, U {bg} if b e Ny NN,
N; = NoANy U {bo} if b e Na= Ny —{bo},
NoAN, if be Ny —Na—{a},
[N if b e Vg—Na= Ny,
(74)

A comparison shows that these neighborhoods correspond
exactly to the graptG’ obtained from Eq(37). This con-
cludes the proof. [ |

Proof of Proposition 2 This statement follows immedi-
ately from Eq.(21) in property(ii) of the Schmidt measure,
and the fact that the different measurement results are ob-
tained with probability 1/2. |

Proof of Proposition 3To show Eq(41), the partial trace
over A can be taken according to the basisfofjiven by
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{2= ® |z,(- 1)=)@}. (75) A B
acA

This corresponds to successive loealmeasurements of all
vertices inA, yielding measurement outcomes +1. According
to Sec. Il A, after measurement 01‘;‘) the state of the re-
maining vertices is the graph state vedtdr{a}) in the case
of the outcome +1, and

IT oG- 1ap, (76)
ceNy
if the outcome is —1. This can be summarized as

( I a;@)zale—{a». (77)

ceNy

FIG. 9. A sufficient condition for a graph to have maximal
wherez, € {0, 1} denotes the measurement result +1. SinceSchmidt rank.
the following measurements commute with the previous lo-
g?lzagnlfz}sg itshe final state vector according to the result log,(rank(tra[|GXG[])) = |A| - log,|{z & FA:(€"|T as2)
ae

:\|r20 Obe B}|
[T IT =2y e [c-A=TI II (61)'2) @ |G- A) .
achAceN, achcev = |A| - dim ke (Tag) = rank: (Tag)-
= H (O-(Za))<ea‘rG—BZ>|z> (84)
acA Proof of Proposition 4To see this, assume to the contrary
o[l (O.(b))<eb\1"ABz>|G -A), that G,g contains no cycles but that the Schmidt rank is not
beB - maximal. Then, denote witA’ C A any subset for which the
(78) corresponding columns® in I',g might add to 0 modulo 2,
where the computation with respectzds done ink% (i.e., > n(a)=}«20- (85)
modulo 2 and eg: S Therefore, we arrive at the resulting ach’

state vector associated with the resulis Obviously, every vertexbe B'=U,_, N, must have an

_ 1\@Tg-g2 (b\(PTag2)| = — even number of distinct neighbors &i. For the moment, let
-1 2@ bE[B(UZ ) G- A). 79 the single leak, be contained irA" and

Because the possible measurement results are attained with ay,by,a,, ... byg,a, (86)
probability 1/2, this proves the validity of Eq41) with

local unitaries as in Eq42), i.e.. be a{a;,a,} path with maximal length that alternately

crosses the ses’ andB’ (starting ina; and ending imA’ as
Uz =1] ( I1 0§b>)za: 1 (O_(Zb))<eb|l“ABz>_ (80) depicted in Fig. 9 Becausea, is necessarily a vertex of

acA \beN, beB degree more than 1 B, and by construction also G, /g',
o it must have a neighbdn,+# b,._; in B’. If b,=b; for some
To show the validity of Eq(43), note that for any;,z; =1, n-2, a contradiction is found. Otherwidg itself
e I'y, the state vectortl(zy)|G-A) andU(z,)|G-A) are or-  myst have a neighba,,, # a, in A’, becausé, has even
thogonal if and only if degree inGu . Now eithera,,;=a for somei=1,...n
U(zy-2,) = U(zz)*U(zl) #1, (81) —2 or the path
since ;.\ O_;c) anticommutes with the stabilizer for any 83,01,82, - Dn-1,80, b Bnes (87)
graph state and for anp # V' CV, and therefore takes it s a longer path ifG, g, both yielding to contradictions with
into its orthogonal complement. Hence, the previous assumptions.
If the single leafa, is not contained iR\, or if A contains
logy(rank(try[|G)(GI1) ge eas

no leaves, the previous argumentation still holds, because
=log,(dim spaU(2)|G - A):z e ]Fé‘}), (82 now anyae A’ must have a degree more than one, if one
A LA allowsa; e A’ to be arbitrary. The sufficient criterion for the
as for everyzel; exactly thosez’ e I'; yield the same  connected components Giy5 then follows from the additiv-

U(z')=U(z), for which ity of Egwithin the given bipartition(A, B), as formulated in
, A _ Eqg. (27), after deleting all edges withiG[A] and G[B],
- F5:U(z) =1 83
2 -ze{ze U@ =1} 83 which is proper(A,B)-local unitary operation. |
holds. This gives Proof of Proposition 5 Let G=(VU{a;,b;},E) be a
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statement. Note that the whole argumentation also holdsgs if
andb; are vertices in some coarser partitighsandB; of G.

In this case the same simulation with LOCC of the Ising
interaction can be used, but in the estimations now with re-
spect to coarser partitions. [ |

Proof of Proposition 61f a vertexa e V is deleted from a

graph G=(V,E), the corresponding graph state vect@
—{a}) is according to Proposition 1 up to local unitaries the

graph state that is obtained from a measuremenf’&ht the
vertexa. According to Eq(19) the Schmidt measure cannot
increase, and because of E88) it can at most decrease by
one. |
Proof of Proposition 7 To see this, we can write the ad-

FIG. 10. The situation before and after the LOCC simulation foriacency matrixI's according to the partitions of sourcés
adding or deleting an edday , b,}: the graph state vect¢®) can be ~ and sinksB. Then, forI'g in Eq. (39),
transformed byA, B)-local operations and classical communication r -T -0 (91)
with probability 1 into the state vectd6’), where the edge be- GIA] ™ G[B] ™ &

_tvveen the partitiong\; anq I_31 is addepl or deleted. This is possible gnd the number of linearly independent columns/rowk dn
if one allows for an additional maX|maIIy_ entangled stle_—l is twice that ofl" 4. Hence, a lower bound is

betweenA, andB,. After the LOCC operation the resource is con-
sumed, i.e., the state 6A,,B,) is a pure product statll H.

ELP((G)) = %rankpz(r(;)J. (92)

graph. The seV is the set of all vertices of the grap,
except the two verticea and b between which an edge is If I' is invertible, then

supposed to be deleted or added. Vetlso denote the se-

guence of partitions in the finest partitioning G6f and A, E«(|G)) B{MJ (93)
={a;}, B;={b;}. G’ denotes the resulting graph, which differs 2

from G in the edge{a;,b;}. As has been shown in Refs.

38-4(, the unitary operation corresponding to the Ising in- .
Eeracti(cl)n, see qu%/)), Ean be implemgnted V\?ith LOCC V\%th vertex cover ofG andEg(|G)) is therefore bound from above

unit probability. The necessary and sufficient resources ar%y the size of the smaller partition, which must be less than
one maximally entangled pair of qubits and one bit of clasl v|/2] . u
sical communication in each directi¢see Fig. 10 The ver- Proof of Proposition 8Let ¢ V-N,, then

ticesa, and b, correspond to the qubits that carry the en- UKOUT = K© = K© (94)
tanglement|y) resource required to implement the Ising ¢ ¢ G

interaction with LOCC. WithAzz{az} and BZ:{bQ}, we can Forbe Na, one Computes

conclude that

holds. On the other hand, each of the partithhandB is a

UKE? ut= (io(zb))ag(b)(— iUS(a))O'(Za) 11 oéb’)

ES"4PU(G)) + 1 =ES"Y(|G)) + ES»® () b’ <Ny
(V,A1,B1,A5,B5) , 7
=Eg (G @ |y)), (88 =o@ I o®%6® I o
due to subadditivity, and b"eNy b" eNpAN,
— k@ (b
=Kgs Kgr- (95
ES"P1%282(G) & |9) = ESP(G) @ ), (89) ee
. . - herefore,
due to the nonincreasing property under coarse graining o
the partition A=A;UA, and B=B;UB,. As the Schmidt <UK<G°>UT>CEV:<K(°2>CEV, (96)
measure is an entanglement monotone, LOCC simulation of
the Ising interaction yields which had to be shown. [ |
E(S\/'Al'Bl)(|G>) +1= E(SV’A’B)(|G’) ® |¢>(a2) ® |w>(b2)) V. EXAMPLES
= EYMBI(1GY), (90) In this section the findings of the previous two sections

will be applied to evaluating the Schmidt measure for a num-

where it has been used that local additional systems can aber of important graph states. Upper and lower bounds will
ways be appended without change in the Schmidt measurbe investigated, and in most of the subsequently considered
The state vectojp)® ® |w)®2? corresponds to the state vec- cases, these bounds coincide, hence making the computation
tor of the additional system after implementation of the Isingof this multiparticle entanglement measure possible.

gate. Since the Ising interaction gives rise to both a deletion Example 1: The Schmidt measure of a tree is the size of its
or the addition of an edge, we have arrived at the abovemallest vertex cover
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No. 1

No. 2
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No. 3 1

10

8

FIG. 11. Graph No. 1 represents a tree. Its bipartitior{izngB), for which in graph No. 2 the vertices i are depicted by large boxes
M, is neither a minimal vertex cover nor yields maximal partial rank. Instead, the set of vekticegresented by large boxikin graph
No. 3, is a minimal vertex cover with maximal partial rank. Here, the edges within theaet drawn by thin lines in order to illustrate the
resulting graphGaac betweenA and its complement, as considered in Sec. Il B.

Proof. A treeis a graph that has no cycles. We claim that

Proof. To see this, we only consider the 3D case, since the

a minimal vertex coveA of G can be chosen, such that the former can be reduced to this. Moreover, note that the 3D

graphGug betweenA and its complemenB=A° fulfills the
sufficient criterion in Proposition 4 for maximal Schmidt
rank. To see this, leA be a minimal vertex cover. If a con-
nected component; of G,g has more than one lea in
AN Cy, then this can be transferred to anottrssibly newy
componentC,, by simply exchanging the leaves # with
their unique neighbor®é in B. One again obtains a vertex
cover of the samé&hence minimgl size. Note that by this
exchange the new complemeBt receives no inner edges
with respect toG, since each of the exchanged vertexfof
only had one neighbor iB.

Two distinct leavesa, andas in A cannot be adjacent to
the same vertek e B. Otherwise, takindp instead of botta,
andaz in A would yield a vertex cover with fewer vertices.
Moreover, two distinct leaves, anda; of AN C; are neces-
sarily transferred to different connected componeZysand
C; of Gag, because otherwise any two elemeafsaindag of
Na,NA andN, N A are connected by aff\,B) path, which
together with ar{A,B) path betweem, anda; and the edges
{ap,a;} and{az, a3} would form a cycle ofG.

Starting with a componen; apart from one lea#;, all
other leavesy,, ..., can be transferred in this way to dif-
ferent component€,, ... ,C,. Let us fix these vertices, in-
cluding their unique neighbor, ... b, for the following

reduction of the number of leaves in the components

Cl,..
a, ...

.,Cy in the sense that only vertices which differ from
By, by, .

cluster does not contain ariyjnduced cycles of odd length.
Therefore, it is 2-colorable and because of &), we only
have to provide a bipartite split with Schmidt raljk|/2].
For this we choose a cartesian numbering for the vertices
starting in one corner, i.e.Xx,y,z) with x=1,... X, y
=1,...Y,andz=1,... Z.

Let us first assume tha¢ is an even integer. Then, Iét
=Uy eveAx denote the partition consisting of vertices in
planesA, with evenx, andy and z being unspecified. The
graph Gaae consists ofY X Z parallel linear chains, which
alternately crossA and A° (see Fig. 12 Since |A
=(X/2) XY XZ, we have to show that for no subs&tC A,
Eq. (85) holds. This can easily be done, inductively showing,
that vertices inA, cannot be contained iA’ for all evenx
=2,... X, if Eq. (85) shall be satisfied.

For x=2 this holds, because for evesye A’ N A, there is
a unique adjacent ledfe A’ N A;. Moreover, sinceb is a
leaf, n2=1 can only hold for on@ e A’. Therefore,

> Mg#0. (99)

acA’

For evenx=2 note that, becaus& is a tree, any two
a;,a, € A, have disjoint neighborhoods i, _,, i.e.,

.,by, are considered for a subsequent trans-
fer. SinceG is free of cycles, similar to the above argument,

Na, NNy NA = B (99)

none of the remaining leaves is transferred to a component
which was already obtained by a previous transfer. In a simitn order to fulfill Eq.(85), any occurrence aie A’ N A, can

lar manner, for all remaining componer@she minimal ver-
tex cover can be transformed into a new a@Xie for which

CNA’ contains only one leaf without affecting components

therefore only be compensated by soaie= A, ,, which is
impossible by the inductive presumption.
In the case wher, Y, as well aZ are odd integers, the

which were already considered in the transfer process. Thafrevious construction will yield a grapBac consisting of

shows the validity of our claim.

Figure 11 gives an example for a tree for which the

separate linear chains on

Schmidt measure does not coincide with the size of the

smaller bipartition, the upper bound according to Proposit-

ion 7.
Example 2: The Schmidt measure of a-1RD-, and
3D-cluster state is

Eo|G)) = @J (©7)

A= U A

x=1,...X-1

(100

ending in the planéiy (see Fig. 13 In this case we add
every second rowy,, y=2,...,Z-1, to the partitionA, as
well as of the last rowAy, every second vertex, giving the
size

062311-15



HEIN, EISERT, AND BRIEGEL PHYSICAL REVIEW A69, 062311(2004)

- 5 © @ inductive proof may be of interest also for other graph
- ) ” ” classes. |
Example 3: The Schmidt measure of an entangled ring
17 18 19 20 . . . .
with an even numbep/| of vertices is given byv|/2.
Proof. This is a 2-colorable graph, which gives on the one
53 54 55 56 hand the upper bound ¢¥|/2 for the Schmidt measure. On
13 u 35 36 the other hand, by choosing the partitioAs{1,2} and B
" 14 13 16 ={3,4} on the first four vertices, which are increasgdr
|V|>4) alternately by the rest of the vertices, yielding the
partitioning with
49 50 51 52
39 30, 31 32 A:{1,2,5,7, ...,R+5, ...,|V|—1} (102)
9 10 11 12
B={3,4,6,8,...,8R+6, ... |V}, (103
45 46 47 48 . . . . . .
- =~ = = one obtains a bipartioningA,B), which has maximal
Schmidt rankEZ*®'=|V|/2 according to Proposition dsee
§ ¢ ! ¢ Fig. 14. [ ]
Example 4: All connected graphs up to seven vertices.
41 42 43 44 We have computed the lower and upper bounds to the
21 2 2 2 Schmidt measure, the Pauli persistency, and the maximal
) > 3 ” partial rank, for the nonequivalent graphs in Figs. 4 and 5.
They are listed in Table I, where we have also included the
o° P P Pe rank index By the rank index, we simply compressed the
o e > P information contained in the Schmidt rank list with respect to
o = —e = all bipartite splittings, counting how many times a certain
rank occurs in splittings with either two or three vertices in
. . the smaller partition. For example, the rank ind®i;
53 54 55 .6 . =(20,12,3 of graph number 29 means that the rank 3 oc-
33 34 35 36 curs 20 times in all possible 3-4 splits, the rank 2 twelve
13® 2 T & times, and the rank 1 only three timédlote, that here we
use log of the actual Schmidt rankSimilarly, because of
~ = . m RI,=(18,3 the rank 2(1) occurs 183) times in all 2-5
“ - . - - splits of the graph number 29.
i - - - - For connected graphs the Schmidt rank, 0 cannot occur
? 10 1 12 for any bipartite splitting A, B), since this would correspond
to an empty grapl&,g. Because the rank index is invariant
s P Py Pu under permutations of the partitions, according to graph iso-
S = g g morphisms, it provides information about whether two graph
,° . e ~ states are equivalent under local unitapéss graph isomor-
phisms as treated in Sec. IIl E. But note that graph numbers
- o - 40, 42, and 44 are examples for nonequivalent graphs with
4 _® - o - the same rank index. Nevertheless, comparing the list of
2 2 23 24 Schmidt ranks with respect to all bipartitions in detail shows
1 * P e P that no permutation of the vertex set exigdspecially none

FIG. 12. An example for thé4,5,3-cluster state and its result- which is induced by a proper graph isomorphism on both
ing graphGaac betweenA and its complement as considered in Sec. Side9, which would cause a permutation of the correspond-
Il B. Here, the vertices i are depicted by small boxds. ing rank list, such that two of the graphs could be locally

equivalent. In Table Il we have also listed the sizes of the
corresponding equivalence classes under LU and graph iso-
J' (101  morphisms, as well as whether 2-colorable representatives
exist. For 295 of 995 nonisomorphic graphs, the lower and
upper bound differs and that in these cases the Schmidt mea-
The inductive argument from above now still holds for all sure also noninteger values in l§g, ..., 2YI} are possible.
vertices inA, except from they-z planeA, and can be con- As has been discussed in Sec. Il C, in this paper we omit the
tinued by a similar argument now considering the rodys ~ computation of the exact value for the Schmidt measure.
instead of planes. Note that the results could as well be Moreover, note that only graph numbers 8 and 19 have
obtained by simply applying the sufficient criterion in Propo- maximal partial rank with respect to all bipartite splits. En-
sition 4 to the stated bipartitioningA,B). However, this tanglement here is distributed symmetrically between all par-

YXZ| | XXYXZ

2

Al =

2

XYXZ+
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169 170 171 172 173 174 175
134 135 136 137 138 139 140
9 100 m 102 103 104 105
4 65 66 67 68 69 70
Y e Y
2] Bo B1 B2 B3 B4 35
162 63 64 65 66 167 68
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92 93 o4 95 96 a7 98
57 58 59 60 61 62 63
2 g3 p4 R5 p6 p7 28
155 56 57 58 59 160 61
120 21 22 3 24 s 6
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50 51 52 53 54 55 56
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.
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FIG. 13. An example for thé€7,5,5-cluster state and its resulting gra@ac betweenA and its complement as considered in Sec. Il B.
Here, the vertices i\ are depicted by small boxdB. The picture gives a rotated view on the cluster considered in the proof for the case,
thatX, Y, andZ are odd integers. The front plane, consisting of the vertices 1 until 35, ig-#hglane Ay in the proof.

062311-17



HEIN, EISERT, AND BRIEGEL

No. 1

No. 2

FIG. 14. Graph No. 1 is an entangled ring on 18 vertices. Graph
No. 2 represents the resulting graph between the partifipnsose
vertices are depicted by boxes, and the partiBprwhose vertices
are depicted by discs.

ties, which makes it “difficult” to disentangle the state by
few measurements. From this one can understand why th
gap between the lower and upper bound occurs in such case
As discussed in Sec. Ill B of all graph codes with less than
seven vertices only these two are candidates for strongly er
ror detecting graph codes introduced in R&f.

Example 5. Concatenatdd,1,3-CSS code

The graphG depicted in Fig. 15 represents an encoding
procedure for the concatenatgd, 1,3-CSS code. The cor-
responding graph state has Schmidt measure 28. For encot
ing, the qubit at the vertexcan be in an arbitrary state. With
the rest of the vertice@nitially prepared in the state corre-
sponding tdx, +)), it is then entangled by the 2-qubit unitary
U@b introduced in Eq(10). Encoding the state at vertex
then means to perform, measurements at all vertices of the
inner square, yielding the corresponding encoded state on th
72=49 “outer” vertices. The encoding procedure may alter-
natively be realized by teleporting the bare qubit, initially
located on some ancillary particle, into the graph by per-
forming a Bell measurement on the ancilla and the vestex

PHYSICAL REVIEW A69, 062311(2004)

22 23 24 25 26 27 28 29 30 31 32 33

18 20

10 14] 15 16

No. 2

1 3 5

FIG. 16. The graph associated with the QFT on 3 qubits in the

of the graph state vectdG'). Here|G’) denotes the graph one-way quantum computer is represented in graph No. 1, where
the boxes denote the inpdeft) and output(right) vertices. Graph

FIG. 15. Resource graph state for the concatenatetl, 3-CSS
code.

No. 3 is obtained from the first after performing all Pauli measure-
ments according to the protocol in Rg8], except from theo,
measurements at the input vertices. More precisely, it is obtained
from graph No. 1 aftero, measurements on the vertices
22,23,24,26,27,28,30,31,32 ang measurements on the verti-
ces 2,4,7,9,11,13,15,18, Mave been performed.

state vector obtained from®) by sevens, measurements at

all vertices of the inner square exceptin this senseG’
represents the resource for the alternative encoding proce-
dure. It has maximal Schmidt measure 25, whereas the cor-
responding 0 and 1 code words have Schmidt measure 24.
They can be obtained with probability 1/2 frd@’) by ao,
measurement at the vertex

Example 6. Quantum Fourier transform (QFT) on 3 qu-
bits.

The graph No. 1 in Fig. 16 is a simple example of an
entangled graph state as it occurs in the one-way computer of
Refs.[3,10. This specific example represents the initial re-
source(part of a clusterrequired for the quantum Fourier
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transform QFT on 3 qubitf3]. It has Schmidt measure 15, cation(LOCC). Hence, it seems unrealistic to date to expect
where the partition to be able to characterize multiparticle entanglement by the
_ rates that can be achieved in reversible asymptotic state
A=1{2,4,7,9,11,13,15,18,20,22,24,26,28,30,32 transformations, analogous to the entanglement cost and the
(109 distillable entanglement under LOCC operations in bipartite
systems. In turn, such a description, if it was to be found,
ould well turn out to be too detailed to capture entangle-
ent as an algorithmic resource in the context of error cor-
ction or the one-way quantum computer, where, needless
to say, distributed quantum systems with very many constitu-
ents are encountered.
For future investigations, a more feasible characterization
LU equivalence would open up further possibilities. A
step that would go significantly beyond the treatment of the
present paper would be to consider measurements corre-
sponding to observables not contained in the Pauli group.
Unfortunately, in this case the stabilizer formalism is no
longer available, at least not in the way we used it in this
VI. SUMMARY, DISCUSSION, AND OUTLINE paper. Such an extension would, however, allow for a com-
OF FURTHER WORK plete monotoring of the entanglement resource as it is pro-

In this paper we have developed methods that allow for £essed during a quantum computation in the one-way com-
qualitative and quantitative description of the multiparticle Puter, where also measurements in tilded bases play a role.
entanglement that one encounters in graph states. Such graphFinally, taking a somewhat different perspective, one
states capture the intuition of an interaction pattern betweefould also extend the identification of edges with interactions
guantum systems, with important applications in quantunf® Weighted graphs, where a real positive number associated
error correction, quantum communication, and quantunyVith each edge characterizes the interaction streogi.,
Computation in the context of the one-way quantum Com_the Interaction tlm).? With SL-JCh a notion at hand,- one could
puter. The Schmidt measure is tailored for a comparably destudy the quantum correlations as they emerge in more natu-
tailed account on the quantum correlations grasping genuinél systems. One example is given by a Boltzmann system of
multiparticle entanglement, yet it turns out to be computabldParticles, where each particle follows a classical trajectory
for many graph states. We have presented a number of geRut carries a quantum degree of freedom that is affected
eral rules that can be applied when approaching the probleiyhenever two particles scatter. With techniques of random
of evaluating the Schmidt measure for general graph state§raphs, it would be interesting to investigate what kind of
which are stated mostly in graph theoretical terms. Thes&ultiparticle correlations are being built up when the system
rules have then been applied to a number of graph states th#f@ts from a prescribed initial state, or to study the steady
appear in quantum computation and error correction. AlsoState. The answer to these questions depends on the knowl-
all connected graphs with up to seven vertices have beefdge of the interaction history. A hypothetical observer who
discussed in detail. The formalism that we present here adS aware of the exact distribution in classical phase space
stracts from the actual physical realization, but as has bee+-aplacian damon perspectiveould assign a definite graph
pointed out in several instances, a number of well-corresponding to a pure entangled state to the ensemble. An
cal lattices, serve as potential candidates to realize suciPout the particles’ trajectories would describe the state by a
graph state§41,42. random mixture of graphs and corresponding quantum states.

In this paper, the Schmidt measure has been employed fgne example of this latter situation would be a Maxwell
quantify the degree of entanglement, as a generalization ¢fémon scenario in which one studies the bipartite entangle-
the Schmidt rank in the bipartite setting. This measure ignent as it builds up between two parts of a container.
sufficiently coarse to be accessible for systems coqsisting of ACKNOWLEDGMENTS
many constituents and to allow for an appropriate discussion
of multiparticle entanglement in graph states. The approach We would like to acknowledge fruitful discussions with
of quantifying entanglement in terms of rates of asymptoticD. Schlingemann and M. Van den Nest, as well as with H.
reversible state transformations, as an alternative, appeafschauer, W. Dur, R. Raussendorf, and P. Aliferis. For valu-
unfeasible in the many-partite setting. The question of theable hints on connections to known results in graph theory
minimal reversible entangling generating $MREGS) in [33] and multilinear algebr§30], we would like to thank G.
multipartite systems remains unresolved to date, even foRoyle and K. Audenaert. This work has been supported by
guantum systems consisting of three qubits, and despite cothe Deutsche Forschungsgemeinscligthwerpunkt QIY,
siderable research effoi43,44. These MREGS are th@ot  the Alexander von Humboldt FoundatiaffFeodor Lynen
necessarily finitesets of those pure states from which any Grant of JB, the European CommissigihST-2001-38877/-
other pure states can be asymptotically prepared in a rever89227, IST-1999-11053and the European Science Founda-
ible manner under local operations with classical communition.

is a minimal vertex cover with maximal Schmidt rank. In the
process of performing the QFT, all vertices except the outpu
vertices 5,16,33, are measured locally. During this process,,
the entanglement of the resource statéh respect to every

partitioning can only decrease. Similar as with the graph
state vectofG’) obtained from Fig. 15, graph No. 3 repre-
sents the input-independent resource needed for the essent&z?l
(non-Clifford) part of the QFT protocof3]. It has Schmidt
measure 5, where the partitide={2,9,10,11, 15 now pro-

vides a minimal vertex cover with maximal Schmidt rank.
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