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Short-time decoherence for general system-environment interactions
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A short-time approximation is developed for system-environmental bath mode interactions involving a
general non-Hermitian system operatoand its conjugate\ " in order to evaluate the onset of decoherence at
low temperatures in quantum systems interacting with the environment. The developed approach is comple-
mentary to Markovian approximations and appropriate for the evaluation of quantum computing schemes. An
example of a spin system coupled to a bosonic heat bati via_ is worked out in detail.
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I. INTRODUCTION Let R(t) denote the overall density matrix. It is commonly

. .assumed1-14 that at timet=0 the system and bath are not
A guantum system exposed to environmental modes '%ntangled and the bath modes are thermalized:

described by the reduced density matrix, and its evolution
deviates from the ideal, usually pure-state, dynamics. For
short times, appropriate for quantum computing gate func-
tions and, generally, for controlled quantum dynamics, ap-
proximation schemes for the density matrix have been develwhere
oped recently[1-3]. The present work derives a rather :
general short-time approximation which applies for models 6k=Zgle‘B“’kbkbk, (5)
with system-bath interactions involving a general system op- .
erator. It thus extends the previously known approggs ~ With 8=1/kT and
which was limited to couplings involving a single Hermitian Z = (1-ePoyt, (6)
system operator.
We consider an open quantum system with the Hamil- We point out that while the quantum systé&ndescribed
tonian by the reduced density matrix(t), is small, typically two
state(qubit) or several qubit, the bath has many degrees of
H=Hs+Hg+H,. (1) freedom. The combined effect of the bath modes on the sys-
tem can be large even if each of them is influenced little by
Ghe system. This has been the basis for arguments for the
harmonic approximation for the bath modgs-9] and the
linearity of the interaction, as well as for the Markovian ap-
proximations[10-14 that assume that the bath modes are
“reset” to the thermal state by the “rest of the universe” on
time scales shorter than any dynamical time of the system
+ interacting with the bath.
He=2 by 2 The frequencies of the oscillators of the bath are usually
K assumed to be distributed from zero to some cutoff valye

Hereby are the bosonic annihilation operators corresponding N bath modes with the frequencies close to the energy gaps

to the bath modes, and from now on we use the conventioh' (e SystemAE;;=E;~E;, contribute to the “resonant” ther-
=1, malization and decoherence processes. Within the Markovian

In most of this work, we consider the general systdg schemes, the diagonal elements of the reduced density matrix

and we assume that the interaction with the bath involves th8f the system,
system operaton that couples linearlj10-14 to the bath

mm:mmgﬁh (4)

Here Hg describes the system proper. It is coupled to th
environment(bath), described byHg. The system and bath
are coupled by the interactidd,. The bath has been tradi-
tionally modeled[1-9] by a large number of uncoupled
bosonic modes: namely, harmonic oscillaténsth ground-
state energy shifted to zero

eaul p(0) = TrgR(), ()
. approach the thermal valuess™5/<T for large times expo-
H =AY gbl + AT giby, (3)  nentially, on a time scal&;. The off-diagonal elements van-
k k

ish, which represents decoherence, on a time Scalehich,

for resonant processes, is given By=2T,. However, gen-
erally decoherence is expected to be faster than thermaliza-
tion because, in addition to resonant processes, it can involve
virtual processes that do not conserve energy. It has been
*Electronic address: tolkunov@clarkson.edu argued that this additional “pure” decoherence is dominated
"Electronic address: privman@clarkson.edu by the bath modes with near-zero frequengie®,14,13. At

with the interaction constants.
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low temperatures, this “pure decoherence” is expe¢i&i U(t) = e '(HstHerH)t 9)
to makeT,<T;. . _

Since the resetting of these low-frequency modes to th& the evolution operator. _ _
thermal state occurs on time scalekT# B, the Markovian The general idea of our approach is the following. We
approach cannot be used at low temperatyts14,15. ~ Preak the exponential operator in E§) into products of
Specifically, for quantum computing in solid-state simpler exponentials. This involves an appro.><|m'at|0n, but
semiconductor-heterostructure architectufd6—23, tem- allows us to replace system operators by their eigenvalues,
peratures as low as a few 10 mK are needed. This brings tphen spectral representations are used, and then calculate the
thermal time scale tg8~ 107 sec, which is close to the trace ofR(t) over the bath modes, obtaining explicit expres-
single-qubit control times 18'-107 sec[16—-23. Alterna-  Sions for the elements of the reduced density matrix of the
tives to the Markovian approximation have been suggeste@yStem. For Hermitian coupling operatofs=A, our ap-
[24-29. proach reduces to known resuf& 3].

In this work, we generalize the recently suggested scheme We split the exponential evc_>|ut|on operator into terms that
[2,3], applicable for HermitiamA only, to a wider class of do.not he}ve any noncommuting system operators in them.
interaction Hamiltonians. We treat the case when the systerhliS réquires an approximation. For short times, we start by
operatorA entering the interactiofsee Eq(3)], is not Her-  using the factorizatioi36-39
mifcian. In actual applications !n guantum qomputing, calcu- ori(HgHgHEO() = (/2 i (i +Hg (112 Hg! (10)
lations with only a single qubit or few qubits are necessary ’
for evaluation of the local “noise,” to use the criteria for where we have neglected terms of the third and higher orders
quantum error correctiofB0-33. For example, the system in t, in the exponent. The middle exponential in Et),
Hamiltonian is frequently taken proportional to the Pauli ma-
trix o,. The interaction operatok can be proportional to,, E=e
which is Hermitian. Such cases are covered by the short-time

o . Where
approximation developed earligR,3]. However, one can
also cons@der models withh o« o_. 'Similarly, models with c=> gﬂbk, (12)
non-HermitianA are encountered in quantum opt{d4]. In K
Sec. Il, we develop our short-time approximation scheme.

Results for a spin-boson-type model are given in Sec. Ill. Still involves noncommuting terms as long &s is non-
Hermitian. In terms of the Hermitian operators

i(Hg+H)t = gri(Hg+AGT+ATO)t (11)

1
Il. SHORT-TIME APPROXIMATION L=>(A+AM, (13)

N |

In this section we obtain a general expression for the time
evolution operator of the systeii)—(3) within the short- ;
time approximation. The system operatbksand A need not M
be specified at this stage; the derivation is quite general.

In order to define “short time,” we consider dimensionlessye have
combinations involving the time variabteThere are several )
time scales in the problem. These include the inverse of the AG'+ATG=L(G+G") +iIM(G-G"). (15

cutoff frequency of the bath modes, dJ, the thermal time  \ye then carry out two additional short-time factorizations

B=1/KT, and the internal qharacteristic times_ of the ?ySte”\Nithin the same quadratic-in¢in the exponentorder of ap-
1/AE;. Also, there are time scales associated with the,.qvimation:

system-bath interaction-generated thermalization and deco-

herence,T; ,. The shortest time scale at low temperatures = = gL/2[M(G-GN)-iHgltg(i/2)Hgt
(whengis large is typically 1/w.. The most straightforward
expansion int yields a series in powers @b.t. The aim of
developing more sophisticated short-time approximationﬁ_his factorization is chosen in such a way thi&tremains
[2,3] is to preserve unitarity and obtain expressions approxi-

X ; . ) unitary, and forM=0 or L=0 the expression is identical to
mately valid up to intermediate times, of the order of the o )
. . ; that used for the Hermitian caf2,3]. The evolution operator
system and interaction-generated time scales. The latt

. . hen takes the form
property can only be argued for heuristically in most cases

and checked by model calculations. U=g (2K 5 g (i/2Hg (17)
The overall density matrix, assuming a time-independent o S
Hamiltonian over the quantum-computation gate functionWith = from Eq.(16), which is an approximation in terms of

time intervals[16—23, evolves according to a product of several unitary operators. _
It has been recognizg@,3] that an approximation of this

_ + sort is superior to the straightforward expansion in powers of
R =UOROUMT, ®) t (or more exactlyw). The evolution operator is factorized
in terms of unitary operators. We used thrice the approxima-
where tion

N =

(A-A"), (14)

« @ HE+L(G+GNtg(i/2Hgtg(1/2[M(G-GN)-iHg]t (16)
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eI (AMHO) = griN2g-i MgiI2_ (18) U = 100D t-iszobibd (29)

S1:52:53

The next-order approximation can be obtained, for instanceype resulting expression for the trace entering @) is
by using the relation

eri@roh) = g-int® —iyt/Ze—i){te—iytIZe—il/\)t3’ (19) TTB{<m|E|p>1;[ 9k<Q|ET|”>}
where =2 (PO T I T (30)
N
1 1
= ﬂ[y’ [V, A1 - 4_8[){’[)('3)]]' (20 \where the indicea and u label the eigenstates afand M,

respectively, and
Specifically, for the factorizatio10), we have

Tie=TrdUin py -2y, 1240,0-1H-in, ~in .1
[V.[Y, 1] =[Hg,[H.Hsll + [Hi.[H, Hg[l,  (21)

X Uo,0,-1/84(112) 1y ~(112) 11, 1120112 1 (112) g -112
[X,[X,V]] =[Hs[HsHi ]I (22) XUo 0,110 iny-1U0,0, =112 gy (U2 1112 (31)

These relations illustrate that the present approximation is In order to calculate the trace over thth bath mode in
not perturbative in powers off, and also thatHg, which ~ Ed. (31), we rearrange the operators using the cyclic prop-
commutes withHs, drops out of some commutators that en-€rty, in such a way that the formu{a1l), derived in Appen-
ter the higher-order correction terms. This suggests that €iX A, can be used to simplify products of two or three
redefinition of the energies of the modesHyf might have  operatord/ at a time. For example, we can transfer the op-
only a limited effect on the corrections and serves as one o#ratori(1z ., -2, /2 t0 the right-hand side, getting the
the heuristic arguments for the validity of the approximationcombination
beyond the shortest time scalead./

Our goal is to approximate the reduced density matrix of U—112) 11 (112) 1 ~112A(012) g ~(112) 2 112 (32

the system. We consider its energy-basis matrix elements = )
inside the trace, and use the identiy1). We then transfer

pmn(t):TrB(mIUR(O)UTlm, (23 U 0 -1/2 to the right-hand side and repeat the process, now
for the three rightmost operators. After several steps we ar-
where rive at the following expression for the trace:
Hgn) = Eq[n). (24) T = RT0d 68Uy - o} (33

We next use the factorizatiqd0) and(16) to systematically \yhere

replace system operators bynumbers by inserting decom-

positions of the unit operator in the bases definedHgyL, | o2 20 oo oyl
and M. First, we collect the expressiod), (16), (17), and u= m(e K= Dul - m 2sin 5 A
(24) and use two energy-basis decompositions of unity to get K K

i_ —lot/2¢ -iwyt/2 ’
prur(t) = X €12 EETETENp (0) * g el (34
pa
- - and
xTrgl (MZ[p)]] 0k<q|:f|n>]. (25)
k i 2
I|gk| ( i wkt ) "on
i i Ric=exp) - sin—= - + + (sin wyt
We now define the eigenstateslofand M: K xp{ 2 { = (plpl+ pZ ) + (sin ay

SIVERNIVE (26) - o)A\~ 4 sm75|n2—,u’ " Zsmz—()\_

M|w) = ). (27) , ”
“Neml) | (-

(35
The operatorsEE and ZT introduce exponentials in E¢25)
that contain eithet or M in the power. By appropriately : .
inserting =, [A\)(\| or 2,|u)(u| between these exponentials, Here we introduced the variables
we can convert all the remaining system operators to Be=pt (36)
c-numbers. For convenience, let us define the operators L
Ty = l)(al BYBlY)X{Y] (28 M= Mo E g, (37

and and
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D VED VS (38 [41-43, accounting for quantum error correctigrequiring
) _ . measuremeint etc. For a two-state system—a qubit—the
The trace in Eq(33) can be evaluated, for instance, by using g, mmation in Eq(47) involves £=64 terms, each a product

the coherent-states technig(eee Appendix B of several factors, the calculation of which is straightforward.
T = R, eP¥2ay oot Burf2) (39) Still, the required_ bookkeeping is cumbgrsome, and we uti-
k= lized the symbolic language Mathematica to carry out the

The expression which follows from Eq&0), (34), (35), and  calculation for an illustrative example.

(39 is We consider the mod¢#4] defined by
Led=pl (0 H= A0+ S oo S (@bl + gy, (49
where

. _1 .
P=B2)(\? + ulu”) + BHU2) (! — )2 = F(t) (! — w )N where A=0 is a constantg,=5(oytioy) and o, are the

Pauli matricesh] andb, are the bosonic creation and anni-

—IC(t)N N, —IC/2) (/ puy + p” i) +iS(E)(N_pt] hilation operators, and, are the coupling constants. Physi-
o L, cally this model may describe, for example, a qubit interact-
—Nul) —iC (Hulpl. (41)  ing with a bath of phonons or a two-level molecule in an
The coefficients here are the spectral sums over the bafffeéctromagnetic field. In the latter case, this is a variant of
modes: the multimode Jaynes-Cummings moddll,45. Certain
o spectral properties of this model, the field-theoretic counter-
2 O™ . Lot Bwy part of which is known as the Lee field theory, are known
BA(1) = 2§k" w—Esw??cothT, (42) analytically—e.g.[46]. However, the trace over the bosonic
modes, to obtain the reduced density matrix for the spin, has
9 not been obtained exactly.
cit)y=> %(wkt — sin wt). (43) For the modek48) we haveA=c_ and AT=0,, so that
kK @ L=0,/2 andM=0,/2. We havel\; »=(|1)£[]))/\2, with

eigenvalues\; ;=+1/2, and|uy »=(| 1) £i||)) /2, with ei-
genvaluesu, ,=+1/2. For theinitial state, let us assume that
the spin at=0 is in the excited statg )(7|, so that the initial

These functions are well knowi39,4Q. The result also in-
volves the new spectral functions

2 - .
t density matrix has the form
s =23 9 gt (44) y
K (Uk 2
10
02 . . p(0) = (0 0)- (49
F() =43 g—kzsinz%"sin%coth%. (45)
ko @k Calculation in Mathematica yields the following results for
Furthermore, for the sake of convenience we defined the density matrix elementp;,(t)=0 and
C4(t) =2C(t/2) — C(t). 46
1(t) = 2C(12) - C(1) R R
By using Egs(25) and(40), we obtain our final result for the B2 g2 .
density matrix evolution: +2€ 'sinh(By)cogS)+ 26 B "2cogCy)sin(S)
. _R2(t)-R2 i . . i . .
pil8) = 2 2 2 E B En g (0Nl ) +ie T [Osinn(-iS+ F) + e Osin(-iS

P ki -F), (50

X<q|77#3)\2M4|n>e_P, (47) ) .

_ ) ) whereC; was defined in Eq46) and
where the first sum ovep andq is over the energy eigen-
states of the system; the second sum is avgn,, and B, () = 2B(t/2) - BX(t). (51)

M1, ... Mg, Which label the eigenstates of the operatoend

M, respectively; see Eq$§26) and(27). Where not explicitly shown, the argument of all the spectral

functions entering Eq50) is t.
In order to obtain irreversible behavior and evaluate a
measure of decoherence, we consider the continuum limit of
The result(47) looks formidable in the general case. infinitely many bath modes. We introduce the density of the
However, in most applications evaluation of decoherencéosonic bath state®(w), incorporating a large-frequency
will require short-time expressions for the reduced densitycutoff w., and replace the summations in E¢42)—45) by
matrix of a single qubit. Few- and multiple-qubit systemsintegrations ovet [9,10,39,4T. For instance, Eq42) takes
will have to be treated by utilizing additive quantities the form

IIl. DISCUSSION AND APPLICATION
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FIG. 1. Schematic behavior af(t) for different values of(},
decreasing from i to iv.

at

FIG. 2. The comparison between t@%t?) expansion, i, and the

" 2 short-time approximation, ii.
B2(t) =f dwwsinzﬂtcothﬂ—w. (52)

0 w 2 2 gimes. Fort>O(1/kT) it cannot correctly reproduce the pro-
cess of thermalization. Instead, it predicts an approach to the
maximally mixed state.

Figure 2 corresponds to the parameter values typical for

We will use the standard Ohmic-dissipatif®] expression,
with an exponential cutoff, for an illustrative calculation:

D(w)|g(w)|2:Qwe“”""c, (53 low temperatures and appropriate for quantum computing
_ applications,w8=1C°, with Q2=1.5X 1077 chosen to repre-
where() is a constant. sent weak enough coupling to the bath to have the decoher-

We point out that the results obtained for the density maence measure reach the threshold for fault tolerance, of order
trix elements depend on the dimensionless variakle as 107, for “gate” times well exceeding 1J,, here forw.t over
well as on the dimensionless parameteds and o8  10. The leading-order quadratic expansion in powers of the
(=hw /KT, where we remind the reader thigtset to 1, must time variablet is also shown. lts validity is limited to
be restored in the final resujtdnterestingly, the results do t<O(1/w.) and it cannot be used for evaluation of quantum-
not depend explicitly on the energy gap parametesee Eq. computing models.
(48). This illustrates the point that short-time approximations
do not capture the “resonant” relaxation processes, but rather This research was supported by the National Security
only account for “virtual” decoherence processes dominatedhgency and Advanced Research and Development Activity
by the low-frequency bath modes. However, the short-timéinder Army Research Office Contract No. DAAD-19-02-1-
approximations of the type considered here are meaningfif!035 and by National Science Foundation Grant No. DMR-
only for systems with a well-defined separation of the reso0121146.
nant versus virtual decoherence processes—i.e. ifot
>1/w.. For such systems;/A=1/A defines one of the
“intermediate” time scales beyond which the approximation APPENDIX A
cannot be trusted.

As an example, we calculated a measure of deviation of a
?L;Jlbzg)frf; a pure state in terms of the “linear entropy Uy, oy Moy 5 = KU .01 (A1)

Our aim is to derive a relation of the form

where the operatdis s s, Was defined in E29). Consider
the quantity

Figure 1 schematically illustrates the behavior s¢f) for A = @b+ ap(brag) gyib™+ybgx(b™+4)(b+5)) (A2)
different Q) values for the case)gl<,8. The values ofs(t) '

increase from zero, corresponding to a pure state, to 1/2yhere b’ and b are the bosonic creation and annihilation
corresponding to a completely mixed state, with superim-operators, and, «;, and g; are c-numbers. Let us use the
posed oscillations. For Ohmic dissipation, three time regime#lentity [11]

can be identified[40]. The shortest time scale is set by oo 1 mabt gt .

t<O(1l/w.). The quantum-fluctuation-dominated regime e f(b,b")e =f(b+B,b'+a) (A3)
corresponds  to O(1/wc) <t<O(1/kT). The thermal- {5 represent the first and third exponentialsiin the form
fluctuation-dominated regime t$> O(1/kT). Our short-time

approximation yields reasonable results in the first two re- grb'ra(bray) = garb-azb'gxblbg-arbrazd’ (A4)

s(t)=1-Tr[p%1)]. (54)
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e X(b+B)(0+B) — oB1b-Bob" o-xbbeByb+ b (A5)

We then combine the second exponential in &) and the
last and first exponentials in Eq#4) and(A5), by utilizing
the identity

eabehd’ = e(1/2)aﬁeab+ﬁbT, (AB)
which follows from Eq.(A3). The resulting exponential op-
erator, with exponent linear ih andb', is sandwiched be-
tweene®® ande™'>. Therefore, the following identity can
be utilized[11]:

o0 (b bHe o' = f(be™ ble). (A7)

Once again using EqA6), we arrive at the expression

A=gbrudl (A8)
where
n=(ay— B)(e = 1) + y,€, (A9)
v=(B1— ap)(€7 = 1) + e, (A10)
and

1
r=-2a;B- azﬁl)smhz)_z( + (aqay — B1By)sinh x+ 57’1(%
1
+B)(E -1+ 5’}’2(“2 +B)(e”-1). (A11)

Now Eg. (A1) follows, with
2l9d? . L[ xayt
K= eX[{%SIr\z(ﬂ>(U1W2 - U2W1):|
X (O 2

ey [2

| .

X exp{ |g k|2 [sin(Xawyt) (VW = voW5) + Xyt (voW,
X wk

a2
- Ulwl)]:| eXP{ %[(e_ixwkI - Dws(vg—vy)

+ (€% = D)vg(wy = Wz)]] , (A12)

and

i . )
p=— —— (X = 1)(vg +vp) + ™K,

(A13)
kat

PHYSICAL REVIEW A 69, 062309(2004

i . .
q= (e—|kat — 1) (Wl + W2) + Wse—Ikat_

(A14)
X(J)kt

APPENDIX B

Let us calculate the trace in E€83) which has the form

T = Tr{e®bgbruby (B1)

where we omitted the indek since all the calculations here
are in the space of a single mode. We use the coherent-state
technique[11]. The coherent statefz) by definition are
eigenstates of the annihilation operakor

blz) = Z2), (B2)

with complex eigenvaluez=x+iy. These states are not or-
thogonal,

. 1 1
(zlz) = eXF<2122 -l - _|22|2) : (B3)
2 2
and they form an overcomplete set. The identity operator can
be written as

J d’zz)(z =1, (B4)

where integration in the complex plane is defined via

1
d?z= =dxdy. (B5)
aa
We represent the trag81) by the coherent-state integral
using the relation

TrA= f d’z(ZA|2), (B6)

where A is an arbitrary operator. We then use the normal
ordering, NV, formula for bosonic operators, represented
schematically(see[11] for detail§ by
3" — \gh'(e’-Db

e (B7)

The second term in the trace in E&1) is split by using Eq.
(A6). All instances ob andb' can then be replaced tzyand

Z', and the integral evaluated to yield the expression for the
trace:

~ e(WUIZ)cotr(ﬁlz)

T= e (B8)
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