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A short-time approximation is developed for system-environmental bath mode interactions involving a
general non-Hermitian system operatorL and its conjugateL† in order to evaluate the onset of decoherence at
low temperatures in quantum systems interacting with the environment. The developed approach is comple-
mentary to Markovian approximations and appropriate for the evaluation of quantum computing schemes. An
example of a spin system coupled to a bosonic heat bath viaL~s− is worked out in detail.
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I. INTRODUCTION

A quantum system exposed to environmental modes is
described by the reduced density matrix, and its evolution
deviates from the ideal, usually pure-state, dynamics. For
short times, appropriate for quantum computing gate func-
tions and, generally, for controlled quantum dynamics, ap-
proximation schemes for the density matrix have been devel-
oped recently[1–3]. The present work derives a rather
general short-time approximation which applies for models
with system-bath interactions involving a general system op-
erator. It thus extends the previously known approach[2,3]
which was limited to couplings involving a single Hermitian
system operator.

We consider an open quantum system with the Hamil-
tonian

H = HS+ HB + HI . s1d

Here HS describes the system proper. It is coupled to the
environment(bath), described byHB. The system and bath
are coupled by the interactionHI. The bath has been tradi-
tionally modeled [1–9] by a large number of uncoupled
bosonic modes: namely, harmonic oscillators(with ground-
state energy shifted to zero)

HB = o
k

vkbk
†bk. s2d

Herebk are the bosonic annihilation operators corresponding
to the bath modes, and from now on we use the convention
"=1.

In most of this work, we consider the general systemHS,
and we assume that the interaction with the bath involves the
system operatorL that couples linearly[10–14] to the bath
modes:

HI = Lo
k

gkbk
† + L†o

k

gk
*bk, s3d

with the interaction constantsgk.

Let Rstd denote the overall density matrix. It is commonly
assumed[1–14] that at timet=0 the system and bath are not
entangled, and the bath modes are thermalized:

Rs0d = rs0dp
k

uk, s4d

where

uk = Zk
−1e−bvkbk

†bk, s5d

with b=1/kT and

Zk ; s1 − e−bvkd−1. s6d

We point out that while the quantum systemS, described
by the reduced density matrixrstd, is small, typically two
state(qubit) or several qubit, the bath has many degrees of
freedom. The combined effect of the bath modes on the sys-
tem can be large even if each of them is influenced little by
the system. This has been the basis for arguments for the
harmonic approximation for the bath modes[1–9] and the
linearity of the interaction, as well as for the Markovian ap-
proximations[10–14] that assume that the bath modes are
“reset” to the thermal state by the “rest of the universe” on
time scales shorter than any dynamical time of the system
interacting with the bath.

The frequencies of the oscillators of the bath are usually
assumed to be distributed from zero to some cutoff valuevc.
The bath modes with the frequencies close to the energy gaps
of the system,DEij =Ei −Ej, contribute to the “resonant” ther-
malization and decoherence processes. Within the Markovian
schemes, the diagonal elements of the reduced density matrix
of the system,

rstd = TrBRstd, s7d

approach the thermal values~e−Ei/kT for large times expo-
nentially, on a time scaleT1. The off-diagonal elements van-
ish, which represents decoherence, on a time scaleT2, which,
for resonant processes, is given byT2.2T1. However, gen-
erally decoherence is expected to be faster than thermaliza-
tion because, in addition to resonant processes, it can involve
virtual processes that do not conserve energy. It has been
argued that this additional “pure” decoherence is dominated
by the bath modes with near-zero frequencies[10,14,15]. At
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low temperatures, this “pure decoherence” is expected[16]
to makeT2!T1.

Since the resetting of these low-frequency modes to the
thermal state occurs on time scales 1/kT=b, the Markovian
approach cannot be used at low temperatures[10,14,15].
Specifically, for quantum computing in solid-state
semiconductor-heterostructure architectures[16–23], tem-
peratures as low as a few 10 mK are needed. This brings the
thermal time scale tob,10−9 sec, which is close to the
single-qubit control times 10−11–10−7 sec [16–23]. Alterna-
tives to the Markovian approximation have been suggested
[24–29].

In this work, we generalize the recently suggested scheme
[2,3], applicable for HermitianL only, to a wider class of
interaction Hamiltonians. We treat the case when the system
operatorL entering the interaction[see Eq.(3)], is not Her-
mitian. In actual applications in quantum computing, calcu-
lations with only a single qubit or few qubits are necessary
for evaluation of the local “noise,” to use the criteria for
quantum error correction[30–35]. For example, the system
Hamiltonian is frequently taken proportional to the Pauli ma-
trix sz. The interaction operatorL can be proportional tosx,
which is Hermitian. Such cases are covered by the short-time
approximation developed earlier[2,3]. However, one can
also consider models withL~s−. Similarly, models with
non-HermitianL are encountered in quantum optics[11]. In
Sec. II, we develop our short-time approximation scheme.
Results for a spin-boson-type model are given in Sec. III.

II. SHORT-TIME APPROXIMATION

In this section we obtain a general expression for the time
evolution operator of the system(1)–(3) within the short-
time approximation. The system operatorsHS andL need not
be specified at this stage; the derivation is quite general.

In order to define “short time,” we consider dimensionless
combinations involving the time variablet. There are several
time scales in the problem. These include the inverse of the
cutoff frequency of the bath modes, 1/vc, the thermal time
b=1/kT, and the internal characteristic times of the system
1/DEij . Also, there are time scales associated with the
system-bath interaction-generated thermalization and deco-
herence,T1,2. The shortest time scale at low temperatures
(whenb is large) is typically 1/vc. The most straightforward
expansion int yields a series in powers ofvct. The aim of
developing more sophisticated short-time approximations
[2,3] is to preserve unitarity and obtain expressions approxi-
mately valid up to intermediate times, of the order of the
system and interaction-generated time scales. The latter
property can only be argued for heuristically in most cases
and checked by model calculations.

The overall density matrix, assuming a time-independent
Hamiltonian over the quantum-computation gate function
time intervals[16–23], evolves according to

Rstd = UstdRs0dfUstdg†, s8d

where

Ustd = e−isHS+HB+HIdt s9d

is the evolution operator.
The general idea of our approach is the following. We

break the exponential operator in Eq.(9) into products of
simpler exponentials. This involves an approximation, but
allows us to replace system operators by their eigenvalues,
when spectral representations are used, and then calculate the
trace ofRstd over the bath modes, obtaining explicit expres-
sions for the elements of the reduced density matrix of the
system. For Hermitian coupling operatorsL†=L, our ap-
proach reduces to known results[2,3].

We split the exponential evolution operator into terms that
do not have any noncommuting system operators in them.
This requires an approximation. For short times, we start by
using the factorization[36–38]

e−isHS+HB+HIdt+Ost3d=e−si/2dHSte−isHI+HBdte−si/2dHSt, s10d

where we have neglected terms of the third and higher orders
in t, in the exponent. The middle exponential in Eq.(10),

J ; e−isHB+HIdt = e−isHB+LG†+L†Gdt, s11d

where

G ; o
k

gk
*bk, s12d

still involves noncommuting terms as long asL is non-
Hermitian. In terms of the Hermitian operators

L ;
1

2
sL + L†d, s13d

M ;
i

2
sL − L†d, s14d

we have

LG† + L†G = LsG + G†d + iM sG − G†d. s15d

We then carry out two additional short-time factorizations
within the same quadratic-in-t (in the exponent) order of ap-
proximation:

J = es1/2dfMsG−G†d−iHBgtesi/2dHBt

3e−ifHB+LsG+G†dgtesi/2dHBtes1/2dfMsG−G†d−iHBgt. s16d

This factorization is chosen in such a way thatJ remains
unitary, and forM =0 or L=0 the expression is identical to
that used for the Hermitian case[2,3]. The evolution operator
then takes the form

U = e−si/2dHSt J e−si/2dHSt, s17d

with J from Eq.(16), which is an approximation in terms of
a product of several unitary operators.

It has been recognized[2,3] that an approximation of this
sort is superior to the straightforward expansion in powers of
t (or more exactly,vct). The evolution operator is factorized
in terms of unitary operators. We used thrice the approxima-
tion

D. TOLKUNOV AND V. PRIVMAN PHYSICAL REVIEW A 69, 062309(2004)

062309-2



e−isX+Ydt+Ost3d = e−iYt/2e−iXte−iYt/2. s18d

The next-order approximation can be obtained, for instance,
by using the relation

e−isX+Ydt+Ost4d = e−iWt3e−iYt/2e−iXte−iYt/2e−iWt3, s19d

where

W ;
1

24
†Y,fY,Xg‡ −

1

48
†X,fX,Yg‡. s20d

Specifically, for the factorization(10), we have

†Y,fY,Xg‡ = †HB,fHI,HSg‡ + †HI,fHI,HSg‡, s21d

†X,fX,Yg‡ = †HS,fHS,HIg‡. s22d

These relations illustrate that the present approximation is
not perturbative in powers ofHI and also thatHB, which
commutes withHS, drops out of some commutators that en-
ter the higher-order correction terms. This suggests that a
redefinition of the energies of the modes ofHB might have
only a limited effect on the corrections and serves as one of
the heuristic arguments for the validity of the approximation
beyond the shortest time scale 1/vc.

Our goal is to approximate the reduced density matrix of
the system. We consider its energy-basis matrix elements

rmnstd = TrBkmuURs0dU†unl, s23d

where

HSunl = Enunl. s24d

We next use the factorization(10) and(16) to systematically
replace system operators byc-numbers by inserting decom-
positions of the unit operator in the bases defined byHS, L,
and M. First, we collect the expressions(4), (16), (17), and
(24) and use two energy-basis decompositions of unity to get

rmnstd = o
p q

esi/2dsEn+Eq−Em−Epdtrpqs0d

3TrBFkmuJuplp
k

ukkquJ†unlG . s25d

We now define the eigenstates ofL andM:

Lull = lull, s26d

Muml = muml. s27d

The operatorsJ and J† introduce exponentials in Eq.(25)
that contain eitherL or M in the power. By appropriately
insertingolullklu or omumlkmu between these exponentials,
we can convert all the remaining system operators to
c-numbers. For convenience, let us define the operators

pabg = ualkaublkbuglkgu s28d

and

Us1,s2,s3
= es1gk

*bkt+s2gkbk
†t−is3vkbk

†bkt. s29d

The resulting expression for the trace entering Eq.(25) is

TrBHkmuJuplp
k

ukkquJ†unlJ
= o

m jl j

kmupm1l1m2
uplkqupm3l2m4

unlp
k

Tk, s30d

where the indicesl andm label the eigenstates ofL andM,
respectively, and

Tk = TrkhUs1/2dm1,−s1/2dm1,1/2U0,0,−1/2U−il1,−il1,1

3U0,0,−1/2Us1/2dm2,−s1/2dm2,1/2ukU−s1/2dm3,s1/2dm3,−1/2

3U0,0,1/2Uil2,il2,−1U0,0,1/2U−s1/2dm4,s1/2dm4,−1/2j. s31d

In order to calculate the trace over thekth bath mode in
Eq. (31), we rearrange the operators using the cyclic prop-
erty, in such a way that the formula(A1), derived in Appen-
dix A, can be used to simplify products of two or three
operatorsU at a time. For example, we can transfer the op-
eratorUs1/2dm1,−s1/2dm1,s1/2d to the right-hand side, getting the
combination

U−s1/2dm4,s1/2dm4,−1/2Us1/2dm1,−s1/2dm1,1/2, s32d

inside the trace, and use the identity(A1). We then transfer
U0,0,−1/2 to the right-hand side and repeat the process, now
for the three rightmost operators. After several steps we ar-
rive at the following expression for the trace:

Tk = RkTrkhukUu,−u* ,0j, s33d

where

u =
i

vkt
se−ivkt/2 − 1dm−9 −

2i

vkt
e−ivkt/2sin

vkt

2
l−

+
i

vkt
e−ivkt/2se−ivkt/2 − 1dm−8 s34d

and

Rk = expH−
i ugku2

vk
2 FSsin

vkt

2
−

vkt

2
Dsm−8m+8 + m−9m+9d + ssin vkt

− vktdl−l+− 4 sin
vkt

2
sin2vkt

4
m−8m+9 − 2sin2vkt

2
sl−m+9

− l+m−8dGJ . s35d

Here we introduced the variables

m±8 = m1 ± m4, s36d

m±9 = m2 ± m3, s37d

and
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l± = l1 ± l2. s38d

The trace in Eq.(33) can be evaluated, for instance, by using
the coherent-states technique(see Appendix B):

Tk = Rke
spq/2dugku2t2cothsbvk/2d. s39d

The expression which follows from Eqs.(30), (34), (35), and
(39) is

p
k

Tk = expf− Pstdg, s40d

where

P = B2stdsl−
2 + m−8m−9d + B2st/2dsm−9 − m−8d2 − Fstdsm−9 − m−8dl−

− iCstdl−l+ − iCst/2dsm−8m+8 + m−9m+9d + iSstdsl−m+9

− l+m−8d − iC1stdm−8m+9 . s41d

The coefficients here are the spectral sums over the bath
modes:

B2std = 2o
k

ugku2

vk
2 sin2vkt

2
coth

bvk

2
, s42d

Cstd = o
k

ugku2

vk
2 svkt − sin vktd. s43d

These functions are well known[39,40]. The result also in-
volves the new spectral functions

Sstd = − 2o
k

ugku2

vk
2 sin2vkt

2
, s44d

Fstd = 4o
k

ugku2

vk
2 sin2vkt

4
sin

vkt

2
coth

bvk

2
. s45d

Furthermore, for the sake of convenience we defined

C1std = 2Cst/2d − Cstd. s46d

By using Eqs.(25) and(40), we obtain our final result for the
density matrix evolution:

rmnstd = o
p,q

o
m jl j

esi/2dsEn+Eq−Em−Epdtrpqs0dkmupm1l1m2
upl

3kqupm3l2m4
unle−P, s47d

where the first sum overp and q is over the energy eigen-
states of the system; the second sum is overl1,l2, and
m1, . . . ,m4, which label the eigenstates of the operatorsL and
M, respectively; see Eqs.(26) and (27).

III. DISCUSSION AND APPLICATION

The result (47) looks formidable in the general case.
However, in most applications evaluation of decoherence
will require short-time expressions for the reduced density
matrix of a single qubit. Few- and multiple-qubit systems
will have to be treated by utilizing additive quantities

[41–43], accounting for quantum error correction(requiring
measurement), etc. For a two-state system—a qubit—the
summation in Eq.(47) involves 28=64 terms, each a product
of several factors, the calculation of which is straightforward.
Still, the required bookkeeping is cumbersome, and we uti-
lized the symbolic language Mathematica to carry out the
calculation for an illustrative example.

We consider the model[44] defined by

H = Asz + o
k

vkbk
†bk + o

k

sgks−bk
† + gk

*s+bkd, s48d

where Aù0 is a constant,s±= 1
2ssx± isyd and sz are the

Pauli matrices,bk
† andbk are the bosonic creation and anni-

hilation operators, andgk are the coupling constants. Physi-
cally this model may describe, for example, a qubit interact-
ing with a bath of phonons or a two-level molecule in an
electromagnetic field. In the latter case, this is a variant of
the multimode Jaynes-Cummings model[11,45]. Certain
spectral properties of this model, the field-theoretic counter-
part of which is known as the Lee field theory, are known
analytically—e.g.,[46]. However, the trace over the bosonic
modes, to obtain the reduced density matrix for the spin, has
not been obtained exactly.

For the model(48) we haveL=s− and L†=s+, so that
L=sx/2 andM =sy/2. We haveul1,2l=su↑ l± u↓ ld /Î2, with
eigenvaluesl1,2= ±1/2, andum1,2l=su↑ l± i u↓ ld /Î2, with ei-
genvaluesm1,2= ±1/2. For theinitial state, let us assume that
the spin att=0 is in the excited stateu↑ lk↑u, so that the initial
density matrix has the form

rs0d = S1 0

0 0
D . s49d

Calculation in Mathematica yields the following results for
the density matrix elements:r12std=0 and

4r11std = 2 +e−2B2std + e−4B2st/2dcoshs2 Fd

+ 2e−2B2st/2dsinhsB1dcossSd+ 2e−B2st/2dcossC1dsinsSd

+ ie−B2std−B2st/2dfeiC1sinhs− iS+ Fd + e−iC1sinhs− iS

− Fdg, s50d

whereC1 was defined in Eq.(46) and

B1std = 2B2st/2d − B2std. s51d

Where not explicitly shown, the argument of all the spectral
functions entering Eq.(50) is t.

In order to obtain irreversible behavior and evaluate a
measure of decoherence, we consider the continuum limit of
infinitely many bath modes. We introduce the density of the
bosonic bath statesDsvd, incorporating a large-frequency
cutoff vc, and replace the summations in Eqs.(42)–(45) by
integrations overv [9,10,39,47]. For instance, Eq.(42) takes
the form
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B2std =E
0

`

dv
Dsvdugsvdu2

v2 sin2vt

2
coth

bv

2
. s52d

We will use the standard Ohmic-dissipation[9] expression,
with an exponential cutoff, for an illustrative calculation:

Dsvdugsvdu2 = Vve−v/vc, s53d

whereV is a constant.
We point out that the results obtained for the density ma-

trix elements depend on the dimensionless variablevct, as
well as on the dimensionless parametersV and vcb
(="vc/kT, where we remind the reader that", set to 1, must
be restored in the final results). Interestingly, the results do
not depend explicitly on the energy gap parameterA; see Eq.
(48). This illustrates the point that short-time approximations
do not capture the “resonant” relaxation processes, but rather
only account for “virtual” decoherence processes dominated
by the low-frequency bath modes. However, the short-time
approximations of the type considered here are meaningful
only for systems with a well-defined separation of the reso-
nant versus virtual decoherence processes—i.e., for" /A
@1/vc. For such systems," /A=1/A defines one of the
“intermediate” time scales beyond which the approximation
cannot be trusted.

As an example, we calculated a measure of deviation of a
qubit from a pure state in terms of the “linear entropy”
[41,43,48]:

sstd = 1 − Tr fr2stdg. s54d

Figure 1 schematically illustrates the behavior ofsstd for
different V values for the casevc

−1!b. The values ofsstd
increase from zero, corresponding to a pure state, to 1/2,
corresponding to a completely mixed state, with superim-
posed oscillations. For Ohmic dissipation, three time regimes
can be identified[40]. The shortest time scale is set by
t,Os1/vcd. The quantum-fluctuation-dominated regime
corresponds to Os1/vcd, t,Os1/kTd. The thermal-
fluctuation-dominated regime ist.Os1/kTd. Our short-time
approximation yields reasonable results in the first two re-

gimes. Fort.Os1/kTd it cannot correctly reproduce the pro-
cess of thermalization. Instead, it predicts an approach to the
maximally mixed state.

Figure 2 corresponds to the parameter values typical for
low temperatures and appropriate for quantum computing
applications,vcb=103, with V=1.5310−7 chosen to repre-
sent weak enough coupling to the bath to have the decoher-
ence measure reach the threshold for fault tolerance, of order
10−6, for “gate” times well exceeding 1/vc, here forvct over
10. The leading-order quadratic expansion in powers of the
time variable t is also shown. Its validity is limited to
t,Os1/vcd and it cannot be used for evaluation of quantum-
computing models.

This research was supported by the National Security
Agency and Advanced Research and Development Activity
under Army Research Office Contract No. DAAD-19-02-1-
0035 and by National Science Foundation Grant No. DMR-
0121146.

APPENDIX A

Our aim is to derive a relation of the form

Uv1,w1,xUv3,w3,0Uv2,w2,−x = kUp,q,0, sA1d

where the operatorUs1,s2,s3
was defined in Eq.(29). Consider

the quantity

D = exsb†+a1dsb+a2deg1b†+g2be−xsb†+b1dsb+b2d, sA2d

where b† and b are the bosonic creation and annihilation
operators, andx, ai, and bi are c-numbers. Let us use the
identity [11]

eab−bb†
fsb,b†de−ab+bb†

= fsb + b,b† + ad sA3d

to represent the first and third exponentials inD in the form

exsb†+a1dsb+a2d = ea1b−a2b†
exb†be−a1b+a2b†

, sA4d

FIG. 1. Schematic behavior ofsstd for different values ofV,
decreasing from i to iv.

FIG. 2. The comparison between theOst2d expansion, i, and the
short-time approximation, ii.
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e−xsb†+b1dsb+b2d = eb1b−b2b†
e−xb†be−b1b+b2b†

. sA5d

We then combine the second exponential in Eq.(A2) and the
last and first exponentials in Eqs.(A4) and(A5), by utilizing
the identity

eabebb†
= es1/2dabeab+bb†

, sA6d

which follows from Eq.(A3). The resulting exponential op-
erator, with exponent linear inb and b†, is sandwiched be-
tweenexb†b ande−xb†b. Therefore, the following identity can
be utilized[11]:

exb†bfsb,b†de−xb†b = fsbe−x,b†exd. sA7d

Once again using Eq.(A6), we arrive at the expression

D = enb+mb†+r , sA8d

where

m = sa2 − b2dsex − 1d + g1e
x, sA9d

n = sb1 − a1dse−x − 1d + g2e
−x, sA10d

and

r = − 2sa1b2 − a2b1dsinh2x

2
+ sa1a2 − b1b2dsinh x+

1

2
g1sa1

+ b1dsex − 1d +
1

2
g2sa2 + b2dse−x − 1d. sA11d

Now Eq. (A1) follows, with

k = expF2ugku2

x2vk
2 sin2Sxvkt

2
Dsv1w2 − v2w1dG

3 expF i ugku2

x2vk
2 fsinsxvktdsv1w1 − v2w2d + xvktsv2w2

− v1w1dgGexpF i ugku2t
2xvk

fse−ixvkt − 1dw3sv1 − v2d

+ seixvkt − 1dv3sw1 − w2dgG , sA12d

and

p = −
i

xvkt
seixvkt − 1dsv1 + v2d + v3e

ixvkt, sA13d

q =
i

xvkt
se−ixvkt − 1dsw1 + w2d + w3e

−ixvkt. sA14d

APPENDIX B

Let us calculate the trace in Eq.(33) which has the form

T ; Trhedb†bevb+wb†
j, sB1d

where we omitted the indexk since all the calculations here
are in the space of a single mode. We use the coherent-state
technique [11]. The coherent statesuzl by definition are
eigenstates of the annihilation operatorb:

buzl = zuzl, sB2d

with complex eigenvaluesz=x+ iy. These states are not or-
thogonal,

kz1uz2l = expSz1
*z2 −

1

2
uz1u2 −

1

2
uz2u2D , sB3d

and they form an overcomplete set. The identity operator can
be written as

E d2zuzlkzu = 1, sB4d

where integration in the complex plane is defined via

d2z=
1

p
dxdy. sB5d

We represent the trace(B1) by the coherent-state integral
using the relation

Tr A =E d2zkzuAuzl, sB6d

where A is an arbitrary operator. We then use the normal
ordering, N, formula for bosonic operators, represented
schematically(see[11] for details) by

edb†b = Neb†sed−1db. sB7d

The second term in the trace in Eq.(B1) is split by using Eq.
(A6). All instances ofb andb† can then be replaced byz and
z* , and the integral evaluated to yield the expression for the
trace:

T =
eswv/2dcothsd/2d

1 − ed . sB8d

[1] D. Loss and D. P. DiVincenzo, e-print cond-mat/0304118.
[2] V. Privman, J. Stat. Phys.110, 957 (2003).
[3] V. Privman, Mod. Phys. Lett. B16, 459 (2002).
[4] R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path

Integrals (McGraw-Hill, New York, 1965).
[5] G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys.6, 504

(1965).
[6] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett.46, 211

(1981).
[7] A. O. Caldeira and A. J. Leggett, Physica A121, 587 (1983).
[8] S. Chakravarty and A. J. Leggett, Phys. Rev. Lett.52, 5

(1984).

D. TOLKUNOV AND V. PRIVMAN PHYSICAL REVIEW A 69, 062309(2004)

062309-6



[9] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
and W. Zwerger, Rev. Mod. Phys.59, 1 (1987); 67, 725E
(1995).

[10] N. G. van Kampen,Stochastic Processes in Physics and
Chemistry(North-Holland, Amsterdam, 2001).

[11] W. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).

[12] A. Abragam,The Principles of Nuclear Magnetism(Clarendon
Press, Oxford, 1983).

[13] K. Blum, Density Matrix Theory and Applications(Plenum,
New York, 1996).

[14] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep.168,
115 (1988).

[15] N. G. van Kampen, J. Stat. Phys.78, 299 (1995).
[16] V. Privman, D. Mozyrsky, and I. D. Vagner, Comput. Phys.

Commun. 146, 331 (2002).
[17] D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 (1998).
[18] V. Privman, I. D. Vagner, and G. Kventsel, Phys. Lett. A239,

141 (1998).
[19] B. E. Kane, Nature(London) 393, 133 (1998).
[20] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVin-

cenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett.
83, 4204(1999).

[21] R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balan-
din, V. Roychowdhury, T. Mor, and D. P. DiVincenzo, Phys.
Rev. A 62, 012306(2000).

[22] S. Bandyopadhyay, Phys. Rev. B61, 13813(2000).
[23] D. Mozyrsky, V. Privman, and M. L. Glasser, Phys. Rev. Lett.

86, 5112(2001).
[24] G. W. Ford and R. F. O’Connell, J. Opt. B: Quantum Semi-

classical Opt.5, 349 (2003).
[25] K. M. Fonseca Romero, S. Kohler, and P. Hänggi, Chem.

Phys. 296, 307 (2004).
[26] K. M. Fonseca Romero, P. Talkner, and P. Hänggi, Phys. Rev.

A 69, 052109(2004).
[27] R. F. O’Connell, Physica E(Amsterdam) 19, 77 (2003).
[28] Y. Makhlin and A. Shnirman, Phys. Rev. Lett.92, 178301

(2004).
[29] Y. Makhlin, G. Schön, and A. Shnirman, e-print cond-mat/

0309049.
[30] P. W. Shor, inProceedings of the 37th Annual Symposium on

the Foundations of Computer Science, edited by M. Tompa
(IEEE Computer Science Society Press, Los Alamitos, CA,
1996), p. 56.

[31] D. Aharonov and M. Ben-Or, e-print quant-ph/9611025;
e-print quant-ph/9906129.

[32] A. Steane, Phys. Rev. Lett.78, 2252(1997).
[33] E. Knill and R. Laflamme, Phys. Rev. A55, 900 (1997).
[34] D. Gottesman, Phys. Rev. A57, 127 (1998).
[35] J. Preskill, Proc. R. Soc. London, Ser. A454, 385 (1998).
[36] D. A. Kirzhnits,Field Theoretical Methods in Many-Body Sys-

tems(Pergamon Press, Oxford, 1967).
[37] M. Suzuki and K. Umeno, inComputer Simulation Studies in

Condensed-Matter Physics VI, Springer Proceedings Physics,
Vol. 76, edited by D. P. Landau, K. K. Mon, and H.-B. Schttler
(Springer-Verlag, Berlin, 1993), p. 55.

[38] A. T. Sornborger and E. D. Stewart, Phys. Rev. A60, 1956
(1999).

[39] G. M. Palma, K. A. Suominen, and A. K. Ekert, Proc. R. Soc.
London, Ser. A452, 567 (1996).

[40] D. Mozyrsky and V. Privman, J. Stat. Phys.91, 787 (1998).
[41] L. Fedichkin, A. Fedorov, and V. Privman, Proc. SPIE5105,

243 (2003).
[42] L. Fedichkin and A. Fedorov, Phys. Rev. A69, 032311(2004).
[43] L. Fedichkin, A. Fedorov, and V. Privman, e-print cond-mat/

0309685.
[44] S. Swain, J. Phys. A5, 1587(1972).
[45] E. T. Jaynes and F. W. Cummings, Proc. IEEE51, 89 (1963).
[46] P. Pfeifer, Phys. Rev. A26, 701 (1982).
[47] D. Mozyrsky and V. Privman, Mod. Phys. Lett. B14, 303

(2000).
[48] W. H. Zurek, S. Habib, and J. P. Paz, Phys. Rev. Lett.70, 1187

(1993).

SHORT-TIME DECOHERENCE FOR GENERAL SYSTEM-… PHYSICAL REVIEW A 69, 062309(2004)

062309-7


