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Two-qubit entanglement dynamics in a symmetry-broken environment
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We study the temporal evolution of entanglement pertaining to two qubits interacting with a thermal bath. In
particular we consider the simplest nontrivial spin bath models where symmetry breaking occurs and treat them
by mean field approximation. We analytically find decoherence free entangled states as well as entangled states
with an exponential decay of the quantum correlation at finite temperature.
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I. INTRODUCTION Il. THE MODEL

Since 1935[1,2], entanglement has been recognized as \we consider the general scenario of a system and a bath
one of the most puzzling features of quantum mechaniCqjescribed by Hamiltoniansls and Hg respectively, and in-
However, it is nowadays a widespread opinion that it alsqeacting through the Hamiltoniakles. The total Hamil-
represents a fundamental resource for many quantum infogg hian is therH=H.+H.g+Hg, and the initial density matrix

mation protocols. As such, entanglement deserves to be ang assumed to be factorized. i 8(0) = p.® pg. We are l0ok-
lyzed in all respects. A primary concern is its robustness e soE

against environmental effects, and a supplied literature existy for the time evolution of the reduceq §ystem. density
. . ’ matrix pg(t); in particular we are interested in its off diagonal

aimed at preserving entanglement cohergi8e®]. More re- | ts. th led “coheren Hifd not depend

cently, attention has been devoted to the problerthefmal elements, the so called “conerences. 0€s not dep

entanglemenf10], i.e., quantifying entanglement arising in on time the total density matrix will evolve accordingly to

spin chains at thermal equilibrium with a bath. In this ap- p(t) = e Hip0)ett, (1)

proach environment determines the temperafutte allow . ) i i

for a thermal distribution of system energy levels, while the'Ve can then obtain the reduced density matrix by tracing out

detailed interaction between system and environment is ndf'€ bath degrees of freedom in Hd)

an essential part of the matter. The same is true also for those pd(t) = trap(t). ()

works that focus on entanglement decoherdridel? (also S B

known asdisentanglemeritL3,14). In this context the study We now follow the line sketched in RefL6] to introduce the

of entanglement time behavior is carried on with a mastemodel for a spin system interacting with a spin bath. First of

equation formalism and Markovian approximatiftb] or,  all, we assume the bath density matrix having a thermal dis-

more generally, with arguments provided by spin-bosortribution, that ispg=(e™&'T)/Z, with T the bath temperature

models. multiplied by the Boltzmann constant, adatr(e "8'T) the

In the present paper we are going to envisage an approag@artition function. Furthermore, we ask the bath Hamiltonian
to the problem along the line introduced for the first time into be a “symmetry breakable” one, that is endowed with
Ref. [16] (a similar outline but supported by numerical phase transition in the degrees of freedom that provide the
means is also present [h7]). There, the authors considered coupling with the system. The simplest Hamiltonian with
a one spin system interacting with a fermionic environmenthese requirements is a long rangkihg modellike one
endowed with a structure capable of symmetry breakingIM). We add to it a transverse field to include a more gen-
[18]. It was shown by analytical methods that coherence timeral case in the analysis, dealing eventually witheasverse
increases as magnetic order enlarges or, in other terms, &ing modelbath Hamiltonian(TIM). The differences be-
temperature decreases. Here we extend this argument tot@een the two models are minimal as coherence and en-
two-qubit system plunged in a fermionic environment de-tanglement is concerning and, in any case, we will be able to
scribed bytransverse Ising moddTIM) and Ising model  find results for IM in the limit of no transverse field for TIM.
(IM) [18]. We shall examine the time evolution of concur- These peculiar environment Hamiltonians will be studied
rence of the bipartite systerf19], and find environment- through mean field approximatidi8g].
limited concurrences as well as unlimited ones according to
environment ordering level.

The paper is organized as follows: in Sec. Il we introduce _ .
the model by referring t916] and we revise some results. I Let us consideN+1 spin5, and letS* be thea compo-
Sec. Ill we extend the model to a bipartite systems, and w&ent(a@=x,y,2) of the jth spin(j=0,1,... N). The labelj
present the results of paradigmatic cases in Sec. IV. Finally0 refers to the system operators whjlel,... N to the
Sec. V is for conclusions. Explicit calculations are reportedbath operators. Furthermoi§,=(S'+iS})/2 are the spin flip
in Appendixes A and B. operators, an{D) and|1) are the lower and upper eigenstates

A. TIM environment
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of & The following Hamiltonians define the energy of the w w
system, of the TIM bath and of the interaction between them: 3 <tan o7/ (6)
Ho=— po (3a) This condition is not satisfied in the range of temperatures

aboveT; for this reason the whole formalism we are using is
valid only in the broken phase.

Jo With the linearized mean field bath Hamiltonian it
Hssz—?séz S, (3b)  is possible to evaluate the coherence of the systsee
YNk Appendix A):
; S0 = trafe ™" [5,(0) @ pgle™ ™)
Her=-w -— , 3c 1 sqm m igm
2= W2 S Nzk 3= (59 = J[e™"(|0)(1| © e ™)
where u, is the coupling constant with an external magnetic =SO)rnu®, (7

field parallel to thez axis, Jo, J are exchange coupling con- mf_ mf

. . whereH™'=H+Hgg+HZ", an
stants andv is the strength of the transverse field; they are ere s+Hsg+Hg', and
all non-negative constants. The indices of the sums run from tmJ3\ .0  [(tmd]
1 to N. Equation(3c) describes a material in which spins rrm(t) = | cog —= +i7sin :
compete to align along the positive direction Sofaxis or

alongz axis following a ferromagnetic behavior; of course in Equation(7) tells us that the time evolution of the off diag-
the latter case the absolute direction of alignment is not impnal term of the system density matrix, responsible for the
portant since the Hamiltonian is symmetric znoperators.  coherence of the system, is enclosed in the time behavior of
We can notice that energy exchanges between system afife complex valued factary(t). In particular, in order to
bath are not included in the interaction Hamiltonian; this will find System decoherence, we ask whether and when this fac-
generate a pure dephasing dynamics, in which energy will bgyr’s absolute value goes to zero. In the limit of latgave

(8

I

v ®+\N

conserved, and temporal evolution analytically solved. can approximate it as
The main difficulty with Eqs(3a—3c¢) is represented by
the nonlinear term irHg. For this reason it is helpful to JomPt? [ P
approximate it with a mean field bath Hamiltonian, as ex- rrm®] = exp - ———{ 5z - 9)
plained in[16]:

We can see from Eq9) that the system coherence decays
exponentially with time. The coherence time is
HE = -w>) S-2Im>, S+ mPIN. (4) P Y

k k || 2
™M=\ 2o g2 (10

. . Om J - @

In the above equatiom is the order parameter of the phase
transition. Its absolute value ranges from Ojtas long as ~and increases as temperature decreasest#@r it is =,
temperature ranges from the critical vallig=J/2 to 0: the and the system remains coherent. This is quite a counterin-
greaterjm| the larger the magnetic order of the bath aldng tuitive effect since collective quantum properties of materials
axis. In the following we are going to consider only positive endowed with phase transition disappear as ordering in-
values form since results are sign-independent. Everythingcreasegsee for instance Ref20]). The factort? in the ex-
remains true with the substitution— —m. This is a conse- ponent denotes the intrinsically reversible nature of the pro-
quence ofHg z symmetry, that is not lost i2". The order ~ cess, in contrast to irreversibility introduced by Markovian
parameterm is implicitly defined by the following self- approach, and is closely related to the “Zeno eff¢21]. In
consistent equation for the quanti€y=+\w?+4m?J2 (also  particular the periodicity of r(t) in Eq. (8) leads to the
O’s sign, written here for the sake of precision, is irrelevant,so-called “recoherences” on a Poincaré time scale. Decoher-

for the same reasons afs): ence takes place in the limit of an environment with infinite
degrees of freedom; besides, the same limit is necessary to
o 0 support the mean field theory approach we adopted. Thus in
— =tanh—. (5) this context the limitN— « has a double function: to take
J 2T into account the decoherence process and to give a meaning
to the mean field approximation written above.
It is worth noting that from Eq(5) we have® —J for T We briefly notice here that the factof,(t) in Eq. (9) is
—0; furthermore, from the definition o, we can see it exactly alike tor,(t) of Eq. (32 in [16]. But as far as that
tends to Jin the limit of no transverse fieldv— 0). paper is concerned we must point out some inaccuracies: the

Together with Eq.(5) we must consider the following final result(32) is correct, but the intermediate steps to find it
condition on the transverse field to obtain an ordered phasare not. In particular the general formuyltl) applies only if
with TIM: the 3X 3 matricesA, commute, and this is not true when you
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look at Eq.(29) of that article. For this reason the interme- tions, like that between qubits and an external magnetic field,
diate formula(30) is wrong and the oscillations showed in and local couplings with environment degrees of freedom, a

Fig. 1 are not present. situation resembling a “collective” system-environment pair-
ing [7].
B. Limit of no transverse field: IM environment As a measure of entanglement between two qubits we

adopt the so called “concurrencgl’9], which ranges from 0
for separable states to 1 for maximally entangled states. The
concurrence is given by

B2
Ir.M(t)Izexp[—%(Z—”F)]- (19 C=maxhy— A2~ Ag= A4, 0}, (13)

We can notice the same behavior as for TIM bath, b“R/vhere)\l, Aoy
slightly more transparent: the coherence time g
=(2/39)\2/(1-4m?) and its limits arer . '@=2y2/J, and
71 ?=. We note that coherence explicit dependence o
bath coupling constant has disappeared in this case; only

interaction coupling constaidt enters coherence expression

In the limit of w— 0 we obtain from Eqs(3a—3c) the
IM Hamiltonians which lead to

N3 and\, are the square roots of the eigenval-
ues, in decreasing order, of the matRx psps. Hereps is the

rgensity matrix of the 2 system qubits, aﬁg is the “time
reversed” matrix given by

when the bath is an IM one. Otherwise, thecoupling is Ps= (091 ® at)pe(ap, ® aty), (14
indirectly present in Eq(11l) because it has a role in deter-
mining the order parameten by means of Eq(5). whereg’s are the usual Pauli matrices. The symppmeans
complex conjugation of the matriys in the standard basis
lll. THE EXTENSION |00y, |01y, |10}, |12).

We assume that the qubits are initially decoupled from the

In this section we extend results obtained in the previougyironment, and the bath having a thermal density matrix
one by considering a two-qubit system, and studying thepB:(e—HB/T)/Z_ Therefore, we can write the whole state as
time evolution of their entanglement. We assume that the

system qubits, labeled by 01 and 02, interact between them

and with environment, that is symmetry-breakable and mod- p=|WXV|® pg (19
eled by TIM Hamiltonians generalizing those of Egs.
(3a—(30): with a generic system pure state:
Hs=~ £655:50: (129 W) = a]00) + B|O1) + 4[10) + 5[11),
Jo 2 2 2 2_ (16
o= L+ )3 S, (12b) a2 + B2+ |52+ ] o2= 1.
v k

The steps to find time evolution of E¢L5) are similar to
_ J those leading to Eq7) (see Appendix A but now operators
HB‘_W% S NEIE SR (129 are represented by>4 matrices, being our system com-
N posed by two qubits. After mean field approximati@n for
In the above equationg, represents the coupling constant the bath Hamiltonian and some elementary algebra we obtain
between the qubits. We have discarded both local interadhe reduced density matrix as

laf? o BT 12 o £t (12t o 5B
aB*Aél/Z)itgo |IB|2 B*,y B*éA*e(UZ)itgo
ps(t) = trg(p(t)) = * A 12t " 2 * opara(12)itey | (17)
ay'A o By A Y SATe Mo
(X(S*B ’ngAe—(ﬂZ)itgo ,yé*Ae—l/Zi'[go |512
|
where the coefficients 2tmJ3\ .0  (2tmd}) |V
B=|co§ ——= | +i—sin — , (18b
®VN J (XY

I

Az {co{ t(:)nlb) N iQSin<th~b)}N, (183 characterize the time dependence of the concurrence. From
\‘J

N J 0N the above expression pf(t) we can find the matriR(t) and
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its eigenvalues, and from them, as explained, the final con-
currence of the system. The complete expressioRforand 08
for coefficients of Eqs(188 and(18b) is given in Appendix g
B. In the following we are going to consider some paradig- © 04
matic cases for the initial statd5).
IV. PARADIGMATIC CASES 0 25 50 75

A. Case 1

Let us setae=6=0 in Eq.(16) for the initial state of the
system. We obtairi¥’)=£|01)+y|10) and R matrix reduces
to

0 0 0 0
_[ 0 28 287187y ©
R(t) = A2 212 : (19
0 28y(¥° 2|g°H* 0
0 0 0 0
whose square rooted eigenvalues are
N =2/, (209
)\2:)\3:)\4:0. (20b)
This leads to the following concurrence:
Crim =2|B8ll]. (21

The entanglement results time independent, so the state d
not perceive the presence of the environment. The reason {'s
that|P) is an eigenstate of the interaction Hamiltonian and

so it represents a decoherence free entangled [Sfat8ince

w is not present in the concurrence written above we know
that the expression for the concurrence would be exactly thBath'

same for an IM environment.

B. Case 2

Now we setB=vy=0 in Eq. (16) and obtain the state

|¥)=a|00)+811). The R matrix becomes

a1 +1B») 0 0  2a’|al?sB
0 00 0
R(t) = :
0 00 0
228186 0 0 [of?]8%(1+[BP)
(22
with square rooted eigenvalues in decreasing order:
N =|allél(B] + 1), (233
N2 =|al|8(]B] - 1)), (23b)
)\3 = )\4 =0. (23C)
From Eqgs.(18g and(18b), for largeN, we get
J2
|B| = exp| — 2Jémzt2<@ - 1) : (24)

Then, by using concurrence definition and E@3a—230),
we arrive at

Jot

FIG. 1. Concurrence versus scaled tidge Curves from the left
to the right are foi/T.={0.75,0.50,0.35,0.25Values of the other
parameters arey=0.1 andJ=2.

J2
Crw =2al|d||B| = 2|a||5|exp{— 2J§mzt2(@ - 1)}

(25

The time behavior of the concurrence just obtained is shown
in Fig. 1 for different values of the ratid/ T.. We notice that

in this case the qubits perceive the presence of the thermal
bath, which spoils entanglement between them; in fact the
initial state is no longer an eigenstate of the interaction
Hamiltonian. Only for zero temperature the order parameter
reaches its saturation value and the concurrence remains con-
stant. The behavior is very similar to that of one-qubit sys-
tem coherence described by K@), but entanglement deco-
herence is exactly twice faster than one-qubit decoherence.
is result agrees with what was found[it2]. Furthermore,
ogether with the previous case, it falls within the general
limitations represented by theniversal disentangling ma-
chine[13].

In the limit w— 0 we obtain the concurrence for an IM

1
Cm = 2|a||a1exp[— 2J§t2<z - rnzﬂ . (26)
Analogously to what was already noticed for the single-qubit
coherence, in this limit the factar disappears from the ex-
plicit concurrence expression. The only exchange coupling

constant that enters in the decoherence time for the concur-
rence isJo.

C. Case 3

If we seta=8=0 we obtain a product sta{&)=1|10)
+68|11)=(4]0)y+ 8/1))|1), which trivially gives

R(t)=(0)0 C=0. (27)

In this case TIM Hamiltonians are not able to induce en-
tanglement between system qubits.

D. Case 4

If we seta=B=vy= 5=§ we obtain again a separable ini-
tial state, but different from the previous od&!)z%(\OO)
+|0D)+|10)+]11)) = (1/y2)(|0)+| 1)) (1/v2)(|0)+]1)). In this
case theR matrix is not trivial:
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1+ |B|2 - 2|A|2e‘it§o U'-fo Ufo 2B" - 2(A")2%e it
1 -V 2 - AP 2 - 2AfPeto -u
R() = — g | | o (29)
16 = Vg, 2 - AP 2 - JAfPeto - Uy,
2B - 2A% 1t Ve, Ve, 1+|BJ? - 2|A|%e 0
[
where in the near future. Beside that an important improvement
. . . .\ : would be to overcome mean field approximations adopted in
_ ~(1/2)itéy _ (1/2)it¢ . . .
Ug, = [2A'e™ 90— (A + AB )e =], (293 the text, by including the effect of fluctuations, or by apply-
' . ing the spin waveapproach22] to the bath.
Vg, = [2Ae M0 — (A + A'B)eM20], (29b) What comes out from the paper is quite a counterintuitive

] o __conservation of entanglement in a bath with strong interac-
Concurrence is valuable explicitly, but the expression isjons: the bigger the coupling strengibr the lower the ratio
much too cumbersome and therefore is not reported here. V\fp/-rc) the longer the time qubits remain entang[&dy. (25)
Only ShOW in F|g 2|tS behaVior. The Concurrenpe Stal’t.S fronhnd F|g :!l_ In some cases entang'ed qubn'_s do not perceive
its null value and increases because of the interaction b%nvironment at a”, and the System state deaoherence free
tween system qubits. If there was no disentanglement igne [Eq. (21)]. Several connections with results from the
would reach its maximum and decrease again giving rise t@ie|d of entanglement decoherence are provided.
oscillations of equal amplitude. Nevertheless, the presence of |t could be interesting to compare the studied low-
environment alters this temporal behavior damping the oscikemperature scenario with the high-temperature one, above
lations. For suitable values of coupling constants it can evefhe critical valueT,. The major hindrance to this task is
prevent qubits from entangling at all. The interesting quesrepresented by the nonlinearity of bath Hamiltonians, like
tion of the maximal entanglement generation under dephassq. (12), which prevents us from finding the exact analytic
ing processes arises naturally in this cpkH. dynamical solution. Nevertheless, it is possible to tackle the
problem in the frame of the Ising model at infinite tempera-
ture. In this limit the bath density matrix turns out to be the
identity operator, since each energy level has the same
Hveight; furthermore Hamiltonians entering time evolution

We have studied time behavior of entanglement bewVeecommute among themselves. This allows us to evaluate the
two qubits dipped in a large symmetry-breakable fermionic 9 :

T=o0 _ 2 .

environment, below the critical temperaturg In the frame concurrence a@,Mb —2|a|||5\§xr(—h\]0t2/2). A stralghtforwa_rd E
of mean field theory analytical results are provided for Con_cgf?p;lrlgon gan_ h? Sittel it cgnlcurrencltle. Wﬂgen _Fn q:
currence of the bipartite system, with temperature as a pd2" Oe ﬁcel within tde sm% model as vlve ’@W:x mh,c
rameter of the problem. Hamiltonians involved in the discus\M—0) the latter tends to the same value fu”- This

sion are those typical ofransverse Ising model§TIM), _shows that apove critical temperature ent:_:mglement dynam-
capable of magnetic ordering under suitable conditions. T&CS Pecome independent of temperature itself, and of bath
assign them a physical meaning we notice that, upon addprderlr)g propertle.$at least in t.he region of validity of as-
tion of a transverse field iHl,, our model resembles an array SUMPtions made in the textThis prevents coherence time
of Rydberg atoms interacting with a cavity mode of the ra-from (_Jl_ecreasmg further once the temperature goes beyond
diation field [16]. Nevertheless such an assumption Fy  the critical valueT.. _ _
makes the problem unsolvable by analytical techniques, and In conclusion, we believe that the presented analysis can

requires numerical investigation that we plan to accomplisf?€ useful for a more complete knowledge about entangle-
ment dynamical properties.

V. CONCLUSION

081 [\,
3 \ APPENDIX A
O 04 ) . 1. Exponentiation of suitable matrices
P Let us define a X 2 traceless matrix4 as
0 25 50 75
Jot

A= (a0 +ba) = (2 _ab> , (A1)

FIG. 2. Concurrence versus the scaled tilge The plot shows
the limiting role of decoherendaglotted ling that falls down expo-
nentially, on entanglemeritontinuous ling The value of param-

eters arev=0.1, £=0.3,J=2, andT/T.=.25. with a, b real coefficients. The exponentiation Afgives

062308-5



LUCAMARINI, PAGANELLI, AND MANCINI

e’ =(coshq)l + (%)A;e“‘: (cosq)l + i(Si—zq>A
(A2)
with q=/(a+b?). Therefore
tr(e’) = 2(coshq), tr(e€*) = 2(cosq). (A3)

Let us extend these arguments to three matricé®, andZ’
of the same form of4:

tr[eZeRe?’ ] = tr{ [(cosx)l + |<¥)I] [(coshy)l

(5[ 52

:(coshy)[z(cosx)(cos 2) +i(cos Z)(Si%j

x(tar;hy)tr(IRH i(cosx)(tanhy)

><(sin Z)tr(RI’) ~ (sin x) ( sin Z)tr(II’)] |
z X z
(A4)

wherex, y, z are respectively related to the elementg R,
7' asq was related tA.

PHYSICAL REVIEW A 69, 062308(2004)

2. Coherence expression for TIM

As an example of calculation we report the steps that lead
to Eq.(9). All other calculations are easier than this one and
can be performed following the same line.

The time evolution of the total density matrix is

-mAINIT
pt)="2 . {exp{it}k: {(3—%5(% 2mJ)S§+W$”pS

X exp{(l/‘l’)z (WS + 2mJ$)}
k

xexp{— it% {(\J—%Sfﬁ 2mJ)S§+wS§}}}. (A5)

First, the partition function results:

Z= e‘"‘ZEN’Ttr{ exp[(lfl’)z (WS + 2mJ$)] }
k

- —m23N/TH tr[e(WS&ZmJi)/T]. (AB)
k
By virtue of Eq.(A3) we find
m2IN/ ,{ o ]N
Z=g™INT oNScosi — | . A7
2T (A7)

Notice that the constart™ VT in the partition function sim-
plifies with that present in EqQA5).

Let us now study the time evolution of the opera&r
=|0)(1| that represents the off diagonal part of the density
matrix:

(0= {2 cos r( 291_ )}_Ntrg {H en[((JO/¢N>sg+2mJ)sZk+ws;§]e(ws§+2mJi)/T|O><1|H e—it[((Jo/\N)sg+2mJ)§+ws;§]}
k k

=5(0) [ 2 cos){ 291_) ] _NH tr B{eiIeReiI’}’
k

where
J
I:t[<goﬁ+2m\])si+wgé] (A9a)
R =(WS+2mI)/T, (A9Db)
J
I’z—t[(—z\—yoﬂ+2m\]>§k+w3§} (A9c)

In order to use EqA4) we evaluate the following quantities:

t mJd 1
= @2+2—+o<—), A10
X 2\/ JN N (A109

(A8)
[
C} tanhy) 2T
=—0|—2 == Al
Y=or ( y 7 (AL0b)
1
2:3\/62_2_m3_~b o(—) (A10c)
2 VN N
and
J
tr(IR) = —(@ + ®2> , (Al1a)
2 \JN
t (mdy
tr(RZ') = ——@2), Allb
(RT") 2 ( N ( )
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Lt ) 13 1?02 1 constantry(t) defined in Eq.(8); the absolute value of
tr(II)‘_E 0 TaN/ T 2 o N/ it, in the limit of large N, gives the result of Eq(9). The
(A110) other quantities of the article come out with similar calcula-
tions.
Then, substituting these into E¢GA4) and performing the
product we obtain
o @ \N tmJ APPENDIX B
[] tr{éZeRe? = 2N<cosh—> cos< i) ) _
K 2T ON Complete R matrix for TIM
0 I\ | o _ : :
*+isin o/ | (A12) Let us begin with the time dependent density matrix ex-

pression for TIM Hamiltoniang128—12¢). After mean field
We can recognize in the second member of &fl2) the  approximation(4) we obtain

(1) = S MMt T o HE it
:ﬁexp{it{z (%(%ﬁ S+ 2mJ)Si 5y wﬂ }pgexp{umz (WS + 2mJS§>}
k A k k
Xexp{—itlz (‘],—%(561+S§)2)+2m\]>3§+2w32]}, (B1)
k \V k

where we have st = g%z g 1055,
The constants present in Eq48a and(18b) are found by complex conjugation of the following quantities, evaluated in
a similar manner as the one seen in Appendix A:

* 1 R i N-
A= ZH trB{elt[ZmJ$+w3§]e(w$§+2mJi)/Te—lt[(Jol\sN+2mJ)S§+w$§]}, (B2a)
k
B = }H trB{eit[(—JO/\fNJerJ)s§+ws§]e(ws§+2mas,i)/Te—it[(Jo/\fﬁ+2mJ)§+w§,§]} (B2b)
Z7 '
D = %H trB{eit[(—JOI\s‘N+2mJ)si+w$§]e(wq’i+2m.]§§)/Te—it[2mJ5§+w$]}' (B20)
k

After calculations it is an easy task to verify th&t=D", and for this reason the constdhtdoes not appear in Eq&l8a and
(18by).
The matrixR(t) for TIM is

R R
R = , (B3)
Rs Ry
= _( o251 +[B]?) - 20" BySARE ™o 24" BloPA e VM~ [af2y’ S(AT +AB*)e<1'2>"fo) -
U \ap | SAA+ AB)EM o - 2 gy A — 208"y S|A%e" 0+ 2|7 of? ’
Re= <2a*|ﬁ|2yA*e-<1’2>"fo—|a|2/3*6(A" +AB)e 2o 24’ |a?B" - 2(a’ ) By(A) %o ) (B5)
° - 2a(B)?8lA%e" 0 + 26| B2y a8 8N + AB )20 - 24| B2yA e M2 )
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From it we have extracted all particular cases treated in the text.
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