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We study the temporal evolution of entanglement pertaining to two qubits interacting with a thermal bath. In
particular we consider the simplest nontrivial spin bath models where symmetry breaking occurs and treat them
by mean field approximation. We analytically find decoherence free entangled states as well as entangled states
with an exponential decay of the quantum correlation at finite temperature.
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I. INTRODUCTION

Since 1935[1,2], entanglement has been recognized as
one of the most puzzling features of quantum mechanics.
However, it is nowadays a widespread opinion that it also
represents a fundamental resource for many quantum infor-
mation protocols. As such, entanglement deserves to be ana-
lyzed in all respects. A primary concern is its robustness
against environmental effects, and a supplied literature exists
aimed at preserving entanglement coherence[3–9]. More re-
cently, attention has been devoted to the problem ofthermal
entanglement[10], i.e., quantifying entanglement arising in
spin chains at thermal equilibrium with a bath. In this ap-
proach environment determines the temperatureT to allow
for a thermal distribution of system energy levels, while the
detailed interaction between system and environment is not
an essential part of the matter. The same is true also for those
works that focus on entanglement decoherence[11,12] (also
known asdisentanglement[13,14]). In this context the study
of entanglement time behavior is carried on with a master
equation formalism and Markovian approximation[15] or,
more generally, with arguments provided by spin-boson
models.

In the present paper we are going to envisage an approach
to the problem along the line introduced for the first time in
Ref. [16] (a similar outline but supported by numerical
means is also present in[17]). There, the authors considered
a one spin system interacting with a fermionic environment
endowed with a structure capable of symmetry breaking
[18]. It was shown by analytical methods that coherence time
increases as magnetic order enlarges or, in other terms, as
temperature decreases. Here we extend this argument to a
two-qubit system plunged in a fermionic environment de-
scribed bytransverse Ising model(TIM ) and Ising model
(IM ) [18]. We shall examine the time evolution of concur-
rence of the bipartite system[19], and find environment-
limited concurrences as well as unlimited ones according to
environment ordering level.

The paper is organized as follows: in Sec. II we introduce
the model by referring to[16] and we revise some results. In
Sec. III we extend the model to a bipartite systems, and we
present the results of paradigmatic cases in Sec. IV. Finally,
Sec. V is for conclusions. Explicit calculations are reported
in Appendixes A and B.

II. THE MODEL

We consider the general scenario of a system and a bath
described by HamiltoniansHs and HB respectively, and in-
teracting through the HamiltonianHsB. The total Hamil-
tonian is thenH=Hs+HsB+HB, and the initial density matrix
is assumed to be factorized, i.e.,rs0d=rs^ rB. We are look-
ing for the time evolution of the reduced system density
matrix rsstd; in particular we are interested in its off diagonal
elements, the so called “coherences.” IfH does not depend
on time the total density matrix will evolve accordingly to

rstd = e−iHtrs0deiHt . s1d

We can then obtain the reduced density matrix by tracing out
the bath degrees of freedom in Eq.(1)

rsstd = trBrstd. s2d

We now follow the line sketched in Ref.[16] to introduce the
model for a spin system interacting with a spin bath. First of
all, we assume the bath density matrix having a thermal dis-
tribution, that isrB=se−HB/Td /Z, with T the bath temperature
multiplied by the Boltzmann constant, andZ=trse−HB/Td the
partition function. Furthermore, we ask the bath Hamiltonian
to be a “symmetry breakable” one, that is endowed with
phase transition in the degrees of freedom that provide the
coupling with the system. The simplest Hamiltonian with
these requirements is a long rangedIsing model-like one
(IM ). We add to it a transverse field to include a more gen-
eral case in the analysis, dealing eventually with atransverse
Ising modelbath Hamiltonian(TIM ). The differences be-
tween the two models are minimal as coherence and en-
tanglement is concerning and, in any case, we will be able to
find results for IM in the limit of no transverse field for TIM.
These peculiar environment Hamiltonians will be studied
through mean field approximation[18].

A. TIM environment

Let us considerN+1 spin-12, and letSj
a be thea compo-

nent sa=x,y,zd of the j th spin s j =0,1, . . . ,Nd. The label j
=0 refers to the system operators whilej =1, . . . ,N to the
bath operators. Furthermore,Sj

±=sSj
x± iSj

yd /2 are the spin flip
operators, andu0l andu1l are the lower and upper eigenstates
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of Sz. The following Hamiltonians define the energy of the
system, of the TIM bath and of the interaction between them:

Hs = − m0 S0
z, s3ad

HsB= −
J0

ÎN
S0

zo
k

Sk
z, s3bd

HB = − wo
k

Sk
x −

J

N
o
i,k

Si
zSk

z, s3cd

wherem0 is the coupling constant with an external magnetic
field parallel to theẑ axis, J0, J are exchange coupling con-
stants andw is the strength of the transverse field; they are
all non-negative constants. The indices of the sums run from
1 to N. Equation(3c) describes a material in which spins
compete to align along the positive direction ofx̂ axis or
alongẑ axis following a ferromagnetic behavior; of course in
the latter case the absolute direction of alignment is not im-
portant since the Hamiltonian is symmetric inz operators.
We can notice that energy exchanges between system and
bath are not included in the interaction Hamiltonian; this will
generate a pure dephasing dynamics, in which energy will be
conserved, and temporal evolution analytically solved.

The main difficulty with Eqs.(3a)–(3c) is represented by
the nonlinear term inHB. For this reason it is helpful to
approximate it with a mean field bath Hamiltonian, as ex-
plained in[16]:

HB
mf = − wo

k

Sk
x − 2Jmo

k

Sk
z + m2JN. s4d

In the above equationm is the order parameter of the phase
transition. Its absolute value ranges from 0 to1

2 as long as
temperature ranges from the critical valueTc=J/2 to 0: the
greaterumu the larger the magnetic order of the bath alongẑ
axis. In the following we are going to consider only positive
values form since results are sign-independent. Everything
remains true with the substitutionm→−m. This is a conse-
quence ofHB z symmetry, that is not lost inHB

mf. The order
parameterm is implicitly defined by the following self-
consistent equation for the quantityQ= ±Îw2+4m2J2 (also
Q’s sign, written here for the sake of precision, is irrelevant,
for the same reasons ofm’s):

Q

J
= tanh

Q

2T
. s5d

It is worth noting that from Eq.(5) we haveQ→J for T
→0; furthermore, from the definition ofQ, we can see it
tends to 2mJ in the limit of no transverse fieldsw→0d.

Together with Eq.(5) we must consider the following
condition on the transverse field to obtain an ordered phase
with TIM:

w

J
, tanhS w

2T
D . s6d

This condition is not satisfied in the range of temperatures
aboveTc; for this reason the whole formalism we are using is
valid only in the broken phase.

With the linearized mean field bath Hamiltonian it
is possible to evaluate the coherence of the system(see
Appendix A):

S0
−std = trBhe−iHmftfS0

−s0d ^ rBgeiHmftj

=
1

Z
trBfe−iHmftsu0lk1u ^ e−HB

mf/TdeiHmftg

= S0
−s0drTIMstd, s7d

whereHmf=Hs+HsB+HB
mf, and

rTIMstd = FcosS tmJJ0
QÎN

D + i
Q

J
sinS tmJJ0

QÎN
DG . s8d

Equation(7) tells us that the time evolution of the off diag-
onal term of the system density matrix, responsible for the
coherence of the system, is enclosed in the time behavior of
the complex valued factorrTIMstd. In particular, in order to
find system decoherence, we ask whether and when this fac-
tor’s absolute value goes to zero. In the limit of largeN we
can approximate it as

urTIMstdu < expF−
J0

2m2t2

2
S J2

Q2 − 1DG . s9d

We can see from Eq.(9) that the system coherence decays
exponentially with time. The coherence time is

tTIM =
uQu
J0m

Î 2

J2 − Q2 , s10d

and increases as temperature decreases; forT=0 it is t=`,
and the system remains coherent. This is quite a counterin-
tuitive effect since collective quantum properties of materials
endowed with phase transition disappear as ordering in-
creases(see for instance Ref.[20]). The factort2 in the ex-
ponent denotes the intrinsically reversible nature of the pro-
cess, in contrast to irreversibility introduced by Markovian
approach, and is closely related to the “Zeno effect”[21]. In
particular the periodicity ofrTIMstd in Eq. (8) leads to the
so-called “recoherences” on a Poincaré time scale. Decoher-
ence takes place in the limit of an environment with infinite
degrees of freedom; besides, the same limit is necessary to
support the mean field theory approach we adopted. Thus in
this context the limitN→` has a double function: to take
into account the decoherence process and to give a meaning
to the mean field approximation written above.

We briefly notice here that the factorrTIMstd in Eq. (9) is
exactly alike torasstd of Eq. (32) in [16]. But as far as that
paper is concerned we must point out some inaccuracies: the
final result(32) is correct, but the intermediate steps to find it
are not. In particular the general formula(11) applies only if
the 333 matricesLk commute, and this is not true when you
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look at Eq.(29) of that article. For this reason the interme-
diate formula(30) is wrong and the oscillations showed in
Fig. 1 are not present.

B. Limit of no transverse field: IM environment

In the limit of w→0 we obtain from Eqs.(3a)–(3c) the
IM Hamiltonians which lead to

urIMstdu < expF−
J0

2t2

2
S1

4
− m2DG . s11d

We can notice the same behavior as for TIM bath, but
slightly more transparent: the coherence time istIM

=s2/J0dÎ2/s1−4m2d and its limits aretIM
sT=Tcd=2Î2/J0 and

tIM
sT=0d=`. We note that coherence explicit dependence on

bath coupling constantJ has disappeared in this case; only
interaction coupling constantJ0 enters coherence expression
when the bath is an IM one. Otherwise, theJ coupling is
indirectly present in Eq.(11) because it has a role in deter-
mining the order parameterm by means of Eq.(5).

III. THE EXTENSION

In this section we extend results obtained in the previous
one by considering a two-qubit system, and studying the
time evolution of their entanglement. We assume that the
system qubits, labeled by 01 and 02, interact between them
and with environment, that is symmetry-breakable and mod-
eled by TIM Hamiltonians generalizing those of Eqs.
(3a)–(3c):

Hs = − j0S01
z S02

z , s12ad

HsB= −
J0

ÎN
sS01

z + S02
z do

k

Sk
z, s12bd

HB = − wo
k

Sk
x −

J

N
o
i,k

Si
zSk

z. s12cd

In the above equationsj0 represents the coupling constant
between the qubits. We have discarded both local interac-

tions, like that between qubits and an external magnetic field,
and local couplings with environment degrees of freedom, a
situation resembling a “collective” system-environment pair-
ing [7].

As a measure of entanglement between two qubits we
adopt the so called “concurrence”[19], which ranges from 0
for separable states to 1 for maximally entangled states. The
concurrence is given by

C = maxhl1 − l2 − l3 − l4,0j, s13d

wherel1, l2, l3 andl4 are the square roots of the eigenval-

ues, in decreasing order, of the matrixR=rsrs̃. Herers is the

density matrix of the 2 system qubits, andrs̃ is the “time
reversed” matrix given by

r̃s = ss01
y

^ s02
y drs

pss01
y

^ s02
y d, s14d

wheres’s are the usual Pauli matrices. The symbolrs
p means

complex conjugation of the matrixrs in the standard basis
u00l, u01l, u10l, u11l.

We assume that the qubits are initially decoupled from the
environment, and the bath having a thermal density matrix
rB=se−HB/Td /Z. Therefore, we can write the whole state as

r = uClkCu ^ rB s15d

with a generic system pure state:

uCl = au00l + bu01l + gu10l + du11l,

s16d
uau2 + ubu2 + ugu2 + udu2 = 1.

The steps to find time evolution of Eq.(15) are similar to
those leading to Eq.(7) (see Appendix A), but now operators
are represented by 434 matrices, being our system com-
posed by two qubits. After mean field approximation(4) for
the bath Hamiltonian and some elementary algebra we obtain
the reduced density matrix as

rsstd = trB„rstd… =1
uau2 apbApe−s1/2ditj0 apgApe−s1/2ditj0 apdBp

abpAes1/2ditj0 ubu2 bpg bpdApes1/2ditj0

agpAes1/2ditj0 bgp ugu2 gpdApes1/2ditj0

adpB bdpAe−s1/2ditj0 gdpAe−1/2itj0 udu2
2 , s17d

where the coefficients

A = FcosS tmJJ0
QÎN

D + i
Q

J
sinS tmJJ0

QÎN
DGN

, s18ad

B = FcosS2tmJJ0

QÎN
D + i

Q

J
sinS2tmJJ0

QÎN
DGN

, s18bd

characterize the time dependence of the concurrence. From
the above expression ofrsstd we can find the matrixRstd and
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its eigenvalues, and from them, as explained, the final con-
currence of the system. The complete expression forRstd and
for coefficients of Eqs.(18a) and(18b) is given in Appendix
B. In the following we are going to consider some paradig-
matic cases for the initial state(15).

IV. PARADIGMATIC CASES

A. Case 1

Let us seta=d=0 in Eq. (16) for the initial state of the
system. We obtainuCl=bu01l+gu10l and R matrix reduces
to

Rstd =1
0 0 0 0

0 2ubu2ugu2 2bpubu2g 0

0 2bgpugu2 2ubu2ugu2 0

0 0 0 0
2 , s19d

whose square rooted eigenvalues are

l1 = 2ubuugu, s20ad

l2 = l3 = l4 = 0. s20bd

This leads to the following concurrence:

CTIM = 2ubuugu. s21d

The entanglement results time independent, so the state does
not perceive the presence of the environment. The reason is
that uCl is an eigenstate of the interaction Hamiltonian and
so it represents a decoherence free entangled state[7]. Since
w is not present in the concurrence written above we know
that the expression for the concurrence would be exactly the
same for an IM environment.

B. Case 2

Now we setb=g=0 in Eq. (16) and obtain the state
uCl=au00l+du11l. TheR matrix becomes

Rstd =1
uau2udu2s1 + uBu2d 0 0 2apuau2dBp

0 0 0 0

0 0 0 0

2adpudu2B 0 0 uau2udu2s1 + uBu2d
2 ,

s22d

with square rooted eigenvalues in decreasing order:

l1 = uauudusuBu + 1d, s23ad

l2 = uauudusuuBu − 1ud, s23bd

l3 = l4 = 0. s23cd

From Eqs.(18a) and (18b), for largeN, we get

uBu < expF− 2J0
2m2t2S J2

Q2 − 1DG . s24d

Then, by using concurrence definition and Eqs.(23a)–(23c),
we arrive at

CTIM = 2uauuduuBu = 2uauuduexpF− 2J0
2m2t2S J2

Q2 − 1DG .

s25d

The time behavior of the concurrence just obtained is shown
in Fig. 1 for different values of the ratioT/Tc. We notice that
in this case the qubits perceive the presence of the thermal
bath, which spoils entanglement between them; in fact the
initial state is no longer an eigenstate of the interaction
Hamiltonian. Only for zero temperature the order parameter
reaches its saturation value and the concurrence remains con-
stant. The behavior is very similar to that of one-qubit sys-
tem coherence described by Eq.(7), but entanglement deco-
herence is exactly twice faster than one-qubit decoherence.
This result agrees with what was found in[12]. Furthermore,
together with the previous case, it falls within the general
limitations represented by theuniversal disentangling ma-
chine [13].

In the limit w→0 we obtain the concurrence for an IM
bath:

CIM = 2uauuduexpF− 2J0
2t2S1

4
− m2DG . s26d

Analogously to what was already noticed for the single-qubit
coherence, in this limit the factorJ disappears from the ex-
plicit concurrence expression. The only exchange coupling
constant that enters in the decoherence time for the concur-
rence isJ0.

C. Case 3

If we set a=b=0 we obtain a product stateuCl=gu10l
+du11l=sgu0l+du1ldu1l, which trivially gives

Rstd = s0d ⇒ C = 0. s27d

In this case TIM Hamiltonians are not able to induce en-
tanglement between system qubits.

D. Case 4

If we seta=b=g=d= 1
2 we obtain again a separable ini-

tial state, but different from the previous one:uCl= 1
2su00l

+ u01l+ u10l+ u11ld=s1/Î2dsu0l+ u1lds1/Î2dsu0l+ u1ld. In this
case theR matrix is not trivial:

FIG. 1. Concurrence versus scaled timeJ0t. Curves from the left
to the right are forT/Tc=h0.75,0.50,0.35,0.25j. Values of the other
parameters arew=0.1 andJ=2.
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Rstd =
1

161
1 + uBu2 − 2uAu2e−itj0 Uj0

Uj0
2B* − 2sA*d2e−itj0

− Vj0
2 − 2uAu2eitj0 2 − 2uAu2eitj0 − Uj0

− Vj0
2 − 2uAu2eitj0 2 − 2uAu2eitj0 − Uj0

2B − 2A2e−itj0 Vj0
Vj0

1 + uBu2 − 2uAu2e−itj0
2 , s28d

where

Uj0
= f2A*e−s1/2ditj0 − sA* + AB*des1/2ditj0g, s29ad

Vj0
= f2Ae−s1/2ditj0 − sA + A*Bdes1/2ditj0g. s29bd

Concurrence is valuable explicitly, but the expression is
much too cumbersome and therefore is not reported here. We
only show in Fig. 2 its behavior. The concurrence starts from
its null value and increases because of the interaction be-
tween system qubits. If there was no disentanglement it
would reach its maximum and decrease again giving rise to
oscillations of equal amplitude. Nevertheless, the presence of
environment alters this temporal behavior damping the oscil-
lations. For suitable values of coupling constants it can even
prevent qubits from entangling at all. The interesting ques-
tion of the maximal entanglement generation under dephas-
ing processes arises naturally in this case[11].

V. CONCLUSION

We have studied time behavior of entanglement between
two qubits dipped in a large symmetry-breakable fermionic
environment, below the critical temperatureTc. In the frame
of mean field theory analytical results are provided for con-
currence of the bipartite system, with temperature as a pa-
rameter of the problem. Hamiltonians involved in the discus-
sion are those typical oftransverse Ising models(TIM ),
capable of magnetic ordering under suitable conditions. To
assign them a physical meaning we notice that, upon addi-
tion of a transverse field inHs, our model resembles an array
of Rydberg atoms interacting with a cavity mode of the ra-
diation field [16]. Nevertheless such an assumption forHs
makes the problem unsolvable by analytical techniques, and
requires numerical investigation that we plan to accomplish

in the near future. Beside that an important improvement
would be to overcome mean field approximations adopted in
the text, by including the effect of fluctuations, or by apply-
ing thespin waveapproach[22] to the bath.

What comes out from the paper is quite a counterintuitive
conservation of entanglement in a bath with strong interac-
tions: the bigger the coupling strength(or the lower the ratio
T/Tc) the longer the time qubits remain entangled[Eq. (25)
and Fig. 1]. In some cases entangled qubits do not perceive
environment at all, and the system state is adecoherence free
one [Eq. (21)]. Several connections with results from the
field of entanglement decoherence are provided.

It could be interesting to compare the studied low-
temperature scenario with the high-temperature one, above
the critical valueTc. The major hindrance to this task is
represented by the nonlinearity of bath Hamiltonians, like
Eq. (12), which prevents us from finding the exact analytic
dynamical solution. Nevertheless, it is possible to tackle the
problem in the frame of the Ising model at infinite tempera-
ture. In this limit the bath density matrix turns out to be the
identity operator, since each energy level has the same
weight; furthermore Hamiltonians entering time evolution
commute among themselves. This allows us to evaluate the
concurrence asCIM

T=`=2uauuduexps−J0
2t2/2d. A straightforward

comparison can be settled with concurrence written in Eq.
(26), deduced within the Ising model as well; whenT→Tc

sm→0d the latter tends to the same value ofCIM
T=`. This

shows that above critical temperature entanglement dynam-
ics become independent of temperature itself, and of bath
ordering properties(at least in the region of validity of as-
sumptions made in the text). This prevents coherence time
from decreasing further once the temperature goes beyond
the critical valueTc.

In conclusion, we believe that the presented analysis can
be useful for a more complete knowledge about entangle-
ment dynamical properties.

APPENDIX A

1. Exponentiation of suitable matrices

Let us define a 232 traceless matrixA as

A = sasx + bszd = Sb a

a − b
D , sA1d

with a, b real coefficients. The exponentiation ofA gives

FIG. 2. Concurrence versus the scaled timeJ0t. The plot shows
the limiting role of decoherence(dotted line) that falls down expo-
nentially, on entanglement(continuous line). The value of param-
eters arew=0.1, j0=0.3, J=2, andT/Tc=.25.
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eA = scoshqdI + Ssinh q

q
DA;eiA = scosqdI + iSsin q

q
DA
sA2d

with q=Îsa2+b2d. Therefore

trseAd = 2scoshqd, trseiAd = 2scosqd. sA3d

Let us extend these arguments to three matricesI, R, andI8
of the same form ofA:

trfeiIeReiI8g = trHFscosxdI + iSsin x

x
DIGFscoshydI

+ Ssinh y

y
DRGFscoszdI + iSsin z

z
DI8GJ

=scoshydF2scosxdscoszd + iscoszdSsin x

x
D

3S tanhy

y
DtrsIRd+ iscosxdS tanhy

y
D

3Ssin z

z
DtrsRI8d − Ssin x

x
DSsin z

z
DtrsII8dG ,

sA4d

wherex, y, z are respectively related to the elements ofI, R,
I8 asq was related toA.

2. Coherence expression for TIM

As an example of calculation we report the steps that lead
to Eq. (9). All other calculations are easier than this one and
can be performed following the same line.

The time evolution of the total density matrix is

rstd =
e−m2J̃N/T

z HexpHito
k
FS J0

ÎN
S0

z + 2mJDSk
z + wSk

xGJrs

3expHs1/Tdo
k

swSk
x + 2mJSk

zdJ
3expH− ito

k
FS J0

ÎN
S0

z + 2mJDSk
z + wSk

xGJJ . sA5d

First, the partition function results:

Z = e−m2J̃N/TtrHexpFs1/Tdo
k

swSk
x + 2mJSk

zdGJ
= e−m2J̃N/Tp

k

trfeswSk
x+2mJSk

zd/Tg. sA6d

By virtue of Eq.(A3) we find

Z = e−m2J̃N/T 2NHcoshF Q

2T
GNJ . sA7d

Notice that the constante−m2J̃N/T in the partition function sim-
plifies with that present in Eq.(A5).

Let us now study the time evolution of the operatorS0
−

= u0lk1u that represents the off diagonal part of the density
matrix:

S0
−std = F2 coshS Q

2T
DG−N

trBHp
k

eitf„sJ0/ÎNdS0
z+2mJ…Sk

z+wSk
xgeswSk

x+2mJSk
zd/Tu0lk1up

k

e−itf„sJ0/ÎNdS0
z+2mJ…Sk

z+wSk
xgJ

=S0
−s0dF2 coshS Q

2T
DG−N

p
k

trBheiIeReiI8j, sA8d

where

I = tFS J0

2ÎN
+ 2mJDSk

z + wSk
xG , sA9ad

R = swSk
x + 2mJSk

zd/T, sA9bd

I8 = − tFS−
J0

2ÎN
+ 2mJDSk

z + wSk
xG . sA9cd

In order to use Eq.(A4) we evaluate the following quantities:

x =
t

2
ÎQ2 + 2

mJJ0
ÎN

+ OS 1

N
D , sA10ad

y =
Q

2T
⇒ S tanhy

y
D =

2T

J
, sA10bd

z=
t

2
ÎQ2 − 2

mJJ0
ÎN

+ OS 1

N
D sA10cd

and

trsIRd =
t

2T
SmJJ0

ÎN
+ Q2D , sA11ad

trsRI8d =
t

2T
SmJJ0

ÎN
− Q2D , sA11bd
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trsII8d = −
t2

2
SQ2 −

1

4

J0
2

N
D = −

t2Q2

2
+ OS 1

N
D .

sA11cd

Then, substituting these into Eq.(A4) and performing the
product we obtain

p
k

trheiIeReiI8j = 2NScosh
Q

2T
DNFcosS tmJJ0

QÎN
D

+ i
Q

J
sinS tmJJ0

QÎN
DGN

. sA12d

We can recognize in the second member of Eq.(A12) the

constantrTIMstd defined in Eq.(8); the absolute value of
it, in the limit of large N, gives the result of Eq.(9). The
other quantities of the article come out with similar calcula-
tions.

APPENDIX B

Complete R matrix for TIM

Let us begin with the time dependent density matrix ex-
pression for TIM Hamiltonians(12a)–(12c). After mean field
approximation(4) we obtain

rstd =
1

Z
fe−itsHs+HsB+HB

mfdrse
−HB

mf/TeitsHs+HsB+HB
mfdg

=
1

Z
expHitFo

k
S J0

ÎN
sS01

z + S02
z d + 2mJDSk

z + o
k

wSk
xGJrs8expHs1/Tdo

k

swSk
x + 2mJSk

zdJ
3expH− itFo

k
S J0

ÎN
sS01

z + S02
z d + 2mJDSk

z + o
k

wSk
xGJ , sB1d

where we have setrs8=eitj0S01
z S02

z
rse

−itj0S01
z S02

z
.

The constants present in Eqs.(18a) and (18b) are found by complex conjugation of the following quantities, evaluated in
a similar manner as the one seen in Appendix A:

A* =
1

Z
p
k

trBheitf2mJSk
z+wSk

xgeswSk
x+2mJSk

zd/Te−itfsJ0/ÎN+2mJdSk
z+wSk

xgj, sB2ad

B* =
1

Z
p
k

trBheitfs−J0/ÎN+2mJdSk
z+wSk

xgeswSk
x+2mJSk

zd/Te−itfsJ0/ÎN+2mJdSk
z+wSk

xgj, sB2bd

D* =
1

Z
p
k

trBheitfs−J0/ÎN+2mJdSk
z+wSk

xgeswSk
x+2mJSk

zd/Te−itf2mJSk
z+wSk

xgj. sB2cd

After calculations it is an easy task to verify thatA* =D* , and for this reason the constantD does not appear in Eqs.(18a) and
(18b).

The matrixRstd for TIM is

Rstd = SR1 R2

R3 R4
D , sB3d

R1 = S uau2udu2s1 + uBu2d − 2a*bgd* uAu2e−itj0 2a*bugu2A*e−s1/2ditj0 − uau2g*dsA* + AB*des1/2ditj0

ab* udu2sA + A*Bdes1/2ditj0 − 2ubu2gd*Ae−s1/2ditj0 − 2ab*g*duAu2eitj0 + 2ubu2ugu2
D , sB4d

R2 = S2a* ubu2gA*e−s1/2ditj0 − uau2b*dsA* + AB*des1/2ditj0 2a* uau2dB* − 2sa*d2bgsA*d2e−itj0

− 2asb*d2duAu2eitj0 + 2b* ubu2g uau2b*dsA* + AB*des1/2ditj0 − 2a* ubu2gA*e−s1/2ditj0
D , sB5d
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R3 = Sag* udu2sA + A*B*des1/2ditj0 − 2bugu2d*Ae−s1/2ditj0 − 2asg*d2duAu2eitj0 + 2bg* ugu2

2ad* udu2B − 2bgsd*d2A2e−itj0 2bugu2d*Ae−s1/2ditj0 − ag* udu2sA + A*Bdes1/2ditj0
D , sB6d

R4 = S − 2ab*g*duAu2eitj0 + 2ubu2ugu2 uau2g*dsA* + AB*des1/2ditj0 − 2a*bugu2A*e−s1/2ditj0

2ubu2gdAe−s1/2ditj0 − ab* udu2sA + A*Bdes1/2ditj0 uau2udu2s1 + uBu2d − 2a*bgd* uAu2e−itj0
D . sB7d

From it we have extracted all particular cases treated in the text.

[1] E. Schrödinger, Proc. Cambridge Philos. Soc.31, 555 (1935).
[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.47, 777

(1935).
[3] P. W. Shor, Phys. Rev. A52, 2493(1995).
[4] A. Steane, Phys. Rev. Lett.77, 793 (1996).
[5] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys.

Rev. Lett. 77, 198 (1996).
[6] G. M. Palma, K.-A. Suominen, and A. K. Eckert, Proc. R. Soc.

London, Ser. A452, 557 (1996).
[7] P. Zanardi and M. Rasetti, Phys. Rev. Lett.79, 3306(1997).
[8] L.-M. Duan and G.-C. Guo, Phys. Rev. A57, 2399(1998).
[9] L. Viola, S. Lloyd, and E. Knill, Phys. Rev. Lett.83, 4888

(1999).
[10] D. Gunlycke, V. M. Kendon, V. Vedral, and S. Bose, Phys.

Rev. A 64, 042302(2001); T. Osborne and M. Nielsen,ibid.
66, 032110(2002).

[11] T. Yu and J. H. Eberly, Phys. Rev. B66, 193306(2002).
[12] T. Yu and J. H. Eberly, Phys. Rev. B68, 165322(2003).

[13] D. R. Terno, Phys. Rev. A59, 3320(1999); T. Mor, Phys. Rev.
Lett. 83, 1451(1999).

[14] P. Blanchard, L. Jakóbczyk, and R. Olkiewicz, J. Phys. A34,
8501 (2001).

[15] C. W. Gardiner, Quantum Noise(Springer-Verlag, Berlin,
1991).

[16] S. Paganelli, F. de Pasquale, and S. M. Giampaolo, Phys. Rev.
A 66, 052317(2002).

[17] L. Tessieri and J. Wilkie, J. Phys. A36, 12305(2003).
[18] S. Sachdev,Quantum Phase Transition(Cambridge University

Press, Cambridge, England, 1999).
[19] W. K. Wootters, Phys. Rev. Lett.80, 2245(1998).
[20] G. Jona-Lasinio, C. Presilla, and C. Toninelli, Phys. Rev. Lett.

88, 123001(2002).
[21] W. H. Zurek, Phys. Rev. D26, 1862(1982).
[22] M. Sparks,Ferromagnetic Relaxation Theory(McGraw-Hill,

New York, 1964).

LUCAMARINI, PAGANELLI, AND MANCINI PHYSICAL REVIEW A 69, 062308(2004)

062308-8


