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The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Rényi entropies at the output
of a channel. The conjecture is proven true for all Rényi entropies of integer order greater than two in a class
of Gaussian bosonic channel where the input signal is randomly displaced or where it is coupled linearly to an
external environment.
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One of the most challenging open questions of quantunparticular instance of the Amosov-Holevo-Werner conjecture
communication theory is the additivity of the various quan-[12] which requires the maximum of the outpatnorm
tities characterizing the information transmission in a chanv,(M®™) of the channel to be multiplicative, i.e., it requires
nel [1]. The issue at hand is whether quantum entanglemenhat for m integer
is able to improve the performance of classical protocols
[2,3]. The supposed additivity of the Holevo informatip#] v (M®™) = max | M*™(p)|l,=[vA M)]™, (2)
is the most important example of this kind of issue. The peH®M

maximum of this quantity over all possible encoding proce- o : .
dures is known to provide the capaci® in transmitting where the maximization is performed again over all the input

classical information for a single use of the channel. How-States ofm uses of the channel and where

ver, if th nder of the m is allowed to en mes-
ever, If the se der of the message is allo _ed 0 encode mes 1AL = (TrAPY z=1 3)
sages in entangled states amangsuccessive uses of the

commgnication_line, then the resultin_g capacity per channel thez norm of the operatoA. In other words, the conjec-
use might be higher thad, [5]. For this reason to compute e requires the maximization in the left-hand side of @j.

the ultimate classical capacity of the channel it is neces- to be achieved on nonentangled state$(6f". The connec-
sary to introduce a regularization of the Holevo information;,n petween the property of E@) and the additivity of the

where a limitm— < has to be performefd,5]. All this could i) output entropy can be established through the quan-
be avoided if only the Holevo information was shown to beéum Rényi entropy.

an additive quantity. Up to now no channel has been foun

for which this regularization is necessary; on the contrary, all In Tr[p?]
the channels for which the value & has been calculated Sp)=-—7""—
have additive Holevo informatiof6—8§. z-1

The additivity of the Holevo information has been linked ;g quantity is monotonic with respect to ta@orm (3) of
to the addl_tlv!ty of other reIevant. quantities |r.1.F\f¢1.]. In " the statep. For z=2 the Rényi entropy is a function of the
particular, it is known that proving the additivity of the .., entropy 1-Tp?] and in the limitz— 1 it tends to the

HoIevp !nformatlon is equivalent to proving the additivity of von Neumann entropy13]. As for the case of one can
the minimum von Neumann entrogy at the output of the define the minimal value

channel. Given a channel described by the completely posi-

(4)

tive (CP) linear mapM on the input spacé{, this quantity S,(ME™ = min S(M®M(p)) (5)
is defined as ‘ peH®M '
S(ME™ = min SM=M(p)), (1)  If the Amosov-Holevo-Werner conjectu(@) is true then the
peH®M minimum outputz-Rényi entropy is additive and vice versa.

Moreover, if such property is verified for values pfarbi-
where the minimization is performed over all the possibletrarily close to 1 then the additivity df (and hence of the
input stategp of m successive uses of the channel, and whergyolevo information follows [14].

S(p)=-TrlpIn p]. The additivity hypothesis requires |n this paper we will analyze the conjectu® for a set of
S(M®M) to be equal tan times the minimum entropy for a Gaussian channels and prove that it is true for all integer
single use of the chann&(M): this conjecture seems sim- The material is organized as follows. In Sec. | we introduce
pler to study than the additivity of the Holevo information the simple Gaussian channel modé| and in Secs. | A and
and some authors have focused their attention {8-#L1]. I B we show that the conjectur@) applies to this channel
As a matter of fact the alleged additivity of theis just a  whenzis integer. In Sec. | C we analyze the case of generic
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z giving some bounds for,(NS™). In Sec. Il we generalize A. The proof
the results of the first section to a whole class of Gaussian
channels. In this section we show that E¢L1) applies for integee.

Clearly, the right-hand side of this equation is a lower bound

for the left-hand side: the former is in fact the outgutorm

associated to the input signal where theises of the channel
The channel we analyze here is a bosonic linear channddave been prepared in coherent states. To prove the equality

where the photonic signal from the sender is displaced rann Eq. (11) it is hence sufficient to show that the right-hand

domly by the environment. This system is described by the&ide is also an upper bound feg(N,°™), i.e., that for all

CP mapV,, which transforms the input state of the channelinput stateg € H*™ the following inequality applies.

into the output

I. THE CHANNEL MODEL

Ni(p) = J d?uP(w)D(1)pD (1), (6) . 1 m
TNV ()] < n+ 17| - (12)
where forn=0, P,(w) is the circularly symmetric probabil-
ity distribution
5 The method to derive this property is similar to the one given
grlwln in Ref. [11] where an anal roach w d to cal-
P (1) = , 7 in Ref. [11] vhere an analogous approach was used to ca
" 7N culate the minimum output Rényi entroi¥) of integer or-
B o e ) der for a single channel ugen=1). The only difference is
and D(p) =exp(ua’~u a) is the displacement operator of yhat here we are dealing with an extra tensorial structure
the annihilationa of the input signal. This channel is Gauss- aggociated withm> 1. For the sake of clarity we divide the
ian, i.e., it maps the set of input states with Gaussian symuoof in two separate parts. First we show that the quantity

metrically characteristic function into itseJl5]. Moreover, 4, the left-hand side of Eql2) can be expressed as the
the map(6) is unital (i.e., it transforms the identity operator expectation value of a Hermitian opera®rwhich acts on

into itself) and it is covariant under displacement or phasgpne Hipert spacéH®M)=k: this allows us to derive an upper
transformation[10]. When A/, acts on a coherent state, bound for TELA.*™(p)]K by considering the eigenvalue,

=|a)a| the following transformation takes place: of ® with maximum absolute value. The second part of the

N -D Dt proof is devoted to the analysis of the tensorial structur® of
Pa— Nalpa) = D@D (@), ® and to the proof thak, coincides with the left-hand side of
with Eqg. (12).
1 ( n )afa 1. Part one
n=————| , 9 :
7(n) ] ey 9

Without loss of generality we can assume the initial state
the thermal state that gives the output of the channel for @f the m uses of the channel to be pure, i,es|y)(y. The
vacuum inpuf10]. The stateV(p,) hasz norm(3) equal to  convexity of the norn(3) guaranties in fact that the maximi-

1 112 zation in Eq.(2) is achievable with pure input statgs2,14:
INy(pll, = {—] , (10) thus if Eq.(12) holds for all pure states, then it is valid also
(n+1)*-n* for all the other channel inputs. In generh)) will be en-
tangled among the various channel uses and the correspond-

which does not depend om since it is invariant under the ing output state will be

unitary transformatio®(«). In Ref.[11] the right-hand side
of Eqg. (10) was shown to coincide with the norm of the

single use of the channel(\,), at least for aliz=k integer.

In Sec. | A we will generalize this result showing that, for all N,2M(p) = J Py PugPr(y) -+ Pt
integerk, the classical channel satisfies the identity,

1 ]mlk X Dy(ug) - D ) pD (g) - - DI (1),

n(NZ™) = {m (11) (13
hence proving the conjectur@) for integer z=k for the

channelV,,. Equationg(10) and(11) imply that the maximi- where D, (1) =exp(ual-u'a,) is the displacement associ-
zation implicit in the definition ofy(N,°™) is achievable ated with the annihilation operata of the rth use of the
with separable input states of the fora);® - ®|am  Channel. Equatioil3) can be expressed in a more compact
i.e., by feeding the channel with a coherent state in each dorm by introducing a vectorial notation, wherg:
them successive uses. This result will be proven explicitly in=(uy, ... ,uy) iS @ complex vector inC™ and a
Sec. | B. =(ay,...,ay). The output state becomes thus
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Ny ™(p) = f d?/iP(£)D(2)pD (1), (14) TH{IN, ™(p)] = f &Py - dPuPr(piy) - Prlfiy)
where X TH{D(p1)pD" (1) - - D(t) DT ().
_ exqi- [P (0
Pn(u) = W (15 Sincep=|y)(y], the trace in the integral can be expressed as

the expectation value of a Hermitian opera@mwhich acts
and D(u)=exp(-a"-a-u") is a multimode displacement in an extended Hilbert spadé{®™)®* made ofk copies of
operator where the input of theh use of the channel is the initial one. In fact, from the invariance of the trace under
displaced byw,. Consider now foz=k integer the quantity cyclic permutation we have

Tr{D (1) pD (1) -~ D) pDT (421
= (YID"(f2) D () [ D" (f12)D(4ig)| ) - -+ (YD () D (1) | )

=TH(p® p® ++ ® p)[D1(fi)D1(fip) ® DYi2)Dy(kig) ® **+ @ Diu) Dl i)}, (17)
[
wherek scalar products in the input Hilbert spa&™ in the m
second line were replaced with a single expectation value in 0= Sl@r, (23

(H®™®k in the third line. In Eq.(17) the operatoD(x)
represents the multimode displacement that operates on the

sth copy of H®™, i.e., where, forr=1,... m, the operator®, acts on the modes
associated with the annihilation operators

Do) = explii - &~ & - "), (18)
where fors=1, ... K, & = (A, ... ). (24)
E-;‘)SE (a511a521 1asm)v (19)

o o In vectorial notation®, can be expressed as
are them annihilation operators pertaining to tkth copy of

H®™. With this trick Eq.(16) can be written as

THNE @ =T(p® - © @], (20 0= | eI SRS, 2

where each of th& copies of the statp is associated to one
of the multimode annihilation operatag and where® the  \yhere. as in EQ24), &= (iy s fhors -+ pi) IS ak-element
Hermitian operator oriH®™®K is given by vector. and wher& and

0= J APy -+ PP gte) * - P i) 1
C=—+— (26)

XDI(f1)Ds(f) ® -+ ® DY(@a)D(ay).  (21) n 2

Equation(20) allows us to derive an upper bound for the . ) ) )
quantity on the left-hand side by considering the eigenvalu@'€k> k real matriceg1 is the identity. Fork=3, G andA

\o Of ® with maximum absolute value, i.e., are
®@m k < r -
THINY ()]G < N (22) -1 1 0 - 0 0O
0o -1 1 0 O
2. Part two - 0 0o -1 - 0 0
To calculate), it is useful to analyze in details the prop- G=|. . , (27
erties of the operato®. As shown in Appendix A 1, this ’
operator has a very simple tensorial form with respect to the o 0 0 - -11
indexr. In fact Eq.(22) can be decomposed as 1 0 0 -+~ 0 -1
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0O -1 0 -0 1 Equations(23), (31), and(33) show that the eigenvalues
1 0 -1 0 0 of ® are products of eigenvalues 6. In particular,\q of
Eq.(22) is obtained by taking the eigenvalues of g that
A= c 1 000 (28) have maximum absolute value. Since the constedptsave
: ' positive real part, the quantities we are looking for are
0O 0 0 -0 -1 2/[n(2d;+|g|?)], i.e., they are the eigenvalues of the opera-
10 0 -1 0 tors O, associated with the vacuum state of the maxle
| i This allows us to express the value Xqof as
Fork=2, Ais null, while fork=1 bothG andA are null. The moko 1/ m
decomposition(23) shows that in the right-hand side of )\O:HH 2:{ }
Eq. (20) we have a product of two operators f®™)k =1 j=1 20; + [ defC +G'G/2]
which have “orthogonal” tensorial decomposition; the opera- 1 m
tor p®---®p factorizes with respect to the indexk = {ﬁ] , (34)
=1,... k, while ® factorizes with respect to the index (n+1)%-n

=1, ... massociated with the successive uses of the channgjynich, replaced in Eq(22), proves the thesi€l2). [In deriv-
This property is common to all memoryless channels wherg,g the second identity we have used the invariance of the
the correspondingP map acts on each channel use inde-geterminant under the unitary transformati¥n while the
pendently. However, the channel model we are considering,gt identity can be obtained from the definitiof&7) and

allows us to further decompose the operatorin fact, G (2g) py direct calculation of the determinant itdelf
and A of Egs.(27) and(28) are two circulant matricegL6]

which commute and possess a common basis of orthogonal
eigenvectors. This means that there existk>ak unitary B. Optimal inputs

matrix Y for which Equations(10) and(11) prove that tensor products of co-
D=YCY =1/n+YAY, her(_ant states are optimal since they allow the chay\fp,do
achieve the maximak norm at the output ofn successive
uses. Here we rederive this result by showing that the state
E=YGY (290  p®---®p of Eq. (20) with p given by a tensor product of
. . , . L , coherent states in the input mod&sis an eigenvector o
are diagonal. Sincé is antisymmetric, its eigenvalueg§ are  jcsqciated with the eigenvalug of Eq. (34).
imaginary and the diagonal elementdfi.e., the quantities From the analysis of the preceding section we know that

di=1/n+i§) _have positive real part. Us_ing thes_e propertiesy, o eigenvectors aof, can be written as
we can rewrite the operat@, of Eq.(25) in factorized form

by performing the change of integration variables m
= ,-Y" and introducing the new annihilation operators ) = S’Jcpr)n (39
6r = (by, by, ... ) =4 - YT (30) where|®,), is an eigenvector 0B, of Eq. (31) relative to its
eigenvalue with maximum absolute value. For instance, in
These operations yield deriving Eq.(34) we have considered the state where each of
K theb, modes is in the vacuum. However, this is not the only
0,=®0;, (31) possibility. In fact, we notice that for any the matricesG
=1 andA of Egs.(27) and(28) have a null eigenvaluésay for
_ j=1), associated with the common normalized eigenvector
with (1,1,...,2/Vk. On one hand, this means that all the ele-
1 &2y o ments in the first row of the matriX of Eq. (29) are equal to
0, = zf— e Gl e Dp (- ), (32)  1/\k. On the other hand, this implies also thgt=0, d,
nle| ™ : =1/n and, according to Eq33),
WhereDbjr(v) = exp(vb;rr -v'by) is the displacement operator Oy =1y. (36)

associated wittb;,, while g; is the jth diagonal elements of .
the matrixE (i.e., thejth eigenvalue of3). As demonstrated This means that any state of the form

in Refs.[10,17, this expression can be further simplified, —
proving that®;, is diagonal in the Fock basis of the madg [®e)e = |90do,, @ [Ohp,, ® == @ [Ohy, (37)
and equal to where the modé;, is prepared in a generic stdié,) while

the otherb;, are in the vacuum, is an eigenstatefpfrelative

to the eigenvalue with maximum absolute value. Consider
now the case ofi¢,)=|Vke,) coherent. By using the symmet-
ric characteristic function decompositi¢h8] we can show
(for the sake of completeness we give an alternative derivathat, when expressed in terms of the operatrshe state
tion of this result in Appendix A 2 (37) is a tensor product of coherent states). In fact, de-

2 (2d - |e[2\bior
( i—le ) ’ (33)

M, =
r 2dJ + |ej|2 ZdJ + |e]-|2
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fining the complex vector&z(&a,,o, ...,0 we can ex- 1B . T ' T
press the statgb,), as i 1
d2" _ - i ]

|q)r>r<q)r| = exd |V|2/2+V'(br_ '}’)T_(br_')’) 'UT] ear ]
= i ]

d2“ 2 :

=J —cexd- a2 +a-@E" =Yy T 081 -
~@E&-7Y) 4" i ]

= |al’>alr<ar| ® - ® |ar>akr<ar|' (38 0.7 i ]

where the second identity is obtained by substituting the R T e
with &-Y' in the integral, while the third identity derives 0 2 4 6 8 10

from the properties of the matri¥ discussed above. The

thesis finally follows by replacing this expression in £ 1. plot of the bounds of thenorm V(2™ of the channel
Eq. (39), Ny The functiony, (V"™ is restricted to the gray area which is
m limited from above by the upper bound of E42) and from below
|OND| = |ar>a1 (] ® -+ ® |ar>ak (ev]), (39) by the lower bound of Eq43). The two curves meet for the=k
' ' integer. Heren=2 andn=0.3.

and observing that this can be represente¢p@s-- ® p of
Eq. (20) with p=(®|ar){ar])* The first group we analyze is formed by tbiassicalchan-
nelsG where, as in the case df,, the photonic signal from
the sender is displaced randomly in phase space according to
C. Upper bound a Gaussian distribution. The second group is formed by the
In this section, starting from the values of thg\,*™) channelsC where the input signal is linearly coupled to an
for z integer derived in the preceding section, we give somexternal environment prepared in a Gaussian state.
upper bounds for the channehorm of generic order.
The Rényi entropy of Eq4) is decreasing function of the A. Classical channels

arameter. As a matter of fact, it obeys the inequal . . .
P y quallya] ConsiderCP map G which transforms the input staje

z_lsz(p) _ z , 182,(p), (40) into the output state
z z )
exp(- {T¢h ot
which applies for ang=z' and for allp. This property and Glp) = f d?y == 12 de(F]) exd(aa’)f'lp
the monotonicity ofS,(p) with respect to the norm of E@3) el
can be used to derive the relatiyp|,<||p|l,, which, when xexd- (a,ah¢', (44)
applied to the output state of a changel, implies .,
where{=(u,-u ) and
v (MEM < v, (M®™), z=7 =1. (41)
In the case of the channdl}, by choosingz’ =k integer and r= {u v } . u=|ol, (45)
using the identity(11) we obtain the upper bound for atl v u
=k, i.e., is a 2X 2 positive Hermitian matrif19]. For I'=1/(2n) the
1 mk om map G gives NV, of Sec. |, while for generid” the channel
m (N (42) (44) is the generalization alV, to the case of noncircularly
symmetric distribution(7). As shown in Appendix B, the
This bound must be compared with the lower bound map G(p) can be decomposed according to the relation
1 mz 5t t
{m} N “3 Gp) =S ONEOPS OO, (49
where

for arbitrary z that derives by considering as input of tire
successive uses of the channel a tensor product of coherent n= 1/(2\,W (47)
states. These two bounds are plotted in Fig. 1.

1/2
Il. GENERALIZATION g— — arctan (V—J) , (48)
lv] u+\u? - Jof?
In this section we show that the results obtained for the
channel NV, apply also to other Gaussian channel modelsand where
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(&) = expl[¢'a” - é@"7)12} (49 a— U'aUu=pa+\1-7yb,
is the squeezing operator. In other words, for any input state _
p, the output stat&j(p) can be obtained by applying the b— UbU=\Vypb-V1-79a, (55

squeezing operatak(£) to p, then sending it through the
channel\V,,, and, finally, applying the antisqueezing transfor-With 7 [0, 1] being the beam splitter transmissivity. Fgpr
mation>(¢£)". We can thus consideX/, as a simplified ver- =1,U is the identity and the input signal is decoupled from
sion of G where all the squeezing operations have been rethe environment; forp=0, instead,U is a swap operator
moved. which replaces the input signal with the environment input
An important consequence of E(@‘G) is that thez norms state. TheCP map of the ”near'COUp”ng channel is obtained
of the channely and \V,, are identical. In fact, using the by coupling the input state of the signalvith the input state
invariance of the norm(3) under the unitary operation ©f the environmentr, throughU and then by tracing away
3H(&®™ we can write the norm ofm uses of the channgl  the modeb. The resulting output state is then
as

L(p)=Try[Up ® p,UT]. (56)
v(G5™ = max [NV (M2 (9 =M, , , , ,
peHEM If p, is a Gaussian state, the CP m@ps Gaussian. In what
follows we will assumep,, to be the squeezed thermal state,
= max [N )= N, (50 > |
e Po=SHO (M2, (57)

where, in the second identity, the unitary operatdg)®™ . _

has been incorporated in the definition of the input stasé ~ WhereX, and 7,(n) are, respectively, the squeezing operator
the m uses of the channel. In particular, for=1 andz=k  and the thermal stat¢57) of the b mode. For the channel
integer, Egs(50) and (11) give thek norm for the single (56) @ decomposition rule analogous to E@6) applies,

channel use of, i.e., namely(see Appendix B
| elr=pr T’k L(p) = ST OE(S(DpST(€)3(8), (58)
(G) = [ 1+ 20— [P -1 (51)

with &,(p) the CP map(56) where the environment is in the
According to the decomposition rule of E@6), such a thermal statgy,=(n). The connection betweefi and&, is

maximum is achieved for the antisqueezed coherent statesthus analogous to the connection betwé&eand ;. In par-
: ticular, we can derive the following identity
la;— & =32"(é)]a). (52

In fact, feeding the channg} with this input is equivalent
(apart from an irrelevant unitary transformatjaio feeding
N, with the coherent statéw). Moreover, for generian

Eq. (50) gives

vALE™) = v (EF), (59

which applies for allm integer and for allz. Proving the
Amosov-Holevo-Werner conjecture fd, is equivalent to
proving it for £; moreover, the input states which achieve the
(Z\I,W)k ]rrvk 53 maximum output norm for £ are obtained by antisqueezing

the input states which achieve the maximum &gr
The channek, has been extensively studied in RE0]
ewhere it was shown that it satisfies the relation

En(p) = Na-pn° E(p) = Nit-pn(&o(p)),  (60)

n(G®™) = {

(1+2vu?-|uPpk-1
which proves the Amosov-Holevo-Werner conjecture for th
channelg, at least for integez=k. As in the case of Eq52),

the input states that achieve the maxim(3) can be ob-

tained by antisqueezing the states which achieve the maxj-. . . .
mal outputz norm for the channelV,, i.e., |ay;-&),® - with &y being the lossy map, where the input photons interact

® |ay—E) with the vacuum state of the environment. Equat{&0)
me s shows that the output of the chaniglcan be obtained first
applying the lossy map to the input statend then feeding
B. Linear-coupling channels it into the classical channeV,,. This composition rule has

The linear-coupling channel model represents a commutWo important consequences. On one hand, it implies
nication line where the input photoridescribed by the an-

nihilation operatora) interact with an external environment (&™) = VA(Mg-pn© E)®M = VZ(A/-(?—T;)n)' (61)
(with annihilation operatob) through the beam splitter uni- o )
tary operator, In fact, the maximization implicit in the second term is per-
formed on a set of input states which form a proper subset of
_ + + 1-9 the input states which enter in the maximization of the third
U=exp (a'b-ab)arcta I (54 term. On the other hand, since the lossy channel maps coher-
ent input states into coherent outputs according to the trans-
which transforms the fields according to formation[7],
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Qm) »
(A4)

Eol|a)al) =\ na)(\nal, 62 A= (a8 ... ;80 = (3, .-

Egs. (60) and (10) show that whent, and N(;_,), act on

coherent inputs they produce the same ousurm. This IS hereq_ s the annihilation operator associated with tfe
sufficient to prove that, at least fa=k integer, the inequality copy of therth use of the channel. In E¢A2), G and
in Eq. (61) is replaced by an identity; we have already estab- ’

lished in fact that the maximurknorm of the channel,, is
achieved for a coherent state. Hence we can establish the C

following identity:
1 m/k
(1-mpn+1-[(1-pn] Y which are obtained, respectively, by tensoring to thih
power the matrice$s and C of Egs.(27) and (26). In par-

which, analogously to Eq(53), shows that the Amosov- ticular, fork=3, G andA have the block form
Holevo-Werner conjecture applies for the chanfight least
for all integerk. Moreover, we know that, as in the case of - -
N, tensor products of coherent states are sufficient to -1 1 0 -~ 0 O

. ,alm;a21, A ,azm;akl, AN

(A5)

Il
S| =
+
N | =

are nowmkXx mk real matriceql is the mkx mk identity),

Vk(gfm) = {[

achieve the maximum of E¢63). 0o -1 1 0 0
In this paper we have studied various models of Gaussian
bosonic channeli.e., the classical mapg of Sec. Il A and G =G®Mm= o 0 -1 0 0 (A6)
the linear coupling mapg of Sec. Il By and we have shown : B '
that the Amosov-Holevo-Werner conjectu¢2) applies to 0 0 0 -1 1
them at least in the case pfk integer. In particular we have
proven that tensor products of squeezed coherent states are 1 0 0 -1
the inputs that achieve the maximum outguttorm for them ) B
successive uses of these channels. In the case of the circu- [ T
larly symmetric channeld/,, and&, the optimal state are just 0 -1 o 0 1
tensor product of coherent states. These properties imply 1 o -1--00
that, for all integer order greater than 2, the Rényi entropies o 1 0 -0 O
at the output of the channefsand £ are additive, and sug- A=A®M=| ) , (A7)
gest that the same behavior should apply also to all the other ; N
orders(see Sec. | € In particular, it seems reasonable to 0 0 O 0 -1
believe that these channel posses an additive Holevo infor- -1 0 0 ---1 0
mation[15,2Q. L -

where nowl and 0 are thenX m identity and null matrix,

APPENDIX A: PROPERTIES OF THE OPERATOR ©

In this appendix we prove that the opera@iof Eg. (22)
has the tensor product structure of E2f3) and we derive the
identity (33).

1. Derivation of Eq. (23)

By using the property

DI(4)Dy(#) = Dy(i - mexd (v ' = i - 57)/2] (A1)

of the multimode displacement operator defined in @8),
the expressiori22) of O yields

2 -
ar

where we have introduced the complex linear vector

= (g fg; - )

= (M1« - oMams M1« - Moms Mkt « -+ oMkam) s (A3)

which haskm elements, and

respectively. On one hand, these equations show that the
Gaussian in the integr@lA2) couples together all the anni-
hilation operatorsg, which have the same index(i.e., the
operatorsay,, ay, ... anday, which enter in the definition of

the vectora, of Eq. (24)]. On the other hand, EqéA6) and

(A7) show that any two annihilation operataag and ag,

with r#r’ are not coupled by the integrgh2). We can
hence write such an expression agtensoj product ofm
independent Gaussian integrals where only the modes asso-
ciated witha, enters; by doing this and using the cyclic sym-
metry of the matrices> and A we finally obtain Eq(23).

2. Derivation of Eqg. (33)

The identity(33) has been derived in Reffl1] by show-
ing that the operator in the left-hand side of this expression
has the same symmetric characteristic function of the opera-
tor ®;, of Eq. (32). Here, instead, we show that these opera-
tor coincide by calculating their matrix elements in the Fock
basis of the annihilation operatby;. For the sake of simplic-
ity in the following we will omit the indiceg andr.

Given|p) and|qg) Fock states ob with p=q, consider the
quantity
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~dvf?e? 4 | -F
<p||q>=Jd2v em|e|2 (pID(-=v)|g). (A8) B = {—B N } (B3)

Following the derivation given in Re{17] the matrix ele-  which diagonalized through the relation
ment in the intggral can be expressed in terms of the La- - .
guerre polynomials as . l\ru - v] 0 i } (B4)
1\1/2 0 Vu? = |v|?
(pID(- v)|q) = (q—) e M2 oL P0(4j2). (A9)
p! Moreover, when applied t¢a,a') this matrix produces the
Replacing this expression in EGA8) and using the identities Bogoliubov transformation

21
24 (c,ch) = (a,ahB*=3"(9(aah=(d), (B5)
(y—-1)9

fo dx €L P(x) = S Rey>0 (A10)  \here3 (¢ is the squeezing operator defined in E49).
Using these properties we can obtain Ef) from Eq. (44)
and by performing a change of integration variables. In fact, for

o {— (B we have

de 4P =275, (A11) rge
exd - ((B™TB™H{]
0 G(p) = J d’¢ L ] exd(c,cH'p
where 8,4 is the Kronecker delta, we finally obtain ml(2VdelI'])
—(c ch/t
ol = 2/n <2d—|e|2)p5 A12) xXexd - (c,c'){']
PRI = oa v e\ 2d + e2) P :f » exg— 2V’ - v
7l (2\W? = [v[?)

which proves the thesis.
X ZHOD()2(&)pX(HDT(W)2(8), (B6)

fwhich, according to Eqg7) and(47) coincide with the left-
hand side of Eq(44).

APPENDIX B: DECOMPOSION OF THE MAPS G AND L

In this section we derive the decomposition rule o
Egs. (46) and (58) which allows to express the map of
Eqg. (44) in terms of V/,, and the map_ of Eq. (56) in terms

of &,, respectively. 2. Derivation of Eqg. (58)
_— For the sake of clarity, in what follows the operators
_ L De-n?/atnon of _Eq' (46) which acts only on the environment will have the subsdoipt
Consider the Hermitian matrix while the operators which act only on the input state will
a B have the subscriph. Using the relationg55) it is easy to
B= { ] (B1)  show that the coupling operatdd transformsa?+b? into
B «a itself, i.e., it commutes with the operat@r,(£)2,(£€) which
with squeezes both the signal moalend the environment mode
b by the same quantit{. Inserting the identity decomposi-
C(us -\ tion 31(&)=,(&)=1in Eq.(56) and using the invariance of the
- ZV"lJZ——W ' trace under cyclic permutation, the above property allows us
to write Eq.(56) as
22\ 12
. H(%) | ©) £(9) = SHOTHUSLOPELO © m(mIUTE(6)
0 2\ |U| = 2;(5)5n(2a(§)92£(§))2a(§), (B7)
whereu andv are the elements df defined in Eq(7). The
matrix B has determinant equal to 1 and inverse which proves the thesi&8).
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