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The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Rényi entropies at the output
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external environment.
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One of the most challenging open questions of quantum
communication theory is the additivity of the various quan-
tities characterizing the information transmission in a chan-
nel [1]. The issue at hand is whether quantum entanglement
is able to improve the performance of classical protocols
[2,3]. The supposed additivity of the Holevo information[4]
is the most important example of this kind of issue. The
maximum of this quantity over all possible encoding proce-
dures is known to provide the capacityC1 in transmitting
classical information for a single use of the channel. How-
ever, if the sender of the message is allowed to encode mes-
sages in entangled states amongm successive uses of the
communication line, then the resulting capacity per channel
use might be higher thanC1 [5]. For this reason to compute
the ultimate classical capacityC of the channel it is neces-
sary to introduce a regularization of the Holevo information
where a limitm→` has to be performed[1,5]. All this could
be avoided if only the Holevo information was shown to be
an additive quantity. Up to now no channel has been found
for which this regularization is necessary; on the contrary, all
the channels for which the value ofC has been calculated
have additive Holevo information[6–8].

The additivity of the Holevo information has been linked
to the additivity of other relevant quantities in Ref.[1]. In
particular, it is known that proving the additivity of the
Holevo information is equivalent to proving the additivity of
the minimum von Neumann entropyS at the output of the
channel. Given a channel described by the completely posi-
tive (CP) linear mapM on the input spaceH, this quantity
is defined as

SsM^md ; min
rPH^m

S„M^msrd…, s1d

where the minimization is performed over all the possible
input statesr of m successive uses of the channel, and where
Ssrd;−Trfr ln rg. The additivity hypothesis requires
SsM^md to be equal tom times the minimum entropy for a
single use of the channelSsMd: this conjecture seems sim-
pler to study than the additivity of the Holevo information
and some authors have focused their attention to it[8–11].
As a matter of fact the alleged additivity of theS is just a

particular instance of the Amosov-Holevo-Werner conjecture
[12] which requires the maximum of the outputz norm
nzsM^md of the channel to be multiplicative, i.e., it requires
that for m integer

nzsM^md ; max
rPH^m

iM^msrdiz = fnzsMdgm, s2d

where the maximization is performed again over all the input
states ofm uses of the channel and where

iAiz ; sTruAuzd1/z, zù 1 s3d

is thez norm of the operatorA. In other words, the conjec-
ture requires the maximization in the left-hand side of Eq.(2)
to be achieved on nonentangled states ofH^m. The connec-
tion between the property of Eq.(2) and the additivity of the
minimal output entropy can be established through the quan-
tum Rényi entropy,

Szsrd ; −
ln Trfrzg

z− 1
. s4d

This quantity is monotonic with respect to thez norm (3) of
the stater. For z=2 the Rényi entropy is a function of the
linear entropy 1−Trfr2g and in the limitz→1 it tends to the
von Neumann entropy[13]. As for the case ofS one can
define the minimal value

SzsM^md ; min
rPH^m

SzsM^msrdd. s5d

If the Amosov-Holevo-Werner conjecture(2) is true then the
minimum outputz-Rényi entropy is additive and vice versa.
Moreover, if such property is verified for values ofz arbi-
trarily close to 1 then the additivity ofS (and hence of the
Holevo information) follows [14].

In this paper we will analyze the conjecture(2) for a set of
Gaussian channels and prove that it is true for all integerz.
The material is organized as follows. In Sec. I we introduce
the simple Gaussian channel modelNn and in Secs. I A and
I B we show that the conjecture(2) applies to this channel
whenz is integer. In Sec. I C we analyze the case of generic
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z giving some bounds fornzsNn
^md. In Sec. II we generalize

the results of the first section to a whole class of Gaussian
channels.

I. THE CHANNEL MODEL

The channel we analyze here is a bosonic linear channel
where the photonic signal from the sender is displaced ran-
domly by the environment. This system is described by the
CP mapNn which transforms the input state of the channel
into the output

Nnsrd =E d2mPnsmdDsmdrD†smd, s6d

where fornù0, Pnsmd is the circularly symmetric probabil-
ity distribution

Pnsmd =
e−umu2/n

pn
, s7d

and Dsmd;expsma†−m*ad is the displacement operator of
the annihilationa of the input signal. This channel is Gauss-
ian, i.e., it maps the set of input states with Gaussian sym-
metrically characteristic function into itself[15]. Moreover,
the map(6) is unital (i.e., it transforms the identity operator
into itself) and it is covariant under displacement or phase
transformation[10]. When Nn acts on a coherent statera

;ualkau the following transformation takes place:

ra → Nnsrad = DsadtsndD†sad, s8d

with

tsnd ;
1

n + 1
S n

n + 1
Da†a

, s9d

the thermal state that gives the output of the channel for a
vacuum input[10]. The stateNnsrad hasz norm (3) equal to

iNnsradiz ; F 1

sn + 1dz − nzG1/z

, s10d

which does not depend ona since it is invariant under the
unitary transformationDsad. In Ref. [11] the right-hand side
of Eq. (10) was shown to coincide with thez norm of the
single use of the channelnzsNnd, at least for allz=k integer.
In Sec. I A we will generalize this result showing that, for all
integerk, the classical channel satisfies the identity,

nksNn
^md = F 1

sn + 1dk − nkGm/k

, s11d

hence proving the conjecture(2) for integer z=k for the
channelNn. Equations(10) and(11) imply that the maximi-
zation implicit in the definition ofnksNn

^md is achievable
with separable input states of the formua1l1 ^ ¯ ^ uamlm,
i.e., by feeding the channel with a coherent state in each of
them successive uses. This result will be proven explicitly in
Sec. I B.

A. The proof

In this section we show that Eq.(11) applies for integerz.
Clearly, the right-hand side of this equation is a lower bound
for the left-hand side: the former is in fact the outputz norm
associated to the input signal where them uses of the channel
have been prepared in coherent states. To prove the equality
in Eq. (11) it is hence sufficient to show that the right-hand
side is also an upper bound fornksNn

^md, i.e., that for all
input statesrPH^m the following inequality applies.

TrhfNn
^msrdgkj ø F 1

sn + 1dz − nzGm

. s12d

The method to derive this property is similar to the one given
in Ref. [11] where an analogous approach was used to cal-
culate the minimum output Rényi entropy(4) of integer or-
der for a single channel usesm=1d. The only difference is
that here we are dealing with an extra tensorial structure
associated withm.1. For the sake of clarity we divide the
proof in two separate parts. First we show that the quantity
on the left-hand side of Eq.(12) can be expressed as the
expectation value of a Hermitian operatorQ which acts on
the Hilbert spacesH^md^k: this allows us to derive an upper
bound for TrhfNn

^msrdgkj by considering the eigenvaluel0

of Q with maximum absolute value. The second part of the
proof is devoted to the analysis of the tensorial structure ofQ
and to the proof thatl0 coincides with the left-hand side of
Eq. (12).

1. Part one

Without loss of generality we can assume the initial state
of the m uses of the channel to be pure, i.e.,r= uclkcu. The
convexity of the norm(3) guaranties in fact that the maximi-
zation in Eq.(2) is achievable with pure input states[12,14]:
thus if Eq.(12) holds for all pure states, then it is valid also
for all the other channel inputs. In general,ucl will be en-
tangled among the various channel uses and the correspond-
ing output state will be

Nn
^msrd =E d2m1 ¯ d2mmPnsm1d ¯ Pnsmmd

3 D1sm1d ¯ DmsmmdrD†sm1d ¯ Dm
† smmd,

s13d

where Drsmd;expsmar
†−m*ard is the displacement associ-

ated with the annihilation operatorar of the rth use of the
channel. Equation(13) can be expressed in a more compact
form by introducing a vectorial notation, wheremW
;sm1, . . . ,mmd is a complex vector in Cm and aW
;sa1, . . . ,amd. The output state becomes thus
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Nn
^msrd =E d2mW PnsmW dDsmW drD†smW d, s14d

where

PnsmW d ;
expf− umW u2/ng

spndm s15d

and DsmW d=expsmW ·aW †−aW ·mW †d is a multimode displacement
operator where the input of therth use of the channel is
displaced bymr. Consider now forz=k integer the quantity

TrhfNn
^msrdgkj =E d2mW 1 ¯ d2mW kPnsmW 1d ¯ PnsmW kd

3 TrfDsmW 1drD†sm1d ¯ DsmW kdrD†smkdg.

s16d

Sincer= uclkcu, the trace in the integral can be expressed as
the expectation value of a Hermitian operatorQ which acts
in an extended Hilbert spacesH^md^k made ofk copies of
the initial one. In fact, from the invariance of the trace under
cyclic permutation we have

TrfDsmW 1drD†smW 1d ¯ DsmW kdrD†smW kdg

= kcuD†smW 1dDsmW 2duclkcuD†smW 2dDsmW 3ducl ¯ kcuD†smW kdDsmW 1ducl

= Trhsr ^ r ^ ¯ ^ rdfD1
†smW 1dD1smW 2d ^ D2

†smW 2dD2smW 3d ^ ¯ ^ Dk
†smW kdDksmW 1dgj, s17d

wherek scalar products in the input Hilbert spaceH^m in the
second line were replaced with a single expectation value in
sH^md^k in the third line. In Eq.(17) the operatorDssmW d
represents the multimode displacement that operates on the
sth copy ofH^m, i.e.,

DssmW d = expsmW ·aWs
† − aWs · mW †d, s18d

where fors=1, . . . ,k,

aWs ; sas1,as2, . . . ,asmd, s19d

are them annihilation operators pertaining to thesth copy of
H^m. With this trick Eq.(16) can be written as

TrhfNn
^msrdgkj = Trfsr ^ ¯ ^ rdQg, s20d

where each of thek copies of the stater is associated to one
of the multimode annihilation operatoraWs and whereQ the
Hermitian operator onsH^md^k is given by

Q =E d2mW 1 ¯ d2mW kPnsmW 1d ¯ PnsmW kd

3D1
†smW 1dD1smW 2d ^ ¯ ^ Dk

†smW kdDksmW 1d. s21d

Equation (20) allows us to derive an upper bound for the
quantity on the left-hand side by considering the eigenvalue
l0 of Q with maximum absolute value, i.e.,

TrhfNn
^msrdgkj ø ul0u. s22d

2. Part two

To calculatel0 it is useful to analyze in details the prop-
erties of the operatorQ. As shown in Appendix A 1, this
operator has a very simple tensorial form with respect to the
index r. In fact Eq.(22) can be decomposed as

Q = ^
r=1

m

Qr , s23d

where, for r =1, . . . ,m, the operatorQr acts on the modes
associated with the annihilation operators

aQ r ; sa1r,a2r, . . . ,akrd. s24d

In vectorial notationQr can be expressed as

Qr ;E d2mQ r

spndk e−mQ r·C·mQ r
†+mQ r·G

†·aQr
†−aQr·G·mQ r

†
, s25d

where, as in Eq.(24), mQ r ;sm1r ,m2r , . . . ,mkrd is a k-element
vector, and whereG and

C ;
1

n
+

A

2
s26d

arek3k real matrices(1 is the identity). For kù3, G andA
are

G ; 3
− 1 1 0 ¯ 0 0

0 − 1 1 ¯ 0 0

0 0 − 1 ¯ 0 0

A �

0 0 0 ¯ − 1 1

1 0 0 ¯ 0 − 1

4 , s27d
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A ; 3
0 − 1 0 ¯ 0 1

1 0 − 1 ¯ 0 0

0 1 0 ¯ 0 0

A �

0 0 0 ¯ 0 − 1

− 1 0 0 ¯ 1 0

4 . s28d

For k=2, A is null, while fork=1 bothG andA are null. The
decomposition(23) shows that in the right-hand side of
Eq. (20) we have a product of two operators ofsH^md^k

which have “orthogonal” tensorial decomposition; the opera-
tor r ^ ¯ ^ r factorizes with respect to the indexr
=1, . . . ,k, while Q factorizes with respect to the indexs
=1, . . . ,m associated with the successive uses of the channel.
This property is common to all memoryless channels where
the correspondingCP map acts on each channel use inde-
pendently. However, the channel model we are considering
allows us to further decompose the operatorQ. In fact, G
andA of Eqs. (27) and (28) are two circulant matrices[16]
which commute and possess a common basis of orthogonal
eigenvectors. This means that there exists ak3k unitary
matrix Y for which

D ; YCY† = 1/n + YAY†,

E ; YGY† s29d

are diagonal. SinceA is antisymmetric, its eigenvaluesij j are
imaginary and the diagonal elements ofD (i.e., the quantities
dj =1/n+ ij j) have positive real part. Using these properties
we can rewrite the operatorQr of Eq. (25) in factorized form
by performing the change of integration variablesvQ r
;mQ r ·Y

† and introducing the new annihilation operators

bQ r ; sb1r,b2r, . . . ,bkrd = aQ r ·Y†. s30d

These operations yield

Qr = ^
j=1

k

Q jr , s31d

with

Q jr ;
1

nueju2
E d2n

p
e−dj unu2/uej u

2
Dbjr

s− nd, s32d

whereDbjr
snd;expsnbjr

† −n*bjrd is the displacement operator
associated withbjr , while ej is the j th diagonal elements of
the matrixE (i.e., thej th eigenvalue ofG). As demonstrated
in Refs. [10,17], this expression can be further simplified,
proving thatQ jr is diagonal in the Fock basis of the modebjr
and equal to

Q jr =
2/n

2dj + ueju2
S2dj − ueju2

2dj + ueju2
Dbjr

† bjr

s33d

(for the sake of completeness we give an alternative deriva-
tion of this result in Appendix A 2).

Equations(23), (31), and (33) show that the eigenvalues
of Q are products of eigenvalues ofQ jr . In particular,l0 of
Eq. (22) is obtained by taking the eigenvalues of theQ jr that
have maximum absolute value. Since the constantsdj have
positive real part, the quantities we are looking for are
2/fns2dj + ueju2dg, i.e., they are the eigenvalues of the opera-
tors Q jr associated with the vacuum state of the modebjr .
This allows us to express the value ofl0 as

l0 = p
r=1

m

p
j=1

k
2/n

2dj + ueju2
= H 1/nk

detfC + G†G/2gJm

= F 1

sn + 1dk − nkGm

, s34d

which, replaced in Eq.(22), proves the thesis(12). [In deriv-
ing the second identity we have used the invariance of the
determinant under the unitary transformationY, while the
last identity can be obtained from the definitions(27) and
(28) by direct calculation of the determinant itself].

B. Optimal inputs

Equations(10) and(11) prove that tensor products of co-
herent states are optimal since they allow the channelNn to
achieve the maximalk norm at the output ofm successive
uses. Here we rederive this result by showing that the state
r ^ ¯ ^ r of Eq. (20) with r given by a tensor product of
coherent states in the input modesaWs is an eigenvector ofQ
associated with the eigenvaluel0 of Eq. (34).

From the analysis of the preceding section we know that
the eigenvectors ofl0 can be written as

uFl ; ^
r=1

m

uFrlr , s35d

whereuFrlr is an eigenvector ofQr of Eq. (31) relative to its
eigenvalue with maximum absolute value. For instance, in
deriving Eq.(34) we have considered the state where each of

thebQ r modes is in the vacuum. However, this is not the only
possibility. In fact, we notice that for anyk the matricesG
andA of Eqs.(27) and (28) have a null eigenvalue(say for
j =1), associated with the common normalized eigenvector
s1,1, . . . ,1d /Îk. On one hand, this means that all the ele-
ments in the first row of the matrixY of Eq. (29) are equal to
1/Îk. On the other hand, this implies also thate1=0, d1
=1/n and, according to Eq.(33),

Q1r = 11r . s36d

This means that any state of the form

uFrlr ; ufrlb1r
^ u0lb2r

^ ¯ ^ u0lbkr
, s37d

where the modeb1r is prepared in a generic stateufrl while
the otherbjr are in the vacuum, is an eigenstate ofQr relative
to the eigenvalue with maximum absolute value. Consider
now the case ofufrl= uÎkarl coherent. By using the symmet-
ric characteristic function decomposition[18] we can show
that, when expressed in terms of the operatorsaQ r, the state
(37) is a tensor product of coherent statesuarl. In fact, de-
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fining the complex vectorgQ ;sÎkar ,0 , . . . ,0d we can ex-
press the stateuFrlr as

uFrlrkFru =E d2vQ

p k expf− unQ u2/2 + nQ · sbQ r − gQ d† − sbQ r − gQ d ·vQ †g

=E d2mQ

p k expf− umQ u2/2 + mQ · saQ r
† − Y† · gQ d

− saQ r − gQ ·Yd · mQ †g

= uarla1r
karu ^ ¯ ^ uarlakr

karu, s38d

where the second identity is obtained by substituting thenQ
with mQ ·Y† in the integral, while the third identity derives
from the properties of the matrixY discussed above. The
thesis finally follows by replacing this expression in
Eq. (35),

uFlkFu = ^
r=1

m

suarla1r
karu ^ ¯ ^ uarlakr

karud, s39d

and observing that this can be represented asr ^ ¯ ^ r of
Eq. (20) with r=s^ r=1

m uarlkarud^k.

C. Upper bound

In this section, starting from the values of thenzsNn
^md

for z integer derived in the preceding section, we give some
upper bounds for the channelz norm of generic order.

The Rényi entropy of Eq.(4) is decreasing function of the
parameterz. As a matter of fact, it obeys the inequality[13]

z− 1

z
Szsrd ù

z8 − 1

z8
Sz8srd, s40d

which applies for anyzùz8 and for allr. This property and
the monotonicity ofSzsrd with respect to the norm of Eq.(3)
can be used to derive the relationirizø iriz8 which, when
applied to the output state of a channelM, implies

nzsM^md ø nz8sM^md, zù z8 ù 1. s41d

In the case of the channelNn, by choosingz8=k integer and
using the identity(11) we obtain the upper bound for allz
ùk, i.e.,

F 1

sn + 1dk − nkGm/k

ù nzsNn
^md. s42d

This bound must be compared with the lower bound

F 1

sn + 1dz − nzGm/z

ø nzsNn
^md s43d

for arbitraryz that derives by considering as input of them
successive uses of the channel a tensor product of coherent
states. These two bounds are plotted in Fig. 1.

II. GENERALIZATION

In this section we show that the results obtained for the
channelNn apply also to other Gaussian channel models.

The first group we analyze is formed by theclassicalchan-
nelsG where, as in the case ofNn, the photonic signal from
the sender is displaced randomly in phase space according to
a Gaussian distribution. The second group is formed by the
channelsL where the input signal is linearly coupled to an
external environment prepared in a Gaussian state.

A. Classical channels

ConsiderCP map G which transforms the input stater
into the output state

Gsrd =E d2z
exps− zGz†d

p/2sÎdetfGgd
expfsa,a†dz†gr

3expf− sa,a†dz†g, s44d

wherez=sm ,−m*d and

G ; Fu

v

v*

u
G , u ù uvu, s45d

is a 232 positive Hermitian matrix[19]. For G=1 / s2nd the
map G gives Nn of Sec. I, while for genericG the channel
(44) is the generalization ofNn to the case of noncircularly
symmetric distribution(7). As shown in Appendix B, the
mapGsrd can be decomposed according to the relation

Gsrd = S†sjdNn„SsjdrS†sjd…Ssjd, s46d

where

n = 1/s2Îu2 − uvu2d, s47d

j =
v
uvu

arctanhFSu − Îu2 − uvu2

u + Îu2 − uvu2
D1/2G , s48d

and where

FIG. 1. Plot of the bounds of thez normnzsNn
^md of the channel

Nn. The functionnzsNn
^md is restricted to the gray area which is

limited from above by the upper bound of Eq.(42) and from below
by the lower bound of Eq.(43). The two curves meet for thez=k
integer. Herem=2 andn=0.3.
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Ssjd ; exphfj*a2 − jsa†d2g/2j s49d

is the squeezing operator. In other words, for any input state
r, the output stateGsrd can be obtained by applying the
squeezing operatorSsjd to r, then sending it through the
channelNn, and, finally, applying the antisqueezing transfor-
mationSsjd†. We can thus considerNn as a simplified ver-
sion of G where all the squeezing operations have been re-
moved.

An important consequence of Eq.(46) is that thez norms
of the channelsG and Nn are identical. In fact, using the
invariance of the norm(3) under the unitary operation
S†sjd^m, we can write thez norm ofm uses of the channelG
as

nzsG^md = max
rPH^m

iNn
^msSsjd^mrS†sjd^mdiz

= max
rPH^m

iNn
^msrdiz ; nzsNn

^md, s50d

where, in the second identity, the unitary operatorSsjd^m

has been incorporated in the definition of the input stater of
the m uses of the channel. In particular, form=1 andz=k
integer, Eqs.(50) and (11) give the k norm for the single
channel use ofG, i.e.,

nksGd = F s2Îu2 − uvu2dk

s1 + 2Îu2 − uuu2dk − 1
G1/k

. s51d

According to the decomposition rule of Eq.(46), such a
maximum is achieved for the antisqueezed coherent states

ua;− jl ; S†sjdual. s52d

In fact, feeding the channelG with this input is equivalent
(apart from an irrelevant unitary transformation) to feeding
Nn with the coherent stateual. Moreover, for genericm
Eq. (50) gives

nksG^md = F s2Îu2 − uvu2dk

s1 + 2Îu2 − uuu2dk − 1
Gm/k

, s53d

which proves the Amosov-Holevo-Werner conjecture for the
channelG, at least for integerz=k. As in the case of Eq.(52),
the input states that achieve the maximum(53) can be ob-
tained by antisqueezing the states which achieve the maxi-
mal outputz norm for the channelNn, i.e., ua1;−jl1 ^ ¯

^ uam;−jlm.

B. Linear-coupling channels

The linear-coupling channel model represents a commu-
nication line where the input photons(described by the an-
nihilation operatora) interact with an external environment
(with annihilation operatorb) through the beam splitter uni-
tary operator,

U = expFsa†b − ab†darctanÎ1 − h

h
G , s54d

which transforms the fields according to

a → U†aU = Îh a + Î1 − h b,

b → U†bU = Îh b − Î1 − h a, s55d

with hP f0,1g being the beam splitter transmissivity. Forh
=1, U is the identity and the input signal is decoupled from
the environment; forh=0, instead,U is a swap operator
which replaces the input signal with the environment input
state. TheCP map of the linear-coupling channel is obtained
by coupling the input state of the signalr with the input state
of the environmenttb throughU and then by tracing away
the modeb. The resulting output state is then

Lsrd = TrbfUr ^ rbU
†g. s56d

If rb is a Gaussian state, the CP mapL is Gaussian. In what
follows we will assumerb to be the squeezed thermal state,

rb = Sb
†sjdtbsndSbsjd, s57d

whereSb andtbsnd are, respectively, the squeezing operator
and the thermal state(57) of the b mode. For the channel
(56) a decomposition rule analogous to Eq.(46) applies,
namely(see Appendix B),

Lsrd = S†sjdEnsSsjdrS†sjddSsjd, s58d

with Ensrd theCP map(56) where the environment is in the
thermal staterb=tsnd. The connection betweenL andEn is
thus analogous to the connection betweenG andNn. In par-
ticular, we can derive the following identity

nzsL^md = nzsEn
^md, s59d

which applies for allm integer and for allz. Proving the
Amosov-Holevo-Werner conjecture forEn is equivalent to
proving it forL; moreover, the input states which achieve the
maximum outputz norm forL are obtained by antisqueezing
the input states which achieve the maximum forEn.

The channelEn has been extensively studied in Ref.[10]
where it was shown that it satisfies the relation

Ensrd = sNs1−hdn + E0dsrd ; Ns1−hdn„E0srd…, s60d

with E0 being the lossy map, where the input photons interact
with the vacuum state of the environment. Equation(60)
shows that the output of the channelEn can be obtained first
applying the lossy map to the input stater and then feeding
it into the classical channelNn. This composition rule has
two important consequences. On one hand, it implies

nzsEn
^md = nz„sNs1−hdn + E0d^m

… ø nzsNs1−hdn
^m d. s61d

In fact, the maximization implicit in the second term is per-
formed on a set of input states which form a proper subset of
the input states which enter in the maximization of the third
term. On the other hand, since the lossy channel maps coher-
ent input states into coherent outputs according to the trans-
formation [7],
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E0sualkaud = uÎhalkÎhau, s62d

Eqs. (60) and (10) show that whenEn and Ns1−hdn act on
coherent inputs they produce the same outputz norm. This is
sufficient to prove that, at least forz=k integer, the inequality
in Eq. (61) is replaced by an identity; we have already estab-
lished in fact that the maximumk norm of the channelNn is
achieved for a coherent state. Hence we can establish the
following identity:

nksEn
^md = H 1

fs1 − hdn + 1gk − fs1 − hdngkJm/k

, s63d

which, analogously to Eq.(53), shows that the Amosov-
Holevo-Werner conjecture applies for the channelEn at least
for all integerk. Moreover, we know that, as in the case of
Nn, tensor products of coherent states are sufficient to
achieve the maximum of Eq.(63).

In this paper we have studied various models of Gaussian
bosonic channel(i.e., the classical mapsG of Sec. II A and
the linear coupling mapsL of Sec. II B) and we have shown
that the Amosov-Holevo-Werner conjecture(2) applies to
them at least in the case ofz=k integer. In particular we have
proven that tensor products of squeezed coherent states are
the inputs that achieve the maximum outputk norm for them
successive uses of these channels. In the case of the circu-
larly symmetric channelsNn andEn the optimal state are just
tensor product of coherent states. These properties imply
that, for all integer order greater than 2, the Rényi entropies
at the output of the channelsG andL are additive, and sug-
gest that the same behavior should apply also to all the other
orders (see Sec. I C). In particular, it seems reasonable to
believe that these channel posses an additive Holevo infor-
mation [15,20].

APPENDIX A: PROPERTIES OF THE OPERATOR Q

In this appendix we prove that the operatorQ of Eq. (22)
has the tensor product structure of Eq.(23) and we derive the
identity (33).

1. Derivation of Eq. (23)

By using the property

Ds
†smW dDssnWd = DssnW − mW dexpfsnW · mW † − mW · nW †d/2g sA1d

of the multimode displacement operator defined in Eq.(18),
the expression(22) of Q yields

Q ;E d2mJ

spndmk e−mJ·C·mJ †+mJ·G†·aJ †−aJ·G·mJ †
, sA2d

where we have introduced the complex linear vector

mJ ; smW 1;mW 2; . . . ;mW kd

= sm11, . . . ,m1m;m21, . . . ,m2m;mk1, . . . ,mkmd, sA3d

which haskm elements, and

aJ; saW1;aW2; . . . ;aWkd = sa11, . . . ,a1m;a21, . . . ,a2m;ak1, . . . ,akmd,

sA4d

whereasr is the annihilation operator associated with thesth
copy of therth use of the channel. In Eq.(A2), G and

C ;
1

n
+

A

2
sA5d

are nowmk3mk real matrices(1 is the mk3mk identity),
which are obtained, respectively, by tensoring to themth
power the matricesG and C of Eqs. (27) and (26). In par-
ticular, for kù3, G andA have the block form

G ; G^m = 3
− 1 1 0 ¯ 0 0

0 − 1 1 ¯ 0 0

0 0 − 1 ¯ 0 0

A �

0 0 0 ¯ − 1 1

1 0 0 ¯ 0 − 1

4 , sA6d

A ; A^m = 3
0 − 1 0 ¯ 0 1

1 0 − 1 ¯ 0 0

0 1 0 ¯ 0 0

A �

0 0 0 ¯ 0 − 1

− 1 0 0 ¯ 1 0

4 , sA7d

where now1 and 0 are them3m identity and null matrix,
respectively. On one hand, these equations show that the
Gaussian in the integral(A2) couples together all the anni-
hilation operatorsasr which have the same indexr [i.e., the
operatorsa1r ,a2r , . . . andak,r which enter in the definition of
the vectoraQ r of Eq. (24)]. On the other hand, Eqs.(A6) and
(A7) show that any two annihilation operatorsasr and as8r8
with r Þ r8 are not coupled by the integral(A2). We can
hence write such an expression as a(tensor) product ofm
independent Gaussian integrals where only the modes asso-
ciated withaQ r enters; by doing this and using the cyclic sym-
metry of the matricesG andA we finally obtain Eq.(23).

2. Derivation of Eq. (33)

The identity(33) has been derived in Ref.[11] by show-
ing that the operator in the left-hand side of this expression
has the same symmetric characteristic function of the opera-
tor Q jr of Eq. (32). Here, instead, we show that these opera-
tor coincide by calculating their matrix elements in the Fock
basis of the annihilation operatorbjr . For the sake of simplic-
ity in the following we will omit the indicesj and r.

Given upl anduql Fock states ofb with pùq, consider the
quantity
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kpuQuql =E d2n
e−dunu2/ueu2

pnueu2
kpuDs− nduql. sA8d

Following the derivation given in Ref.[17] the matrix ele-
ment in the integral can be expressed in terms of the La-
guerre polynomials as

kpuDs− nduql = Sq!

p!
D1/2

e−ulu2/2n p−qLq
sp−qdsunu2d. sA9d

Replacing this expression in Eq.(A8) and using the identities
[21]

E
0

`

dx e−gxLq
s0dsxd =

sg − 1dq

g q+1 , Reg . 0 sA10d

and

E
0

2p

dw eiwsp−qd = 2pdpq, sA11d

wheredpq is the Kronecker delta, we finally obtain

kpuQuql =
2/n

2d + ueu2S2d − ueu2

2d + ueu2D
p

dpq, sA12d

which proves the thesis.

APPENDIX B: DECOMPOSION OF THE MAPS G AND L
In this section we derive the decomposition rule of

Eqs. (46) and (58) which allows to express the mapG of
Eq. (44) in terms ofNn and the mapL of Eq. (56) in terms
of En, respectively.

1. Derivation of Eq. (46)

Consider the Hermitian matrix

B ; Fa

b

b*

a
G , sB1d

with

a = Su + Îu2 − uvu2

2Îu2 − uvu2
D1/2

,

b =
v
uvuSu − Îu2 − uvu2

2Îu2 − uvu2
D1/2

, sB2d

whereu andv are the elements ofG defined in Eq.(7). The
matrix B has determinant equal to 1 and inverse

B−1 ; Fa

− b

− b*

a
G , sB3d

which diagonalizesG through the relation

B−1GB−1 = FÎu2 − uvu2

0

0

Îu2 − uvu2
G . sB4d

Moreover, when applied tosa,a†d this matrix produces the
Bogoliubov transformation

sc,c†d ; sa,a†dB−1 = S†sjdsa,a†dSsjd, sB5d

where Ssjd is the squeezing operator defined in Eq.(49).
Using these properties we can obtain Eq.(46) from Eq. (44)
by performing a change of integration variables. In fact, for
z→zB we have

Gsrd =E d2z
expf− zsB−1GB−1dz†g

p/s2ÎdetfGgd
expfsc,c†dz†gr

3expf− sc,c†dz†g

=E d2m
expf− 2Îu2 − uvu2umu2g

p/s2Îu2 − uvu2d

3 S†sjdDsmdSsjdrS†sjdD†smdSsjd, sB6d

which, according to Eqs.(7) and(47) coincide with the left-
hand side of Eq.(44).

2. Derivation of Eq. (58)

For the sake of clarity, in what follows the operators
which acts only on the environment will have the subscriptb
while the operators which act only on the input state will
have the subscripta. Using the relations(55) it is easy to
show that the coupling operatorU transformsa2+b2 into
itself, i.e., it commutes with the operatorSasjdSbsjd which
squeezes both the signal modea and the environment mode
b by the same quantityj. Inserting the identity decomposi-
tion Sa

†sjdSasjd=1 in Eq. (56) and using the invariance of the
trace under cyclic permutation, the above property allows us
to write Eq.(56) as

Lsrd = Sa
†sjdTrbhUfSasjdrSa

†sjd ^ tbsndgU†jSasjd

= Sa
†sjdEnsSasjdrSa

†sjddSasjd, sB7d

which proves the thesis(58).
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