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When a quantum nonlinear system is linearly coupled to an infinite bath of harmonic oscillators, quantum
coherence of the system is lost on a decoherence time scaletD. Nevertheless, quantum effects for observables
may still survive environment-induced decoherence and be observed for times much larger than the decoher-
ence time scale. In particular, we show that the Ehrenfest time, which characterizes a departure of quantum
dynamics for observables from the corresponding classical dynamics, can be observed for a quasiclassical
nonlinear oscillator for timest@tD. We discuss this observation in relation to recent experiments on quantum
nonlinear systems in the quasiclassical region of parameters.
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In the last few decades there has been extensive theoreti-
cal, and more recently experimental, research on the
quantum-classical transition. It has been noted that every
physical system is, in fact, an open quantum system interact-
ing with its environment. Consequently, the evolution of the
reduced density matrix of the system(obtained after tracing
over the environmental variables) evolves in such a way that
quantum coherent effects are quickly suppressed. This pro-
cess of environment-induced decoherence has been consid-
ered to be an essential ingredient of the quantum-classical
transition[1]. On the other hand, despite the huge number of
papers on this subject, only few of them deal with quantum
nonlinear systems(e.g.,[2–6]).

We consider in this paper the dynamics of a quantum
nonlinear oscillator(QNO),

Ĥ = "vâ†â + m"2sâ†âd2, s1d

interacting with a bath of linear oscillators which are initially
in thermal equilibrium. Hereâsâ†d is the annihilation(cre-
ation) bosonic operator,v is the linear frequency, andm is
the parameter of nonlinearity. The QNO is initially prepared
in a coherent state in the quasiclassical region of parameters.
In the classical limit(â→a, â†→a* , "→0, uau→`, "uau2
=J an action of the classical linear oscillator) the Hamil-
tonian(1) becomesHcl=vJ+mJ2. In what follows we use the
following dimensionless notation:t=vt, m̄="m /v, mcl
=mJ/v, and«=" /J. Thus, the quantum parameterm̄ can be
presented as a product of two parameters, quantum and clas-
sical,m̄=«mcl. The parametermcl characterizes the nonlinear-
ity in the classical system and can be written asmcl
=sJ/2vdsdvcl /dJd, wherevcl=dHcl /dJ=v+2mJ is the clas-
sical frequency of nonlinear oscillations. The limitmcl!1
corresponds to weak nonlinearity, whilemclù1 corresponds
to strong nonlinearity. The parameter« is a quasiclassical
parameter. Namely,«,1 corresponds to the “pure” quantum
system and«!1 corresponds to the quasiclassical limit,
which is the subject of this paper.

We study the following problem: What are the parameter
conditions for observation of quantum effects on expectation
values(observables) in the QNO dynamics. We describe the
dynamics for the QNO for observables, taking into account
five characteristic time scales which naturally appear in this
system. Three of them characterize the time scales of the
QNO evolving under the Hamiltonian dynamics:(i) tcl
=2p /vcl, the period of nonlinear classical oscillations;(ii )
tE, the so-called Ehrenfest time, which indicates the charac-
teristic time scale at which quantum dynamics for observ-
ables starts to depart from the corresponding classical dy-
namics;(iii ) tR, a quantum recurrence time, which describes
the time scale for quantum recurrences of observables under
the Hamiltonian evolution. There are also two characteristic
time scales related to the interaction of the QNO with the
thermal bath:(iv) tD, a decoherence time, which character-
izes the decay of the nondiagonal matrix elements of the
reduced density matrix in the eigenbasis of the noninteract-
ing Hamiltonian, and(v) tg, a time scale of relaxation of
quantum observables due to the interaction with the thermal
bath. We demonstrate that even if the decoherence time is
much smaller than the Ehrenfest time,tD!tE, one can still
observe quantum effects for observables. Actually, the im-
portant condition for observation of quantum effects related
to the Ehrenfest time scale istE,tg, which may be realized
in modern experiments in the quasiclassical region of param-
eters s«!1d. This means that generally the environment-
induced decoherence is insufficient for recovering the
quantum-classical correspondence for observables in quan-
tum nonlinear systems. This is an important observation for
at least two reasons:(a) It means that pure quantum effects
can be observed for times much longer thantD and(b) pure
quantum dynamical effects can be important in experiments
even in the quasiclassical region of parameters. Finally, the
classical limit appears in our system under very natural con-
ditions tD!tcl!tg!tE!tR.

One type of system that could be considered for observing
quantum effects in the quasiclassical region of parameters is
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Bose-Einstein condensates(BEC’s). These are particularly
suited to analyzing the interplay between nonlinear dynamics
and environmental interactions in the realm of quantum me-
soscopic systems. This is because they are macroscopic mat-
ter waves, often described theoretically by the Gross-
Pitaevskii (GP) equation, which formally is a classical
nonlinear field theory. Going beyond the GP equation allows
one to understand the role of quantum effects in the quasi-
classical region of parameters. Another important feature of
BEC’s is that they are experimentally easily accessible and
controllable by means of trapping potentials and tunable in-
teractions. BEC’s have already been used to demonstrate the
nonlinear dynamics of collapses and revivals of a coherent
matter wave in the pure quantum regime[7]. Here, the con-
densate was initially trapped in the lowest-energy band of a
three-dimensional optical lattice. By adiabatically raising the
heights of the barriers it was possible to suppress tunneling
between sites and at the same time maintain the system in the
superfluid regime, so that within each lattice site independent
coherent states were engineered with an average number of
atoms of order 1. Every BEC in each lattice site is well
described in the single-mode approximation by the QNO
Hamiltonian given in Eq.(1), with v being the trapping fre-
quency in each lattice site andm being proportional to the
s-wave two-body scattering length. This single-mode ap-
proximation is valid when the many-body interactions pro-
duce a small modification of the ground state of the indi-
vidual potential on each site, the mode structure being
sparce, such as in tightly optically trapped systems. In con-
trast, in weakly or nontrapped systems, such as the propaga-
tion of light through a Kerr medium[8], a multimode treat-
ment is necessary. For Bose-Einstein condensates trapped in
optical lattices, the single-mode approximation leads to pre-
dictions for the quantum dynamics of the condensate with
excellent agreement with experiments[7,9,10]. Other sys-
tems that could be used for observation of quantum nonlinear
effects in the quasiclassical region of parameters are micro
mechanical[12] and nanomechanical[13] resonators, high-
frequency cantilevers[14], nonlinear optical systems, and su-
perconductive junctions.

The QNO is one of the simplest quantum nonlinear sys-
tems for which the breakdown of the quantum-classical cor-
respondence can be exactly calculated. The quantum and
classical dynamics of an initial coherent wave packet evolv-
ing under Eq.(1) was computed by Bermanet al. [11] and by
Milburn [3]. The characteristic time scale for departure of the
quantum dynamics from the corresponding classical one, the
so-called Ehrenfest time, was introduced for this system in
[11]. In [3] a similar problem was studied using theQ qua-
siprobability distribution. It was shown that the presence of
non-positive-definite second-order terms in the quantum evo-
lution equation forQ, not present in the evolution of the
classical probability density, is responsible for quantum re-
currences and prevents the appearance of fine-scale-structure
“whorls” predicted in the classical description. In[4,5] the
interaction of the QNO with the environment(modeled by a
thermal bath of harmonic oscillators) was studied in the limit
of small nonlinearity, and it was argued that such an interac-
tion was effective in destroying quantum interference effects
and restoring the classical phase-space structure. However,

as we already stated, environment-induced decoherence is in
fact ineffective in recovering the quantum-classical corre-
spondence for this nonlinear system.

In the following we compute quantum observables in the

coherent-state basis. For an arbitrary operator functionf̂

= f̂sâ†,âd, the time-dependent expectation value of such a

function (observable), fsa* ,a ,td=kaueiĤt/" f̂e−iĤt/"ual, for an
initial coherent stateual, satisfies a partial differential equa-

tion of the form [15] ]f /]t=K̂f, where K̂=K̂cl+"K̂q. Here

the operatorK̂cl includes only the first-order derivatives and
describes the corresponding classical limit, while the other

operatorK̂q includes higher-order derivatives and is respon-
sible for quantum effects. For the model given by Eq.(1) we
get

] f

] t
= is1 + m̄ + 2m̄uau2dSa* ]

] a* − a
]

] a
D f

+ im̄Ssa*d2 ]2

] sa*d2 − a2 ]2

] a2D f . s2d

In particular, forf̂ = â the evolution offstd corresponds to the
evolution of the condensate matter-wave fieldastd
;kauâstdual. In this case Eq.(2) can be solved exactly[15]:

astd = a e−is1+m̄dtexpfuau2se−2im̄t − 1dg. s3d

The quantum evolution of this expectation value departs
from the corresponding classical evolutionaclstd=ae−ivclt as

astd=aclstde−t2/2tE
2
f1+Osm̄td+Osuau2m̄3t3dg, wheretE is the

Ehrenfest time scale given by

tE =
1

2m̄uau
. s4d

The amplitudes of quantum and classical observables coin-
cide at multiple times of the quantum recurrence time scale:

tR =
p

m̄
. s5d

Note that the quasiclassical limit, which is considered in this
paper, corresponds to the following condition:tE/tR
=«1/2/2p!1. So in what follows we will be interested only
in the region of parameters wheretE!tR. Quantum recur-
rences of the matter-wave field of a BEC in thepure quan-
tum regimea<Os1d (or «<1) in each lattice site were ob-
served in [7] at tR<100 stR=0.55 msd, larger than the
corresponding Ehrenfest time scaletE<15. At the same
time, quantum dynamical effects in the quasiclassical region
of parameters have still not been observed in BEC’s.

Expressinga=ÎJ/"e−iu, we can rewrite Eq.(2) as

] f

] t
= s1 + 2mcld

] f

] u
+ 2«mcl

]2f

] J ] u
. s6d

The quantum term appears as a singular perturbation of the
classical equation because the small parameter« multiplies
the higher-order derivative. Note that the quantum effects for
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observables vanish in two cases:(i) «=0, which corresponds
to the classical limit, and(ii ) mcl=0, which corresponds to
the quantum linear oscillator. The fact that for nonlinear
quantum systems the terms with high-order derivatives in the
evolution equations for the density matrix and for the Wigner
function represent a singular perturbation to the classical
limit (Liouville function) is well known. However, in spite of
a large number of papers on this subject, from this fact it is
still unclear what are the conditions for the quantum-
classical correspondence forobservables. The solution(3) of
Eq. (2) for the observableastd (and also for an arbitrary
observable[15]) demonstrates that quantum effects[second-
order derivatives in Eqs.(2) and (6)] represent a singular
perturbation to the classical equation forobservables, which
includes only the first-order derivatives and can be solved by
the method of classical characteristics[11,15]. This results in
a secular behavior of quantum corrections in the solution for
the observableastd, Eq. (3). So the question is, under what
conditions does the environment “kill”(if at all) the quantum
corrections which represent a singular perturbation to theob-
servablesof the classical world?

Following [4,5] we model the environment as a bath of
harmonic oscillators in thermal equilibrium at a rescaled

temperatureb̄="v /kBT linearly coupled through position to
the QNO described by Eq.(1). This model has also been
used to study decoherence of quantum-coherent atomic tun-
neling between two Bose-Einstein condensates, each treated
in the single-mode approximation by Eq.(1) plus a
Josephson-like coupling between them[16]. More realistic
models for the interaction between the condensate and envi-
ronment invoke density-density terms arising from collisions
between the condensate and thermal, noncondensed atoms.
In [17] the decoherence of a BEC Schrödinger cat state was
analyzed with a single-mode model for each component of
the cat state, and it was shown that via quantum-state engi-
neering of the environment it is possible to significantly re-
duce decoherence rates. In[18] the previous single-mode
model plus environment was extended to two modes, obtain-
ing the same qualitative results as before. All the above
shows the robustness of the single-mode description of the
system, given by Eq.(1), and the treatment of a multimode
environment, either of harmonic oscillators or thermal atoms.

In the Born-Markov approximation, the master equation
for the reduced density matrix reads

dr̂

dt
= Ffreesr̂d + Fhsr̂d + Fnsr̂d, s7d

where the first term,

Ffreesr̂d = − ifâ†â + m̄sâ†âd2,r̂g, s8d

corresponds to the free, unitary evolution, the second one,

Fhsr̂d =
i

2
fâ + â†,hÂ1stdâ + â†Â1std + i„Â2stdâ

− â†Â2std…,r̂jg, s9d

accounts for dissipation, and the third one,

Fnsr̂d = − 1
2fâ + â†,hB̂1stdâ + â†B̂1std

+ i„B̂2stdâ − â†B̂2std…,r̂jg, s10d

is related to noise. The time-dependent, operator-valued co-

efficientsÂi and B̂i depend on the frequency operator

V̂ = 1 + m̄s1 + 2â†âd

and on the spectral density of the environment,

Jsv̄d =
gv̄L̄2

L̄2 + v̄2
,

which we chose to be Ohmic, withL̄ a UV cutoff andg a
system-environment coupling constant. Explicitly,

Â1std =E
0

t

dshssdcossV̂sd, s11d

Â2std =E
0

t

dshssdsinsV̂sd, s12d

B̂1std =E
0

t

dsnssdcossV̂sd, s13d

B̂2std =E
0

t

dsnssdsinsV̂sd, s14d

where the dissipation and noise kernels are, respectively,
given by

hssd =E
0

`

dv̄
v̄

p
Jsv̄dsinsv̄sd, s15d

nssd =E
0

`

dv̄
v̄

p
Jsv̄dcothS b̄v̄

2
Dcossv̄sd. s16d

The matrix elements of the operatorsÂi and B̂i can be
straightforwardly computed in the Fock basis and shown to
have an analogous behavior to that of them̄=0, quantum
Brownian motion case[19].

To study the decoherence effects of the environment we
first start by considering an initial Schrödinger cat state
formed by large-amplitude coherent states,r̂s0d=Nsual
+ ubldskau+kbud, with uau2, ubu2@1, and N a normalization
constant. For simplicity we takea andb to lie along a com-
mon radius, and we parametrize them asa=xeiu and b=sx
+dxdeiu. Decoherence is due to the term in the master equa-

tion containing B̂1. In the coherent state basis, the off-
diagonal matrix elements of the density matrix evolve as
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d

dt
kaur̂ubl < − 2B1sI0,tdsdxd2kaur̂ubl, s17d

where B1sI0,td=kauB̂1stdual with I0;ua2u. For t@1/L̄,
B1sI0,td is approximately equal to its asymptotic value

B1sI0,`d =
gV̄

2

L̄2

L̄2 + V̄2
cothS b̄V̄

2
D ,

with V̄=1+m̄s1+2I0d. Therefore, the decoherence time scale
is

tD =
1

2B1
ns`dsdxd2 . s18d

In this paper we are interested in the decoherence effects of
the environment coupled to the anharmonic oscillator, ini-
tially prepared in a coherent stateual. Due to this coupling,
the quantum recurrences of the system decay exponentially
on a time scale that coincides with the time scale of deco-
herence of a Schrödinger cat, given by Eq.(18). Indeed, in
the case of an initial coherent statesdxd2<kaux2ual< I0, so
that the decay time of quantum recurrences of the initial
coherent stateual is given by

tD =
tanhsb̄V̄/2d

I0gV̄
. s19d

We checked this estimation by numerical simulations of Eq.
(7) using as initial state a quasiclassical coherent state. As
can be seen in Fig. 1, the agreement is fairly good within the

numerical errors. In the limit of small temperatureb̄V̄@1
and small nonlinearitym̄I0!1 the decoherence time scale
coincides with the one derived in[4]; however, we stress that
in the general case, differently from[4], the decoherence
time, as given by Eq.(19), depends on the parameter of

nonlinearity, m̄. In the high-temperature limitb̄V̄!1, the

decoherence time istD<tg"2v /4kBTJcl, wheretg=2/g is
the time scale of the relaxation of quantum observables due
to interaction with the environment.

Having the density matrix elements, we can easily deter-
mine the average values of any observable—for instance, for
the positionxstd;kx̂stdl=sastd+a*stdd /Î2. An example of
such simulations is given in Fig. 2. The time scale for the
overall decay of the amplitude of recurrences, shown in Fig.
2(a), is set by the decoherence time scaletD: the relative
heights of two peaks, taken at two neighbor recurrent times,
is reduced by a factor exps−tR/tDd. An enlargement of the
first bump of Fig. 2(a) is given in Fig. 2(b). As one can see in
both cases reported in the figure, the time scale which gov-
erns the envelope ofxstd is the Ehrenfest timetE, which is
independent of the coupling to the environment. The same is
true for any of the following revival bumps; see Fig. 2(c).
Let us also notice that in Fig. 2(b) the curves forg=10−4

(solid line) and forg=10−2 (dashed-dotted line) are slightly
shifted one to the other. This is due to the fact that the fre-
quency of motion is slightly dependent on the bath-oscillator

interaction strengthveff
2 =V̄2−gL̄3/ sL̄2+V̄2d. This is not at

all surprising since the renormalization of the frequency is a
feature of the considered master equation[19].

In Fig. 2(d) the average position is plotted for a case in
which tD!tE!tg,tR (tD=0.74, tcl=3.12, tE=7.1, tg

=200, andtR=314). This figure represents the most impor-
tant result of the present work: Usually, in the quasiclassical
region of parameters and for rather large values of the cou-
pling to the environmentsgù10−2d, the characteristic deco-
herence time scale is much shorter than the Ehrenfest time
scale,tD!tE. Despite this, the system does not become en-
tirely “classical,” since quantum effects persist up to the

FIG. 1. Comparison between the numerically obtained decoher-
ence timetD and the approximate relation given by Eq.(19), ob-
tained retaining only one term in the master equation. The dashed
line corresponds totDstheoryd=tDsnumericsd. Data are obtained by
varying parameters in the following regions: 20ø I0ø100, 10−3

øm̄ø4, 10−2øb̄ø1, and 10−5øgø10−2.

FIG. 2. The average position as a function of the dimensionless

time t. In all casesI0=50, b̄=1. (a) Parameters arem̄=0.1 andg
=10−4. The dashed curve corresponds to exps−t /tDd, where tD

=18.tE<0.7. (b) is an enlargement of the first bump of(a). Two
more curves have been added: a dashed-dotted line corresponds to
the average position forg=10−2, so thattD=0.18,tE, and a dotted
line that corresponds to the envelope exps−t2/2tE

2d. (c) is an en-
largement of the third bump of(a). The dotted line corresponds to
the envelope exps−tR/tDdexpf−st−tRd2/2tE

2g, wheretR=10p. (d)
Parameters arem̄=g=10−2, so thattD!tE!tg,tR.

BERMAN et al. PHYSICAL REVIEW A 69, 062110(2004)

062110-4



Ehrenfest time. Indeed, forxs0d=sa+a*d /Î2=Î2I0=10 and
tD=0.74, the dependencexs0dexps−t /tDd would give us, for
example, fort=10 the value 1.3310−5, which is signifi-
cantly smaller than the corresponding value 3.7 defined by
the functionxs0dexps−t2/2tE

2d for xs0d=10, t=10, andtE
=7.1 [which corresponds to the results presented in Fig.
2(d)].

In our model the classical limit corresponds to the follow-
ing inequalities:tD!tcl!tg!tE!tR (see Fig. 3). Because
in the quasiclassical region of parameters the inequalities
tE!tR andtD!tcl are always satisfied, the really important
condition for the classical limit istg!tE. In this case the
system effectively behaves as a classical damped oscillator,
and quantum effects cannot be observed. For comparison we
plot in Fig. 3 the overall decay of oscillations, given bytg,
with the one that would be given by the Ehrenfest time. The
perfect agreement of the decay relaxation time with the data
and their wrong dependence on the Ehrenfest time is a mani-
festation of the classicality for this case.

To gain a qualitative understanding of these numerical
findings we consider a simplified version of our master equa-
tion (7) at zero temperature, in which we keep only the effect
of dissipation and decoherence due to the environment and
make the rotating-wave approximation. In this way we get
the standard master equation in quantum optics for the QNO:

dr̂

dt
= − ifâ†â + m̄sâ†âd2,r̂g +

g

2
s2âr̂â† − â†âr̂ − r̂â†âd.

s20d

This equation is precisely the one considered in[4], where an
exact solution for the quasiprobabilityQ function was ob-
tained, assuming an initial coherent stateual. In particular, an
exact expression for the time evolution of the average posi-
tion kx̂stdl=fkâstdl+kâ†stdlg /Î2 can be written, where

kâstdl = aes1+m̄dte−gt/2e−fuau2/s1+k2dgs1+ikds1−e−gte−2im̄td, s21d

with k=g /2m̄. Note that for no coupling to the environment
sg=0d we recover Eq.(3). From Eq.(21) we can read the

decay factor of the average positionxstd~e−Dstd. It is given
by

Dstd =
gt

2
+

4m̄2uau2

4m̄2 + g2Ff1 − e−gtcoss2m̄tdg

−
g

2m̄
e−gtsins2m̄tdG . s22d

Let us first analyze the caseg /2!m̄, corresponding totE
!tg. Let us express the timet around a given recurrence
time ast=ntR+ t̃, wheren is a non-negative integer. Assum-
ing that the timet is much shorter than the relaxation time,
gt!1, and thatm̄t̃!1, we can expandDstd<uau2s2m̄2t̃2

+ntRgd. Hence, in these limits, the decay of the average
position is

xstd ~ e−t̃2/2tE
2

e−ntR/tD, s23d

wheretE is defined in Eq.(4) and tD=1/g uau2 is the zero-
temperature limit of Eq.(19) for m̄uau2!1. Therefore, the
decay ofxstd within any recurrence bump is determined by
the Ehrenfest time scale, and even in the limittD!tE the
decay within the first bumpsn=0d is still governed by the
Ehrenfest time scale, which agrees with our numerical results
presented above. This implies that some quantum effects sur-
vive the loss of quantum coherence due to the interaction
with the environment. On the other hand, wheng /2@m̄ (i.e.,
tg!tE) the classical limit is attained, and the decay is gov-
erned by the relaxation rate.

Persistence of quantum effects after the decoherence time
can be also observed analyzing the Fourier spectrum of the
average position in timexstd=ov xveivt. When the system is
closed—i.e., no coupling to the environment—the Fourier
components are given by

xv =
a

2
LSv − 1

2m̄
D + c.c.,

where

Lsnd =
m̄

p
E

0

p/m̄

ese2im̄t−1duau2−2im̄ntdt. s24d

Estimating this quantity in the limitm̄t!1 we obtain the
frequency spectrum for the QNO:

xv <
1

Î4puau2
expF−

sv − vcld2

2Dv2 Gxs0d, s25d

which is a Gaussian distribution centered around the classi-
cal oscillation frequencyvcl=1+2m̄uau2 with a spectral
width given by the inverse of the Ehrenfest time scale,Dv
=tE

−1. In Fig. 4 the Fourier spectrumxv for the QNO coupled
to the environment is shown for the casetE!tg. As one can
see, in all cases presented in Fig. 4(whatever the relation is
between the decoherence time and the Ehrenfest time) the
width of the Fourier spectrum is always given by the inverse
Ehrenfest time. Whentg!tE the width of the spectrum is
given by the relaxation rate, and the classical limit is ob-
tained.

FIG. 3. The average positionxstd in the “classical” limit: tD

!tcl!tg!tE!tR. Parameters arem̄=10−4, b̄=1, g=0.01, andI0

=50, so thattD=0.92,tcl=2p, tg=200,tE=707, andtR=p3104.
The correct decay(dotted line), as given by the relaxation timetg,
is compared with the “wrong” decay(dashed line) given by the
Ehrenfest timetE.
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The important condition for survival of the quantum ef-
fects for observables related to the Ehrenfest time scale is
tE!tg, which can be written in the form

Q ;
tg

tE
= 2mcl«

1/2tg @ 1. s26d

For BEC’s the parameter of nonlinearitymcl=mJ/v can be
written asmcl=NÎa2mv /2p", whereN is the number of par-
ticles in the condensate,a is thes-wave scattering length,m
is the mass of the atoms, andv is the trapping frequency.

The quasiclassical parameter is«=1/N. Therefore,

QBEC = aÎ2mvN

p"
tg @ 1. s27d

For example, for a=5 nm, m=1.5310−25 kg, v /2p
=100 Hz, and estimating the dimensionless relaxation time
tg from the lifetime of the condensate(say, tg=1 sec, sotg

=vtg=2p3102), we need a total number of particles,N
@1. In the case of a cantilever(or a mechanical resonator)
the quasiclassical parameter is«=1/n, wheren in the aver-
age number of levels involved in the coherent state of the
cantilever. For the dimensionless relaxation timetg we take
tg=2Q, whereQ is the cantilever quality factor. Then, for a
cantilever the condition(26) takes the form

Qcantilever=
4mclQ

În
@ 1. s28d

We take the following dimensional parameters[20]: the am-
plitude of the cantilever oscillations,xm=10 nm; the spring
constantkc=6310−4 N/m; and the frequency of the funda-
mental mode of the cantilever,vc/2p=6.6 kHz. In this case,
the number of cantilever levels can be estimated asn
<kcxm

2 /"vc<631011. We also takeQ=106. Then, we have
from Eq. (28) the estimate for the parameter of nolinearity:
mcl@0.2. We hope that these conditions can be experimen-
tally realized and quantum effects related to the Ehrenfest
time scale can be observed in the quasiclassical region of
parameters.
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BERMAN et al. PHYSICAL REVIEW A 69, 062110(2004)

062110-6


