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The interrelationship between the non-Markovian stochastic Schrödinger equations and the corresponding
non-Markovian master equations is investigated in the finite-temperature regimes. We show that the general
finite-temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master
equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in
which a harmonic oscillator is coupled to a finite-temperature reservoir in the rotating-wave approximation.
The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the
quantum trajectories, relying upon no assumption of coupling strength or time scale. The master equation
derived in this way automatically preserves the positivity, Hermiticity, and unity.
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I. INTRODUCTION

Open systems are generic models for the study of quan-
tum dynamics in the sense that a real quantum system is
either difficult to isolate from the influence of its environ-
ment or is deliberately put in touch with some purposely
engineered devices in order to make a measurement[1,2]. In
any case, the system and environment, initially independent,
will become entangled due to the interaction; then, the sys-
tem state will not remain in a pure state and the dynamics is
described by a nonunitary process. In many physically rel-
evant cases, a typical open quantum system normally in-
volves a small system of interest coupled to a large system
with a large number of degrees of freedom, commonly
known as the heat bath, reservoir, or generally environment.
Traditionally, the dynamics of a system of interest is de-
scribed by a Lindblad master equation which can often be
derived if the standard Born-Markov approximation is as-
sumed[2–5]. Moreover, it turns out that such a Lindblad
master equation is also capable of being unraveled into vari-
ous stochastic Schrödinger equations known as quantum tra-
jectories[6–12]. Both the master equations of the Lindblad
form and their stochastic unravelings have become an inte-
gral part of the theories of open quantum systems. However,
when the heat-bath memory effects are relevant, such as in
the cases of a high-Q cavity, atom laser, or structured envi-
ronment, where the Born-Markov approximation ceases to
be valid, and hence the dynamics of the open quantum sys-
tem must be described by a non-Markovian process[13,14].
It has been long known that the derivation of a non-
Markovian master equation is a formidable task[15,16].

Recent research on open quantum systems has suggested
that, alternatively, the non-Markovian dynamics may be de-
scribed by a diffusive stochastic Schrödinger equation
known as non-Markovian quantum trajectories or quantum-
state diffusion equations[17–29]. For anN-dimensional Hil-

bert space, the stochastic Schrödinger equation evolves an
N-dimensional vector and so offers numerical advantages
over a master equation which evolves anN3N density ma-
trix. Very recently, we have shown that, beyond the numeri-
cal advantages and the conceptual merits, the non-Markovian
stochastic Shrödinger equations may also provide a powerful
tool for deriving the corresponding non-Markovian master
equations. This idea has been explored in several distinct
cases including a two-level atom interacting with a zero-
temperature heat bath[20,28] and a Brownian particle
coupled linearly to a finite-temperature heat bath via the po-
sition variable commonly known as the quantum Brownian
motion model[21,29,30]. The purpose of this paper is to
extend this research to more general finite-temperature re-
gimes where the Lindblad operator is not a Hermitian opera-
tor. In this paper, we take the damped harmonic oscillator as
our primary example. This simple model is of great interest
in quantum optics because it is an essential ingredient in the
theoretical investigations of various quantum optical experi-
ments. We show here in detail that the non-Markovian quan-
tum trajectories allow the derivation of the exact convolu-
tionless master equation irrespective of the coupling
strength, the separated time scales, or the special distribu-
tions of the environmental frequencies.

The organization of the paper is as follows. In Sec. II, we
introduce both zero and finite-temperature stochastic
Schrödinger equations. In Sec. III, we show how to derive an
exact master equation from the finite-temperature quantum
trajectories. In Sec. IV, we establish the stochastic
Schrödinger equation for the damped harmonic oscillator and
show that the corresponding exact convolutionless master
equation can be obtained by averaging the solutions to the
non-Markovian stochastic Schrödinger equation without any
approximations—in particular, without a Markov approxima-
tion. We conclude this paper in Sec. V.

II. NON-MARKOVIAN STOCHASTIC SCHRÖDINGER
EQUATION

A. Zero temperature „T=0…

Our model consists of a system of interest coupled lin-
early to a large number of harmonic oscillators with distrib-
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uted eigenfrequenciesvl and creation and annihilation op-
eratorsbl

† ,bl. The quantum Hamiltonian for the system plus
reservoir can be typically written as(we set"=1)

Htot = Hsys+ Hint + Hbath= Hsys+ o
l

sgl
* L†bl + glLbl

†d

+ o
l

vlbl
†bl, s1d

wheregl are the coupling constants and the system operator
L coupled to the environment is often called the Lindblad
operator.

For the open quantum system described by Eq.(1), the
linear non-Markovian quantum-state diffusion(QSD) equa-
tion has been derived from the formal solution of the
Schrödinger equation for the total system in a special repre-
sentation[18],

i]tuCtl = HtotstduCtl, s2d

whereuCtl stands for the pure-state vector for the total sys-
tem andHtotstd is the HamiltonianHtot in the interaction rep-
resentation with respect to the free-bath Hamiltonian:

Htotstd = eiHbathtSHsys+ o
l

sgl
* L†al + glLal

†dDe−iHbatht

= Hsys+ o
l

sgl
* L†ale−ivlt + glLal

†eivltd. s3d

In this subsection, let us assume that the initial pure state of
the system and the environment is taken to be

uC0l = uc0l ^ u01l ^ u02l ¯ ^ u0ll ^ ¯ , s4d

with an arbitrary system stateuc0l and the environment in the
ground stateu0l. By using a Bargmann coherent-state basis
for the environmental degrees of freedom,uzll
=exphzlal

†ju0ll, and resolution of the identity

Il =E d2zl

p
e−uzlu2uzllkzlu, s5d

the total stateuCtl can be expressed as

uCtl =E d2z

p
e−uzu2uctsz*dl ^ uzl, s6d

where uzl= uz1l ^ z2 ^ ¯ ^ uzll¯, d2z=d2z1d
2z2¯d2zl¯,

anduzu2=ol uzlu2. Then the resultant pure state for the system
of interestuctsz*dl=kzuCtl was shown to satisfy the follow-
ing equation[17,18]:

]tct = − iHsysct + Lzt
*ct − L†E

0

t

dsast − sd
dct

dzs
* , s7d

whereast−sd=ol uglu2e−ivlst−sd is the bath correlation func-
tion andzt

* =−iol gl
* zl

* eivlt is a colored, complex Gaussian
noise with Mfztg=Mfztzsg=0 and Mfzt

*zsg=ast−sd. Note
here thatMf·g is the statistical mean over the Gaussian pro-
cesszt. By construction,

rt = Mfuctlkctug =E d2z

p
e−uzu2uctlkctu. s8d

The linear non-Markovian QSD equation(7) is valid for a
zero-temperature heat bath and also for a finite-temperature
heat bath with the conditionL=L†. In general, ifLÞL†, we
shall see below that the finite-temperature non-Markovian
QSD equation takes a more complicated form.

B. Finite temperature „TÅ0…

The finite-temperature stochastic Schrödinger equation or
non-Markovian QSD equation can be obtained by mapping
the system with the total Hamiltonian(1) and an initial ther-
mal state to an extended system with the vacuum state such
that the zero-temperature stochastic Schrödinger equation for
the extended system is equivalent to the situation where the
heat bath is at finite-temperature[18,31]. To be specific, for
the total Hamiltonian(1), we assume that the heat bath is in
a thermal equilibrium state at temperatureT, with the density
operator

rbaths0d =
e−bHbath

Z
, s9d

whereZ=Trfe−bHbathg is the partition function andb=1/kBT.
Now we introduce a fictitious heat bath with the bosonic

operatorscl ,cl
†, which has no direct interaction with the sys-

tem, ensuring that after tracing over the fictitious variables,
the initial state of the original bath will be in the thermal
staterbaths0d. The total Hamiltonian with two independent
heat baths is given by

Htot = Hsys+ o
l

sgl
* L†bl + glLbl

†d + o
l

vlbl
†bl − o

l

vlcl
†cl.

s10d

The boson Bogoliubov transformation formally couples
the system of interest to two sets of bosonic operatorsdl ,dl

†

andel ,el
†,

bl = În̄l + 1dl + În̄lel
†, s11d

cl = În̄l + 1el + În̄ldl
†, s12d

wheren̄l is the mean thermal occupation number of quanta
in modevl:

n̄l =
1

exps"vl/kBTd − 1
. s13d

The transformed HamiltonianHtot8 in terms of dl ,el is
then given by

Htot8 = Hsys+ o
l

În̄l + 1sgl
* L†dl + glLdl

†d + o
l

vldl
†dl

+ o
l

În̄lsgl
* L†el

† + glLeld − o
l

vlel
†el. s14d

Thus we have mapped the finite-temperature problem into a
zero-temperature one with the initial vacuum state denoted
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by u0l= u0ld ^ u0le, satisfyingdlu0l=0,elu0l=0. With the new
Hamiltonian (14), the finite-temperature problem has been
reduced to a zero-temperature one. Thus the resultant pure
state for the system of interestct= uctsz* ,w*dl satisfies the
following stochastic Schrödinger equation with two indepen-
dent noiseszt

* ,wt
* :

]tct = − iHsysct + Lzt
*ct − L†E

0

t

dsa1st − sd
dct

dzs
* + L†wt

*ct

− LE
0

t

dsa2st − sd
dct

dws
* , s15d

where

a1st − sd = o
l

sn̄l + 1duglu2e−ivlst−sd, s16d

a2st − sd = o
l

n̄luglu2eivlst−sd s17d

are the bath correlation functions and

zt
* = − io

l

În̄l + 1 gl
* zl

* eivlt, s18d

wt
* = − io

l

În̄l gl
* wl

* e−ivlt s19d

are two independent, colored, complex Gaussian noises sat-
isfying

Mfztg = Mfztzsg = 0, Mfzt
*zsg = a1st − sd, s20d

Mfwtg = Mfwtwsg = 0, Mfwt
*wsg = a2st − sd. s21d

Note here thatMf·g is the statistical mean over the Gaussian
processeszt

* andwt
* . Again, by construction,rt=Mfuctlkctug.

In the zero-temperature limitT→0, we have a1st−sd
→oluglu2expf−ivlst−sdg anda2st−sd→0; then, Eq.(15) re-
duces to the simple zero-temperature case(7). However, in
this paper, without an explicit statement, we will always
work in the finite-temperature regimes. From Eq.(15), we
see that the finite-temperature heat bath has induced both the
spontaneous transitions and stimulated transitions; moreover,
it also gives rise to an absorptive process caused by taking
thermal quanta from the heat bath.

The stochastic Schrödinger equation(15) can be greatly
simplified by using the ansatz

dct

dzs
* = O1st,s,z* ,w*dct, s22d

dct

dws
* = O2st,s,z* ,w*dct. s23d

Then Eq.(15) takes a more compact form

]tct = − iHsysct + Lzt
*ct − L†Ō1st,z* ,w*dct + L†wt

*ct

− LŌ2st,z* ,w*dct, s24d

whereŌisi =1,2d denote

Ōist,z* ,w*d =E
0

t

aist − sdOist,s,z* ,w*dds si = 1,2d.

s25d

We can determine the operatorsO1,2st ,s,z* ,w*d in Eqs.
(22) and (23) from the “consistency conditions”

]t
dct

dzs
* =

d

dzs
* ]tct, ]t

dct

dws
* =

d

dws
* ]tct, s26d

together with the initial conditions:

O1st = s,s,w* ,z*d = L, O2st = s,s,w* ,z*d = L†. s27d

From the consistency conditions, we may get the evolu-
tion equations for O1=O1st ,s,z* ,w*d and O2

=O2st ,s,z* ,w*d:

]tO1 = f− iHsys+ Lzt
* + L†wt

* − L†Ō1 − LŌ2,O1g

− L†dŌ1

dzs
* − L

dŌ2

dzs
* , s28d

and

]tO2 = f− iHsys+ Lzt
* + L†wt

* − L†Ō1 − LŌ2,O2g

− L†dŌ1

dws
* − L

dŌ2

dws
* . s29d

It should be remarked here that theO operators can be
determined in many interesting situations[18,29], and more-
over, that the approximateO operators can always be ob-
tained by invoking a perturbation technique[20,21,28]

III. NON-MARKOVIAN MASTER EQUATION AT
FINITE-TEMPERATURE

From the non-Markovian QSD equation(24), one may
take the statistical mean to derive the master equation and
get

]trt = − ifHsys,rtg + fL,MhPtŌ1
†st,z* ,w*djg

− fL†,MhŌ1st,z* ,w*dPtjg + fL†,MhPtŌ†
2st,z* ,w*djg

− fL,MhŌ2st,z* ,w*dPtjg. s30d

This is the general master equation at finite-temperature. Al-
though this last result is still not a closed evolution equation
for rt, it nevertheless shows how a convolutionless master
equation may result from our knowledge of the operators
Oist ,s,z* ,w*d si =1,2d.

As we mentioned before, in the case of finite-temperature
with LÞL†, the O operators will generally contain noises
zt

* ,wt
* . However, we begin with some special cases in which
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the operatorsOist ,s,z* ,w*d turn out to be independent of the

noises zt
* ,wt

* . In such a case, we may writeŌist ,z* ,w*d
=Ōistd and Eq.(30) is indeed a convolutionless, closed mas-
ter equation,

]trt = − ifHsys,rtg + fL,rtŌ1
†stdg + fŌ1stdrt,L

†g + fL†,rtŌ2
†stdg

+ fŌ2stdrt,Lg, s31d

for the non-Markovian open system.
As a direct application of Eq.(31), let us discuss an im-

portant dephasing process: the system Hamiltonian com-
mutes with the Lindblad operatorfHsys,Lg=0. More gener-
ally, we may consider a solvable model withfL ,Hsysg
= ikI ,L=L†,k= real constant, andI is the identity operator.
For this case, it is easy to check that the solutions to Eqs.
(28) and (29) are given by

O1st,s,z* ,w*d = L − kst − sd, s32d

O2st,s,z* ,w*d = L − kst − sd. s33d

By simply inserting Eqs.(32) and(33) into Eq.(31), a closed
convolutionless master equation is immediately obtained:

d

dt
rt = − ifHsys,rtg + fstdfLrt,Lg + f*stdfL,rtLg + gstdfrt,Lg

+ g*stdfL,rtg, s34d

where the time-dependent coefficients are given by

fstd =E
0

t

ast − sdds and gstd = kE
0

t

ast − sdst − sdds.

s35d

Note here that the finite-temperature correlation function
ast−sd is given by

ast − sd = a1st − sd + a2st − sd = hst − sd + inst − sd,

s36d

where

hst − sd = o
l

uglu2cothS vl

2kBT
Dcosfvlst − sdg, s37d

nst − sd = − o
l

uglu2sinfvlst − sdg. s38d

The master equation(34) can be immediately applied to
qubit decoherence and disentanglement[32]. To be specific,
let us consider the dephasing process in a quantum register
containingN noninteracting qubits. It is known that one of
the most important decoherence processes in the quantum
registers is thatN qubits collectively interact with some en-
vironmental noise which only randomly interrupts the phase
of each qubit. This problem can be effectively modeled by
choosing Hsys=oi=1

N visi
z and L=oi=1

N si
z in the general

Hamiltonian (1), wheresi
z denotes the Pauli matrix for the

ith qubit. The master equation for such a dephasing model is
given by Eq.(34) with k=0.

Of particular interest is the Markov approximation where

a1st−sd=g1dst−sd ,a2st−sd=g2dst−sd; then, Ō1=sg1/2dL,

Ō2=sg2/2dL†, so the resulting master equation takes the
well-known Lindblad form

]trt = − ifHsys,rtg +
g1

2
s2LrtL

† − L†Lrt − rtL
†Ld

+
g2

2
s2L†rtL − LL†rt − rtLL†d. s39d

Before ending this section we have two remarks in order.
First, let us note that the non-Markovian property of a con-
volutionless master equation(31) or more generally Eq.(30)
is characterized by the time-dependent coefficients. Second,
if the O operators appearing in Eqs.(22) and (23) or in Eq.
(30) do contain noises, as seen from the next section, things
become much more complicated. There is no general guide-
line how to derive the closed convolutionless master equa-
tion from Eq. (30). However, it has been shown that the
evolution equations for theO operatorsOist ,s,z* ,w*d with
respect tos rather thant are essential for such a derivation.
Here we believe that the existence of a set of uncoupled
evolution equations for theO operators with respect tos is a
very powerful ansatz. Obviously, this ansatz remains to be
tested in more examples[24,29].

IV. DAMPED HARMONIC OSCILLATOR

A. Stochastic Schrödinger equation for the damped harmonic
oscillator

In this section we show that the non-Markovian quantum
QSD approach is versatile enough to handle the general
finite-temperature cases withLÞL†. To simplify the calcula-
tions as much as possible, we consider here the simplest
model of this kind but still worth studying—the damped har-
monic oscillator model. The model consists of a harmonic
oscillator with frequencyV, coupled linearly to a large num-
ber of harmonic oscillators:Hsys=Va†a,L=a. We assume
that the heat bath is at finite-temperatureT. This model has
been discussed in various contexts(see, e.g.,[3,6]). In what
follows, we use this model to show explicitly how the finite-
temperature master equation can be derived directly from the
non-Markovian quantum trajectory equation. For the damped
harmonic oscillator at zero temperature, it has been shown

that wt
* =0 and Ō1=Fstda, Ō2=0 [18,29]. Thus the zero-

temperature non-Markovian master equation is immediately
obtained from Eq.(31). For the finite-temperature heat bath,
as to be seen below, theO operatorsO1 and O2 for the
damped harmonic oscillator will contain noiseszt

* and wt
* ;

hence, things become much more involved. We emphasize
that, for a quantum system withLÞL†, the dependence of
the O operators on the noises is a generic feature for the
finite-temperature cases. First, note that the exact quantum-
state diffusion equation for the damped harmonic oscillator
can be written as
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]tct = − iVa†act + azt
*ct − a†Ō1st,z* ,w*dct

+ a†wt
*ct − aŌ2st,z* ,w*dct, s40d

whereŌi are defined in Eq.(25).
Crucial to the solution of QSD equation(40) is the ex-

plicit determination of theO operators. It is easy to check
that the following ansatz will give rise to solutions of Eqs.
(28) and (29),

O1st,s,z* ,w*d = f1st,sda +E
0

t

ds8 j1st,s,s8dws8
* , s41d

O2st,s,z* ,w*d = f2st,sda† +E
0

t

ds8 j2st,s,s8dzs8
* , s42d

where f ist ,sd and j ist ,s,s8d satisfy thecoupled nonlinear
integro-differential equations

]t f1st,sd − iVf1st,sd − f1st,sdE
0

t

ds8a1st − s8df1st,s8d

− f1st,sdE
0

t

ds8a2st − s8df2st,s8d

+E
0

t

ds8a2st8 − sd j2st,s8,sd = 0, s43d

]t f2st,sd + iVf2st,sd + f2st,sdE
0

t

ds8a1st − s8df1st,s8d

+ f2st,sdE
0

t

ds8a2st − s8df2st,s8d

+E
0

t

ds9a1st − s9d j1st,s9,sd = 0, s44d

]t j1st,s,s8d − f1st,sdE
0

t

ds9a1st − s9d j1st,s9,s8d = 0,

s45d

]t j2st,s,s8d + f2st,sdE
0

t

ds9a2st − s9d j2st,s9,s8d = 0,

s46d

with the initial values

f1st = s,sd = 1, f2st = s,sd = 1, s47d

j1st = s,s,s8d = 0, j2st = s,s,s8d = 0, s48d

j1st,s,td = − f1st,sd, j2st,s,td = f2st,sd. s49d

Indeed we have seen from Eqs.(41) and(42) that, in the case
of finite-temperature, theO operators generally involve the
noises, even though at zero temperature they do not.

With the above evolution equations forf ist ,sd and
j ist ,s,s8d, we are able to simulate the system dynamics by
solving the non-Markovian QSD equation(40).1 But our aim
in this paper is to take the quantum trajectories as theoretical
tools rather than as numerical applications. Clearly, the solu-
tions of the abovenonlinear coupledequations are hard to
deal with. In the next subsection, we will show remarkably
that the evolution equations forf ist ,sd and hist ,s,s8d with
respect tos can be turned into a set of first-order linear
uncoupled equations.

B. Decoupling evolution equations forO operators

The functions appearing in Eqs.(43)–(46), as they stand,
are very difficult to handle analytically. However, as shown
in [29] (also see[24]), great simplification may arise through
investigating the dependence of the functions ons rather than
t. It is proved here that the evolution equations for theO
operators with respect tos form an uncoupled set of linear
differential equations. The key observation comes from the
Heisenberg operator approach to the non-Markovian QSD
[24,29]. For our purposes in this paper, the main task here is
to find the evolution equations for

Assd = kzukwuUtassdu0l = O1st,s,z* ,w*dkzukwuUtu0l s50d

and

Bssd = kzukwuUta
†ssdu0l = O2st,s,z* ,w*dkzukwuUtu0l, s51d

whereUt is the unitary operator for the extended system(14):
uctotstdl=Utuctots0dl. Clearly, the operatorsAssd andBssd de-
pend on the timet, but for our purposes, we regard them, and
therefore also the operatorsOist ,s,z* ,w*d, as functions ofs.
The timet appears as a parameter only. Obviously, the evo-
lution equations forAssd andBssd are equivalent to that for
O1st ,s,z* ,w*d and O2st ,s,z* ,w*d with respect tos, respec-
tively. First, note that the Heisenberg equation of motion for
assd gives rise to

i]sassd = Vassd − o
l

În̄l + 1 gle−ivlsdlssd

+ o
l

În̄l gle−ivlsel
†ssd. s52d

Therefore, we get

i]sAssd = VAssd + o
l

În̄l + 1 gle−ivlskzukwuUtdlssdu0l

+ o
l

În̄l gle−ivlskzukwuUtel
†ssdu0l. s53d

Simply integrating the Heisenberg equation of motion for the
environmental annihilation operatordlssd, we get

1More accurately, the numerical simulations need the nonlinear
version of the non-Markovian QSD equation which can be read off
directly from Eq.(40).
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kzukwuUtdlssdu0l = − igl
*În̄l + 1E

0

s

ds8eiwls8kzukwuUtass8du0l,

s54d

where we have used the fact that initiallydls0du0l=dlu0l
=0.

Next, we note that the operatorel
†ssd in Eq. (53) can be

dealt with in a similar fashion. In order to find a closed
equation, however, we have to carry out an expansion at the
final time t rather than the initial values=0. This simplifies
the calculations:kzukwuUtel

†stdu0l=wl
* kzukwuUtu0l. Thus, we in-

tegrate the Heisenberg equation of motion forel
†ssd given the

final value ats= t to get

el
†ssd = el

†std − iÎn̄lgl
*E

s

t

ds8 e−ivls8ass8d; s55d

hence, we get

kzukwuUtel
†ssdu0l = wl

* kzukwuUtu0l − iÎn̄l glE
s

t

ds8 e−ivls8

3kzukwuUtass8du0l. s56d

Combining the results(53), (54), and (56), we obtain a
linear first-order differential equation forAssd:

] Assd + VAssd − iE
0

s

ds8a1ss− s8dAss8d − iE
s

t

ds8

3a2ss8 − sdAss8d = − iws
*kzukwuUtu0l, s57d

for sP f0,tg and a fixed final timet. Note that Eq.(57) has to
be solved with the final valueAss= td=akzukwuUtu0l.

By noting that Assd=O1st ,s,z* ,z*dkzukwuUtu0l from Eq.
(50), so with the derived first-order differential equation for
Assd, we may immediately obtain the evolution equation
with respect tos for the desired operatorO1st ,s,z* ,w*d. We
find

i]sO1st,s,z* ,w*d = VO1st,s,z* ,w*d − iE
0

s

ds8

3a1ss− s8dO1st,s8,z* ,w*d − iE
s

t

ds8

3a2ss8 − sdO1st,s8,z* ,w*d + iws
* , s58d

with the final value

O1st,s= t,z* ,w*d = a. s59d

Similarly, we get the evolution equation forO2st ,s,z* ,w*d,

i]sO2st,s,z* ,w*d = − VO2st,s,z* ,w*d

+ iE
0

s

ds8a2ss− s8dO2st,s8,z* ,w*d

+ iE
s

t

ds8a1ss8 − sdO2st,s8,z* ,w*d − izs
* ,

s60d

with the final value

O2st,s= t,z* ,w*d = a†. s61d

Remarkably, we see that the coupled nonlinear equations
(28) and (29) have become a set of uncoupled linear Eqs.
(58) and(60). We emphasize that Eqs.(58) and(60), with the
final values(59) and(61), respectively, are all that is required
for derivation of the master equation for the damped har-
monic oscillator.

Equations(58) and (60) in terms of f1st ,sd , f2st ,sd and
h1st ,s,s8d ,h2st ,s,s8d can be written as a set of uncoupled
linear equations forsP f0,tg, with t fixed,

]sf1st,sd + iVf1st,sd +E
0

s

ds8 a1ss− s8df1st,s8d

+E
s

t

ds8 a2ss8 − sdf1st,s8d = 0, s62d

]sf2st,sd − iVf2st,sd −E
0

s

ds8 a2ss− s8df2st,s8d

−E
s

t

ds8 a1ss8 − sdf2st,s8d = 0, s63d

]sj1st,s,s8d + iV j1st,s,s8d +E
0

s

ds9 a1ss− s9d j1st,s9,s8d

+E
s

t

ds9 a2ss9 − sd j1st,s9,s8d = dss− s8d, s64d

]sj2st,s,s8d − iV j2st,s,s8d −E
0

s

ds9 a2ss− s9d j2st,s9,s8d

−E
s

t

ds9 a1ss9 − sd j2st,s9,s8d = − dss− s8d, s65d

with the final values

f1st,s= td = 1, f2st,s= td = 1, s66d

j1st,t,sd = 0, j2st,t,sd = 0, for all s. s67d

C. Master equation for the damped harmonic oscillator

Now we are going to derive the exact master equation for
the damped harmonic oscillator. We will see that the evolu-
tion equations ofOi are crucial for deriving the correspond-
ing non-Markovian master equation from the stochastic
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Schrödinger equation(40). From Eq.(30), we get

]trt = − iVfa†a,rtg + fa,MhPtŌ1
†st,z* ,w*djg

− fa†,MhŌ1st,z* ,w*dPtjg + fa†,MhPtŌ†
2st,z* ,w*djg

− fa,MhŌ2st,z* ,w*dPtjg. s68d

For Eq.(68) to be a closed, convolutionless master equa-
tion, we need the explicit expressions for the ensemble
means:

R1st,sd ; MfO1st,s,z* ,w*dPtg,

R2st,sd ; MfO2st,s,z* ,w*dPtg. s69d

For this purpose, we take the meanMf¯Ptg of Eq. (58), and
then we get

]sR1st,sd + iVR1st,sd + iE
0

s

ds8a1ss− s8dR1st,s8d

− iE
s

t

ds8a2ss8 − sdR1st,s8d

= − iMfws
*Ptg. s70d

Thus, we have to find an expression forMfzs
*Ptg. By using

Novikov’s theorem[33], it is possible to relate it to theO
operator again[20]:

Mfws
*Ptg =E

0

t

ds8a2
*ss− s8dMfPtO2

†st,s8,z* ,w*dg

=E
0

t

ds8a2
*ss− s8dR2

†st,s8d. s71d

Thus, we find the equations for the operatorR1st ,sd, as a
function of s, to be

]sR1st,sd + iVR1st,sd +E
0

s

ds8a1ss− s8dR1st,s8d

+E
s

t

ds8a2ss8 − sdR1st,s8d

=E
0

t

ds8a2
*st − s8dR2

†st,s8d, s72d

and similarly, for the operatorR2st ,sd, we have

]sR2st,sd − iVR2st,sd −E
0

s

ds8a2ss− s8dR2st,s8d

−E
s

t

ds8a1ss8 − sdR2st,s8d

= −E
0

t

ds8a1
*ss− s8dR1

†st,s8d. s73d

Note that Eqs.(72) and(73) have to be solved with the “final
values”

R1st,sds=t = art,R2st,sds=t = a†rt, s74d

as one can easily see from Eqs.(59) and(61). Note that Eqs.
(72) and (73) are a set of coupled linear equations that are
expected from Eqs.(41) and (42).

By observing Eqs.(41) and (42), we find that the solu-
tions of the crucial equations(72) and (73) with the final
values(74) must take the form

R1st,sd = Fst,sdart + Gst,sdrta, s75d

R2st,sd = Hst,sda†rt + Ist,sdrta
†, s76d

where Fst ,sd ,Gst ,sd ,Hst ,sd, and Ist ,sd are the complex
functions with the appropriate final values ats= t:

Fst,s= td = 1, Gst,s= td = 0, s77d

Hst,s= td = 1, Ist,s= td = 0. s78d

The equations for the functionsFst ,sd ,Gst ,sd ,Hst ,sd, and
Ist ,sd will be given in the next section.

Once we haveRist ,sd=MfOist ,s,z* ,w*dPtgsi =1,2d in
the form of Eqs.(75) and (76), it is straightforward to write
down the master equation. Simply inserting the result(75)
and (76) into the general form of the non-Markovian QSD
master equation(68), we get

]trt = − iVfa†a,rtg + astdfa,ra†g + bstdfa,a†rg + cstdfa†,arg

+ dstdfa†,rag, s79d

with

astd =E
0

t

dsfa1
*st − sdF*st,sd − a2st − sdIst,sdg, s80d

bstd =E
0

t

dsfa1
*st − sdG*st,sd − a2st − sdHst,sdg, s81d

cstd = − a*std, s82d

dstd = − b*std. s83d

Equation(79) is valid for arbitrary temperature, so it is
expected to provide a good description for the low-
temperature regimes where the Markov approximation is
doomed to fail. Clearly, the master equation(79) derived in
this way automatically preserves the positivity, Hermiticity,
and trace. Moreover, the above master equation takes a con-
volutionless form, but the coefficients are time dependent, so
it depicts the non-Markovian dynamics.

D. Determination of the coefficients of master equation

In what follows, we show that the coefficients
astd ,bstd ,cstd, anddstd can be expressed in terms of solutions
of some basic equations. Suppose thatust ,sd is the solution
to the homogeneous equation
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]sust,sd − iVust,sd +E
s

t

ds8bss,s8dust,s8d = 0, s84d

with the final valueust ,s= td=1. Here the kernel function
bss,s8d is defined as

bss,s8d = a2ss− s8d − a1ss8 − sd. s85d

Then from Eqs. (72) and (73) it can be shown that
Fst ,sd ,Gst ,sd ,Hst ,sd, and Ist ,sd satisfy the inhomogeneous
equations

]sFst,sd + iVFst,sd −E
0

s

ds8bss8,sdFst,s8d = − Xst,sd,

s86d

]sGst,sd + iVGst,sd −E
0

s

ds8bss8,sdGst,s8d = Xst,sd,

s87d

]sHst,sd − iVHst,sd −E
0

s

ds8bss,s8dHst,s8d = Yst,sd,

s88d

]sIst,sd − iVIst,sd −E
0

s

ds8bss,s8dIst,s8d = − Yst,sd,

s89d

where the functionsXst ,sd andYst ,sd are given by

Xst,sd =E
0

t

ds8a2ss8 − sdu*st,s8d, s90d

Yst,sd =E
0

t

ds8a1ss8 − sdust,s8d. s91d

Hence it is easy to see that the coefficients of the master
equation(79) can be expressed in terms of the solutions of
those basic equations(84) and (86)–(89).

V. CONCLUSIONS

The non-Markovian quantum trajectories offer a method
for exploring a quantum system coupled to a non-Markovian
environment. Such a situation appears in various physical
problems, such as materials with photonic band gaps or the
output of atom lasers. It is known that master equations and
quantum trajectories in Markov regimes are of fundamental
importance for the description of open system dynamics.
Moreover, they are often complementary to each other, pro-
viding a full picture of the underlying physics. In this paper
we show that in the case of general finite-temperature this
fruitful interrelation between the master equations and the
quantum trajectories can also be established in the non-
Markovian regimes. In particular, we show that by averaging
the stochastic Schrödinger equation the exact non-Markovian
master equation of the damped harmonic oscillator at finite-
temperature can be obtained. The master equation derived in
this way takes a convolutionless form, so the non-Markovian
property is encoded in the time-dependent coefficients.

In the Markov regimes, the derivation of a master equa-
tion poses no special difficulties. However, it is a rather dif-
ficult task to derive a convolutionless exact master equation
in the non-Markovian regimes. As shown in this paper, non-
Markovian quantum trajectories provide a very useful tool in
handling exact or approximate non-Markovian master equa-
tions. We believe that the techniques employed in this paper
may find broader applications to other quantum open sys-
tems, leading to the establishment of a general master equa-
tion for the system interacting with a bosonic heat bath. This
will be the topic of future investigations.
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