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Non-Markovian quantum trajectories versus master equations: Finite-temperature heat bath
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The interrelationship between the non-Markovian stochastic Schrédinger equations and the corresponding
non-Markovian master equations is investigated in the finite-temperature regimes. We show that the general
finite-temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master
equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in
which a harmonic oscillator is coupled to a finite-temperature reservoir in the rotating-wave approximation.
The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the
guantum trajectories, relying upon no assumption of coupling strength or time scale. The master equation
derived in this way automatically preserves the positivity, Hermiticity, and unity.
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[. INTRODUCTION bert space, the stochastic Schrédinger equation evolves an
N-dimensional vector and so offers numerical advantages
Open systems are generic models for the study of quansver a master equation which evolvesx N density ma-
tum dynamics in the sense that a real quantum system igix. Very recently, we have shown that, beyond the numeri-
either difficult to isolate from the influence of its environ- cal advantages and the conceptual merits, the non-Markovian
ment or is deliberately put in touch with some purposelystochastic Shrédinger equations may also provide a powerful
engineered devices in order to make a measurefde®jt In  tool for deriving the corresponding non-Markovian master
any case, the system and environment, initially independengquations. This idea has been explored in several distinct
will become entangled due to the interaction; then, the syscases including a two-level atom interacting with a zero-
tem state will not remain in a pure state and the dynamics i¢emperature heat batfi20,28§ and a Brownian particle
described by a nonunitary process. In many physically relcoupled linearly to a finite-temperature heat bath via the po-
evant cases, a typical open quantum system normally insition variable commonly known as the quantum Brownian
volves a small system of interest coupled to a large systermotion model[21,29,3Q. The purpose of this paper is to
with a large number of degrees of freedom, commonlyextend this research to more general finite-temperature re-
known as the heat bath, reservoir, or generally environmengimes where the Lindblad operator is not a Hermitian opera-
Traditionally, the dynamics of a system of interest is de-tor. In this paper, we take the damped harmonic oscillator as
scribed by a Lindblad master equation which can often beur primary example. This simple model is of great interest
derived if the standard Born-Markov approximation is as-in quantum optics because it is an essential ingredient in the
sumed[2-5]. Moreover, it turns out that such a Lindblad theoretical investigations of various quantum optical experi-
master equation is also capable of being unraveled into variments. We show here in detail that the non-Markovian quan-
ous stochastic Schrodinger equations known as quantum trédm trajectories allow the derivation of the exact convolu-
jectories[6—12. Both the master equations of the Lindblad tionless master equation irrespective of the coupling
form and their stochastic unravelings have become an intestrength, the separated time scales, or the special distribu-
gral part of the theories of open quantum systems. Howevetjons of the environmental frequencies.
when the heat-bath memory effects are relevant, such as in The organization of the paper is as follows. In Sec. II, we
the cases of a higlp cavity, atom laser, or structured envi- introduce both zero and finite-temperature stochastic
ronment, where the Born-Markov approximation ceases té&chrddinger equations. In Sec. lll, we show how to derive an
be valid, and hence the dynamics of the open quantum sys$xact master equation from the finite-temperature quantum
tem must be described by a non-Markovian prodé8s14. trajectories. In Sec. IV, we establish the stochastic
It has been long known that the derivation of a non-Schrodinger equation for the damped harmonic oscillator and
Markovian master equation is a formidable t44k,16. show that the corresponding exact convolutionless master
Recent research on open quantum systems has suggesgsfliation can be obtained by averaging the solutions to the
that, alternatively, the non-Markovian dynamics may be defnon-Markovian stochastic Schrodinger equation without any
scribed by a diffusive stochastic Schrédinger equatiorapproximations—in particular, without a Markov approxima-
known as non-Markovian quantum trajectories or quantumtion. We conclude this paper in Sec. V.

state diffusion equationd 7—29. For anN-dimensional Hil- L. NON-MARKOVIAN STOCHASTIC SCHRODINGER

EQUATION
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uted eigenfrequencies, and creation and annihilation op- d?z 2
eratorsb],b,. The quantum Hamiltonian for the system plus pr = M| )¥l] =f € | (W] )
reservoir can be typically written gsve seth=1)
The linear non-Markovian QSD equati¢n) is valid for a
Hiot = Hsys* Hint + Hpath= Hgys * > (g,L™b, +g,Lb)) zero-temperature heat bath and also for a finite-temperature
A heat bath with the condition=L". In general, ifL# LT, we
+> wblb ) shall see below that the finite-temperature non-Markovian
N AN QSD equation takes a more complicated form.

whereg, are the coupling constants and the system operator
L coupled to the environment is often called the Lindblad
operator. The finite-temperature stochastic Schrédinger equation or
For the open quantum system described by @¢. the  non-Markovian QSD equation can be obtained by mapping
linear non-Markovian quantum-state diffusioQSD) equa-  the system with the total Hamiltonigi) and an initial ther-
tion has been derived from the formal solution of themal state to an extended system with the vacuum state such
Schrédinger equation for the total system in a special reprethat the zero-temperature stochastic Schrodinger equation for
sentation[18], the extended system is equivalent to the situation where the
i heat bath is at finite-temperatuf#8,31. To be specific, for
13| Wy = Hi(D[ W), (2) " the total Hamiltoniar(1), we assume that the heat bath is in

where|¥,) stands for the pure-state vector for the total sys—a thermal equilibrium state at temperatdyanith the density

tem andH,(t) is the HamiltoniarH, in the interaction rep- operator
resentation with respect to the free-bath Hamiltonian: @ BHbath
pbath(o) = z ’

B. Finite temperature (T # 0)

9
He(t) = ei“batﬂ(Hsys+ S (g\LTa + gALaI))e-i“batﬁ
A whereZ=Tr{ePHat] is the partition function an@=1/kgT.

Now we introduce a fictitious heat bath with the bosonic

operatorsck,cl, which has no direct interaction with the sys-

tem, ensuring that after tracing over the fictitious variables,

In this subsection, let us assume that the initial pure state dhe initial state of the original bath will be in the thermal

the system and the environment is taken to be state ppa{0). The total Hamiltonian with two independent

heat baths is given by

= Hgyst 2 (giLTae ot + g Lalé). (3)
A

[Wo) =) ® [0 @ [0+ ®[0) ® -+, (4)
Hior= Heys+ > (GiLTb, + gy Lbl) + > w,blb, - >, w,clc,.
with an arbitrary system stateé,) and the environment in the o A MR I A AR A A
ground statg0). By using a Bargmann coherent-state basis (10)
for the environmental degrees of freedom|z,)
=exp[zAaI}|0x>, and resolution of the identity The boson Bogoliubov transformation formally couples
) the syst$m of interest to two sets of bosonic operaulggn:.i;r
d<z
= [ Penfiz) (5 ndee
" by =V, + 1d, + Vel (11)
the total statéW,) can be expressed as
&z ¢\ = Vny + 1e, + Vnydf, (12)
W) :f . ° Tw@nel2, (6)  \wheren, is the mean thermal occupation number of quanta
in modew,:
where |2=|z))®2,® - ®|z) -, d?z=d’zd’z---d?z- -,
and|z|%==, |z,|? Then the resultant pure state for the system = ;. (13)
of interest|(Z'))=(z|¥,) was shown to satisfy the follow- expliwy/KgT) — 1
ing equation(17,18: The transformed Hamiltoniaft(;,; in terms ofd, e, is
t Sis then given by
G =—1H s‘//t"'LZ:‘/ft_LTf dsa(t-9—, (7) — .
i 0 bz Hior=Hsys+ > Vny + UgyLTd, + g,Ld)) + X w,d)d,
A X \
wherea(t-s)=%, |g,[?e7'“x""9 is the bath correlation func- = iy :
tion andz =-i=, g,z,€“\ is a colored, complex Gaussian + 2}\: Vn(g,L'e\ +g\Ley) - 2}\: )\8\8). (14

noise with M[z]=M[zz]=0 and M[zz]=«a(t-s). Note
here thatM[ ] is the statistical mean over the Gaussian pro-Thus we have mapped the finite-temperature problem into a
cessz. By construction, zero-temperature one with the initial vacuum state denoted
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by |0)=]0)¢4® |0),, satisfyingd,|0)=0,e,|0)=0. With the new
Hamiltonian (14), the finite-temperature problem has been

reduced to a zero-temperature one. Thus the resultant pure

state for the system of interegt=|yy(z",w")) satisfies the

PHYSICAL REVIEW A 69, 062107(2004)

Ol = = IHgygtly + Lz 4 — LTO4 (6,2, W) oy + LW 14

—LO(t,Z W)k, (24)

following stochastic Schrodinger equation with two indepen—Whereai(i =1,2) denote

dent noiseg, ,w; :

Sy

*

t
atwt:—iHsyWLzth—L*f dsay(t—9)— +Lw
0

t

QL

—Lf dsa,(t—s)—, (15)
0 s
where
ay(t=9) =, (n, + 1)|g,|2e 9, (16)
A
a(t=s) = 2,y |g, [P n 17
A
are the bath correlation functions and
7 =-i \n +1gZe, (18)
A
W =i\, gweie (19
A

are two independent, colored, complex Gaussian noises sat-

isfying

M[z]=M[zz]=0, M[zz]=ayt-9), (20

M[w] = M[wwg] =0, M[wwe] = an(t-9). (21)

_ t
Oi(t,z*,w*):J ai(t—9)0(t,s,2,W)ds (i=1,2.
0

(25

We can determine the operatd®y ,(t,s,z ,w’) in Egs.
(22) and(23) from the “consistency conditions”

S S S S
f7t_*t =t at_: =, (26)
0zg 6z Mg W
together with the initial conditions:
O,(t=ssw,Z)=L, O,t=ssw’,z)=L" (27

From the consistency conditions, we may get the evolu-

tion equations for O;=04(t,s,Z,w°) and O,
=0,(t,s,Z",W):
30, = [~ iHge+ LZ + LW, - L0, - LO,,0]
50, 80
A R (29)
ozg Oz
and
30, = [~ Hge+ LZ + LW, - L10, - LO,,0]
50, 80,
L= L= (29)
é\Ns MS

It should be remarked here that tkk operators can be
determined in many interesting situatiois,29, and more-
over, that the approximat® operators can always be ob-

Note here that\[ ] is the statistical mean over the Gaussiantained by invoking a perturbation technig[20,21,28

processeg, andw,. Again, by constructiong=M[|y){y4/].
In the zero-temperature limifT—0, we have a;(t—9)
—3,|o\2exd-iw, (t-s)] anda,(t—s) — 0; then, Eq(15) re-
duces to the simple zero-temperature cé8e However, in
this paper, without an explicit statement, we will always
work in the finite-temperature regimes. From Ei5), we

Ill. NON-MARKOVIAN MASTER EQUATION AT
FINITE-TEMPERATURE

From the non-Markovian QSD equatig24), one may
take the statistical mean to derive the master equation and

see that the finite-temperature heat bath has induced both t9&t

spontaneous transitions and stimulated transitions; moreover, , = _
it also gives rise to an absorptive process caused by taking ‘"t~

thermal quanta from the heat bath.
The stochastic Schroédinger equatictb) can be greatly
simplified by using the ansatz

S

x —

O4(t,s,2", W), (22

S =0,(t,5,2 ,W) 4.

*
S

(23)

Then Eq.(15) takes a more compact form

~i[Heyspid + [LM{PO, (1,2, W)}]
~[LT, M{Oy(t,Z' WP+ [LT, M{PO¥t,Z ,W)}]
—[L, M{O,(t,Z,W)PJ].

This is the general master equation at finite-temperature. Al-
though this last result is still not a closed evolution equation
for py, it nevertheless shows how a convolutionless master
equation may result from our knowledge of the operators
Oi(t,s,z",w") (i=1,2).

As we mentioned before, in the case of finite-temperature
with L#LT, the O operators will generally contain noises
z ,w,. However, we begin with some special cases in which

(30)
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the operator®;(t,s,z,w’) turn out to be independent of the Hamiltonian (1), where o7 denotes the Pauli matrix for the
noisesZ ,w,. In such a case, we may write,(t,Z ,w")  ith qubit. The master equation for such a dephasing model is
given by Eq.(34) with x=0.

Of particular interest is the Markov approximation where
ay(t=9)=y,8(t-9), ax(t=s)=y,8(t—9); then, O,=(y,/2)L,

ﬁtpt:_i[Hsyspt]+[Lapt62|r_(t)]+[61(t)ptaLT]+[LTapt6£(t)] 022()/2/2)LT,.SO the resulting master equation takes the
_ well-known Lindblad form
+[Ox(t)py, L1, (31

for the non-Markovian open system.

As a direct application of E(q.31), let us discuss an im-
portant dephasing process: the system Hamiltonian com- L2 A Tol = LL o = oL LT 39
mutes with the Lindblad operat§Hsys, L]=0. More gener- 2( P pmpLL). (39)

2';1" Y_V:LT 23:/ r(:;r;Scigirstaalntsﬂ\rizki)lsethg?g;ti\g/l ﬁch)_p')eHrSayi]or ~ Before ending this section we have two remarks in order.
For 'Ehis ca’se it is easy to é:heck that the solutions to EqulrSt’. let us note that the 'non—Markowan property of a con-
(28) and(29) ére given by volutionless master equatigBl) or more generally Eq.30)
is characterized by the time-dependent coefficients. Second,
O4(t,5,7 W) =L - (t-9), (32) if the O operators _appearing in EgR2) and(23) or i_n Eq. _
(30) do contain noises, as seen from the next section, things
. . become much more complicated. There is no general guide-
O(t,s,Z,W)=L-«(t-s). (33 Jine how to derive the closed convolutionless master equa-
tion from Eg. (30). However, it has been shown that the
evolution equations for th® operatorsO;(t,s,z" ,w’) with

respect tos rather thant are essential for such a derivation.

=6i(t) and Eq.(30) is indeed a convolutionless, closed mas-
ter equation,

. Y
apr==i[Hsys pe] + El(zl—Ptl-Jr ~L'Lp - pL™L)

By simply inserting Eqs(32) and(33) into Eq.(31), a closed
convolutionless master equation is immediately obtained:

d _ . Here we believe that the existence of a set of uncoupled
T S i[Hsys pd] + f(O[Lp, L1+ T (O[L, oL ]+ 9O oy, L] evolution equations for th® operators with respect ®is a
very powerful ansatz. Obviously, this ansatz remains to be
+g (DL, p], (34  tested in more exampld@4,29.

where the time-dependent coefficients are given by IV. DAMPED HARMONIC OSCILLATOR

t t . - . .
f(t) = f a(t-9)ds and g(t)= Kf alt-9)(t-s)ds. A. Stochastic Schrodinger eq.uatlon for the damped harmonic
0 0 oscillator
(35) In this section we show that the non-Markovian quantum

QSD approach is versatile enough to handle the general
Note here that the finite-temperature correlation functiorfinite-temperature cases with# LT. To simplify the calcula-

a(t-s) is given by tions as much as possible, we consider here the simplest
_ model of this kind but still worth studying—the damped har-
alt-9)=ay(t-g) +ay(t—s) = nt—-9g) +iv(t-9), monic oscillator model. The model consists of a harmonic

(36)  oscillator with frequency), coupled linearly to a large num-
ber of harmonic oscillatorsHSyS:QaTa,L:a. We assume
where that the heat bath is at finite-temperatdreThis model has
been discussed in various conteggge, e.9.[3,6]). In what
follows, we use this model to show explicitly how the finite-
temperature master equation can be derived directly from the
non-Markovian quantum trajectory equation. For the damped
harmonic oscillator at zero temperature, it has been shown
ut-9)=- 2| sifw,(t-9)]. (38 that w; =0 and O,=F(t)a, 0,=0 [18,29. Thus the zero-
» temperature non-Markovian master equation is immediately
The master equatio(B4) can be immediately applied to obtained from Eq(31). For the finite-temperature heat bath,
qubit decoherence and disentanglem{@&®]. To be specific, as to be seen below, th® operatorsO; and O, for the
let us consider the dephasing process in a quantum registdamped harmonic oscillator will contain noisz{sand wf;
containingN noninteracting qubits. It is known that one of hence, things become much more involved. We emphasize
the most important decoherence processes in the quantutimat, for a quantum system with+ L', the dependence of
registers is thalN qubits collectively interact with some en- the O operators on the noises is a generic feature for the
vironmental noise which only randomly interrupts the phasdinite-temperature cases. First, note that the exact quantum-
of each qubit. This problem can be effectively modeled bystate diffusion equation for the damped harmonic oscillator
choosing Hgy=3Y; wiof and L=3), o7 in the general can be written as

W\

2kgT

7(t=-9) =2 |g)/*coth ( )COS{M(I -9], (37
A
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ol =—iQatay +az g - a0, (t, 7, W) i

+a'w gy — a0y (t, 7 W), (40)
whereQ; are defined in Eq(25).

Crucial to the solution of QSD equatiqdO) is the ex-
plicit determination of theD operators. It is easy to check
that the following ansatz will give rise to solutions of Egs.
(28) and(29),

t
dSIJ 1(tysa s’)W*! 1]

S’

O,(t,s,Z,W) = fl(t,s)a+f (42

0

t
O,(t,5,2, W) = f,(t,5)a’ + f dsj,(t,58)z,, (42
0

where f;(t,s) and j;(t,s,s’) satisfy thecoupled nonlinear
integro-differential equations

t

of4(t,9) —iQf(t,s) - fl(t,s)f ds a;(t—s')f(t,s)

0

t

- fl(t,S)J dS’ az(t - S’)fz(t,sl)
0

t

; fo

t
af,(t,9) +1Qf,(t,9) + fz(t,s)f ds ay(t-9')f4(t,s)
0

ds ay(t’ —9)j,(t,s',5) =0, (43)

t
+ fz(t,s)fo ds’ a,(t—8')f,(t,s")

t
+f ds’ay(t - 9)j4(t,9",5) =0, (44)
0
t
ajq(t,s,8") = fl(t,s)fo ds’ ay(t - 9")j4(t,9",s") =0,
(45)
t
djo(t,ss') + fz(t,S)JO ds’ ay(t - 8")j,(t,s",s") =0,
(46)
with the initial values
fit=s5=1, fy(t=s95=1, (47)
ji(t=s,58)=0, jo(t=s,55)=0, (48)
jl(tvsat) == fl(t1s)1 JZ(tVSlt) = f2(t1s) . (49)

Indeed we have seen from E@41) and(42) that, in the case
of finite-temperature, th® operators generally involve the
noises, even though at zero temperature they do not.

PHYSICAL REVIEW A 69, 062107(2004)

With the above evolution equations fofi(t,s) and
ji(t,s,s'), we are able to simulate the system dynamics by
solving the non-Markovian QSD equatio#0)." But our aim
in this paper is to take the quantum trajectories as theoretical
tools rather than as numerical applications. Clearly, the solu-
tions of the abovenonlinear coupledequations are hard to
deal with. In the next subsection, we will show remarkably
that the evolution equations fdk(t,s) and h;(t,s,s’) with
respect tos can be turned into a set of first-order linear
uncoupled equations.

B. Decoupling evolution equations forO operators

The functions appearing in Eqgl3)—(46), as they stand,
are very difficult to handle analytically. However, as shown
in [29] (also sed?24]), great simplification may arise through
investigating the dependence of the functionsoather than
t. It is proved here that the evolution equations for e
operators with respect te® form an uncoupled set of linear
differential equations. The key observation comes from the
Heisenberg operator approach to the non-Markovian QSD
[24,29. For our purposes in this paper, the main task here is
to find the evolution equations for

A(S) = <Z|<W|uta(s)|o> = Ol(tlsv Z*1W*)<Z|<W|ut|o> (50)
and
B(s) = (z|(wltha’(s)|0) = O,(t,s,Z W )(Z(Wlt4[0), (51)

wherel/, is the unitary operator for the extended syst@d):
|thot(1)) =Ui|hoi(0)). Clearly, the operator(s) andB(s) de-
pend on the timé, but for our purposes, we regard them, and
therefore also the operato®(t,s,z ,w’), as functions of.

The timet appears as a parameter only. Obviously, the evo-
lution equations forA(s) andB(s) are equivalent to that for
O,(t,s,Z' ,w") and O4(t,s,Z ,w") with respect tos, respec-
tively. First, note that the Heisenberg equation of motion for
a(s) gives rise to

ida(s) = Qa(s) = X Vn, + 1g,e7 ¥y (9)
A
+ 3V, g e "e(9). (52)
N
Therefore, we get

i19A(S) = QA(S) + > vy + 1 g, 2z (w|4,d, (5)|0)
A

+ 2\, g & Xz Withe](9)]0). (53)
A

Simply integrating the Heisenberg equation of motion for the
environmental annihilation operatdf(s), we get

More accurately, the numerical simulations need the nonlinear
version of the non-Markovian QSD equation which can be read off
directly from Eq.(40).
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S
AWy (9]0) = ~ g\ + 1 f ds @ (A wltha(s)|0),
0

(54)

where we have used the fact that initialt(0)|0)=d,|0)
=0.

Next, we note that the operatef(s) in Eqg. (53) can be
dealt with in a similar fashion. In order to find a closed

PHYSICAL REVIEW A 69, 062107(2004)
1040,(1,5,Z W) = - Q0,(t,5,Z W)

S
+ if ds’ ay(s—9)0,(t,s',Z W)
0

t
+ if ds’ ay(s' - 9)0,(t,8',Z, W) —izg,
S

(60)

with the final value

equation, however, we have to carry out an expansion at the

final time t rather than the initial value=0. This simplifies
the calculations¢z(wjt/e] (1)|0) =w,(z|(w|t4|0). Thus, we in-
tegrate the Heisenberg equation of motionéhls) given the
final value ats=t to get

m— t : ’
eI(s) = e{(t) —iVng, f ds e'“»a(s'); (55
S
hence, we get

t
(Al (910) = Awithio) -V, g, | s e

X (Z(witha(s')[0). (56)

Combining the result$53), (54), and (56), we obtain a
linear first-order differential equation fax(s):

S

t
dA(s) + QA(s) —if ds a,(s-8")A(S) - if ds

0

X (s’ — 9A(S) = — iw(Z(w|i4]0), (57)

for se[0,t] and a fixed final timé. Note that Eq(57) has to
be solved with the final valug(s=t)=a(z|(w|i4]|0).

By noting that A(s)=0,(t,s,z ,Z"){z|(w|t/|0) from Eq.
(50), so with the derived first-order differential equation for
A(s), we may immediately obtain the evolution equation
with respect tcs for the desired operatd;(t,s,z ,w"). We
find

S

i050,(t,5,Z W) = QO,(t,5,2 W) - if ds’

0
t
X ay(s—5)0,(t,8 7 W) - if ds’
S
X ap(s' - 9)04(1,8',Z W) +iw,, (58
with the final value
(59

Oy (t,s=t,Z,W) =a.

Similarly, we get the evolution equation f@(t,s,z ,w"),

O,(t,s=t,Z,w)=a. (61)

Remarkably, we see that the coupled nonlinear equations
(28) and (29) have become a set of uncoupled linear Egs.
(58) and(60). We emphasize that Eg&8) and(60), with the
final valueg59) and(61), respectively, are all that is required
for derivation of the master equation for the damped har-
monic oscillator.

Equations(58) and (60) in terms of f(t,s),f,(t,s) and
hy(t,s,s'),hy(t,s,s’) can be written as a set of uncoupled
linear equations forse [0,t], with t fixed,

S

(1) +iQf,(t,5) + J ds’ ay(s-8)f(t,)

0

t
+f ds’ ay(s’ —9)fy(t,s') =0, (62)
dsf5(t,9) —isz(t,s)—JS ds’ a,(s—5')f,(t,s')
0
t
—J ds’ ay(s' —9)f,(t,s') =0, (63)

S

dd1(t,s,8) +iQj(t,s,8) + f de’ ay(s-9)jy(t,8,8")

0

t
* f ds’ ap(s’ ~ 9)ju(t,s",s') = d(s~§'), (64)

S
dso(1,5,8") —iQj,(t,s,8") = f ds’ a,(s—-9")j,(t,5",s")
0

t
- f ds’ ay(s" - 9)jo(t,s",s") == 8(s- &), (65)
S
with the final values
fit,s=t) =1, fyt,s=t)=1, (66)
j1t,t,9) =0, ju(t,t,9=0, foralls. (67)

C. Master equation for the damped harmonic oscillator

Now we are going to derive the exact master equation for
the damped harmonic oscillator. We will see that the evolu-
tion equations ofd; are crucial for deriving the correspond-
ing non-Markovian master equation from the stochastic
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Schradinger equatio®0). From Eq.(30), we get Ry(t,9) et = apy, Ro(t,9) e = ant, (74)
apr=—iQ[a'a,p] +[a, M{P,O, (t,Z",W)}] as one can easily see from E¢89) and(61). Note that Eqgs.
— _ (72) and (73) are a set of coupled linear equations that are
- [af, M{O4(t,Z ,w")P3] + [a', M{PO2(t,Z' ,w")}] expected from Eqg41) and(42).
— . By observing Eqs(41) and (42), we find that the solu-
- [a, M{Ox(t,z ,Ww)P]. (68)  tions of the crucial equation&2) and (73) with the final

For Eq.(68) to be a closed, convolutionless master equa_values(74) must take the form

x);a,m\év.e need the explicit expressions for the ensemble Ry(t,9) = F(t,9)ap, + G(t,9)pa, (75)

Ry(t,s) = M[O4(t,s,Z ,W)P{], Ry(t,s) = H(t,9)a’p, + I(t,s)pa’, (76)

where F(t,s),G(t,s),H(t,s), and I(t,s) are the complex

Rolt,s) = MIO,(t,5.2 WP, (69) functions with the appropriate final valuessatt:
For this purpose, we take the mea(- - -P,] of Eq. (58), and o o
then we get Fits=t)=1, G(ts=t)=0, (77
S
IgRq(t,s) +IQRy(t,s) + if ds ay(s—s)Ry(t,s') H(t,s=t)=1, I(t,s=t)=0. (78)
0

The equations for the functions(t,s),G(t,s),H(t,s), and
I(t,s) will be given in the next section.

Once we haveR(t,s)=M[O(t,s,Z ,W)P](i=1,2 in

, . the form of Eqs(75) and(76), it is straightforward to write
= —IM[WP{]. (70 down the master equation. Simply inserting the re€H)
and (76) into the general form of the non-Markovian QSD
master equatio68), we get

t
- iJ ds’ ay(s' - 9)Ry(t,s')

Thus, we have to find an expression MfzP,]. By using
Novikov's theorem[33], it is possible to relate it to th®

operator agaif20J: ap = —i0[a'a,p] +at)[a,pa’l + b(t)[a,a’p] + c(t)[a’ ap]
* t * * * T
Mwip)= [ dsals=$)MIPOYLS.Z W) +dla’ pal, (79
0 with
t
= f ds a,(s-s)RY(t,S). (72 t . .
0 a(t):f d o, (t —9)F (t,9) — an(t - 9)I(t,9)], (80)
0
Thus, we find the equations for the operaRy(t,s), as a
function of s, to be ¢
s b(t) = f dfa;(t=9G(t,9) ~ ax(t - 9H(t,5)], (81)
&SRl(t,S) + |QRl(t,S) + f ds al(S— S’)Rl(t,sl) 0
0
t c(t)y=-a'(t), (82
+ f ds ay(s' - 9)Ry(t,s’)
. dt) = - b'(1). (83)
:f ds’ ay(t - s)RY(L,S), (72) Equation(79) is valid for arbitrary temperature, so it is
0 expected to provide a good description for the low-

doomed to fail. Clearly, the master equatig?®) derived in
_ s , , this way automatically preserves the positivity, Hermiticity,
IR(1,5) —1QR(1,8) - . ds’ ay(s = §')R(t,S') and trace. Moreover, the above master equation takes a con-
volutionless form, but the coefficients are time dependent, so
t . . . .
it depicts the non-Markovian dynamics.
- J ds’ ay(s’ = 9)R,(t,s') P y
S
D. Determination of the coefficients of master equation

t
=" fo ds'ay(s— $IR(L,S'). (73) In what follows, we show that the coefficients
a(t),b(t),c(t), andd(t) can be expressed in terms of solutions
Note that Eqs(72) and(73) have to be solved with the “final of some basic equations. Suppose thi@ts) is the solution
values” to the homogeneous equation
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t V. CONCLUSIONS

du(t,s) —iQu(t,s) +f ds'B(s,s')u(t,s’) =0, (84
S

The non-Markovian quantum trajectories offer a method

with the final valueu(t,s=t)=1. Here the kernel function for exploring a quantum system coupled to a non-Markovian

B(s,s') is defined as environment. Such a situation appears in various physical
N . . problems, such as materials with photonic band gaps or the
B(s;S") = ax(s=s) —ay(s' - 9). (85 output of atom lasers. It is known that master equations and

Then from Egs.(72) and (73) it can be shown that guantum trajectories in Markov regimes are of fundameptal
F(t,9),G(t,s),H(t,9), andl(t,s) satisfy the inhomogeneous importance for the description of open system dynamics.
equations Moreover, they are often complementary to each other, pro-
viding a full picture of the underlying physics. In this paper
we show that in the case of general finite-temperature this
fruitful interrelation between the master equations and the
quantum trajectories can also be established in the non-
(86) Markovian regimes. In particular, we show that by averaging
the stochastic Schrddinger equation the exact non-Markovian
master equation of the damped harmonic oscillator at finite-
temperature can be obtained. The master equation derived in
this way takes a convolutionless form, so the non-Markovian
(87) property is encoded in the time-dependent coefficients.

In the Markov regimes, the derivation of a master equa-
tion poses no special difficulties. However, it is a rather dif-
ficult task to derive a convolutionless exact master equation
in the non-Markovian regimes. As shown in this paper, non-
Markovian quantum trajectories provide a very useful tool in

handling exact or approximate non-Markovian master equa-
S . . . . .
Al (t,s) —iQI(t,9) _f ds B(s,s)(L,s) = - Y(t,9), tions. We believe that the t.echnlques employed in this paper
0 may find broader applications to other quantum open sys-
(89) tems, leading to the_z establ_ishme_znt of a ger_leral master equa-
tion for the system interacting with a bosonic heat bath. This

dF(t,9) +iQF(t,s) - fs ds' B(s',9)F(t,s') == X(t,9),
0
dG(t,s) +iQG(t,s) - JS ds'B(s’,9)G(t,s') = X(t,9),
0

dH(t,s) —iQH(t,s) - f ds'B(s,s')H(t,s") = Y(t,9),
0

(88)

t
X(t,s):J ds a,(s' —9)u'(t,s'), (90)
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