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Resonance poles in the complex-frequency domain for an oscillating barrier

R. Lefebvré
Laboratoire de Photophysique Moléculaire du CNRS, Université de Paris-Sud, 91405 Orsay, France
and UFR de Physique Fondamentale et Appliquée, Université Pierre et Marie Curie, 75231 Paris, France

N. Moiseye\7
Department of Chemistry and Minerva Center for Non-linear Physics of Complex Systems,
Technion-Israel Institute of Technology, Haifa 3200, Israel
(Received 20 February 2004; published 14 June 2004

The transmissivity calculated as a function of the frequency of oscillation for a particle meeting an oscil-
lating barrier presents a resonant structure, as shown by Hagmaph Phys. Lett. 66, 789 (1995]. The
origin of this structure is explained with the help of the expression giving the scattering amplitudes in the
Floquet picture applied to a periodic Hamiltonian. It is possible to interpret it as due to the poles of the
scattering amplitudes in the complex-frequency domain. For a moderate modulation amplitude the analysis
makes use of the data obtained for the static barrier. The existence of these poles is not limited to the present
model.
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[. INTRODUCTION This was showij13] for a particle scattered by a rectangular
barrier and interacting with an external oscillatory field, the
The scattering of a particle by an oscillating rectangularinteraction being written in the velocity gauge. Replicas of
barrier is an interesting extension of the scattering by a statithe over-barrier resonance structure are produced at energies
rectangular barrier which is treated in all textbooks of quanfelow the barrier top, where no transmissivity is expected for
tum mechanics(see, e.g.,[1,2]). The oscillating barrier a sufficiently thick barrier. The origin of these replicas is
model has been used by Biittiker and Landd3ef] to pro-  that, at these energies, absorption of a quantum raises the
pose an expression for the time it takes for a particle tgparticle to one of the above-barrier resonances where trans-
tunnel through a barriefsee[5] for a review. Oscillating  mission is facilitated. Hagmanii4] has recently developed
barriers of more general shapes have also been studied aAdimilar analysis for an oscillating barrier. Instead of study-
shown to lead at high frequencies to resonances similar thd the transmissivity profiles as a function of incident en-
those of a double barrig6]. The oscillating barrier is con- €rgy, he gave these profiles at fixed incident energy as a
sidered as a good starting point to understand the mechanisinction of the frequency of oscillation. A resonant structure
of transmission through mesoscopic systems when there isi§ 0Pserved, which has also its explanation in the mechanism
time-varying perturbation. A good example of such processeﬁf the replicas. The motivation now is the search for the

is photon-assisted tunneling in semiconductor structures witf €duencies which favor transmission. It is this structure
a multiple-quantum-well potentid7—9]. For a static poten- which is the object of the present study. It will be shown to

: o ; . be related to the complex poles of the scattering amplitudes
tial the transmission is known to present a special proﬁleIn the frequency plane.

when there are resonances associated with the system. This IS After showing in Sec. Il the procedure which is followed
the rc]ase for the dOUblﬁ barrier, w_herfe the ransmissiofere 1o calculate the scattering amplitudes of the oscillating
reaches maﬁqma on eac r]?fsonanm;_y ora symrgegnc barrier, we analyze in detail in Sec. Ill the transmissivity
pogentli’all}.bT IS rescl))nar?c:ﬁ eftect was |rsctj examine %I TSLbrofiIes as a function of incident energy. The main result is
alnl Cl(f) a oratchifs, ot tb epretl'ca[I;/O]I.ar; experlmentady that the pole in the energy plane associated with a replica has
[11]. I a periodic perturbation is applied, one expe@ad ooy the same imaginary part as the pole issued from the
effectively findg that each resonance splits into a number of o osnonding over-barrier resonance of the static barrier.
satellites correspondl.ng to thg emission and_ absorption ec. IV presents transmissivity profiles at fixed incident en-
quanta[lZ,_la. For a single barrier, there are stil resonance_sergies below or above the top of the barrier. The profiles
as shovyn in textbooks. They do npt correspond to a Ieak'n%btained below the top by Hagmafid] are confirmed, with
of quasibound states through barriers, but are the result of &, o 5 qditional structure due to the use of a larger amplitude
constructive interference occurring above the barrier becauqﬁ oscillation. A resonant structure can also be obtained
of the reflecuo_ns_and transmissions taking pche_ at each PQbove the top. For each case the positions of the maxima in
tgntlal discontinuity. In the presence ofa penqdlc p_erturba—the profiles are easily accounted for by a mechanism involv-
tion one expects also that satellite features will be mducecﬁngI an absorption of quanthelow the top or an emission of
quanta(above the top In Sec. V we indicate how we can
derive expressions for the poles of the scattering amplitudes
*Electronic address: roland.lefebvre@ppm.u-psud.fr in the complex energy and frequency planes. We recall first
"Electronic address: nimrod@techunix.technion.ac.il how the scattering amplitudes can be written for a time-
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dependent(but periodig Hamiltonian[15,16. This is the be either real or imaginary, but all types of waves retain a
result of applying Floquet theory, with a special form givenmeaning in the barrier region. The summation index

to the Green function displaying its dependence on resopresent in all sectors is in practice limited to the rangé —
nance energie®@r complex quasienergigsf the system. In  <n=<N, whereN is the number of effectively gained or lost
Sec. VI a number of numerical experiments are describedquanta. This number depends on the amplitude of oscillation
each of them being corroborated by a proper use of the ana/,. The number of amplitudetsor r in each sector is there-

lytical expression of scattering amplitudes. fore 2(2N+1). Matching at the sector boundaries is done by
ensuring continuity of the wave function and of its derivative
Il. CALCULATION OF SCATTERING AMPLITUDES with respect to position. An additional matching is needed,

since the wave functions depend on time. The time matching
can be done either by identification of Fourier components
1 & IV (x,t) [20,27 or more simply by identification of the functions at a
T omad +Vo(X) + Va(X)codwt) | (x,t) = P set of (2N+1) times within a period of the oscillation
[14,22,23. Starting from a set of amplitudes in sector 1 writ-
(1) ten as a column vecta® made of alltﬁll) and rf]l), we reach
where Vy(x) and V,(x) are constantsay, V, andV,) when  after two matching procedures sector 3 with its associated
-L/2<x=<L/2 and zero otherwise. For a barrié is posi-  column vectora® made of alltf) and rf). The relations
tive. L is the width of the barrier. between the two vectors has the form
The solutions in the potential-free regions on the left and a® = pmal® @)
on the right of the barrier are simply combinations of free :

waves. Calling these sectors 1 and 3, we write the general jith the previous conventions the transfer mattix is

The wave equatioin atomic unitg is

solutions as square and of dimensiorigN+2) X (4N+2). The scattering
m boundary conditions are now applied. In the vecdt all

PLI(x )= ﬂtﬁf’) exrli (K ¥x - Eqb)] the t'” are made zero, excepf’ which is taken equal to

n Vo unity. In the vector®, all the amplitudes.” are taken equal

to zero. There results a set of inhomogeneous relations de-
ribd exgd-i(k¥x+Eq)], (2)  termining all scattering amplitudes. With the normalization
chosen for the waves in the asymptotic sectors 1 and 3, the
scattering probabilities are simply the squared moduli of the
amplitudes of the open channels in either sect@eflection

. m
- kgl,S)
with K¥=[2mE,]2 and E,=E+nw. The energyE can be
|dent|f|ed.vr\:|tg.ftfhe incident energy of the paruc_le. Bﬁ/ MXING o sector 3(transmission The total transmissivitylT(E) is
waves wit ! erent energies we are preparing t © groun§ |t(3)|2 the sum over all open channels of the partial trans-
for a change in the number of quanta accompanying the par=ni*n I babiliti P P

ticle when it meets the barrier. No assumption at this stage i§'SSI0n probabi ities.

made about boundary conditions. This is to be done later and

is typical of the tra_nsfer matrix methq¢0,13,1] to pe used Il TRANSMISSIVITY PROFILES AT FIXED

here. The factors in front of the amplitudes simplify the cal- FREQUENCY

culation of transition probabilitiegsee below. It is to be

noted that depending om, the wave numberkgl'g’) can be Our parameters for the barrier are the same as those of

either real(E,>0) or imaginary(E,<0). This defines the Hagmanr{14]—that is, a width of 10 Aor 19.90 a.u.and a

open or closed channels, respectively. For the latter, with &eight of 11 eV(or 0.4042 a.y. The mass of the particle is
wave number of the fornk>?=ix®d 19> all the thatof a free electroom=1 a.u. In this preliminary study of

waves associated with thel’s divgrgé for x—s—o while  tranmissivities as a function of incident energy we take
those associated with thé; 's diverge forx— +oo. Antici- equal to 5 eMor 0.1837 a.y. In order to amplify thg effects
pating from boundary conditions to be made later, it is im-© be_ analyzed we take a somewhat larger gmplltude of os-
portant to mention that among all amplitudes to be mad&'"altlon than those of Hagmari4]: V1=5 eV instead of at
zero are those associated with the diverging waves.

most 0.055 eV. Figure 1 gives in the left panel the transmis-
The solution in the middle sector withL42<x<L/2

sivity of the static barrier. It has a well-known structure.
(sector 3 has been given many times in the literature 1ra@nsmission starts when the energy gets close to the top of
[14,18-20Q. Its most general form is

the barrier. Four resonances are displayed above the barrier,
with the tranmissivity reaching the value unity, as expected.

@ (x,t) = {E t@ exdi(k?x-Et)]+ > r? The right panel gives the total transmissivity of the oscillat-
n n ing barrier, with amplification below the barrier top. A maxi-
. mum number of exchanged quantd=5, ensures conver-

xexp - i(KZx + Ent)]} X exp[— |V15'—n(wt)] gence of the calculations. An interesting result of this

w calculation is that the oscillation has induced replicas of the

3) over-barrier structure. Such replicas were previously ob-
served and analyzed in a similar study], with the particle
wherekff) is [2m(E,—V,)¥2 The wave numbers can again coupled to an external oscillatory electric field. The explana-
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STATIC OSCILLATING

FIG. 1. Transmissivities as a function of inci-
06 U 4 F . dent energy for the stati¢eft) and the oscillating

barrier (right). In the latter case the total trans-
missivity T(E) is given. The replica structure is
amplified by a factor of 20. The replica phenom-

TRANSMISSIVITY

04 - 1 T . enon is due to an absorption of quanta allowing
for a transmission mediated by the over-barrier
u | resonances. Table | gives the numerical evidence

0.2 supporting this analysis.

X20
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tion is very simple: by absorption of one quantum, the parwith the first four replicas. The real parts of the resonance
ticle reaches the energy of one of the over-barrier resonancesergies are very precisely those of the over-barrier reso-
where transmission is a very efficient. nances minus one quantuire., 5e\j. Their imaginary parts

An additional insight into the meaning of replicas comesare in coincidence. The conclusion which emerges is that
from a study of the poles of the scattering amplitudes. Theseach replica has the same width as the corresponding reso-
poles in the complex energy plane are obtained by searchingance issued from the static barrier. This is confirmed by the
for the zeros of the inverse of these amplitudes. This is donanalysis of the next section, which will also be the basis for
from some trial value by a complex Newton-Raphson procetooking at poles in the complex frequency plane.
dure. We have checked that, as predicted by the general
theory[24], the pole can be obtained from any of the reflec- |v. TRANSMISSIVITY PROFILES AT FIXED INCIDENT
tion or transmission amplitudes. All results presented in ENERGY
Table | for the static barrier have been obtained from the o _
transmission amplitude and for the oscillating barrier from  We turn now to the study of transmissivity profiles for
t9—that is, the transmission amplitude with no net absorp{ixed ,'nc'd_enF energy and varying frequency. Two cases are
tion or emission of quanta. The first four resonance energie€*@mined: either an incident energy below the top of the
of the static barrier are in column 1, those of the oscillating®@'T€"; Einc=10 €V, or above the tofk;,.=20 eV. Figure 2
barrier in column 2. With the present amplitude of oscilla-91VeS these two profiles. In both cases a resonance structure
tion, the resonance shift is very small, as shown by a com!S Present. The graph of the upper panel is similar to that
parison of the real parts of the resonance energies. The inte9iven by Hagmanr14], although with a larger modulation

esting information is in column 3 giving the poles associateMPlitude there is an additional structure on the low-
frequency side, corresponding to multiquantum processes.

The first four peaks correspond to the addition of, respec-
tively, four, three, two, and one quanta to the incident energy

. . . ®fo reach the first over-barrier resonance, while the three
resonances of the static barrier. Second colgaurthe poles issued humos which follow lead to the next three over-barrier reso-
from these resonances when the barrier oscillates. Third co(bynn P

the poles of the replicas. The replica of the fourth resonance is n ances by absorptlc_m_ of one quantum. The graph of the
seen in Fig. 1 because it interferes with the second over-barri pwer .panel has a similar explanation, but now in t.erms of
peak. The transmission amplitude which is used in the search of theMission of one quantum to reach the over-barrier reso-
poles for the oscillating barrier is that with no net absorption orn@nces. This explanation in terms of multiquantum processes
emission of quanta that isﬁf’). All energies are in eV. is also given in Table Il, where the different frequencies cor-
responding to the various peaks or humps are related to the
Static barrier  Oscillating barrig) Oscillating barrierpy ~ @bsorption or emission of a number 'Of quanta allowing the
access to one of the four above-barrier resonances. The two

TABLE |. Poles of scattering amplitudes in the complex energy
plane. First column: the poles associated with the first over-barri

11.3610-+0.08571  11.360910.08581 6.360910.08581 last columns give two estimates of the complex-frequency
12.447040.3382 12.44670.3385 7.446710.3385 poles explaining the features of the transmissivity profiles.
14.264940.7450 14.264810.7457 0.264810.7457 The column labeled “polénum)” gives the numerical esti-

16.8229-1.2886 16.8227H.2902 11.8227H.2902 mates from the zeros of the inverse of an appropriate transi-
tion amplitude. The column labeled “polan)” gives the
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0.20
015 a E,. =106V
0.10 4 . .
FIG. 2. Total transmissivities as a function of
:_D| frequency(expressed in e\ Upper panel: with a
0.05 . )Z> fixed incident energyEj,. equal to 10 eV, the
g n peaks or humps correspond to the absorption of a
0.00 : = number of quanta leading to the resonances asso-
. o ) ) . .
0. 6.0 8.0 ¢ ciated with those of the static case. Table Il gives
< the numerical evidence supporting this analysis.
0.990 1 i Lower panel: corresponding to an incident energy
0.980 equal to 20 eV, the features are associated with
0.970 ] the emission of one quantum to reach the first
four over-barrier resonances, as shown also in
0.960 ] Table II. In both cases the labeling refers to the
0.950 ] frequencies listed in this table.
0.940 A
0.930 - 1
0.920 . !
0.0 5.0 10.0 15.0

FREQUENCY (eV)

pole estimate from the analytical expressions derived belowoordinate space by a complete set of square-integrable func-
in Sec. V, using the primitive data collected in Table I. tions periodic in time. Time-independent transition probabili-
ties can be defined between asymptotic states before and af-
ter a collision if the time-dependent term in the Hamiltonian
vanishes in the asymptotic regiofi,1§. This is clearly the
case for an oscillating barrier.

A very interesting aspect of Hamiltonians periodic in time ~ The solution of the time-dependent Schrédinger equation
is that many results about their wave functions are very simiwith continuum boundary conditions, according to Floquet
lar to those obtained for time-independent Hamiltonianstheorem[25], can be written:

Time plays the part of an additional dynamic variable. This _ .
means that the wave functions can be developed in an ex- Vel D) = ex~IEtPe(x. D, ®)
tended space obtained as the direct product of a basis inith

V. TIME-INDEPENDENT SCATTERING AMPLITUDES
FOR TIME-DEPENDENT PERIODIC HAMILTONIANS

TABLE Il. Analysis of the transmissivity peaks as a function of the frequency of oscillation of the barrier. The upper part corresponds
to an incident energy equal to 10 eV, the lower part to 20 eV. The label of each peak or feature in the profiles is given in column 1. The
number of quanta needed to reach an over-barrier resonance by the absanppienpart or emission(lower pary of quanta is shown in
column 2, withn either positivglabsorption or negativgemission. The column labeled gives the frequencies associated with the maxima
in the profiles. The column labelds},.+nw shows evidence that one of the over-barrier resonances is reached by absorption or emission of
quanta. The two last columns give the numerical and analytical estimates of the frequency poles explained in the text. Frequencies and
energies are in eV.

Label n ) Eipctnow pole (num) pole (an)
a 4 0.3396 11.3584 0.34046.02116 0.340210.02145
B 3 0.4594 11.3782 0.45426.02860 0.453610.02860
vy 2 0.6841 11.3682 0.68016.04266 0.680510.04291
a 1 1.372 11.3732 1.35996.08567 1.360910.08581
b 1 2.4517 12.4517 2.44736.3395 2.446710.3385
c 1 4.2044 14.2044 4.26586.7462 4.264810.7457
d 1 6.5862 15.6852 6.8261%.2902 6.8227+1.2902
a -1 8.6204 11.3796 8.63910.08579 8.639110.0858
b -1 7.5224 12.4276 7.55330.3386 7.553310.3385
c -1 5.5704 14.4296 5.73470.7444 5.7352#0.7457
d -1 3.1304 16.8696 3.1082%.2480 3.17731#1.2902
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D(x,t+T) = De(x,t). (6) function and this affects the eigenvalue. Disregarding the

) . o . ) continuous part of the spectrum of eigenvalues the Green
T is the period of the Hamiltoniarbg(x,t) is an eigenfunc-  gperator is, in this context,

tion of the Floquet Hamiltonian:
[Pam?) (Poml

Ge(E)=[E-Hel =2 X

J - .
He(x,t) = H(x,t)—i;t (7) = m E-(A,—iT /2 +mw)
(13
according to - L .
The limiting operation is not necessary since there are no
He(X, 1) Pg(x,t) = ED(X,1). (8) longer singularities along the real axis. Equatigh$) and

) _ ) ) _ (13) have been used previoudl¥6,26,29 to calculate tran-
The scattering solutions in the different sectors discussed igjtion probabilities. In the present context this expression of
Sec. Il were all of this form. o ~ the Green operator is all we need to discuss the poles in the
Consider now that before collisiofi.e., before meeting complex energy or frequency domains. With the moderate
the barriey the particle is described in extended space by theymplitude of oscillation used here, Table | shows that the first

wave function four over-barrier resonances have their energies little af-
fected by the modulation. This means that we could equally

ei(x,t) = \/Eexr{ikix]exr{— iEt], (9)  welluse the Green operat@?(E):[E—Hg]O‘ll in the expres-

ki sion of the transition amplitude, whetd; is the Flogquet

Hamiltonian in the extended space, but without the time-
dependent barrier modulation. This is of considerable help in
giving a meaning to each complex energy or frequency de-
rived from the pole calculations.

with E;=k?/2m. This form implies that the basis function in
the time domain is unity. After the collision the wave func-
tion may become

M .
1) = k_eXF{' inxlexd-i(Eqn—nolt], (100 poLES IN THE ENERGY AND FREQUENCY PLANES

f.n
The pole structure of the scattering amplitudes is entirely

with Efn:kfn/Zm:Eﬁnw. HereE; and E;, are the initial ) ) )
’ ' ’ gpntained in the denominator of the Green operator.

and final energies, unequal if there is an exchange of quan
(when n#0). If there is no direct coupling between
asymptotic wave functions, the transition amplitude is given A. Poles in the energy plane: Explanation of the replica
by the “on-the-energy-shell” element of the operator structure

+ .
VGHEDV [15.26: The first application of the general expression of the tran-
tr ni(E) = (g o VG(ENV| ). (11) sition amplitude will be to the replicas observed in Fig. 1. _
Table | has shown that the poles in the energy plane associ-
The ({---)) mean that integration has to be done on bothated with the replicas are simply shifted down by one quan-
space and timeV is the time-dependent couplinG=(E*) is  tum and conserve the imaginary part of their parent reso-
the Green operator defined by nance. This a simple consequence of looking at the zeros of
the denominator of the Green operator given by

Ge(EN)=Im[E+ie—Hg] ™. (12 r
<0 E, = A,+mo-i—2 (14)
However, a discretization of the spectrum of energies is ' 2
possible if Sieger{27] boundary conditions are imposed. This relation shows how the energy poles depend on the
This can be done in an explicit manner by requiring thefequency. It shows also how, from a given quasienergy, an
scattering wave function to be of outgoing character in bothninite set of quasienergies can be generated by the addition
asymptotic regions. This can also be done by complex rotasr sybstraction of quanta. The three replicas shown in Fig. 1

ing the coordinatg28]. This produces a localization of the correspond to the poleg, _;, with 1<a<3. For a larger
wave function, so that now the boundary conditions are thnoqulation amplitude, reCBIicas fon=-2,-3,...should ap-

same as for a bound state. The elements of the set of discreigar. This was observed in a previous investigation of this
eigenvaluess, are complex and called quasienergies. Theyyhenomenorj13]. In the present case efficient transmission
can be writterg, = A, ~il',/2. Itis important to mention that  gceyrs either as a result of the resonance tunneling phenom-
if &, is a solution, expmat] ®,=®,, is also a solution of  onon already present in the static case or as the result of the

quasienergyE,+mw. Although the solutions of the time- apsorption of one quantum to benefit from this same phe-
dependent Schrodinger equation issued from both functiongomenon.

are identical, all solutions of the eigenvalue equation with
both m and « as indices are needed to write the Green op-
erator Ge(E*). This is due to the fact that the eigenvalue
equation is solved in the extended space. The exponential The frequencies which make the denominator of the
exgdimwt] is not a phase factor in that space but a basisGreen operator zero are given by

B. Poles in the frequency plane
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~ T, TABLE lll. The incident energy(column 2 is a resonance en-
Wqm= l[E—Aa]+|§n. (15  ergy shifted down by a number of quanteolumn 1), with o
=1.35 eV. According to Eq(17), the pole in the frequency plane
This expression shows how the frequency poles depend d?fas an imaginary part which is that of the parent resonance energy
the incident energy. Let us consider the resonant structure @¥ided by the number of quanta. All energies and frequencies are
Fig. 2 for an incident energg;,. equal to 10 eV. The peaks " &V
labeled (a), (b), (c), and (d) are interpreted in Table Il as

leading to the overbarrier resonances of energiesy the P Artpo Pole 14/2p
absorption of one quantum. According to HG5) applied -1 10.0110 1.348910.08566 0.08566
with m=-1 there should be complex frequency poles given _, 8.6610 1.3500$0.04230 0.04283
by -3 7.3110 1.3500#.02863 0.02855
r -4 5.9605 1.350010.02156 0.02141
w,-1= AN, — E—i?“. (16)

On the other hand, the peaks labelgd, (8), and(y)  giving the Green operator a term witt=1 andm=p. The
correspond to the absorption of, respectively, four, three, angomplex frequency poles are given by
two quanta to reach the first overbarrier resonance of energy I r
A;. The complex frequency poles should be given by Eq. w1p= p—l{Al +po - (Al - i—lﬂ —w+i—2. (18
(15), with «=1 andm equal to -4, -3, and —2. The last two ' 2 2p
columns of the upper part of Table Il confirm fully this 1ape 11| confirms that again the width of a frequency pole

anal_ysis. The cplumn marked “po[elgm.)” gives the nu- 41 pe the width of an energy pole divided by an integer.
merical evaluations of the poles while the column marked

“pole (an)” gives the estimates obtained from Ed5), with VII. CONCLUSIONS
the use of the data given in Table I. An interesting property . o .
of the poles associated with multiquantum processes is that "€ expression which is the basis of the search for the
their imaginary part is divided by the number of quanta. ThePCl€s in the complex energy or frequency planes is of general
narrowing effect predicted by E@L5) is visible on Fig. 2. apphcablhty in scattering situations mv_olvmg a per_lodlc_: cou-
We turn now to the case with an incident energy equal td/ing or perturbation provided there is free motion in the
20 eV. The general formula given in EGL5) is now to be asymptp_nc regions. Any structure observed when gtransmon
applied withm=1 anda equal 1 to 4, giving probability is measured or calculated as a function of the
frequency of the coupling could be assigned to the existence
T, of poles in the complex frequency plane. Although the case
we1=E-A,+ I?- (17) examined here implies a rather weak amplitude of modula-
tion which leads to an easy identification of the meaning of
The lower part of Table Il gives the poles obtained numeri-the poles, the expression for the Green operator at the basis
cally and their reconstruction from the primitive data of Of this study is valid for arbitrary values of the parameters of
Table I. It is to be noted that in all these pole calculations thehe model. It shows in particular that the determination of the
most efficient procedure is to look at the zeros of the invers@oles from the scattering amplitudes is a possible route to the
of t, wheren is the number of absorbed quanta explainingc®mPplex Floquet quasienergies, which bypasses the resolu-
a given feature in Fig. 2given also in column 2 of Tabley  tion of the Floguet eigenvalue equation.
This is to be understood in the algebraic sense—that is, with

n positive for all peaks produced witg;,.=10 eV andn ACKNOWLEDGMENTS
negative for those produced wit,,.=20 eV. R.L. thanks Arne Keller for drawing his attention to the
Finally let us consider an incident energy of the formwork of Hagmann[14] and for useful discussions. Part of
En.=A,tpw for a given value ofa—say, 1—andp= this work was done during a visit of R.L. to the Technion,
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