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The transmissivity calculated as a function of the frequency of oscillation for a particle meeting an oscil-
lating barrier presents a resonant structure, as shown by Hagmann[Appl. Phys. Lett. 66, 789 (1995)]. The
origin of this structure is explained with the help of the expression giving the scattering amplitudes in the
Floquet picture applied to a periodic Hamiltonian. It is possible to interpret it as due to the poles of the
scattering amplitudes in the complex-frequency domain. For a moderate modulation amplitude the analysis
makes use of the data obtained for the static barrier. The existence of these poles is not limited to the present
model.
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I. INTRODUCTION

The scattering of a particle by an oscillating rectangular
barrier is an interesting extension of the scattering by a static
rectangular barrier which is treated in all textbooks of quan-
tum mechanics(see, e.g.,[1,2]). The oscillating barrier
model has been used by Büttiker and Landauer[3,4] to pro-
pose an expression for the time it takes for a particle to
tunnel through a barrier(see[5] for a review). Oscillating
barriers of more general shapes have also been studied and
shown to lead at high frequencies to resonances similar to
those of a double barrier[6]. The oscillating barrier is con-
sidered as a good starting point to understand the mechanism
of transmission through mesoscopic systems when there is a
time-varying perturbation. A good example of such processes
is photon-assisted tunneling in semiconductor structures with
a multiple-quantum-well potential[7–9]. For a static poten-
tial the transmission is known to present a special profile
when there are resonances associated with the system. This is
the case for the double barrier, where the transmission
reaches maxima on each resonance(unity for a symmetric
potential). This resonance effect was first examined by Tsu
and collaborators, both theoretically[10] and experimentally
[11]. If a periodic perturbation is applied, one expects(and
effectively finds) that each resonance splits into a number of
satellites corresponding to the emission and absorption of
quanta[12,13]. For a single barrier, there are still resonances,
as shown in textbooks. They do not correspond to a leaking
of quasibound states through barriers, but are the result of a
constructive interference occurring above the barrier because
of the reflections and transmissions taking place at each po-
tential discontinuity. In the presence of a periodic perturba-
tion one expects also that satellite features will be induced.

This was shown[13] for a particle scattered by a rectangular
barrier and interacting with an external oscillatory field, the
interaction being written in the velocity gauge. Replicas of
the over-barrier resonance structure are produced at energies
below the barrier top, where no transmissivity is expected for
a sufficiently thick barrier. The origin of these replicas is
that, at these energies, absorption of a quantum raises the
particle to one of the above-barrier resonances where trans-
mission is facilitated. Hagmann[14] has recently developed
a similar analysis for an oscillating barrier. Instead of study-
ing the transmissivity profiles as a function of incident en-
ergy, he gave these profiles at fixed incident energy as a
function of the frequency of oscillation. A resonant structure
is observed, which has also its explanation in the mechanism
of the replicas. The motivation now is the search for the
frequencies which favor transmission. It is this structure
which is the object of the present study. It will be shown to
be related to the complex poles of the scattering amplitudes
in the frequency plane.

After showing in Sec. II the procedure which is followed
here to calculate the scattering amplitudes of the oscillating
barrier, we analyze in detail in Sec. III the transmissivity
profiles as a function of incident energy. The main result is
that the pole in the energy plane associated with a replica has
exactlythe same imaginary part as the pole issued from the
corresponding over-barrier resonance of the static barrier.
Sec. IV presents transmissivity profiles at fixed incident en-
ergies below or above the top of the barrier. The profiles
obtained below the top by Hagmann[14] are confirmed, with
some additional structure due to the use of a larger amplitude
of oscillation. A resonant structure can also be obtained
above the top. For each case the positions of the maxima in
the profiles are easily accounted for by a mechanism involv-
ing an absorption of quanta(below the top) or an emission of
quanta(above the top). In Sec. V we indicate how we can
derive expressions for the poles of the scattering amplitudes
in the complex energy and frequency planes. We recall first
how the scattering amplitudes can be written for a time-
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dependent(but periodic) Hamiltonian [15,16]. This is the
result of applying Floquet theory, with a special form given
to the Green function displaying its dependence on reso-
nance energies(or complex quasienergies) of the system. In
Sec. VI a number of numerical experiments are described,
each of them being corroborated by a proper use of the ana-
lytical expression of scattering amplitudes.

II. CALCULATION OF SCATTERING AMPLITUDES

The wave equation(in atomic units) is

F−
1

2m

]2

]x2 + V0sxd + V1sxdcossvtdGCsx,td = i
]Csx,td

]t
,

s1d

whereV0sxd and V1sxd are constant(say, V0 and V1) when
−L /2øxøL /2 and zero otherwise. For a barrierV0 is posi-
tive. L is the width of the barrier.

The solutions in the potential-free regions on the left and
on the right of the barrier are simply combinations of free
waves. Calling these sectors 1 and 3, we write the general
solutions as

Cs1,3dsx,td=o
n
Î m

kn
s1,3d tn

s1,3d expfiskn
s1,3dx − Entdg

+ o
n
Î m

kn
s1,3d rn

s1,3d expf− iskn
s1,3dx + Entdg, s2d

with kn
s1,3d=f2mEng1/2 and En=E+nv. The energyE can be

identified with the incident energy of the particle. By mixing
waves with different energies we are preparing the ground
for a change in the number of quanta accompanying the par-
ticle when it meets the barrier. No assumption at this stage is
made about boundary conditions. This is to be done later and
is typical of the transfer matrix method[10,13,17] to be used
here. The factors in front of the amplitudes simplify the cal-
culation of transition probabilities(see below). It is to be
noted that depending onn, the wave numberskn

s1,3d can be
either realsEn.0d or imaginarysEn,0d. This defines the
open or closed channels, respectively. For the latter, with a
wave number of the formkn

s1,3d= ikn
s1,3d, kn

s1,3d.0, all the
waves associated with thetn

s1d’s diverge for x→−` while
those associated with thern

s3d’s diverge forx→ +`. Antici-
pating from boundary conditions to be made later, it is im-
portant to mention that among all amplitudes to be made
zero are those associated with the diverging waves.

The solution in the middle sector with −L /2øxøL /2
(sector 2) has been given many times in the literature
[14,18–20]. Its most general form is

Cs2dsx,td = Ho
n

tn
s2d expfiskn

s2dx − Entdg + o
n

rn
s2d

3expf− iskn
s2dx + EntdgJ 3 expF− i

V1 sinsvtd
v

G ,

s3d

wherekn
s2d is f2msEn−V0dg1/2. The wave numbers can again

be either real or imaginary, but all types of waves retain a
meaning in the barrier region. The summation indexn
present in all sectors is in practice limited to the range −N
ønøN, whereN is the number of effectively gained or lost
quanta. This number depends on the amplitude of oscillation
V1. The number of amplitudest or r in each sector is there-
fore 2s2N+1d. Matching at the sector boundaries is done by
ensuring continuity of the wave function and of its derivative
with respect to position. An additional matching is needed,
since the wave functions depend on time. The time matching
can be done either by identification of Fourier components
[20,21] or more simply by identification of the functions at a
set of s2N+1d times within a period of the oscillation
[14,22,23]. Starting from a set of amplitudes in sector 1 writ-
ten as a column vectoras1d made of alltn

s1d andrn
s1d, we reach

after two matching procedures sector 3 with its associated
column vectoras3d made of all tn

s3d and rn
s3d. The relations

between the two vectors has the form

as3d = Mas1d. s4d

With the previous conventions the transfer matrixM is
square and of dimensionss4N+2d3 s4N+2d. The scattering
boundary conditions are now applied. In the vectoras1d all
the tn

s1d are made zero, exceptt0
s1d which is taken equal to

unity. In the vectoras3d, all the amplitudesrn
s3d are taken equal

to zero. There results a set of inhomogeneous relations de-
termining all scattering amplitudes. With the normalization
chosen for the waves in the asymptotic sectors 1 and 3, the
scattering probabilities are simply the squared moduli of the
amplitudes of the open channels in either sector 1(reflection)
or sector 3(transmission). The total transmissivityTsEd is
onutn

s3du2, the sum over all open channels of the partial trans-
mission probabilities.

III. TRANSMISSIVITY PROFILES AT FIXED
FREQUENCY

Our parameters for the barrier are the same as those of
Hagmann[14]—that is, a width of 10 Å(or 19.90 a.u.) and a
height of 11 eV(or 0.4042 a.u.). The mass of the particle is
that of a free electron,m=1 a.u. In this preliminary study of
tranmissivities as a function of incident energy we takev
equal to 5 eV(or 0.1837 a.u.). In order to amplify the effects
to be analyzed we take a somewhat larger amplitude of os-
cillation than those of Hagmann[14]: V1=5 eV instead of at
most 0.055 eV. Figure 1 gives in the left panel the transmis-
sivity of the static barrier. It has a well-known structure.
Transmission starts when the energy gets close to the top of
the barrier. Four resonances are displayed above the barrier,
with the tranmissivity reaching the value unity, as expected.
The right panel gives the total transmissivity of the oscillat-
ing barrier, with amplification below the barrier top. A maxi-
mum number of exchanged quanta,N=5, ensures conver-
gence of the calculations. An interesting result of this
calculation is that the oscillation has induced replicas of the
over-barrier structure. Such replicas were previously ob-
served and analyzed in a similar study[13], with the particle
coupled to an external oscillatory electric field. The explana-
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tion is very simple: by absorption of one quantum, the par-
ticle reaches the energy of one of the over-barrier resonances
where transmission is a very efficient.

An additional insight into the meaning of replicas comes
from a study of the poles of the scattering amplitudes. These
poles in the complex energy plane are obtained by searching
for the zeros of the inverse of these amplitudes. This is done
from some trial value by a complex Newton-Raphson proce-
dure. We have checked that, as predicted by the general
theory[24], the pole can be obtained from any of the reflec-
tion or transmission amplitudes. All results presented in
Table I for the static barrier have been obtained from the
transmission amplitude and for the oscillating barrier from
t0
s3d—that is, the transmission amplitude with no net absorp-

tion or emission of quanta. The first four resonance energies
of the static barrier are in column 1, those of the oscillating
barrier in column 2. With the present amplitude of oscilla-
tion, the resonance shift is very small, as shown by a com-
parison of the real parts of the resonance energies. The inter-
esting information is in column 3 giving the poles associated

with the first four replicas. The real parts of the resonance
energies are very precisely those of the over-barrier reso-
nances minus one quantum(i.e., 5eV). Their imaginary parts
are in coincidence. The conclusion which emerges is that
each replica has the same width as the corresponding reso-
nance issued from the static barrier. This is confirmed by the
analysis of the next section, which will also be the basis for
looking at poles in the complex frequency plane.

IV. TRANSMISSIVITY PROFILES AT FIXED INCIDENT
ENERGY

We turn now to the study of transmissivity profiles for
fixed incident energy and varying frequency. Two cases are
examined: either an incident energy below the top of the
barrier,Einc=10 eV, or above the top,Einc=20 eV. Figure 2
gives these two profiles. In both cases a resonance structure
is present. The graph of the upper panel is similar to that
given by Hagmann[14], although with a larger modulation
amplitude there is an additional structure on the low-
frequency side, corresponding to multiquantum processes.
The first four peaks correspond to the addition of, respec-
tively, four, three, two, and one quanta to the incident energy
to reach the first over-barrier resonance, while the three
humps which follow lead to the next three over-barrier reso-
nances by absorption of one quantum. The graph of the
lower panel has a similar explanation, but now in terms of
emission of one quantum to reach the over-barrier reso-
nances. This explanation in terms of multiquantum processes
is also given in Table II, where the different frequencies cor-
responding to the various peaks or humps are related to the
absorption or emission of a number of quanta allowing the
access to one of the four above-barrier resonances. The two
last columns give two estimates of the complex-frequency
poles explaining the features of the transmissivity profiles.
The column labeled “pole(num.)” gives the numerical esti-
mates from the zeros of the inverse of an appropriate transi-
tion amplitude. The column labeled “pole(an.)” gives the

FIG. 1. Transmissivities as a function of inci-
dent energy for the static(left) and the oscillating
barrier (right). In the latter case the total trans-
missivity TsEd is given. The replica structure is
amplified by a factor of 20. The replica phenom-
enon is due to an absorption of quanta allowing
for a transmission mediated by the over-barrier
resonances. Table I gives the numerical evidence
supporting this analysis.

TABLE I. Poles of scattering amplitudes in the complex energy
plane. First column: the poles associated with the first over-barrier
resonances of the static barrier. Second column(a): the poles issued
from these resonances when the barrier oscillates. Third column(b):
the poles of the replicas. The replica of the fourth resonance is not
seen in Fig. 1 because it interferes with the second over-barrier
peak. The transmission amplitude which is used in the search of the
poles for the oscillating barrier is that with no net absorption or
emission of quanta that is,t0

s3d. All energies are in eV.

Static barrier Oscillating barrier(a) Oscillating barrier(b)

11.3610−i0.08571 11.3609−i0.08581 6.3609−i0.08581

12.4470−i0.3382 12.4467−i0.3385 7.4467−i0.3385

14.2649−i0.7450 14.2648−i0.7457 9.2648−i0.7457

16.8229−i1.2886 16.8227−i1.2902 11.8227−i1.2902
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pole estimate from the analytical expressions derived below
in Sec. V, using the primitive data collected in Table I.

V. TIME-INDEPENDENT SCATTERING AMPLITUDES
FOR TIME-DEPENDENT PERIODIC HAMILTONIANS

A very interesting aspect of Hamiltonians periodic in time
is that many results about their wave functions are very simi-
lar to those obtained for time-independent Hamiltonians.
Time plays the part of an additional dynamic variable. This
means that the wave functions can be developed in an ex-
tended space obtained as the direct product of a basis in

coordinate space by a complete set of square-integrable func-
tions periodic in time. Time-independent transition probabili-
ties can be defined between asymptotic states before and af-
ter a collision if the time-dependent term in the Hamiltonian
vanishes in the asymptotic regions[15,16]. This is clearly the
case for an oscillating barrier.

The solution of the time-dependent Schrödinger equation
with continuum boundary conditions, according to Floquet
theorem[25], can be written:

CEsx,td = expf− iEtgFEsx,td, s5d

with

TABLE II. Analysis of the transmissivity peaks as a function of the frequency of oscillation of the barrier. The upper part corresponds
to an incident energy equal to 10 eV, the lower part to 20 eV. The label of each peak or feature in the profiles is given in column 1. The
number of quanta needed to reach an over-barrier resonance by the absorption(upper part) or emission(lower part) of quanta is shown in
column 2, withn either positive(absorption) or negative(emission). The column labeledv gives the frequencies associated with the maxima
in the profiles. The column labeledEinc+nv shows evidence that one of the over-barrier resonances is reached by absorption or emission of
quanta. The two last columns give the numerical and analytical estimates of the frequency poles explained in the text. Frequencies and
energies are in eV.

Label n v Einc+nv pole (num.) pole (an.)

a 4 0.3396 11.3584 0.3404−i0.02116 0.3402−i0.02145

b 3 0.4594 11.3782 0.4542−i0.02860 0.4536−i0.02860

g 2 0.6841 11.3682 0.6801−i0.04266 0.6805−i0.04291

a 1 1.372 11.3732 1.3599−i0.08567 1.3609−i0.08581

b 1 2.4517 12.4517 2.4473−i0.3395 2.4467−i0.3385

c 1 4.2044 14.2044 4.2658−i0.7462 4.2648−i0.7457

d 1 6.5862 15.6852 6.8261−i1.2902 6.8227−i1.2902

a −1 8.6204 11.3796 8.6391+i0.08579 8.6391+i0.0858

b −1 7.5224 12.4276 7.5533+i0.3386 7.5533+i0.3385

c −1 5.5704 14.4296 5.7347+i0.7444 5.7352+i0.7457

d −1 3.1304 16.8696 3.1082+i1.2480 3.1773+i1.2902

FIG. 2. Total transmissivities as a function of
frequency(expressed in eV). Upper panel: with a
fixed incident energyEinc equal to 10 eV, the
peaks or humps correspond to the absorption of a
number of quanta leading to the resonances asso-
ciated with those of the static case. Table II gives
the numerical evidence supporting this analysis.
Lower panel: corresponding to an incident energy
equal to 20 eV, the features are associated with
the emission of one quantum to reach the first
four over-barrier resonances, as shown also in
Table II. In both cases the labeling refers to the
frequencies listed in this table.
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FEsx,t + Td = FEsx,td. s6d

T is the period of the Hamiltonian.FEsx,td is an eigenfunc-
tion of the Floquet Hamiltonian:

HFsx,td = Hsx,td − i
]

]t
s7d

according to

HFsx,tdFEsx,td = EFEsx,td. s8d

The scattering solutions in the different sectors discussed in
Sec. II were all of this form.

Consider now that before collision(i.e., before meeting
the barrier) the particle is described in extended space by the
wave function

wisx,td =Îm

ki
expfikixgexpf− iEitg, s9d

with Ei =ki
2/2m. This form implies that the basis function in

the time domain is unity. After the collision the wave func-
tion may become

w f,nsx,td =Î m

kf,n
expfikf,nxgexpf− isEf,n − nvdtg, s10d

with Ef,n=kf,n
2 /2m=Ei +nv. Here Ei and Ef,n are the initial

and final energies, unequal if there is an exchange of quanta
(when nÞ0). If there is no direct coupling between
asymptotic wave functions, the transition amplitude is given
by the “on-the-energy-shell” element of the operator
VGFsE+dV [15,26]:

tf,n←isEd = kkf f,nuVGFsE+dVufill. s11d

The kk¯ll mean that integration has to be done on both
space and time.V is the time-dependent coupling.GFsE+d is
the Green operator defined by

GFsE+d=lim
e→0

fE + ie − HFg−1. s12d

However, a discretization of the spectrum of energies is
possible if Siegert[27] boundary conditions are imposed.
This can be done in an explicit manner by requiring the
scattering wave function to be of outgoing character in both
asymptotic regions. This can also be done by complex rotat-
ing the coordinate[28]. This produces a localization of the
wave function, so that now the boundary conditions are the
same as for a bound state. The elements of the set of discrete
eigenvaluesEa are complex and called quasienergies. They
can be writtenEa=La− iGa /2. It is important to mention that
if Fa is a solution, expfimvtg Fa=Fa,m is also a solution of
quasienergyEa+mv. Although the solutions of the time-
dependent Schrödinger equation issued from both functions
are identical, all solutions of the eigenvalue equation with
both m and a as indices are needed to write the Green op-
erator GFsE+d. This is due to the fact that the eigenvalue
equation is solved in the extended space. The exponential
expfimvtg is not a phase factor in that space but a basis

function and this affects the eigenvalue. Disregarding the
continuous part of the spectrum of eigenvalues the Green
operator is, in this context,

GFsEd = fE − HFg−1 = o
a

o
m

uFa,m ll kk Fa,mu
E − sLa − iGa/2 + mvd

.

s13d

The limiting operation is not necessary since there are no
longer singularities along the real axis. Equations(11) and
(13) have been used previously[16,26,29] to calculate tran-
sition probabilities. In the present context this expression of
the Green operator is all we need to discuss the poles in the
complex energy or frequency domains. With the moderate
amplitude of oscillation used here, Table I shows that the first
four over-barrier resonances have their energies little af-
fected by the modulation. This means that we could equally
well use the Green operatorGF

0sEd=fE−HF
0g−1 in the expres-

sion of the transition amplitude, whereHF
0 is the Floquet

Hamiltonian in the extended space, but without the time-
dependent barrier modulation. This is of considerable help in
giving a meaning to each complex energy or frequency de-
rived from the pole calculations.

VI. POLES IN THE ENERGY AND FREQUENCY PLANES

The pole structure of the scattering amplitudes is entirely
contained in the denominator of the Green operator.

A. Poles in the energy plane: Explanation of the replica
structure

The first application of the general expression of the tran-
sition amplitude will be to the replicas observed in Fig. 1.
Table I has shown that the poles in the energy plane associ-
ated with the replicas are simply shifted down by one quan-
tum and conserve the imaginary part of their parent reso-
nance. This a simple consequence of looking at the zeros of
the denominator of the Green operator given by

Ea,m = La + mv − i
Ga

2
. s14d

This relation shows how the energy poles depend on the
frequency. It shows also how, from a given quasienergy, an
infinite set of quasienergies can be generated by the addition
or substraction of quanta. The three replicas shown in Fig. 1
correspond to the polesEa,−1, with 1øaø3. For a larger
modulation amplitude, replicas form=−2,−3, . . .should ap-
pear. This was observed in a previous investigation of this
phenomenon[13]. In the present case efficient transmission
occurs either as a result of the resonance tunneling phenom-
enon already present in the static case or as the result of the
absorption of one quantum to benefit from this same phe-
nomenon.

B. Poles in the frequency plane

The frequencies which make the denominator of the
Green operator zero are given by
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va,m = m−1fE − Lag + i
Ga

2m
. s15d

This expression shows how the frequency poles depend on
the incident energy. Let us consider the resonant structure of
Fig. 2 for an incident energyEinc equal to 10 eV. The peaks
labeled (a), (b), (c), and (d) are interpreted in Table II as
leading to the overbarrier resonances of energiesLa by the
absorption of one quantum. According to Eq.(15) applied
with m=−1 there should be complex frequency poles given
by

va,−1 = La − E − i
Ga

2
. s16d

On the other hand, the peaks labeledsad, sbd, and sgd
correspond to the absorption of, respectively, four, three, and
two quanta to reach the first overbarrier resonance of energy
L1. The complex frequency poles should be given by Eq.
(15), with a=1 andm equal to −4, −3, and −2. The last two
columns of the upper part of Table II confirm fully this
analysis. The column marked “pole(num.)” gives the nu-
merical evaluations of the poles while the column marked
“pole (an.)” gives the estimates obtained from Eq.(15), with
the use of the data given in Table I. An interesting property
of the poles associated with multiquantum processes is that
their imaginary part is divided by the number of quanta. The
narrowing effect predicted by Eq.(15) is visible on Fig. 2.

We turn now to the case with an incident energy equal to
20 eV. The general formula given in Eq.(15) is now to be
applied withm=1 anda equal 1 to 4, giving

va,1 = E − La + i
Ga

2
. s17d

The lower part of Table II gives the poles obtained numeri-
cally and their reconstruction from the primitive data of
Table I. It is to be noted that in all these pole calculations the
most efficient procedure is to look at the zeros of the inverse
of tn

s3d, wheren is the number of absorbed quanta explaining
a given feature in Fig. 2(given also in column 2 of Table II).
This is to be understood in the algebraic sense—that is, with
n positive for all peaks produced withEinc=10 eV andn
negative for those produced withEinc=20 eV.

Finally let us consider an incident energy of the form
Einc=La+pv for a given value ofa—say, 1—andp=
−1 to −4. Whatever the value ofp, there is in the sum

giving the Green operator a term witha=1 andm=p. The
complex frequency poles are given by

v1,p = p−1FL1 + pv − SL1 − i
G1

2
DG = v + i

G1

2p
. s18d

Table III confirms that again the width of a frequency pole
can be the width of an energy pole divided by an integer.

VII. CONCLUSIONS

The expression which is the basis of the search for the
poles in the complex energy or frequency planes is of general
applicability in scattering situations involving a periodic cou-
pling or perturbation provided there is free motion in the
asymptotic regions. Any structure observed when a transition
probability is measured or calculated as a function of the
frequency of the coupling could be assigned to the existence
of poles in the complex frequency plane. Although the case
examined here implies a rather weak amplitude of modula-
tion which leads to an easy identification of the meaning of
the poles, the expression for the Green operator at the basis
of this study is valid for arbitrary values of the parameters of
the model. It shows in particular that the determination of the
poles from the scattering amplitudes is a possible route to the
complex Floquet quasienergies, which bypasses the resolu-
tion of the Floquet eigenvalue equation.
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