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The surface impedance approach is discussed in connection with the precise calculation of the Casimir force
between metallic plates. It allows us to take into account the nonlocal connection between the current density
and electric field inside of metals. In general, a material has to be described by two impeddncegs and
Zy(w,q) corresponding to two different polarization states. In contrast with the approximate Leontovich im-
pedance they depend not only on frequendyut also on the wave vector along the plgtén this paper only
the nonlocal effects happening at frequencies w, (plasma frequengyare analyzed. We refer to all of them
as the anomalous skin effect. The impedances are calculated for the propagating and evanescent fields in the
Boltzmann approximation. It is found thZ}, significantly deviates from the local impedance as a result of the
Thomas-Fermi screening. The nonlocal correction to the Casimir force is calculated at zero temperature. This
correction is small but observable at small separations between bodies. The same theory can be used to find
more significant nonlocal contribution at~ w, due to the plasmon excitation.
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I. INTRODUCTION similar to that in Ref[6]. The precision was improved due to
o ) the use of the dynamical method. Additionally the change in
The Casimir forcg1] between uncharged metallic plates, the resonance frequency of the mechanical oscillator was
predicted in 1948 as a quantum electrodynamics effect, only,easured using the phase jump instead of the resonance be-
recently became a subject of systematic experimental invesravior of the amplitude. In this way the force was found with
tigation. The reason is that nowadays with the developmeny (e|ative accuracy of 0.2598-10.
of microtechnologies a reliable control of the separations be- 14 draw any conclusion from the experiments one has to
tween bodies smaller than4m became possible. A variety predict the force theoretically with the precision comparable

of methods have been used to measure the force. In the tqfjith the experimental errors. In its original form, the Casimir
sion pendulum experimeii], first in the modern series, the force[1]

force between a sphere and a plate covered with gold was

measured with the accuracy of 5%. A significant progress - (a):—ih—c (1)

was achieved in the atomic force microsc@p&M) experi- ¢ 240a*

ments[3,4], where the sphere was attached to a cantilever. )

The force was deduced from the cantilever bending when th&/as calculated between the ideal metals. It depends only on
plate was approaching the sphere. In this experiment ththe fundamental constants and the ghstance petween .the
force was measured with a 1% precision. The best resuRlatésa. The force between real materials, described by its
using the AFM[4] was found when the sphere and the p|ated!ele_ctr|c funcUon%(_w), was deduced for thg fII’S.t time by
were covered with gold and special care was taken to contrdtifshitz [11]. Corrections to Eq(1) can be quite significant
the surface roughness of metal. The same precision wa small separation between bodies. To calculate the force
reached in the crossed Cy”nders experimmt where ex- W|th h|gh preCiSion the Lifshitz formula is used with the
tremely smooth gold films were used. A sophisticated microoptical data taken from handbookd3,14. The data are
electromechanical syste(MEMS) [6] was used to measure available only up to some low cutoff frequeney,. For

the force between the gold-plated sphere and a suspend€@0d metals such as Au, Al, and Cu the data can be extrapo-
paddle. It demonstrated the nonlinear behavior of the melated to lower frequencies with the Drude dielectric function

chanical oscillator due to the Casimir force. The only experi- o2
ment where the force was measured in the plate-plate geom- e(w)=1-—2L—, 2)
etry [7] was done using an oscillating beam whose resonance o(otio,)

frequency changed in response to the force. Up to date, t

r\ﬁhich includes two parameters: the plasma frequ nd
most precise experimeris,9] explored the MEMS device P P quanest

the relaxation frequencw,. These parameters can be ex-
tracted from the optical data at the lowest accessible frequen-
cies. In this way the force has been calculgtes-19 with

*Electronic address: raul@fisica.unam.mx the highest possible precision. There is some disagreement
Ton leave from Yaroslavl University, Yaroslavl, Russia. Electronic between the results of different authors connected with the
address: V.B. Svetovoy@el.utwente.nl choice of the relaxation frequenay, [18]. This frequency
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can be found by fitting the low-frequency optical data with wave vectork. Actually in this case one has to separate two
Eqg. (2) [17] or extracted from the bulk material resistivity dielectric functions: the longitudinal functiof(w,k), which
[19]. These details are important at small separations. describes material response to the longitudiirarespect to

In Refs.[18,2Q it was stressed that using the handbookk electric field, and the transverse dielectric functig, k)
optical data one finds not the actual force but rather the uppgfescribing the response to the transverse field. A systematic

limit on thehCa(ljsimirffor%e. g’he reasor|1 is that the ha_”‘ljpc’Ok%vay to calculate the surface impedances via the dielectric
comprise the data for the best samples; any material Impeg,,tions and explicit expressions for these functions were

fe_ct|0n will reduce the reflectl_vlty and, as a resglt, the force iven in a series of classical papers by Kliewer and Fuchs
will be smaller. In the experiments the force is measure 30-47]

between the bodies covered with a metal. The metal is de- The aim of this paper is to provide the basis for svstem-
posited on a substrate with the evaporation or sputterin%t. . L th P he Casimir f y d
technicg[4,8]. The resulting film thickness is typically in the Ic Investigation of the corrections to t € Lasimir force due
range 100—200 nm. It was already notE&8,2Q that the to the _nonIoch effects. Here we conS|de_r only the_mmor
optical properties of the films can deviate significantly from COITections which appear at low frequencies< w, but in-
those of the bulk material. The main reasons for these devigroduce a general approach which is true at any frequencies.
tions such as voids in the films and electron scattering on th&his approach is not new in condensed matter physics but it
grain boundaries were indicated receritjl] and the meth- has never been discussed before in connection with the Ca-
ods to estimate the effects were outlined. For the ARyl  simir effect.
and MEMSJ[9] experiments the influence of these effects on We deliberately do not consider here the correction to the
the force was estimated on the level of 2%. Additional workforce in the nonzero temperature case though our conclu-
from the theoretical and experimental sides has to be done gjons about the low-frequency behavior of the impedances
refine these estimates. for two polarization states will be important for the discus-

An alternative way to calculate the Casimir force usingsion of the temperature correction.
the surface impedance of metals instead of the dielectric The paper is organized as follows. In Sec. II the main
function was discussei@2—24 in the literature. The general definitions are introduced, allowing us to calculate the im-
formula for the Casimir force in this approach was deducededances for two polarization states via the longitudinal and
for the first time in Ref[25]. It is the same Lifshitz formula transverse dielectric functions. The explicit expressions for
but the reflection coefficients are expressed in terms of théhe nonlocal dielectric functions in the Boltzmann approxi-
surface impedance. In the cited papers the approximate Lénation are given. The impedances are calculated first for
ontovich impedancé26] depending only on frequency was Propagating fields to compare the calculations with the
used. The hope was that in this approach it will be possibl&nown results. Then we discuss the continuation procedure
to resolve the long-standing problem with the temperaturdo the range of evanescent fields and calculate the imped-
correction to the forcg18,27-34. However, although the ances at imaginary frequencies to put them later in the Lif-
impedance approach itself seems reasonable and well moghitz formula. The low-frequency behavior of these imped-
vated, the use of the approximate impedance for the Casim@nces important for the thermal correction to the Casimir
force happened to be unjustified. The Leontovich impedancéorce is discussed specifically. In Sec. Il the actual calcula-
is well suited for the propagating photons impinging on ations of the correction to the Casimir force due to nonlocal
metal but for the Casimir problem the exact impedance hasffects are presented for plate-plate and sphere-plate geom-
to be used since the important contribution in the force€tries. The discussion and concluding remarks are given in
comes from the evanescent electromagnetic field. The exa&€cs. IV and V.
impedance was shown to give the same result for the force as
that in the dieleqtric function approa¢B5]. . Il. SUREACE IMPEDANCES OF METALS

The surface impedance is the only way to describe the
interaction between the electromagnetic field and metal in The anomalous skin effect was incorporated into the gen-
the case when the relation between current and electric fieldral theory of the optical properties of metals with the de-
in the metal becomes nonlocal. For example, at low temperdailed paper by Reuter and Sondheinjé®]; the qualitative
tures the mean free path of the electrons in metals becometescription was given earlier by Pippafd3]. Pippard was
larger than the field penetration depth, and the relation bethe first to point out that, in general, the electric field inside
tween the current and field becomes nonlocal at low frequera metal cannot be considered as spatially constant. In gen-
cies [36,37 and the anomalous skin effect is realized. Ineral, the connection between the current and the field be-
connection with the Casimir force the contribution of this comes nonlocal. The current is given by a definite integral
effect in the temperature correction was discussed in Refnvolving the values of the electric field at all points in the
[23]. On the other hand, at high frequencies-w, the  metal, and Maxwell's equations therefore lead to an integro-
charge density fluctuations can propagate in the materialifferential equation from which the electric field has to be
(plasmony taking away the energy from the incoming field. determined. The expression for the current was ded{#&d
This is also an example of a nonlocal effect which wasat the conditions that the electrons can be considered as qua-
shown to give a significant correction to the Casimir forcesifree and the collision mechanism can always be described
[38] at small separations between bodies. In the nonlocah terms of a mean free pathor, alternatively, a relaxation
case both time and space dispersion happen and the dielectfiequencyw,. The mean free path was assumed to be inde-
function depends not only on frequenaybut also on the pendent of the direction of motion. An additional assumption
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2 dE/(+0) dE/(-0)

2,12 w _
= (kg + kz)é’y + ?Dy l— pr

where& andD are the Fourier-transformed fields defined as

(4)

k) = f dzEz)e k2 (5)

and similarly forD. Equation(4) describes the behavior of
the electric field in an infinitely extended medium. Further-
more, the right-hand side in E@) is undefined until we find
FIG. 1. Choice of the coordinate system for the incoming wave @ rélation between the two derivatives at the surface. This
The angle of incidence is given b§. The electric fields in the relation involves describing or modeling the surface. In this
p-polarized waveE, ands-polarized waveE; are shown. work we assume that the electrons scatter elastically from the
surface(specular reflection This assumption is equivalent to
ssuming an infinitely extended medium, needed to obtain
g. (4), since an electron bouncing from the surface cannot
R—e distinguished from an electron coming from a fictitious
medium on the vacuum side. This is taken into account im-
posing the symmetry requirements

about the electron reflection off the surface was introduce
by Pippard: a fractiorP of the electrons arriving at the sur-
face are scattered specularly, while the rest are scattered d
fusely. Only normal incidence of the electromagnetic field on
the metal was considered in Rg#2]; however, it was

stressed in the_ Kliewer-Fuchs pa@é@] that the theory of an E/(2=E/(-2), Dy(2)=Dy(-2). (6)
anomalous skin effect can be considered complete only when i .

arbitrary incidence is taken into account. Thus, using the Maxwell equation

~ The relation between the current density and the electric dE(+0) dE(-0)

field can be found solving the Boltzmann equation if the free z  d = —i(wlc)H,, (7)

electrons and field wavelengths large compared to the wave-
length of an electron at the Fermi surface. For the descriptioand from Eq.(4) one finds

of the anomalous skin effect it is a valid approximation. In

general, this relation can be found in different approxima- &y 2w 1

tions using the linear response thed#y]. H,(+ 0) - T(wzlcz)st— k'

K=I2+K2.  (8)

The inverse Fourier transform of this equation evaluated at

A. Propagating waves z=0 gives the surface impedance fpolarization:

Following Kliever and Fuchg39] we consider a plane

wave of angular frequency incident from vacuum at an Z(Kyyw) = - EHO _iof(” L 9)
angle ¥ upon the surface of metallic half-space. The geom- Hy(+0) mcJ_. (0%c?)e -k

etry, together with the choice of the coordinate system, is

shown in Fig. 1. One can separate two polarization states fdrf P Polarization the problem is slightly more complicated
the wave. For thes-polarized wave the electric field is di- since we have two nonvanishing components of the electric

rected in they axis, while for thep-polarized wave the elec- field, E a”‘?‘ E,. Following a sir_nilar Iin_e of rgasonings as
tric field is in thex—z plane and has nonzemcomponent. before, the impedance fqr polarization is obtained as

For clarity let us sketch out how the specific expressions for E(+0) i dk K2
the surface impedances have been deduced in[Bgi. Zy(kyw) = ~——= ——f —2{%
For the s-polarized wave the field can be written in the Hy(+ 0 mc). K [ (o7ce
form E=E(2)exp(-iwt+ikx)ny, wheren, is the unit vector K2
along they axis andk,=(w/c)sin ¥ is the x component of + er_kz} (10
t

the wave vector in the incoming wave. Since this component

will play significant role in what follows, we will use for it |t is natural that both the longitudina|(k , w) and transverse

also a special notatiog=k,, which is settled in the field of ¢ (k,w) dielectric functions contribute t&, because in the

the Casimir force. The dependence of the electric fieEl  \yave the electric field has both components.

=(0,Ey,0) for the s wave inside of metal can be described  since the impedance approach caused recently some con-

with the Maxwell equation fusion in the field of the Casimir forcg22—24, a few com-
ments concerning the impedances, E§s.and (10), should

dzE:I _E + w—ZD -0 3) be made. First, there is not one but two impedances corre-
daZz XY @2y sponding two different polarizations. Second, the imped-

ances depend not only on the frequency but also on the wave
whereD is the displacement field. This equation is valid for vector along the metal surfa@e=k,=(w/c)sin 9. Only for
z>0. Taking the Fourier transform of E3) over thez = normal incidence do the impedances ferand s-polarized
coordinate, we obtain waves coincide and depend only on frequency. Third, no
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specific assumptions about the dielectric functiepand e, 10
were made in the derivation of Eq®) and(10). In particu-

lar, the local functiong(0,w)=¢,(0,w)=¢(w) can be used.

In this case the integrals can be easily calculated to find
so-called classical or local impedances

1 2%q,0) = Ve(w) = (cq/w)2
Ve(w) - (cqw)?’ e(w)

Z°%q,w) =

Absorptance

(11

These expressions completely coincide with those introduced
in Refs.[35,38 and, as was shown there, exactly reproduce
the Casimir force in the dielectric function approach. The
Leontovich impedance used in Ref&2—24 from the begin- 10 10 10 10 10

ning was introduced as the approximate $86,37 for ap-

plications in radiophysics. For the propagating waves it re- FIG. 2. Absorptance as a function of the dimensionless fre-
ally has sense becaussy/w=1 but for metals in the quencyQ at normal incidence¥=0. Local and nonlocal cases are
microwave rangde(w)|>1. So one can neglect the wave represented by the dashed and solid lines, respectivelydd
vector along the plate@=k,) in the impedances to get just there is no difference betweenand p polarizations. Parameters
one frequency-dependent function. However, in the Casimitvere chosen as in Reff39]: y=1x 1073, v:=0.85x 10° cm/s.

force a significant contribution comes from the evanescent

fields for whichcg/w>1. In this case the Leotovich ap-  The functione, was found first by Reuter and Sondheimer
proximation fails especially in the limib— 0, which is im-  [42]. Since these authors considered only normal incidence,

portant for analysis of the temperature correction. in their work there was ne,. This function appears at non-
The dielectric functions were fourj@9] solving the Bolt-  normal incidence. In the wave there is the normal field
zmann equation and the result is the following: componeng, giving rise to charge fluctuations to which the
W2 system responds via the longitudinal dielectric function. It
ek w) =1 +yg(w) - _p_ft(u), (12) should'be mentioned that with the pha}rge_ fluctuations the
ow(w+in,) relaxation of the perturbed electron distribution toward equi-
librium was chosen to the local state of charge imbalance but
w2 not to the uniform distribution. The denominator in E#5)
g(kw)=1+y;g(w) - ﬁp—)ﬁ(u), (13)  describes this effect.
! Equations(12)—<(16) are used in the optics of metdi5]

where the phenomenological susceptibiljijy(w) was intro-  to predict the reflectance or absorptance of the materials. It is
duced to describe the interband transitions since these préasy to find the reflection amplitudesandr, for s andp
cesses are beyond the quasifree electron model. The fungolarizations expressed via the impedances as

tions f,(u) taking into account nonlocal effects are defined 2 2 "
. . w
in the following way: o Z - P - R - EZp
1+u s=— 75— h=—F7—5—— . (18
fi(u) = —{u— - uz)ln< )] (14) Lz E - 02,9
—+Z\| 5 - —-q?+—Z
1- c s\ 2 q 2 q coP
3 1+u o The reflectance and absorptance are given by
(u)= —In< ) 1+i—
1-u @ Rs,p = |rs,p|2v As,p =1- |rs,p|2- (19
_i_ﬁq 1+u) ™ (15) In what follows we will use dimensionless variables,
20w \1-u ' which are more convenient for numerical calculations. We
define
where the variablel responsible for the nonlocal effects is
w Ccq W,
vek Q=—, Q=—, y=—. (20
= (16) @p @p ©@p
wtlo,

To verify the procedure we recalculated the absorptance with
and vg is the Fermi velocity. In the local limik—0 both =102 and the Fermi velocity-=0.85x 10° cm/s (potas-
functions(12) and(13) reduce to the local dielectric function sium) to compare with the same calculations in RgH9].

(Drude plus interband transitions The results are presented in Figs. 2 and 3. Absorptance at the
5 normal incidence)=0 (Q=0) is shown in Fig. 2. In this case
w o ) .
(@) =1+ yg(w) - b (17) both polarizations give Fhe same result. The nonlocal case is
w(w+io,) presented by the solid line. The absorptance in the local limit
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the evanescent fields are the subject of the near-field optics
[46] (see alsd47] for a review, where standard electrody-
namic approaches are used. Additionally, the longitudinal di-
electric function can be probed in the evanescent range by
the scattering of a beam of charged particles or fast electrons
from the material [48]. In this way the function
Im{1/g/(k,w)} can be directly extracted from the experi-
ment, wherek is connected with the momentum amdwith
the energy losses of the charged particles. No necessity for
modification of the standard electrodynamics was noted so
far. A consistent way for the description of evanescent fields
is just the analytic continuation of the Eg®), (10), (12)-
(16), and(18) to the rangew?/c?< o

Originally the Lifshitz formula for the Casimir force was
written as an integral over real frequencies[11]. In this

FIG. 3. Absorptance as a function 8ffor p polarization at the representation one has to calculate first the integral over the
incidence angle?=75. Local and nonlocal cases are represented byvariablep=11-(cq/ w)? in the range 6<p<1 (propagating
the dashed and solid lines, respectively. Parameters were chosenfiglds) and then integrate over the imaginary axisi|p|
in Fig. 2. from zero to infinity(evanescent fieldsSo the propagating
and evanescent fields were clearly separated. The alternative

calculated with the impedancesl) is given by the dashed representation of the same formyle?] is more popular be-
line. The usual increase in the absorptance can be seen at IGgUSe of faster convergence of the integrals. In this case the
frequencies~ 103 due to the anomalous skin effect. For intégration is done over wmaw frequenaiesi but

the incidence angle9=75° the absorptance of the theinnerintegral ovep=y1+(cq/{)?is calculated from 1 to
p-polarized wave is shown in Fig. 3. In this case there is arf°- Formally we are always in the evanescent domain because
additional peak in absorptance at higher frequendies at imaginary frequencies thg normal component of the wave
~0.1. It appears only fop polarization; thes polarization ~ Vector is pure imaginari,=iy¢?/c?+q?. For this reason we
behaves similar to the casé=0. At smallery both peaks Will not investigate especially the domagt> w?/c?, mak-
become much more significant. These results are in fuling the analytic continuation og, but instead we will make

agreement with those of Kliewer and Fuddd]. the analytic continuation to imaginary frequencies. This pro-
cedure is well defined for the response functions which are

analytical in the upper half of complex plaae In the elec-
trodynamics the response functions are the components of

The fluctuating currents in the plates are the sources ahe Green functior; *(k ,w) and[(w?/c?)s(k , ®)-k?]™ but
fluctuating electromagnetic fields responsible for the Casiminot the dielectric functions themselvetd,50. Exactly these
force. The typical separation between bodies in the Casimigxpressions take part in the impedan¢@ps and (10) and,
force experiments is smaller than the wavelengtf visible  therefore, the impedances can be considered as analytical
light. If we consider one plate as an emitter and the other on@unctions ofw.
as a receiver, then for a significant part of the spectrum con- Using the dimensional variablg0) the impedances at
tributing in the force the receiver will be in the near-field imaginary frequencie@) —iQ) can be written as
zone of the emitter. In this case the propagating field radiated
by the emitter will be small in comparison with the evanes- o

i . . ; . 2Q coshydy

cent field which exists around the emitter at the distances Z{(Q,0)=—— 5 , (21)
~\. The well-known example of such an emitter is the Hertz mQJo cosPy + &8 Q)
dipole. At small distances from the dipole&/c<1 one can X QT
neglect the retardation and the field around the source is just
the field of the static dipole decaying asrd.When the force

Absorptance

B. Evanescent fields

is calculated using the Green function methf®], the 20 (7 dy 1
Green function is exactly the dipole field modified by the Z,Q.0)=—— 2
7QJo coshy| Q
presence of the plates. The planar geometry of the problem —&(Q,v)
makes it preferable to expand the dipole field on the plane Q
waves. The plane waves obeying the conditigic® < o? do cosify-1
not propagate in the gap because the normal component of + 02 : (22
the wave vector is pure imaginary. cosity + Est(ﬂ,v)

There were some speculations in the literat(gee, for
example[24]), inspired by the problem with the temperature
correction to the Casimir force: that for evanescent fields, thélere we introduced a new variable of integratjpmvhich is
standard expressions for the Fresnel reflection coefficientdefined by the relatiof,=k,sinh y. For the dielectric func-
should be modified. In this connection we have to stress thatons at imaginary frequencies one finds
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-4 =
10 . L 10 . ,
107 10 107" 10° 107 107 107" 10°

Q Q

FIG. 4. Numerically calculated impedang as a function of FIG. 5. Numerically calculated impedangg as a function of
dimensionless frequenc for two values of the dimensionless frequency() for two values of the wave numbers along the plate
wave numbers along the pla@ The solid line describes nonlocal Nonlocal and local cases are shown by the solid and dashed lines,
calculations; the dashed line presents the local case. Maximal deespectively.
viation between local and nonlocal curves is about 2%. Gold pa-

H - 3 - . .
rameters were used for calculationy=3x10", ve=14 1016 raq/s. The impedance of the local theory is presented

X 10° em/s. by the dashed lines. One can see that the nonlocal effect is
very small for this polarization. The largest deviation from
fi(v) the local curves is just about of 2%. Obviously theolar-
&(Qo)=1+xg() + QQ+7y)’ ization cannot produce significant nonlocal correction to the

Casimir force.

3 y-arctany A different situation is realized fop polarization, as
fiv) == , (23) shown in Fig. 5. One can see that there is a significant dif-
v ference between the local and nonlocal cases. The deviation
increases with frequency decrease and becomes larger for
larger Q. This behavior has deep physical meaning, as ex-
plained below, and can appear only for the evanescent fields.

Y
v+ —(v —arctanv
Q( )

f
£(Q,v) =1+ x,5(Q) + % Since in both cases the deviations from the local case are in
(Q+7) the low-frequency range, we analyze this limit analytically.
3 ) ) )
fi(v) = F[_ v+ (1 +varctanv], (24 C. Low-frequency behavior of impedances
U
At low frequencies() < v, the variablev defined by Eq.
ve Q (25) can be large ify<vg/c~4.7x 1073, Let us consider the
v= —FQ coshy. (25) impedances in the limig> 1. In this limit the functiond(v)
ci+y andf,(v) in Egs.(23) and(24) behave as
These formulas are used for numerical calculations of the
impedances. They have to be compared with the classical 3 0

fi(v fi(v) = i—:,v > 1. (27

expressions in the local limit which follows from E¢l1) = 020+ y

after the change to imaginary frequencies:

> In the transverse dielectric functiogg one can neglect 1
\/e(Q) + % +x15(Q) since the third term behaves a1 4t low frequen-
Q cies. It gives, fore,(Q,v),

2= e 7,
\ e+ Qz - dmrc 1 1
Q &(Q,0) (28)

e(Q)=1+xg(Q) + ——. (26)  For the the longitudinal functiom, the phenomenological
QQ+7y) . . S g
susceptibilityy,g(£2) again is negligible because it is respon-
The numerical result foZg is shown in Fig. 4 as a func- sible for the interband transitions at much higher frequencies
tion of Q) for two values ofQ. All calculations were per- but we cannot neglect the unit since the third term in(28)
formed for the parameters corresponding to gold at roondoes not depend on frequency at all and not necessarily

temperatureyy=3x 1073, v=1.4x 10° cm/s, andw,=1.37  large. Forg({2,v) one find
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FIG. 6. Numerically calculated functiorigb) and G(b).

c 1 2 3((0 1)2
Qu)=1+3 ——— | =1+3 —2=] . (29
a(fhv) (vFQ coshx> ve k (29)

This expression describes the Thomas-Fermi screening of the

longitudinal electric field. It has to be tryd0] at 2 <y and
k much smaller than the Fermi wave numligrthat is the

applicability range of the Thomas-Fermi approximation. Th

latter conditionk<<kg is also the condition for applicability
of the Boltzmann equation.

Substituting Eqs(28) and(29) into Egs.(21) and(22) one
finds, for the impedances,

2 ),

Zs= 9 (30)
1 Q 1@ Q
Z,= 9= +=-G(b) = 1 Qe 2G(b),
QV1+3(c/veQ)? Q V3l c Q
(31)
where the function&(b) and G(b) are defined as
2 (” coslty 2J°° sinkPy
Fby=—| dy—="=, Gb)=—| dy—3"=,
(b) ﬂ-fo X coshy +b° (b) 7)o Xcoshy + b3
(32
1/3 1/3
b:—(—ffig . (33)
Q\ 4 ve

The functionsF(b) and G(b) can be found explicitly but the

result is cumbersome and inconvenient for analysis. For this

reason we calculated the integrals in E§2) numerically,
presenting explicitly only the asymptotics b1 andb
> 1. The functiond=(b) and G(b) are shown in Fig. 6. The
asymptotic behavior of these functions is
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4 3
1-—Db°b<1,
37

F(b) =
41 1

——Z+——(In2b-1/2,b>1,
\3\‘”3b 7Tb3(n )

p
1 4 4
—-—Db°b<1,
2 15«

G(b) =1 (34)

41
(3V3b

The known result for the Leontovich impedance for the
strong anomalous skin effef26,37,47 is easily reproduced
if we take in the equations above the linft— 0. In this
limit the parameteb goes to infinity and the contribution of
the transverse dielectric function is the same for both polar-
izations: F(b)=G(b)=4/3y3b. The contribution frome, in
Z, disappears in the limiQ— 0. Hence, the impedances will
coincide with each other and they are given by the classical
expression for the strong anomalous skin effect continued to
imaginary frequencies:

2b+1/2),b>1.

1
E(In

4(iv,:

1/3
Z40,0)=27,00)=2(Q)= —= -—Q% . (35
33

37 C
However, ifQ is nonzero, there is a small enough frequency
whereb is not large anymore and E5) is not applicable.
®WhenQ is so small thab<1 the impedancé&g approaches
the limit 1/Q. The same limit is realized for the local im-
pedancez'sOC in Eqg. (26) at very low frequencies when one
can negleck(£) in comparison withQ?/ Q2.

For p polarization at nonzer@ the contribution ofe; in
the impedance decreases withbut the contribution of;,
increases as 11 [see Eq(31)] and dominates iz, at low
frequencies. It is in agreement with our numerical calcula-
tions in Fig. 5. Indeed this is the result of the Thomas-Fermi
screening. The same effect is not realized for the propagating
fields. In this case the ratiQ/Q=sin 9=<1 is restricted.
Sincevp/c=4.7x 1072 is small, the variablel, Eq. (16), is
small nearly everywhere in the integration range and the
function f;(u) = 1. Therefore the local limit is realized in-
stead for the longitudinal contribution i,

The behavior of the impedance for tkepolarization at
low frequencies is a sensitive matter for the temperature cor-
rection to the Casimir force. One of ¢¥.B.S.) in collabo-
ration with M. Lokhanin analyzed this problefa3] with the
Leontovich impedancé35). As follows from the discussion
above this analysis has to be reconsidered, taking into ac-
count not only the different behavior & at very low fre-
quencies, but also the significant deviationZf from the
local impedance in this range.

IIl. NONLOCAL CORRECTION TO THE CASIMIR
FORCE

In this section we are going to estimate the correction to
the Casimir force due to nonlocal effects at frequencies
smaller thanw,. The restriction on frequency is connected
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with the use of the Boltzmann approximation for the dielec- 0.8
tric functions(23) and(24). In this approximation we cannot
describe the plasmon excitations. Of course, one could use
more general dielectric functions like those in the self-
consistent-field approximatiof0] to analyze all the nonlo-

cal effects. However, we think it is reasonable to separate the
effects of different physical origin. The influence of the plas-
mon excitations on the Casimir force has been already evalu-
ated[38] using the hydrodynamic approximation for the lon-
gitudinal dielectric function, but the correction to the force
due to the anomalous skin effect never has been calculated
before. Only specific questions concerning the temperature
correction have been addressed in the litera{@@. By

Reduction factor

anomalous skin effect we refer not only to the strong anoma- 035 100 150 200 250 300
lous skin effect that is realized when the electron mean free Separation [nm]

path is larger than the field penetration depth, but to all the

nonlocal effects that happen at frequencies smaller than FIG. 7. The reduction factdf,(a)/Fc(a) in the local case as a

We will consider only the force in the zero-temperaturefunction of the separatiom calculated with the handbook data
limit. Thus, the Casimir force will be calculated without the (solid line) and with the Drude model for the dielectric function
temperature correction but all the other parameters charactefashed ling
izing the material, especially the relaxation frequency
will be kept at finite temperature. The results of the previous QO -V02+Q%24(0,Q) VO2+ QP- 0Z,(0,Q)
section for the impedanced and Z, are important for the  I's= 0+ V021 024(0.0) rp= 2+ 024 OZ(0.0)
temperature correction problem but this question will be con- Q7+ QZ(Q,Q) VO7+ Q7+ 0Z,(Q,Q)
sidered elsewhere. (39

It is known that when a metal is described by the surfac
impedances, the Lifshitz formula for the Casimir folde]
remains essentially the sanig5,38 as when the metal is
described by the local dielectric function. Only the reflection . S S
coefficients have to be expressed via the impedances. wlrEihcr:h?vggI&eogh?espsri%);:mlty force approximatiof1]
nonzero temperature the Lifshitz formula includes summa- 9 P

he impedancesZ;, are calculated according to Egs.

(2D—H25.

The force between a sphere and a plane can be calculated

tion over the Matsubara frequenciég defined for our di- ficR [~ ® 5 ——
mensionless frequency as Fspl@) = ﬁf dﬂfo dQQ{In[1 —reexp(— 2dvQ~+ Q)]
0
0,= b 2 2mKT (36) +In[1 -rZexpt- 202+ Q7)) (40)
" w, oy whereR is the radius of the sphere.
To get the Casimir force ai=0 we have to integrate over Numerical procedure

the continuous variabl€. In the dimensionless variablé€s

and Q the Casimir force between two metallic plates sepa-_First we calculate the force between paraliel plates
rated by the distance at T=0 is Fop (a) in the local limit with the Drude dielectric function

and local impedancg26). The actual calculations were per-
" " formed for the dimensionless relaxation frequerisge Eq.
Fop(@) = - ﬁ_ch dQJ dOQVOZ + Q2 (20)] y=4x 1073, This value is the best f{tL7] of the hand-
228 ), 0 book optical data for goldi13] at low frequencies. In Fig. 7
we show the reduction factej(a) defined as the ratio of the

-2 22 2\ _ 11-1
X{[rs"exp(2dvQ+ Q) - 1] calculated force to the original Casimir for¢®); this is

+[r,%exp(2dV0* + Q%) - 1171, (37) F (@
n(a) ==, (41)
Fo(a)
where
The force calculated using the Drude mo¢#dshed ling
a c is smaller than that calculated using the handbook optical
d==, &=—=21.88nm. (38) data for gold(solid line). The solid line coincides with the
g @p reduction factor given in Ref17].

The nonlocal correction is calculated without the empiri-
Here § is the penetration depth for gold. The reflection coef-cal susceptibilityy,s(w) introduced in Egs(12) and(13), so
ficients follows from Eq(18) after continuation to imaginary we have to remember that the relative nonlocal correction
frequencies: will be smaller than the calculated one on the value of the
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x107°

Relative correction [%)]

0.04

50 100 150 200 250 300

« 10 Separation [nm]
1 f FIG. 9. The relative correction to the force due to nonlocal

effects for the plate-plate geometry. The solid line presents the re-
sulting correction. The dashed line gives the contribution ofghe
polarization and the dotted line gives the contribution of shmo-
larization. Gold parameters were used for calculations.

in a wider range of) < 1. With the decrease of separatian
the integrand fomp polarization increases in magnitude and
becomes wider in both directiofs andQ. The integrand for
s polarization decreases in magnitude and widens only in the
Q direction. Thus, the contribution of polarization in the
force correction is always smaller than that for {ngolar-
ization.

The results for the relative correctiafF,(a)/For'a)
due to the nonlocal effects are presented in Fig. 9. The solid
line gives the resulting correction, while the dashed and dot-
order of the relative difference between the curves in Fig. %ed lines represent the contributionspénds polarizations,
(8% ata=100 nm. . respectively. One can see that the correction is small but not

The force calculation in the nonlocal case is quite commegligible. The contribution of polarization increases when
plicated because one has to make three integrations with hig{) becomes smaller, but even fgi=10"° this contribution is
precision: one to calculate the impedances and two to calCuill on the level of 0.2%. We can see that the large deviation
late the force. It is much more easy to calculate not the forcgygf the impedance fop polarization from the local one that
itself but integrate the difference between nonlocal and |0ca||'|appens at low frequencies is not very signiﬁcant for the
integrands. In this case there is no need to perform highforce. This is because in the reflection coefficignthe im-

precision calculations of the integrals since we have to knovwsedance enter a8, so that the 19 behavior ofZ, is
the correction due to nonlocality with the precision of aboutsyppressed in the reflection coefficient.
of 10%. Actual calculations of the difference

FIG. 8. Integrands fos polarization(a) and for p polarization
(b). Note the different scales ifd axes.

Similar calculations were made for the sphere-plate ge-
_ cnonlog .y _ loc ometry. The relative correctiom:sp(a)/FSDg”de(a) together
Fpp(@) = Fpp @ Fpp(@) (42) with the separate contributions @f and s polarizations is
were made with a relative accuracy of 1%, while the imped.ShOWn in Flg 10. The behavior of the curves is quite similar
ances(21) and(22) were calculated with a relative precision t0 that for the plate-plate geometry. Only the absolute mag-
of 10°5. The integrands fos and p polarizations defined as Nitude of the correction is smaller.

8fsp=QVO2+ QZ{[r;f) exp(2dv0?+ Q%) - 1]t

IV. DISCUSSION
- (rs,p - flso,g)} (43) . . . .
The theory described in Sec. Il provides solid ground for
are presented for=275 nm in Figs. 8 and &b), respec- the impedance approach in the Casimir force calculation.
tively. Both of them are negative as they should be, since th&pecifically it allows one correctly to take into account the
force decreases due to the nonlocal effects. It is interesting teonlocal connection between the displacement and electric
notice thatsf, is nonzero in a very narrow range of sm@ll  fields. In this paper we restricted ourselves to the nonlocal
In contrast, the integrand fqr polarizationdf, is nonzero in  effects happening at frequencies smaller than This re-
a broader range of) [pay attention to different scales in striction is due to the Boltzmann approximation used for the

Figs. 8a) and 8b)]. Nonlocal effects are always significant nonlocal dielectric functiongl2)—(16). However, the equa-
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0

Relative correction [%)]

50 100 150 200 250 300
Separation [nm]

FIG. 10. Same as Fig. 9 but for the sphere-plate geometry.

tions for the impedances, Eq®) and(10), are much more

PHYSICAL REVIEW A69, 062102(2004)

found from Eqgs.(44) and (45) in definite limit cases. For
example, the Boltzmann approximatiqi2)—(16) follows
from Eqgs.(44) and(45) in the limit z— 0. These expressions
for the dielectric functions allow one to perform detailed
investigations of the high-frequency regian= w, which
gives a more significant contribution in the Casimir force due
to excitation of the propagating charge density waves in the
metal [38].

We considered here only specular electron reflection off
the metal surface. It is justified for the AFM experimé#t
where the root-mean-squa¢ams) roughness of the surface
(1 nm was much smaller than the mean free p&@ nm.
However, in the MEMS experimen{$,8,9 the rms rough-
ness was comparable with the mean free path and approxi-
mation of specular reflection fails. In this case the diffuse
reflection of electrons off the surface is more suitable. For
the diffuse reflection the impedances are not represented by
the Egs.(9) and (10) anymore. Instead one has to use the
impedances for the diffuse reflecti¢4l]. There is no prob-

general. For specular electron reflection off the surface thesgm with z, which is expressed via(k, ») but situation with

equations are true for arbitrary dielectric functiongk , w)

andeg(k ,w) with the only condition that these functions ex-

Z, is much more complicated. This occurs because of the
destruction of translational invariance in the direction normal

ist. Therefore, all nonlocal effects can be described on theo the surfacg41]. Although it is possible to calculate both
same basis. In particular, for metals the most general diele¢gmpedances in the diffuse case, we do not think it is reason-
tric functions for a free-electron gas were found in the self-able to do for the anomalous skin effect. This is because the

consistent-fieldor Lindhard approximation with the neces-
sary modifications to include a finite relaxation tif#®]. In
this approximatiore,(k, w) has the form

2
kw =1 ——wp—ft(u,Z),

il ow(w+in,)

where

fi(u,2) = g(z2 +3u?+1)

3 ) e <Z-U_1+1>
322{[1 (z-u™)7)In Y

-1
1 - (z+ U2 In(%) } (44)

Hereu defined as before by Eq16) andz is z=k/2kg. The
longitudinal dielectric function has a little bit more compli-
cated form:

o, i w, (1+u)]|?
£|(k,w)—1+(sw—1){l+lw Zlen(l—u” ,

3sz
ew=1+ kzvlzzfl(uaz)y

z-ult+ l)
z-utl-1

f,(u,2) = % + Siz{[l -(z-uh? In(

+[1—<z+u-1>2]|n(L1+1)}. (45)

z+ult-1

nonlocal correction is smaller than the uncertainty in the Ca-
simir force due to the roughness. The roughness correction to
the force is usually evaluated using the proximity force ap-
proximation (see, for example[9]). Recently it has been
pointed out[52] that this approach is valid only for long-
wavelength deformations of the plates. The real surfaces of
deposited gold films have a roughness on very different
scales[53] and the short wavelengths will bring uncertainty
in the estimate of the force.

The impedance&d) and(10) with the nonlocal dielectric
functions (12)—(16) are well known in the optics of metals
but in this paper we considered them in the near-field range
where the nonlocal effects were unexplored. In this sense the
Casimir force is a unique problem. A significant contribution
in the force comes from fluctuating fields in the near-field
region. Since the force has to be predicted with high preci-
sion, it is important to take into account the nonlocal effects.
Though we have found here that the anomalous skin effect
gave an observable but minor correction to the force, the
other nonlocal effects, such as plasmon excitation, can give
more significant correction. This paper just provide a regular
basis for the calculations of this kind.

V. CONCLUSIONS

A complete calculation of the Casimir force that can be
accurately compared with experiments requires a full optical
characterization of the involved materials. This is compli-
cated due to the various factors that can modify the optical
properties. In this work we described a systematic way to
take into account the nonlocal effects in the material. It was
stressed that, in general, a metal had to be described with two
different surface impedances corresponding &mdp polar-

All the other approximations for the free-electron gas can bézations and these impedances depend not only on frequency
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but also on the wave vector along the metal surface. As deviation ofZ, from local impedance the nonlocal reflection
specific problem we considered the correction to the Casimicoefficientr, deviates from the local one only slightly. For
force in the region of the anomalous skin efféat<w,).  thes polarization the effect is even smaller. For this reason
This region is characterized by the nonlocal dielectric functhe total contribution of the nonlocal effects in the Casimir
tions(longitudinal and transvers¢hat can be obtained in the force is on the level of 0.5% at small separations. It is a
Boltzman approximation. The impedances are completelyninor effect within the levels of detectability of present ex-
defined by these functions. periments, but smaller than the corrections introduced due to
It was demonstrated that the exact impedances are diffesample roughness.
ent from the approximate Leontovich impedance. The latter We did not considered in this paper the temperature cor-
one caused confusion in the literature, so our analysis reection though it is clear from the analysis of impedances
solved the problem and gave a proper description of the imthat anomalous skin effect will be important for the tempera-
pedance approach in the Casimir force calculation. It wagure correction. A new phenomenon observed here is that the
emphasized that the significant contribution in the forcereflection coefficient, for p polarization is not going to 1 in
came from the evanescent fields. For these fields the impedihe zero frequency limitv— 0. This behavior is the result of
ances can be found by the analytic continuation and the prdhe Thomas-Fermi screening.
cedure is well defined. The contribution of the nonlocal ef- The technic developed in this paper can be applied to
fects in the impedances was found to be quite different foicalculate the contribution of the other nonlocal effects such
propagating and evanescent fields. Specifically for the evaas plasmon excitation a#~ w,. These effects are expected
nescent fields the impedance fopolarization deviates sig- to give more significant correction to the Casimir force.
nificantly from the local one that is the result of the Thomas-

Fermi s.creening. Fqs polarizat!on.t.he nonlocal contribution ACKNOWLEDGMENTS
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fields than for the evanescent ones. R.E. acknowledges the partial support provided by

In the impedance approach the Casimir force can b&®GAPA-UNAM Project Nos. IN116002, IN117402, and
found from the same Lifshitz formula in which the reflection CONACyYT Project No. 36651-E. V.B.S. is grateful to the
coefficients are expressed via the impedances. We calculatddansducer Science and Technology group, Twente Univer-
the nonlocal correction to the force in the region of anomassity, for hospitality and acknowledges the support from the
lous skin effect at zero temperature. In spite of a significanDutch Technological Foundation.

[1] H. B. G. Casimir, Proc. K. Ned. Akad. We&1, 793(1948. mon Press, Oxford, 1980Pt. 2.

[2] S. K. Lamoreaux, Phys. Rev. LetfZ8 5 (1997; 81, 5475 [13] Handbook of Optical Constants of Soljéslited by E. D. Palik
(1999, (Academic Press, New York, 1995

[3] U. Mohideen and A. Roy, Phys. Rev. Le81, 4549(1998; A. [14] V. M. Zolotarev, V. N. Morozov, and E. V. Smirnov&ptical
Roy, C.-Y. Lin, and U. Mohideen, Phys. Rev. @, 111101R) Constants of Natural and Technical MediKhimija, Lenin-
(1999. grad, 1984 (in Russian.

[4] B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev.68, [15] S. K. Lamoreaux, Phys. Rev. A9, R3149(1999.
052109(2000. [16] M. Bostrom and Bo E. Sernelius, Phys. Rev.&4, 046101

[5] T. Ederth, Phys. Rev. A2, 062104(2000. (2000.

[6] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. [17] A. Lambrecht and S. Reynaud, Eur. Phys. J8D309 (2000.
Capasso, Scienc®91, 1941 (2001); Phys. Rev. Lett. 87, [18] V. B. Svetovoy and M. V. Lokhanin, Mod. Phys. Lett. A5,

211801(2009). 1437(2000.

[7] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev[19] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko,
Lett. 88, 041804(2002. Phys. Rev. A61, 062107(2000.

[8] R. S. Decca, D. Lopez, E. Fischbach, and D. E. Krause, Phyq20] V. B. Svetovoy and M. V. Lokhanin, Mod. Phys. Lett. A5,
Rev. Lett. 91, 050402(2003. 1013(2000.

[9] R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause,[21] V. Svetovoy, inProceedings of Quantum Field Theory Under
D. Lépez, and V. M. Mostepanenko, Phys. Rev6B, 116003 External Conditions 2003edited by K. A. Milton (Rinton
(2003. Press, Princeton, 2003

[10] The precision claimed in some experiments is overestimated22] V. B. Bezerra, G. L. Klimchitskaya, and C. Romero, Phys.
due to several sensitive factors such as roughness. Small errors Rev. A 65, 012111(2002.
in roughness can give rise to large theoretical corrections a§23] V. B. Svetovoy and M. V. Lokhanin, Phys. Rev. 87, 022113
pointed out in D. lannuzzi, |. Gelfand, M. Lisanti, and F. Ca- (2003.

passo, e-print quant-ph/0312043. [24] B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko,
[11] E. M. Lifshitz, Zh. Eksp. Teor. Fiz29, 94 (1956 [Sov. Phys. Phys. Rev. A67, 062102(2003.

JETP 2, 73 (1956)]. [25] V. M. Mostepanenko and N. N. Trunov, Yad. Fid2, 1297
[12] E. M. Lifshitz and L. P. PitaevskiiStatistical PhysicgPerga- (1985 [Sov. J. Nucl. Phys42, 818(1985].

062102-11



R. ESQUIVEL AND V. B. SVETOVOY

[26] L. D. Landau and E. M. LifshitzElectrodynamics of Continu-
ous Media(Pergamon Press, Oxford, 1984

[27] M. Bostrom and Bo E. Sernelius, Phys. Rev. L84, 4757
(2000; Bo E. Serneliusjbid. 87, 139102(2001; Bo E. Ser-
nelius and M. Bostromipid. 87, 259101(2001.

[28] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M.

Mostepanenko, Phys. Rev. Le®5, 503 (2000; 87, 259102
(2001).

[29] C. Genet, A. Lambrecht, and S. Reynaud, Phys. Rew2A
012110(2000.

[30] S. K. Lamoreaux, Phys. Rev. Let87, 139101(2001).

[31] V. B. Svetovoy and M. V. Lokhanin, Phys. Lett. 280, 177
(2001).

PHYSICAL REVIEW A69, 062102(2004)

[40] W. E. Jones, K. L. Kliewer, and R. Fuchs, Phys. R&v.g
1201 (1969; K. L. Kliewer and R. Fuchsjbid. 181, 552
(1969; 185 905(1969.

[41] K. L. Kliewer and R. Fuchs, Phys. Rev. B, 2923(1970); J.

M. Keller, R. Fuchs, and K. L. Klieweiibid. 12, 2012(1975.

[42] G. E. H. Reuter and E. H. Sondheimer, Proc. R. Soc. London,
Ser. A 195 336(1948.

[43] A. B. Pippard, Proc. R. Soc. London, Ser.1®91, 385(1947.

[44] Y. Y. Wanget al, cond-mat/960606; Phys. Rev. Le#5, 2546
(1995.

[45] P. Halevi, Spatial Dispersion in Solids and Plasmas, Electro-
magnetic Wavesdited by P. Halev{North-Holland, Amster-
dam, 1992 \ol. 1.

[32] G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. A [46] D. Courjon,Near-field Microscopy and Near field Opti¢ien-

63, 062108(2001).
[33] I. Brevik, J. B. Aarseth, and J. S. Hagye, Phys. Rev6g
026119(2002.

[34] J. S. Haye, |. Brevik, J. B. Aarseth, and K. A. Milton, Phys.

Rev. E 67, 056116(2003.

perial College Press, London, 2003
[47] E. Wolf and D. F.V. James, Rep. Prog. Ph¥®, 771(1996.
[48] M. Dressel and G. GruneElectrodynamics of Solide€Cam-
bridge University Press, Cambridge, England, 2002
[49] P. C. Martin, Phys. Rev161, 143(1967).

[35] W. L. Mochéan, C. Villarreal, and R. Esquivel-Sirvent, Rev. [50] D. A. Kirzhnits, in The Dielectric Function of Condensed Sys-

Mex. Fis. 48, 339(2002.
[36] E. M. Lifshitz and L. P. PitaevskiiPhysical KineticyPerga-
mon Press, Oxford, 1981

[37] A. A. Abrikosov, Fundamentals of the Theory of Metals

(North-Holland, Amsterdam, 1988

[38] R. Esquivel, C. Villarreal, and W. L. Mochan, Phys. Rev. A

68, 052103(2003.
[39] K. L. Kliewer and R. Fuchs, Phys. Re{72, 607 (1968.

temsedited by L. V. Keldysh, D. A. Kirzhnits, and A. A.
Maradudin(Elsevier, New York, 198p

[51] B. Derjaguin and A. Abrikosova, Sov. Phys. JET® 819
(1957).

[52] C. Genet, A. Lambrecht, P. Maia Neto, and S. Reynaud, Euro-
phys. Lett. 62, 484 (2003.

[53] A. I. Oliva, E. Anguiano, J. L. Saceddn, and M. Aguilar, Phys.
Rev. B 60, 2720(1999.

062102-12



