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The surface impedance approach is discussed in connection with the precise calculation of the Casimir force
between metallic plates. It allows us to take into account the nonlocal connection between the current density
and electric field inside of metals. In general, a material has to be described by two impedancesZssv ,qd and
Zpsv ,qd corresponding to two different polarization states. In contrast with the approximate Leontovich im-
pedance they depend not only on frequencyv but also on the wave vector along the plateq. In this paper only
the nonlocal effects happening at frequenciesv,vp (plasma frequency) are analyzed. We refer to all of them
as the anomalous skin effect. The impedances are calculated for the propagating and evanescent fields in the
Boltzmann approximation. It is found thatZp significantly deviates from the local impedance as a result of the
Thomas-Fermi screening. The nonlocal correction to the Casimir force is calculated at zero temperature. This
correction is small but observable at small separations between bodies. The same theory can be used to find
more significant nonlocal contribution atv,vp due to the plasmon excitation.
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I. INTRODUCTION

The Casimir force[1] between uncharged metallic plates,
predicted in 1948 as a quantum electrodynamics effect, only
recently became a subject of systematic experimental inves-
tigation. The reason is that nowadays with the development
of microtechnologies a reliable control of the separations be-
tween bodies smaller than 1mm became possible. A variety
of methods have been used to measure the force. In the tor-
sion pendulum experiment[2], first in the modern series, the
force between a sphere and a plate covered with gold was
measured with the accuracy of 5%. A significant progress
was achieved in the atomic force microscope(AFM) experi-
ments[3,4], where the sphere was attached to a cantilever.
The force was deduced from the cantilever bending when the
plate was approaching the sphere. In this experiment the
force was measured with a 1% precision. The best result
using the AFM[4] was found when the sphere and the plate
were covered with gold and special care was taken to control
the surface roughness of metal. The same precision was
reached in the crossed cylinders experiment[5], where ex-
tremely smooth gold films were used. A sophisticated micro-
electromechanical system(MEMS) [6] was used to measure
the force between the gold-plated sphere and a suspended
paddle. It demonstrated the nonlinear behavior of the me-
chanical oscillator due to the Casimir force. The only experi-
ment where the force was measured in the plate-plate geom-
etry [7] was done using an oscillating beam whose resonance
frequency changed in response to the force. Up to date, the
most precise experiment[8,9] explored the MEMS device

similar to that in Ref.[6]. The precision was improved due to
the use of the dynamical method. Additionally the change in
the resonance frequency of the mechanical oscillator was
measured using the phase jump instead of the resonance be-
havior of the amplitude. In this way the force was found with
a relative accuracy of 0.25%[8–10].

To draw any conclusion from the experiments one has to
predict the force theoretically with the precision comparable
with the experimental errors. In its original form, the Casimir
force [1]

Fcsad = −
p2

240

"c

a4 s1d

was calculated between the ideal metals. It depends only on
the fundamental constants and the distance between the
platesa. The force between real materials, described by its
dielectric functions«svd, was deduced for the first time by
Lifshitz [11]. Corrections to Eq.(1) can be quite significant
at small separation between bodies. To calculate the force
with high precision the Lifshitz formula is used with the
optical data taken from handbooks[13,14]. The data are
available only up to some low cutoff frequencyvcut. For
good metals such as Au, Al, and Cu the data can be extrapo-
lated to lower frequencies with the Drude dielectric function

«svd = 1 −
vp

2

vsv + ivtd
, s2d

which includes two parameters: the plasma frequencyvp and
the relaxation frequencyvt. These parameters can be ex-
tracted from the optical data at the lowest accessible frequen-
cies. In this way the force has been calculated[15–19] with
the highest possible precision. There is some disagreement
between the results of different authors connected with the
choice of the relaxation frequencyvt [18]. This frequency
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can be found by fitting the low-frequency optical data with
Eq. (2) [17] or extracted from the bulk material resistivity
[19]. These details are important at small separations.

In Refs. [18,20] it was stressed that using the handbook
optical data one finds not the actual force but rather the upper
limit on the Casimir force. The reason is that the handbooks
comprise the data for the best samples; any material imper-
fection will reduce the reflectivity and, as a result, the force
will be smaller. In the experiments the force is measured
between the bodies covered with a metal. The metal is de-
posited on a substrate with the evaporation or sputtering
technics[4,8]. The resulting film thickness is typically in the
range 100–200 nm. It was already noted[18,20] that the
optical properties of the films can deviate significantly from
those of the bulk material. The main reasons for these devia-
tions such as voids in the films and electron scattering on the
grain boundaries were indicated recently[21] and the meth-
ods to estimate the effects were outlined. For the AFM[4]
and MEMS[9] experiments the influence of these effects on
the force was estimated on the level of 2%. Additional work
from the theoretical and experimental sides has to be done to
refine these estimates.

An alternative way to calculate the Casimir force using
the surface impedance of metals instead of the dielectric
function was discussed[22–24] in the literature. The general
formula for the Casimir force in this approach was deduced
for the first time in Ref.[25]. It is the same Lifshitz formula
but the reflection coefficients are expressed in terms of the
surface impedance. In the cited papers the approximate Le-
ontovich impedance[26] depending only on frequency was
used. The hope was that in this approach it will be possible
to resolve the long-standing problem with the temperature
correction to the force[18,27–34]. However, although the
impedance approach itself seems reasonable and well moti-
vated, the use of the approximate impedance for the Casimir
force happened to be unjustified. The Leontovich impedance
is well suited for the propagating photons impinging on a
metal but for the Casimir problem the exact impedance has
to be used since the important contribution in the force
comes from the evanescent electromagnetic field. The exact
impedance was shown to give the same result for the force as
that in the dielectric function approach[35].

The surface impedance is the only way to describe the
interaction between the electromagnetic field and metal in
the case when the relation between current and electric field
in the metal becomes nonlocal. For example, at low tempera-
tures the mean free path of the electrons in metals becomes
larger than the field penetration depth, and the relation be-
tween the current and field becomes nonlocal at low frequen-
cies [36,37] and the anomalous skin effect is realized. In
connection with the Casimir force the contribution of this
effect in the temperature correction was discussed in Ref.
[23]. On the other hand, at high frequenciesv,vp the
charge density fluctuations can propagate in the material
(plasmons), taking away the energy from the incoming field.
This is also an example of a nonlocal effect which was
shown to give a significant correction to the Casimir force
[38] at small separations between bodies. In the nonlocal
case both time and space dispersion happen and the dielectric
function depends not only on frequencyv but also on the

wave vectork. Actually in this case one has to separate two
dielectric functions: the longitudinal function«lsv ,kd, which
describes material response to the longitudinal(in respect to
k) electric field, and the transverse dielectric function«tsv ,kd
describing the response to the transverse field. A systematic
way to calculate the surface impedances via the dielectric
functions and explicit expressions for these functions were
given in a series of classical papers by Kliewer and Fuchs
[39–41].

The aim of this paper is to provide the basis for system-
atic investigation of the corrections to the Casimir force due
to the nonlocal effects. Here we consider only the minor
corrections which appear at low frequenciesv!vp but in-
troduce a general approach which is true at any frequencies.
This approach is not new in condensed matter physics but it
has never been discussed before in connection with the Ca-
simir effect.

We deliberately do not consider here the correction to the
force in the nonzero temperature case though our conclu-
sions about the low-frequency behavior of the impedances
for two polarization states will be important for the discus-
sion of the temperature correction.

The paper is organized as follows. In Sec. II the main
definitions are introduced, allowing us to calculate the im-
pedances for two polarization states via the longitudinal and
transverse dielectric functions. The explicit expressions for
the nonlocal dielectric functions in the Boltzmann approxi-
mation are given. The impedances are calculated first for
propagating fields to compare the calculations with the
known results. Then we discuss the continuation procedure
to the range of evanescent fields and calculate the imped-
ances at imaginary frequencies to put them later in the Lif-
shitz formula. The low-frequency behavior of these imped-
ances important for the thermal correction to the Casimir
force is discussed specifically. In Sec. III the actual calcula-
tions of the correction to the Casimir force due to nonlocal
effects are presented for plate-plate and sphere-plate geom-
etries. The discussion and concluding remarks are given in
Secs. IV and V.

II. SURFACE IMPEDANCES OF METALS

The anomalous skin effect was incorporated into the gen-
eral theory of the optical properties of metals with the de-
tailed paper by Reuter and Sondheimer[42]; the qualitative
description was given earlier by Pippard[43]. Pippard was
the first to point out that, in general, the electric field inside
a metal cannot be considered as spatially constant. In gen-
eral, the connection between the current and the field be-
comes nonlocal. The current is given by a definite integral
involving the values of the electric field at all points in the
metal, and Maxwell’s equations therefore lead to an integro-
differential equation from which the electric field has to be
determined. The expression for the current was deduced[42]
at the conditions that the electrons can be considered as qua-
sifree and the collision mechanism can always be described
in terms of a mean free pathl or, alternatively, a relaxation
frequencyvt. The mean free path was assumed to be inde-
pendent of the direction of motion. An additional assumption
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about the electron reflection off the surface was introduced
by Pippard: a fractionP of the electrons arriving at the sur-
face are scattered specularly, while the rest are scattered dif-
fusely. Only normal incidence of the electromagnetic field on
the metal was considered in Ref.[42]; however, it was
stressed in the Kliewer-Fuchs paper[39] that the theory of an
anomalous skin effect can be considered complete only when
arbitrary incidence is taken into account.

The relation between the current density and the electric
field can be found solving the Boltzmann equation if the free
electrons and field wavelengths large compared to the wave-
length of an electron at the Fermi surface. For the description
of the anomalous skin effect it is a valid approximation. In
general, this relation can be found in different approxima-
tions using the linear response theory[44].

A. Propagating waves

Following Kliever and Fuchs[39] we consider a plane
wave of angular frequencyv incident from vacuum at an
angleq upon the surface of metallic half-space. The geom-
etry, together with the choice of the coordinate system, is
shown in Fig. 1. One can separate two polarization states for
the wave. For thes-polarized wave the electric field is di-
rected in they axis, while for thep-polarized wave the elec-
tric field is in thex–z plane and has nonzeroz component.
For clarity let us sketch out how the specific expressions for
the surface impedances have been deduced in Ref.[39].

For thes-polarized wave the field can be written in the
form E=Eyszdexps−ivt+ ikxxdny, whereny is the unit vector
along they axis andkx=sv /cdsin q is the x component of
the wave vector in the incoming wave. Since this component
will play significant role in what follows, we will use for it
also a special notationq;kx, which is settled in the field of
the Casimir force. Thez dependence of the electric fieldE
=s0,Ey,0d for the s wave inside of metal can be described
with the Maxwell equation

d2Ey

dz2 − kx
2Ey +

v2

c2 Dy = 0, s3d

whereD is the displacement field. This equation is valid for
z.0. Taking the Fourier transform of Eq.(3) over the z
coordinate, we obtain

− skx
2 + kz

2dEy +
v2

c2 Dy =
dEys+ 0d

dz
−

dEys− 0d
dz

, s4d

whereE andD are the Fourier-transformed fields defined as

Eskzd =E
−`

`

dzEszde−ikzz s5d

and similarly forD. Equation(4) describes the behavior of
the electric field in an infinitely extended medium. Further-
more, the right-hand side in Eq.(4) is undefined until we find
a relation between the two derivatives at the surface. This
relation involves describing or modeling the surface. In this
work we assume that the electrons scatter elastically from the
surface(specular reflection). This assumption is equivalent to
assuming an infinitely extended medium, needed to obtain
Eq. (4), since an electron bouncing from the surface cannot
be distinguished from an electron coming from a fictitious
medium on the vacuum side. This is taken into account im-
posing the symmetry requirements

Eyszd = Eys− zd, Dyszd = Dys− zd. s6d

Thus, using the Maxwell equation

dEys+ 0d
dz

−
dEys− 0d

dz
= − isv/cdHx, s7d

and from Eq.(4) one finds

Ey

Hxs+ 0d
= −

2iv

c

1

sv2/c2d«t − k2, k2 = kx
2 + kz

2. s8d

The inverse Fourier transform of this equation evaluated at
z=0 gives the surface impedance fors polarization:

Zsskx,vd ; −
Eys+ 0d
Hxs+ 0d

=
i

p

v

c
E

−`

` dkz

sv2/c2d«t − k2 . s9d

For p polarization the problem is slightly more complicated
since we have two nonvanishing components of the electric
field, Ex and Ez. Following a similar line of reasonings as
before, the impedance forp polarization is obtained as

Zpskx,vd ;
Exs+ 0d
Hys+ 0d

=
i

p

v

c
E

−`

` dkz

k2 F kx
2

sv2/c2d«l

+
kz

2

sv2/c2d«t − k2G . s10d

It is natural that both the longitudinal«lsk ,vd and transverse
«tsk ,vd dielectric functions contribute toZp because in thep
wave the electric field has both components.

Since the impedance approach caused recently some con-
fusion in the field of the Casimir force[22–24], a few com-
ments concerning the impedances, Eqs.(9) and (10), should
be made. First, there is not one but two impedances corre-
sponding two different polarizations. Second, the imped-
ances depend not only on the frequency but also on the wave
vector along the metal surfaceq=kx=sv /cdsin q. Only for
normal incidence do the impedances forp- and s-polarized
waves coincide and depend only on frequency. Third, no

FIG. 1. Choice of the coordinate system for the incoming wave.
The angle of incidence is given byq. The electric fields in the
p-polarized waveEp ands-polarized waveEs are shown.
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specific assumptions about the dielectric functions«l and«t
were made in the derivation of Eqs.(9) and(10). In particu-
lar, the local functions«ls0,vd=«ts0,vd=«svd can be used.
In this case the integrals can be easily calculated to find
so-called classical or local impedances

Zs
locsq,vd =

1
Î«svd − scq/vd2

, Zp
locsq,vd =

Î«svd − scq/vd2

«svd
.

s11d

These expressions completely coincide with those introduced
in Refs.[35,38] and, as was shown there, exactly reproduce
the Casimir force in the dielectric function approach. The
Leontovich impedance used in Refs.[22–24] from the begin-
ning was introduced as the approximate one[36,37] for ap-
plications in radiophysics. For the propagating waves it re-
ally has sense becausecq/vø1 but for metals in the
microwave rangeu«svdu@1. So one can neglect the wave
vector along the platessq=kxd in the impedances to get just
one frequency-dependent function. However, in the Casimir
force a significant contribution comes from the evanescent
fields for which cq/v.1. In this case the Leotovich ap-
proximation fails especially in the limitv→0, which is im-
portant for analysis of the temperature correction.

The dielectric functions were found[39] solving the Bolt-
zmann equation and the result is the following:

«tsk,vd = 1 +xIBsvd −
vp

2

vsv + ivtd
f tsud, s12d

«lsk,vd = 1 +xIBsvd −
vp

2

vsv + ivtd
f lsud, s13d

where the phenomenological susceptibilityxIBsvd was intro-
duced to describe the interband transitions since these pro-
cesses are beyond the quasifree electron model. The func-
tions f t,lsud taking into account nonlocal effects are defined
in the following way:

f tsud =
3

2u3Fu −
1

2
s1 − u2dlnS1 + u

1 − u
DG , s14d

f lsud =
3

u3F− u +
1

2
lnS1 + u

1 − u
DGF1 + i

vt

v

−
i

2u

vt

v
lnS1 + u

1 − u
DG−1

, s15d

where the variableu responsible for the nonlocal effects is

u =
vFk

v + ivt

, s16d

and vF is the Fermi velocity. In the local limitk→0 both
functions(12) and(13) reduce to the local dielectric function
(Drude plus interband transitions)

«svd = 1 +xIBsvd −
vp

2

vsv + ivtd
. s17d

The function«t was found first by Reuter and Sondheimer
[42]. Since these authors considered only normal incidence,
in their work there was no«l. This function appears at non-
normal incidence. In thep wave there is the normal field
componentEz giving rise to charge fluctuations to which the
system responds via the longitudinal dielectric function. It
should be mentioned that with the charge fluctuations the
relaxation of the perturbed electron distribution toward equi-
librium was chosen to the local state of charge imbalance but
not to the uniform distribution. The denominator in Eq.(15)
describes this effect.

Equations(12)–(16) are used in the optics of metals[45]
to predict the reflectance or absorptance of the materials. It is
easy to find the reflection amplitudesrs and rp for s and p
polarizations expressed via the impedances as

rs =

v

c
− ZsÎv2

c2 − q2

v

c
+ ZsÎv2

c2 − q2

, rp =

Îv2

c2 − q2 −
v

c
Zp

Îv2

c2 − q2 +
v

c
Zp

. s18d

The reflectance and absorptance are given by

Rs,p = urs,pu2, As,p = 1 − urs,pu2. s19d

In what follows we will use dimensionless variables,
which are more convenient for numerical calculations. We
define

V =
v

vp
, Q =

cq

vp
, g =

vt

vp
. s20d

To verify the procedure we recalculated the absorptance with
g=10−3 and the Fermi velocityvF=0.853108 cm/s (potas-
sium) to compare with the same calculations in Ref.[39].
The results are presented in Figs. 2 and 3. Absorptance at the
normal incidenceq=0 sQ=0d is shown in Fig. 2. In this case
both polarizations give the same result. The nonlocal case is
presented by the solid line. The absorptance in the local limit

FIG. 2. Absorptance as a function of the dimensionless fre-
quencyV at normal incidenceq=0. Local and nonlocal cases are
represented by the dashed and solid lines, respectively. Atq=0
there is no difference betweens and p polarizations. Parameters
were chosen as in Ref.[39]: g=1310−3, vF=0.853108 cm/s.
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calculated with the impedances(11) is given by the dashed
line. The usual increase in the absorptance can be seen at low
frequenciesV,10−3 due to the anomalous skin effect. For
the incidence angleq=75° the absorptance of the
p-polarized wave is shown in Fig. 3. In this case there is an
additional peak in absorptance at higher frequenciesV
,0.1. It appears only forp polarization; thes polarization
behaves similar to the caseq=0. At smallerg both peaks
become much more significant. These results are in full
agreement with those of Kliewer and Fuchs[41].

B. Evanescent fields

The fluctuating currents in the plates are the sources of
fluctuating electromagnetic fields responsible for the Casimir
force. The typical separation between bodies in the Casimir
force experiments is smaller than the wavelengthl of visible
light. If we consider one plate as an emitter and the other one
as a receiver, then for a significant part of the spectrum con-
tributing in the force the receiver will be in the near-field
zone of the emitter. In this case the propagating field radiated
by the emitter will be small in comparison with the evanes-
cent field which exists around the emitter at the distances
,l. The well-known example of such an emitter is the Hertz
dipole. At small distances from the dipolevr /c!1 one can
neglect the retardation and the field around the source is just
the field of the static dipole decaying as 1/r2. When the force
is calculated using the Green function method[12], the
Green function is exactly the dipole field modified by the
presence of the plates. The planar geometry of the problem
makes it preferable to expand the dipole field on the plane
waves. The plane waves obeying the conditionv2/c2,q2 do
not propagate in the gap because the normal component of
the wave vector is pure imaginary.

There were some speculations in the literature(see, for
example,[24]), inspired by the problem with the temperature
correction to the Casimir force: that for evanescent fields, the
standard expressions for the Fresnel reflection coefficients
should be modified. In this connection we have to stress that

the evanescent fields are the subject of the near-field optics
[46] (see also[47] for a review), where standard electrody-
namic approaches are used. Additionally, the longitudinal di-
electric function can be probed in the evanescent range by
the scattering of a beam of charged particles or fast electrons
from the material [48]. In this way the function
Imh1/«lsk ,vdj can be directly extracted from the experi-
ment, wherek is connected with the momentum andv with
the energy losses of the charged particles. No necessity for
modification of the standard electrodynamics was noted so
far. A consistent way for the description of evanescent fields
is just the analytic continuation of the Eqs.(9), (10), (12)–
(16), and(18) to the rangev2/c2,q2.

Originally the Lifshitz formula for the Casimir force was
written as an integral over real frequenciesv [11]. In this
representation one has to calculate first the integral over the
variablep=Î1−scq/vd2 in the range 0,p,1 (propagating
fields) and then integrate over the imaginary axisp= i upu
from zero to infinity(evanescent fields). So the propagating
and evanescent fields were clearly separated. The alternative
representation of the same formula[12] is more popular be-
cause of faster convergence of the integrals. In this case the
integration is done over the imaginary frequenciesv= iz but
the inner integral overp=Î1+scq/zd2 is calculated from 1 to
`. Formally we are always in the evanescent domain because
at imaginary frequencies the normal component of the wave
vector is pure imaginarykz= iÎz2/c2+q2. For this reason we
will not investigate especially the domainq2.v2/c2, mak-
ing the analytic continuation onq, but instead we will make
the analytic continuation to imaginary frequencies. This pro-
cedure is well defined for the response functions which are
analytical in the upper half of complex planev. In the elec-
trodynamics the response functions are the components of
the Green function«l

−1sk ,vd andfsv2/c2d«tsk ,vd−k2g−1 but
not the dielectric functions themselves[49,50]. Exactly these
expressions take part in the impedances(9) and (10) and,
therefore, the impedances can be considered as analytical
functions ofv.

Using the dimensional variables(20) the impedances at
imaginary frequencies(V→ iV) can be written as

ZssQ,Vd =
2

p

V

Q
E

0

` coshxdx

cosh2x +
V2

Q2«tsV,vd
, s21d

ZpsQ,Vd =
2

p

V

Q
E

0

` dx

coshx3 1

V2

Q2«lsV,vd

+
cosh2x − 1

cosh2x +
V2

Q2«tsV,vd4 . s22d

Here we introduced a new variable of integrationx which is
defined by the relationkz=kxsinh x. For the dielectric func-
tions at imaginary frequencies one finds

FIG. 3. Absorptance as a function ofV for p polarization at the
incidence angleq=75+. Local and nonlocal cases are represented by
the dashed and solid lines, respectively. Parameters were chosen as
in Fig. 2.
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«lsV,vd = 1 +xIBsVd +
f lsvd

VsV + gd
,

f lsvd =
3

v2

v − arctanv

v +
g

V
sv − arctanvd

, s23d

«tsV,vd = 1 +xIBsVd +
f tsvd

VsV + gd
,

f tsvd =
3

2v3f− v + s1 + v2darctanvg, s24d

v =
vF

c

Q

V + g
coshx. s25d

These formulas are used for numerical calculations of the
impedances. They have to be compared with the classical
expressions in the local limit which follows from Eq.(11)
after the change to imaginary frequencies:

Zs
loc =

1

Î«sVd +
Q2

V2

,Zp
loc =

Î«sVd +
Q2

V2

«sVd
,

«sVd = 1 +xIBsVd +
1

VsV + gd
. s26d

The numerical result forZs is shown in Fig. 4 as a func-
tion of V for two values ofQ. All calculations were per-
formed for the parameters corresponding to gold at room
temperature:g=3310−3, vF=1.43108 cm/s, andvp=1.37

31016 rad/s. The impedance of the local theory is presented
by the dashed lines. One can see that the nonlocal effect is
very small for this polarization. The largest deviation from
the local curves is just about of 2%. Obviously thes polar-
ization cannot produce significant nonlocal correction to the
Casimir force.

A different situation is realized forp polarization, as
shown in Fig. 5. One can see that there is a significant dif-
ference between the local and nonlocal cases. The deviation
increases with frequency decrease and becomes larger for
larger Q. This behavior has deep physical meaning, as ex-
plained below, and can appear only for the evanescent fields.
Since in both cases the deviations from the local case are in
the low-frequency range, we analyze this limit analytically.

C. Low-frequency behavior of impedances

At low frequenciesV&g, the variablev defined by Eq.
(25) can be large ifg&vF /c<4.7310−3. Let us consider the
impedances in the limitv@1. In this limit the functionsf lsvd
and f tsvd in Eqs.(23) and (24) behave as

f lsvd <
3

v2

V

V + g
, f tsvd <

3p

4v
,v @ 1. s27d

In the transverse dielectric function«t one can neglect 1
+xIBsVd since the third term behaves as 1/V at low frequen-
cies. It gives, for«tsV ,vd,

«tsV,vd <
4p

3

c

vF

1

Q coshx

1

V
. s28d

For the the longitudinal function«l the phenomenological
susceptibilityxIBsVd again is negligible because it is respon-
sible for the interband transitions at much higher frequencies
but we cannot neglect the unit since the third term in Eq.(23)
does not depend on frequency at all and not necessarily
large. For«lsV ,vd one find

FIG. 4. Numerically calculated impedanceZs as a function of
dimensionless frequencyV for two values of the dimensionless
wave numbers along the plateQ. The solid line describes nonlocal
calculations; the dashed line presents the local case. Maximal de-
viation between local and nonlocal curves is about 2%. Gold pa-
rameters were used for calculation:g=3310−3, vF=1.4
3108 cm/s.

FIG. 5. Numerically calculated impedanceZp as a function of
frequencyV for two values of the wave numbers along the plateQ.
Nonlocal and local cases are shown by the solid and dashed lines,
respectively.
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«lsV,vd < 1 + 3S c

vF

1

Q coshx
D2

= 1 + 3Svp

vF

1

k
D2

. s29d

This expression describes the Thomas-Fermi screening of the
longitudinal electric field. It has to be true[40] at V,g and
k much smaller than the Fermi wave numberkF that is the
applicability range of the Thomas-Fermi approximation. The
latter conditionk!kF is also the condition for applicability
of the Boltzmann equation.

Substituting Eqs.(28) and(29) into Eqs.(21) and(22) one
finds, for the impedances,

Zs =
V

Q
Fsbd, s30d

Zp =
Q

V

1
Î1 + 3sc/vFQd2

+
V

Q
Gsbd <

1
Î3

Q2

V

vF

c
+

V

Q
Gsbd,

s31d

where the functionsFsbd andGsbd are defined as

Fsbd =
2

p
E

0

`

dx
cosh2x

cosh3x + b3, Gsbd =
2

p
E

0

`

dx
sinh2x

cosh3x + b3 ,

s32d

b =
1

Q
S3p

4

c

vF
VD1/3

. s33d

The functionsFsbd andGsbd can be found explicitly but the
result is cumbersome and inconvenient for analysis. For this
reason we calculated the integrals in Eq.(32) numerically,
presenting explicitly only the asymptotics atb!1 and b
@1. The functionsFsbd andGsbd are shown in Fig. 6. The
asymptotic behavior of these functions is

Fsbd =5 1 −
4

3p
b3,b ! 1,

4

3Î3

1

b
+

1

pb3sln 2b − 1/2d,b @ 1,

Gsbd =5
1

2
−

4

15p
b3,b ! 1,

4

3Î3

1

b
−

1

pb3sln 2b + 1/2d,b @ 1.

s34d

The known result for the Leontovich impedance for the
strong anomalous skin effect[36,37,42] is easily reproduced
if we take in the equations above the limitQ→0. In this
limit the parameterb goes to infinity and the contribution of
the transverse dielectric function is the same for both polar-
izations: Fsbd=Gsbd=4/3Î3b. The contribution from«l in
Zp disappears in the limitQ→0. Hence, the impedances will
coincide with each other and they are given by the classical
expression for the strong anomalous skin effect continued to
imaginary frequencies:

Zss0,Vd = Zps0,Vd = ZsVd =
4

3Î3
S 4

3p

vF

c
V2D1/3

. s35d

However, ifQ is nonzero, there is a small enough frequency
whereb is not large anymore and Eq.(35) is not applicable.
WhenV is so small thatb!1 the impedanceZs approaches
the limit V /Q. The same limit is realized for the local im-
pedanceZs

loc in Eq. (26) at very low frequencies when one
can neglect«sVd in comparison withQ2/V2.

For p polarization at nonzeroQ the contribution of«t in
the impedance decreases withV but the contribution of«l
increases as 1/V [see Eq.(31)] and dominates inZp at low
frequencies. It is in agreement with our numerical calcula-
tions in Fig. 5. Indeed this is the result of the Thomas-Fermi
screening. The same effect is not realized for the propagating
fields. In this case the ratioQ/V=sin qø1 is restricted.
SincevF /c=4.7310−3 is small, the variableu, Eq. (16), is
small nearly everywhere in the integration range and the
function f lsud<1. Therefore the local limit is realized in-
stead for the longitudinal contribution inZp.

The behavior of the impedance for thes polarization at
low frequencies is a sensitive matter for the temperature cor-
rection to the Casimir force. One of us(V.B.S.) in collabo-
ration with M. Lokhanin analyzed this problem[23] with the
Leontovich impedance(35). As follows from the discussion
above this analysis has to be reconsidered, taking into ac-
count not only the different behavior ofZs at very low fre-
quencies, but also the significant deviation ofZp from the
local impedance in this range.

III. NONLOCAL CORRECTION TO THE CASIMIR
FORCE

In this section we are going to estimate the correction to
the Casimir force due to nonlocal effects at frequencies
smaller thanvp. The restriction on frequency is connected

FIG. 6. Numerically calculated functionsFsbd andGsbd.
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with the use of the Boltzmann approximation for the dielec-
tric functions(23) and(24). In this approximation we cannot
describe the plasmon excitations. Of course, one could use
more general dielectric functions like those in the self-
consistent-field approximation[40] to analyze all the nonlo-
cal effects. However, we think it is reasonable to separate the
effects of different physical origin. The influence of the plas-
mon excitations on the Casimir force has been already evalu-
ated[38] using the hydrodynamic approximation for the lon-
gitudinal dielectric function, but the correction to the force
due to the anomalous skin effect never has been calculated
before. Only specific questions concerning the temperature
correction have been addressed in the literature[23]. By
anomalous skin effect we refer not only to the strong anoma-
lous skin effect that is realized when the electron mean free
path is larger than the field penetration depth, but to all the
nonlocal effects that happen at frequencies smaller thanvp.

We will consider only the force in the zero-temperature
limit. Thus, the Casimir force will be calculated without the
temperature correction but all the other parameters character-
izing the material, especially the relaxation frequencyvt,
will be kept at finite temperature. The results of the previous
section for the impedancesZs and Zp are important for the
temperature correction problem but this question will be con-
sidered elsewhere.

It is known that when a metal is described by the surface
impedances, the Lifshitz formula for the Casimir force[12]
remains essentially the same[25,38] as when the metal is
described by the local dielectric function. Only the reflection
coefficients have to be expressed via the impedances. At
nonzero temperature the Lifshitz formula includes summa-
tion over the Matsubara frequencieszn, defined for our di-
mensionless frequency as

Vn =
zn

vp
=

2pnkT

"vp
. s36d

To get the Casimir force atT=0 we have to integrate over
the continuous variableV. In the dimensionless variablesV
and Q the Casimir force between two metallic plates sepa-
rated by the distancea at T=0 is

Fppsad = −
"c

2p2d4E
0

`

dVE
0

`

dQQÎV2 + Q2

3hfrs
−2exps2dÎV2 + Q2d − 1g−1

+ frp
−2exps2dÎV2 + Q2d − 1g−1j, s37d

where

d =
a

d
, d =

c

vp
< 21.88 nm. s38d

Hered is the penetration depth for gold. The reflection coef-
ficients follows from Eq.(18) after continuation to imaginary
frequencies:

rs =
V − ÎV2 + Q2ZssV,Qd

V + ÎV2 + Q2ZssV,Qd
, rp =

ÎV2 + Q2 − VZpsV,Qd
ÎV2 + Q2 + VZpsV,Qd

.

s39d

The impedancesZs,p are calculated according to Eqs.
(21)–(25).

The force between a sphere and a plane can be calculated
with the help of the proximity force approximation[51]
which gives the expression

Fspsad =
"cR

2pd3E
0

`

dVE
0

`

dQQhlnf1 − rs
2exps− 2dÎV2 + Q2dg

+lnf1 − rp
2exps− 2dÎV2 + Q2dgj, s40d

whereR is the radius of the sphere.

Numerical procedure

First we calculate the force between parallel plates
Fpp

Drudesad in the local limit with the Drude dielectric function
and local impedances(26). The actual calculations were per-
formed for the dimensionless relaxation frequency[see Eq.
(20)] g=4310−3. This value is the best fit[17] of the hand-
book optical data for gold[13] at low frequencies. In Fig. 7
we show the reduction factorhsad defined as the ratio of the
calculated force to the original Casimir force(1); this is

hsad =
Fppsad
Fcsad

. s41d

The force calculated using the Drude model(dashed line)
is smaller than that calculated using the handbook optical
data for gold(solid line). The solid line coincides with the
reduction factor given in Ref.[17].

The nonlocal correction is calculated without the empiri-
cal susceptibilityxIBsvd introduced in Eqs.(12) and(13), so
we have to remember that the relative nonlocal correction
will be smaller than the calculated one on the value of the

FIG. 7. The reduction factorFppsad /Fcsad in the local case as a
function of the separationa calculated with the handbook data
(solid line) and with the Drude model for the dielectric function
(dashed line).
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order of the relative difference between the curves in Fig. 7
(8% ata=100 nm).

The force calculation in the nonlocal case is quite com-
plicated because one has to make three integrations with high
precision: one to calculate the impedances and two to calcu-
late the force. It is much more easy to calculate not the force
itself but integrate the difference between nonlocal and local
integrands. In this case there is no need to perform high-
precision calculations of the integrals since we have to know
the correction due to nonlocality with the precision of about
of 10%. Actual calculations of the difference

dFppsad = Fpp
nonlocsad − Fpp

locsad s42d

were made with a relative accuracy of 1%, while the imped-
ances(21) and(22) were calculated with a relative precision
of 10−6. The integrands fors andp polarizations defined as

dfs,p = QÎV2 + Q2hfrs,p
−2 exps2dÎV2 + Q2d − 1g−1

− srs,p → rs,p
locdj s43d

are presented fora=275 nm in Figs. 8(a) and 8(b), respec-
tively. Both of them are negative as they should be, since the
force decreases due to the nonlocal effects. It is interesting to
notice thatdfs is nonzero in a very narrow range of smallV.
In contrast, the integrand forp polarizationdfp is nonzero in
a broader range ofV [pay attention to different scales in
Figs. 8(a) and 8(b)]. Nonlocal effects are always significant

in a wider range ofQ&1. With the decrease of separationa
the integrand forp polarization increases in magnitude and
becomes wider in both directionsV andQ. The integrand for
s polarization decreases in magnitude and widens only in the
Q direction. Thus, the contribution ofs polarization in the
force correction is always smaller than that for thep polar-
ization.

The results for the relative correctiondFppsad /Fpp
Drudesad

due to the nonlocal effects are presented in Fig. 9. The solid
line gives the resulting correction, while the dashed and dot-
ted lines represent the contributions ofp ands polarizations,
respectively. One can see that the correction is small but not
negligible. The contribution ofs polarization increases when
g becomes smaller, but even forg=10−5 this contribution is
still on the level of 0.2%. We can see that the large deviation
of the impedance forp polarization from the local one that
happens at low frequencies is not very significant for the
force. This is because in the reflection coefficientrp the im-
pedance enter asVZp so that the 1/V behavior of Zp is
suppressed in the reflection coefficient.

Similar calculations were made for the sphere-plate ge-
ometry. The relative correctiondFspsad /Fsp

Drudesad together
with the separate contributions ofp and s polarizations is
shown in Fig. 10. The behavior of the curves is quite similar
to that for the plate-plate geometry. Only the absolute mag-
nitude of the correction is smaller.

IV. DISCUSSION

The theory described in Sec. II provides solid ground for
the impedance approach in the Casimir force calculation.
Specifically it allows one correctly to take into account the
nonlocal connection between the displacement and electric
fields. In this paper we restricted ourselves to the nonlocal
effects happening at frequencies smaller thanvp. This re-
striction is due to the Boltzmann approximation used for the
nonlocal dielectric functions(12)–(16). However, the equa-

FIG. 8. Integrands fors polarization(a) and for p polarization
(b). Note the different scales inV axes.

FIG. 9. The relative correction to the force due to nonlocal
effects for the plate-plate geometry. The solid line presents the re-
sulting correction. The dashed line gives the contribution of thep
polarization and the dotted line gives the contribution of thes po-
larization. Gold parameters were used for calculations.
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tions for the impedances, Eqs.(9) and (10), are much more
general. For specular electron reflection off the surface these
equations are true for arbitrary dielectric functions«tsk ,vd
and«lsk ,vd with the only condition that these functions ex-
ist. Therefore, all nonlocal effects can be described on the
same basis. In particular, for metals the most general dielec-
tric functions for a free-electron gas were found in the self-
consistent-field(or Lindhard) approximation with the neces-
sary modifications to include a finite relaxation time[40]. In
this approximation«tsk,vd has the form

«tsk,vd = 1 −
vp

2

vsv + ivtd
f tsu,zd,

where

f tsu,zd =
3

8
sz2 + 3u−2 + 1d

−
3

32z
Hf1 − sz− u−1d2g2 lnSz− u−1 + 1

z− u−1 − 1
D

+f1 − sz+ u−1d2g2 lnSz+ u−1 + 1

z+ u−1 − 1
DJ . s44d

Hereu defined as before by Eq.(16) andz is z=k/2kF. The
longitudinal dielectric function has a little bit more compli-
cated form:

«lsk,vd = 1 + s«w − 1dF1 + i
vt

v
−

i

2u

vt

v
lnS1 + u

1 − u
DG−1

,

«w = 1 +
3vp

2

k2vF
2 f lsu,zd,

f lsu,zd =
1

2
+

1

8z
Hf1 − sz− u−1d2g lnSz− u−1 + 1

z− u−1 − 1
D

+f1 − sz+ u−1d2glnSz+ u−1 + 1

z+ u−1 − 1
DJ . s45d

All the other approximations for the free-electron gas can be

found from Eqs.(44) and (45) in definite limit cases. For
example, the Boltzmann approximation(12)–(16) follows
from Eqs.(44) and(45) in the limit z→0. These expressions
for the dielectric functions allow one to perform detailed
investigations of the high-frequency regionv*vp which
gives a more significant contribution in the Casimir force due
to excitation of the propagating charge density waves in the
metal [38].

We considered here only specular electron reflection off
the metal surface. It is justified for the AFM experiment[4]
where the root-mean-square(rms) roughness of the surface
s1 nmd was much smaller than the mean free paths30 nmd.
However, in the MEMS experiments[6,8,9] the rms rough-
ness was comparable with the mean free path and approxi-
mation of specular reflection fails. In this case the diffuse
reflection of electrons off the surface is more suitable. For
the diffuse reflection the impedances are not represented by
the Eqs.(9) and (10) anymore. Instead one has to use the
impedances for the diffuse reflection[41]. There is no prob-
lem with Zs which is expressed via«tsk,vd but situation with
Zp is much more complicated. This occurs because of the
destruction of translational invariance in the direction normal
to the surface[41]. Although it is possible to calculate both
impedances in the diffuse case, we do not think it is reason-
able to do for the anomalous skin effect. This is because the
nonlocal correction is smaller than the uncertainty in the Ca-
simir force due to the roughness. The roughness correction to
the force is usually evaluated using the proximity force ap-
proximation (see, for example,[9]). Recently it has been
pointed out[52] that this approach is valid only for long-
wavelength deformations of the plates. The real surfaces of
deposited gold films have a roughness on very different
scales[53] and the short wavelengths will bring uncertainty
in the estimate of the force.

The impedances(9) and (10) with the nonlocal dielectric
functions (12)–(16) are well known in the optics of metals
but in this paper we considered them in the near-field range
where the nonlocal effects were unexplored. In this sense the
Casimir force is a unique problem. A significant contribution
in the force comes from fluctuating fields in the near-field
region. Since the force has to be predicted with high preci-
sion, it is important to take into account the nonlocal effects.
Though we have found here that the anomalous skin effect
gave an observable but minor correction to the force, the
other nonlocal effects, such as plasmon excitation, can give
more significant correction. This paper just provide a regular
basis for the calculations of this kind.

V. CONCLUSIONS

A complete calculation of the Casimir force that can be
accurately compared with experiments requires a full optical
characterization of the involved materials. This is compli-
cated due to the various factors that can modify the optical
properties. In this work we described a systematic way to
take into account the nonlocal effects in the material. It was
stressed that, in general, a metal had to be described with two
different surface impedances corresponding tos andp polar-
izations and these impedances depend not only on frequency

FIG. 10. Same as Fig. 9 but for the sphere-plate geometry.
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but also on the wave vector along the metal surface. As a
specific problem we considered the correction to the Casimir
force in the region of the anomalous skin effectsv,vpd.
This region is characterized by the nonlocal dielectric func-
tions(longitudinal and transverse) that can be obtained in the
Boltzman approximation. The impedances are completely
defined by these functions.

It was demonstrated that the exact impedances are differ-
ent from the approximate Leontovich impedance. The latter
one caused confusion in the literature, so our analysis re-
solved the problem and gave a proper description of the im-
pedance approach in the Casimir force calculation. It was
emphasized that the significant contribution in the force
came from the evanescent fields. For these fields the imped-
ances can be found by the analytic continuation and the pro-
cedure is well defined. The contribution of the nonlocal ef-
fects in the impedances was found to be quite different for
propagating and evanescent fields. Specifically for the eva-
nescent fields the impedance forp polarization deviates sig-
nificantly from the local one that is the result of the Thomas-
Fermi screening. Fors polarization the nonlocal contribution
in the impedance is more significant for the propagating
fields than for the evanescent ones.

In the impedance approach the Casimir force can be
found from the same Lifshitz formula in which the reflection
coefficients are expressed via the impedances. We calculated
the nonlocal correction to the force in the region of anoma-
lous skin effect at zero temperature. In spite of a significant

deviation ofZp from local impedance the nonlocal reflection
coefficientrp deviates from the local one only slightly. For
the s polarization the effect is even smaller. For this reason
the total contribution of the nonlocal effects in the Casimir
force is on the level of 0.5% at small separations. It is a
minor effect within the levels of detectability of present ex-
periments, but smaller than the corrections introduced due to
sample roughness.

We did not considered in this paper the temperature cor-
rection though it is clear from the analysis of impedances
that anomalous skin effect will be important for the tempera-
ture correction. A new phenomenon observed here is that the
reflection coefficientrp for p polarization is not going to 1 in
the zero frequency limitv→0. This behavior is the result of
the Thomas-Fermi screening.

The technic developed in this paper can be applied to
calculate the contribution of the other nonlocal effects such
as plasmon excitation atv,vp. These effects are expected
to give more significant correction to the Casimir force.
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