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PHYSICAL REVIEW A 69, 061801R) (2004

M. Masala$? and M. Fleischhauér
Technische Universitat Kaiserslautern, 67663 Kaiserslautern, Germany
Ailnius University Research Institute of Theoretical Physics and Astronomy, 2600 Vilnius, Lithuania
(Received 19 February 2004; published 3 June 2004

We discuss the quasi one-dimensio&iD) scattering of two counterpropagating, dark-state polaritons
(DSP9, each containing a single excitation. DSPs are formed from photons in media with electromagnetically
induced transparency and are associated with ultraslow group velocities. State-dependent elastic collisions of
atoms at the same lattice site lead to a nonlinear interaction. It is shown that the scattering process in a deep
optical lattice filled by cold atoms generates a large and homogeneous conditional phase shift between two
individual polaritons. The latter has potential applications for a photonic phase gate. The quasi-1-D scattering
problem is solved analytically and the influence of degrading processes such as dephasing due to collisions
with ground-state atoms is discussed.
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A major challenge for quantum information processing Let us consider a cold gas of bosonic, five-level atoms as
using individual photons as qubits is the implementation ofshown in Fig. 1 in a deep 3-D lattice potential under tight-
logic operations. Such operations require efficient nonlineabinding conditions. The atoms form &n-type system, with
interactions for pairs of photons, which cannot be achievedhe ground statég) and the excited statgs,) coupled by
in conventional optical materials. As the effect of the photon+yg orthogonal polarizations of a quantized probe figld
photon coupling depends on the nonlinear susceptibilities agropagating in the # or -z direction, respectively. The ex-
well as on the interaction time, it has been suggested to US§ie( states are, furthermore, coupled to metastable |state
gltraslow light in resonant systems With electrc.)maglnetic_allyby a classical probe field of Rabi frequen@Qy All atoms are
induced transparenciEIT), where the interaction time is initially in the ground statég). The atoms are described by

long and the nonlinear susceptibilities become large due t : , - ;
resonance enhancemdnt3]. At the boundary of a station- ﬂ;/aeteBoiﬁeﬂ?—:g?nﬂillyt:rI]Taerzelc)f t{r?ée_;;lit}eﬁe?sOtgi?/gr:et;;:tarTal
. a

ary EIT medium, light pulses become spatially compresse :
in the propagation direction by the ratio of group veloaity ~ + it Ha-r*Hea, where the atomic part reads

to the vacuum speed of ligh8]. As a consequence, the num- 3 .t #2 5
ber of photons in the pulse decreases by the same factor. Hat:‘ > dri _Env +ho | (1)
Excitations are temporarily transferred to the medium by the 1=0,€+,0x

formation of quasiparticles, so-called dark-state polaritongy_ js the lattice potential, which is assumed to be the same
(DSP9, which are superpositions of electromagnetic andeor )| internal states. The interaction with electro-

atomic degrees of freedofd]. As another consequence of magnetic field reads in rotating-wave approximation
the pulse compression the interaction time in a head-on col-

lision stays constant irrespective of the valuegf Thus, in _ f

order to achieve long interaction times, copropagating pulseyat—f_ -

were considere¢b]. In this case, the interaction is, however,

not homogeneous and it is difficult to avoid spectral broad- +H.c. 2

ening of the wave packet. . . Finally, we take into account collisions between atoms in the
Here, we suggest a completely different mechanism for an

efficient nonlinear interaction between ultraslow light pulses. le-)

The slow-down corresponds to a shift of the polariton com-

position from pure photons to matter-wavgs. Further-

o X YLl uE () ]y~ f & 20 gLhQr) gy,

i=+,— i=+,—

les)

more, the pulse compression leads to an increasing density of 144) lg) l9-)
the matter component. Thus, collisional interactions between

atomic excitations can yield an effective nonlinear coupling <

between two wave packets. To further enhance the strength E, E_
of this interaction, we consider a lattice potential in the tight- — by -

binding limit. Starting from a fully quantized effective one-

dimensional1-D) model of light propagation in a lattice, we FIG. 1. Top Atomic five-level system with quantized probe
derive analytic solutions for the quantum scattering of tWofieldsE, of opposite circular polarization and propagation direction.
single-photon wave packets in tisewave scattering limit. () denotes the Rabi frequency of the classical, undepleted control
We show that the pulses attain a homogeneous conditiongkld. Bottom The atoms are assumed to be confined in a 3-D lattice
phase shift that may be large enough for the implementatiopotential with lattice constard. In the tight-binding regime, they

of a quantum phase gate. occupy only the lowest Wannier state of effective witfh
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internal statesg) and|qg.) as well as collisions between at- ing sites have only negligible overlap and one has

oms in|g-) and|q,) in s-wave approximation: JABrW;(r)W,(r) = 8. This expansion along with a separation
U - of fast oscillating terms yieldsyy=2; Wi(r)g;(t), e,
Hcou:_gfds“ﬁg‘ﬂglﬂglﬂﬁ E _ijdsrlﬂg.‘ﬂgk‘ﬂqkwqi :Ejvvj(r)eij(t)e'(ikz_wt), and lﬂqt:EjV\/j(r)qij(t)et'kz"(w‘wc)f_
2 k=t 2 ' Here, the operatorg;, e,;, andq.; are slowly varying int

and the summation runs over all lattice sites.
+ > ﬁugif dsrwgig//;(//gz,lxqi. (3) Substituting the Wannier expansion into E@é) yields
i=+- equations for the slowly varying atomic variables. Since the
Collisions of atoms in the excited state are irrelevant as thesp/anr_uer functpns are well Iocal|zgdz the S'OVY'V varying
states will attain a vanishingly small population. Here, unctions remain almost constant within one lattice site:
Ef_f’(r) are the positive frequency parts of the probe field T ot _ . .
operators corresponding to the two orthogonal polarized gj=|%£_(rj)e_,-+|g5+(rj)e+j—|(uggj gj + Ug+ Q40+
modes,()(r) is the Rabi frequency of the control field, and
the u's describe the collision strength, which can be ex-
pressed in terms of the correspondisgvave scattering
length u;=4ma/m. The ws are the frequencies corre-
sponding to the electronic energy levels. P
Using Eqs.(1)~3), the Heisenberg equations for the field €= —iAgey+ i%&(f])gj +1Q00sj, (5b)
operators can easily be obtained:

f3
+ Ug—qijQ—j);,gj, (59

2 H= i O - t t
ihé’_l//q — (_ ﬁ_VZ +V+ho )‘ﬂ _ #*E(_—)l//e _ ,LL*E(;)I/IQ Qs =~ IAqutj + IQOe*_rj - I(uiiqijqij + U;-0zi0=j
ot 2m 9)79 - * ‘ f3
+Uy:0:0i) 304, 5c
+h<ugz//;¢//g+_2 Ugil//;'/fqi)'//ga (4a) g_ngJ)aSq—J (50
i=+,-

with the detuningS\e, = we. — w +7k?/2M, Ag.=wqe~ 0+ o
+#k?/2m, We have sewy=0. The factorf=a/l, describes

e, (1 2 ) +) the confinement strength in the lattice and is defined as
7 at _< 2mV Ve e, ~ WEL g~ b, JdBrwi(r)*=13/as.

(4b) In order to solve the above equations of motion for the
matter-field operators, a weak-probe approximation will be

y 5 applied. In zeroth order of the probe field, the staégsand
i (_ ﬁ—V2+V+hw +)¢ - 70y, |g.) remain unpopulated and one finds for the ground state

at 2m ) G operators
T T 3
' kgf—ﬁ(ug]k%d/g "y o), (40 9=- iUQ%nggjgj' (6)

We have_ not m_cluded decay f_ro.m the excned states as the?lethe lattice has a regular filling with a well defined number
states will attain only a negligible population. The above =N of atoms per site, we can make the replacen@g}
operator equations are nonlinear and are thus impossible {g’ !

. =N in Eg. (6). A regular filling can be achieved, e.g., by
solve exactly. Therefore, approximations are needed. employing a Mott-insulator transition in a lattidé,7]. In

. ot o e [ he self-ph lati i '

the z axis and the control field in an orthogonal direction. Eﬂels;lfssoer,btede ﬁ]ethg gzznrxi%iu;tl:)hr;deesg:;t;ec(ﬁbﬁ]aen gjgl:gfmd-
(+) — i(tkz-wt — —i gt

Thus, E(r,0=E,(r,0EE= ), O(r,1)=Qo(t)e™ . Here,  giate atoms. Furthermore, we can replace the ground-state

both £.(r,t) andQ(t) are slowly varying functions af and operator in the equations for the operators of the other states

t. One also assumes that the probe field couplsg/n is 4 constang; — g'°. With this, we obtain in first order of
much weaker than the control field couplifig. In this limit, o probe field !

we may consider the control field undepleted and classical

and can thus se®, constant. The assumption that all atoms . ) ,,u_g}i) )
were initially in the ground statg then also implies that only € =~ Aeslyj + i 7 Ex(ry) +1Q00yj, (78)
a small fraction of atoms is excited to the statgs
The strength of the lattice is considered to be large 3
enough such that only the lowest energy level of each poten- O = —i(Age + ugif3n)qij + iQ;eij - iuﬁ—aquﬂqij
tial well is occupied and tunneling between the wells is neg- a
ligible. In this limit the atomic field operators can be ex- f3 ;
panded in the basis dfeal) Wannier functions[6]. Since 10750500, (7b)

only the lowest lattice state is occupied, only Wannier states
of the lowest Bloch bandV;(r)=W(r —r;) survive in this wheren=N/a® is the average density of atoms. Next, we
expansion. In a deep lattice Wannier functions of neighborassume resonance conditions, i£e,=0 andAg. +ugnf®
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=0 and that the probe field varies sufficiently slowly. Underteraction when the group velocity approaches zero. One

these conditions, we can apply an adiabatic approximation.should take into account, however, that due the pulse com-
In zeroth order of the adiabatic approximation, the timepression the total photon numberph~fd3r€T€ is only a

derivative in the equations of motion for the atomic variablesfraction vy /c of the input value. Equatiorill) becomes

(5) is neglected, which yields much more transparent if it is translated into an equation of

(0) motion of the DSP$4]

G (1) 7Qq Esj) (8a) W, (z,t) = cos 0E,(z,t) — sin 0V’Z1//qi(z,t), (12
w3 w_f3 wheregzzv’ﬁwIZSOA, A being the cross section of the light
++ - ~
eyj(t) = d;agquqithj + (;*agq:r_quijqij: (8b)  beam,vy=c cos?6, and i, are the slowly varying ampli-
0 0 tudes of the matter fields. It may be worthwhile noting that
with £,j=E.(r;). Thus, the DSPs in an optical latticE=q. (12)] have some resem-
h h o blance to exciton-polaritons in a semiconductor. In the adia-
; ’n batic limit considered here, the orthogonal quasiparticles to
&0(t) = - fiu, P LI X A ) ) quasiparte
70| A Q| V., the bright-state polaritons are not excited and thus
0 5 =V, cosd. With this, we find the following propagation
% +_f3ng_2ﬂnszg;g+__ (9) ~ equation inside the medium
|1 Qo|? |1 Q>
J J _ 284 NUrec g+
Proceeding in the same manner with the first order of the It + Vorg, ) v~ -l A PP,
adiabatic approximation, we find that the operators corre-
sponding to the excited statés,) contain a term propor- _i28+—?\vrecf3q,¢q, v (13)
tional to the time derivative of the probe fields A FEETE
Drer — 0) iug” 9 where we ha_ve sub;tltuted tlsawave scattering lengthy;
et =e;(t) + ﬁIQOIZ&tSﬂ' (10) and the recoil velocity..=fiw/mc. The polariton number

densitiesni:\Ifl(z)‘Ifi(z) undergo a sudden increase at the
Here, higher order terms ifi,; containing a time derivative boundary of the medium since the electric field is continuous
were neglected as they correspond to higher order correthere. Inside the medium, they propagate form-stable with
tions in both the probe field and the adiabaticity parameter.g,.

The adiabatic solutions for the matter fields can now be Equation(13) leads to a self- and cross-phase modulation
used to calculate the slowly varying amplitude of the probe-of the DSPs. If initially only one polariton of each sort is
field polarizations Pi(r,t):M*E]-|V\/j(r)|zglj(t)eij(t). Since  excited, the self-phase modulation vanishes. To solve the
the Wannier functions are strongly localized around the cenquasi-1-D scattering problem, it is convenient to introduce
ter of the potential wells, the microscopic polarization the two-particle wave function
changes rapidly in space. On the other hand, in Maxwell’s
equations for the electric field, only the macroscopic polar- w(z,2',t) = (0¥, (z,)W_(Z',1)[ ), (14)

ization enters. The macroscopic polarization can be obtaine\g,here| &) is the initial state vector of the system af@}

by averaging over a volume small compared to the wavegqregnonds to the polariton vacuum. One can show that in

length. If the lattice constartis sufficiently smaller than the 4 .ase considered here namely, where only one polariton
relevant wavelength of the probe field, the lattice structurgy oach class is initially excited, all information is contained

disappears in the polarization. In an optical lattiae\/2, 5 \y |n terms of center-of-mass and difference coordinates
where \, is the wavelength of the laser light used for the R=(z+2')/2 andé=z—7', the equation of motion fow reads
optical potential. Unless the probe field is very much detuned '

to the blue side oh,, effects from the lattice structure like J J 8()a,Nvyec

Bragg scattering can be neglected. T 2Ugr(9_§ w=- ZITf3W-
Using the macroscopic polarization, we find the following

equation of motion for the slowly varying amplitude of the This equation has a simple interpretation. The left-hand side

(15

field operator describes the propagation of the two components in opposite
directions. The right-hand side describes an interaction for
L 9 e — iy NBO 3t z=7',i.e., when the two polaritons meet. The interaction con-
T UG |Ee= " iUss foELELE, .
at d Mg serves the center-of-mass of the two polaritons and the solu-

e tion of (15) reads
; 0 301
—iu,_—f°E_EE,, 11 .
fimug, T T (1) W(R,& 1) =W(R, & - 2v4t,00ex - 1A4O(£)],  (16)
with group velocity vg=2c#|Q0| %0/ |u[?wn (assumingu, ~ where®(£) is the Heaviside step function. One recognizes
<c). The appearance of the group velocity in the denominathat the shape of the two-photon wave function remains un-
tor of (11) suggests at first glance a diverging nonlinear in-changed by the collisions and there is only a homogeneous
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w(R,E 1)

FIG. 2. Snapshots of two-particle wave-functisrR, £,t) at
equidistant times as function of center-of-mass coordifat@nd
difference coordinatg=z-2'. £€<0 (£>0) corresponds to polari-
tons propagating towar@way from) each other. Overlapping com-
ponents generate a phase g, which is taken to ber.

collision phase. This is illustrated for the cadep= in
Fig. 2.

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 69, 061801R) (2004

all, phase diffusion of the individual DSPs caused by the
scattering of atoms in statég,) with ground-state atoms is
eliminated by the regular filling. Secondly, the local enhance-
ment of the density leads to an enhancement facton a
deep latticef can be as large as 10. To give an estimate of
achievable phase shifts, let us assumg=10 nm, v,
=100,0 A=N?%, A=800 nm, andf=10. This yields a phase
shift on the order of unity, which is of the required order of
magnitude.

The main limitation of the present scheme is set by the
dephasing of the DSPs during their propagation tinie the
medium.T can be chosen as small as the initial pulse length,
but needs to be sufficiently large such that the compressed
pulse length in the medium=uv,T is still sufficiently larger
than the wavelength. Assuming for the above given param-
eters T=50 usec, which is typical for the experiments in
[8-10, andv,..=5 cm/sec, one finds~= 25 um, which ful-
fills L>\. Since in the light-“stopping” experimen{9,10]
dephasing times of milliseconds have been observed, the

The conditional phase shift between the polaritons thafléphasing of the dark polariton should not be an issue.

originate from two single-photon wave packets is then trans-

In summary, we have shown that scattering of ultracold

ferred back to two photons at the exit of the medium. In thisatoms in a deep three-dimensional lattice together with the
way, a quantum phase gate between two individual photonansfer of excitations between photons and atomic excita-
could be implemented, if the conditional phase shift canfions through dark-state polaritons can be used for a condi-

reach the value ofr. The collision phase iil6) is given by

_ &N Urec

f3. 17
A vy (17)

Ao

It is interesting to note thak ¢ does not depend on the pulse

tional homogeneous phase shift between individual photons.
An essential requirement to obtain sufficiently large phase
shifts is the transverse focusing of the polaritons to a cross
section comparable ta? and sufficiently long dephasing
times.

parameters. It is not necessary that the two pulses have a The authors acknowledge financial support from the Eu-
certain length or the same shape. Both should, however, ocepean Union within the network QUACS and the Marie-
cupy the same transverse mode. One also recognizes that tBerie Trainings-site at the University of Kaiserslautern as
use of a lattice potential has two important effects. First ofwell as the German Science Foundation.
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