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A theory is presented for the retarded resonance interaction in dielectric media between a ground state atom
and an excited atom. We demonstrate in the retarded limit large deviations compared to earlier incorrect
evaluations of this important quantity.
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We investigate the influence of retardation on the reso-
nance interaction of a ground state, and an excited, Drude
model atom when the atoms are immersed in a dielectric
medium. The dipole-dipole mechanism has been proposed as
a way to create entangled states for quantum logic using both
molecules[1] and quantum dots[2]. Resonance interaction
and the related Förster energy transfer[3] go to the very core
of biophysics. Resonance interaction has very broad applica-
tions and it has also been exploited to create cold molecules
[4]. We showed recently[5] how earlier theoretical results
for the retarded resonance interaction in free space were in-
correct in the retarded limit. In this Brief Report we present
first the basic theory for the interaction between a ground
state atom and an excited atom immersed in a dielectric me-
dia. The extension to molecules is straightforward. We then
derive simple analytical asymptotes for the long-range inter-
action and show that there are large deviations when the
results are compared to earlier, incorrect results.

We consider two identical atoms where one is initially in
its ground state and the other is in an excited state. This
whole system can also be represented by a superposition of
states: one symmetric and one antisymmetric with respect to
interchange of the atoms. While the symmetric state is likely
to decay into two ground state atoms, the antisymmetric state
can be long lived. The system can thus be trapped in the
antisymmetric state[6]. The energy migrates back and forth
between the two atoms until either the two atoms move apart
or a photon is emitted away from the system. First order
dispersion interactions are caused by the coupling of the sys-
tem [i.e., by the separationsrd dependence of the energy
difference between the two states].

By writing down the equations of motion for the excited
system, it is straightforward to derive the zero temperature
Green function for two identical(and isotropic) atoms[5,7].
The transition moments of the two atoms are assumed to be
parallel and to make an angleu with the axis that joins the
two atoms. The extension to considering two different atoms
in a dielectric medium is straightforward and the resonance
frequenciessvrd of the system are given by the solution of
the following equations:
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HereTsr uvd is the field susceptibilityf7,8g in a material with
dielectric function«svd, andas j uvd is the polarizability of
atom j . In the above expression we have used a two-level
approximation for the polarizability with oscillator frequency
v j and dissipation frequencyg j svia, e.g., radiation damp-
ingd. The influence of the finite velocity of lightscd and the
background material is contained in the field susceptibility.
In the case of two identical atoms the above resonance con-
dition can be separated in one antisymmetric and one sym-
metric part. Since the excited symmetric state has a much
shorter lifetime than the antisymmetric state, the system can
be trapped in an excited antisymmetric state. The resonance
interaction energy of this antisymmetric state is

Usrd = " fvrsrd − vrs`dg. s4d

Since the relevant solution of Eq.s1d is the pole of the anti-
symmetric part of the underlying Green functionf5g we can
in a standard wayf9g deform a contour of integration around
this pole to obtain a simple and exact expression for the
resonance interaction energy,
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In the nonretarded limit we can take the limit of infinite
velocity of light to obtain
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If the resonance frequency of the atom occurs at a much
lower frequency than the first adsorption frequency of the
dielectric function, this expression can be simplified further
to obtain
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In the larger limit one can replace bothasijd and«sijd with
their respective static limits and evaluate the integral to ob-
tain
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This is the dominating term in the resonance interaction en-
ergy in the retarded limitsat zero temperatured. It can be
contrasted with the oscillating forms obtained in earlier treat-

ments. These earlier incorrect treatmentsf5,7g ignored the
coupling between the two interacting atoms via the electro-
magnetic field. We can easily rederive these results by re-
placing Tsr uvd→Tsr uvrd. With this substitution Eq.s5d
leads to an oscillating form in the retarded limit.

We conclude that the generally accepted[10–12] form for
the retarded resonance interaction is not correct. The reso-
nance interaction does not oscillate but follows simple power
laws. The fact that the interaction takes place in a dielectric
medium has two effects in the two limiting cases considered
in Eqs.(7) and(8). The first effect is a reduction of the speed
of light sc→c/Î«d in the retarded limit. The second effect is
a screening of the interaction potentialsU→U /«d.
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