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We study the mode entanglement in the one-dimensional Frenkel-Kontorova model, and found that quantum
entanglement is distinct before and after the transition by breaking of analyticity. We show that the more
extended the electron is, the more entangled the corresponding state. Finally, a quantitative relation is given
between the average square of the concurrence quantifying the degree of entanglement and the participation
ratio characterizing the degree of localization.
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Quantum information science has emerged as an active
interdisciplinary area between quantum mechanics and infor-
mation theory[1]. Recently, it was suggested that quantum
information science may offer a powerful approach to the
study of nonlinear complex quantum systems[2–4]. Specifi-
cally, there may be close connections between quantum en-
tanglement theory and many-body theory[1,3]. These ideas
motivate us to investigate nonlinear complex quantum sys-
tems by entanglement theory.

We investigate quantum entanglement of electrons in the
Frenkel-Kontorova(FK) model [5], a paradigm in nonlinear
science, and address the effects of the transition by the
breaking of analyticity(one striking feature of the FK model)
on behaviors of entanglement. The FK model has been used
to model various kinds of physical systems such as an elec-
tron in a quasi-one-dimensional(1D) metal below the Peierls
transition[6]. The FK model describes a 1D chain of atoms
with harmonic nearest-neighbor interaction placed in a peri-
odic potential. Due to the competition between the two
length scales, the spring length, and the period of the on-site
potential, the FK model exhibits a rich complex phenomena
[7,8]. It is shown by Aubry[9] that there exist two different
ground-state configurations for an incommensurate chain,
and the transition from one configuration to another is driven
by a single parameterK. These two incommensurate con-
figurations correspond to an invariance circle and cantorus of
the standard map[10], respectively.

The electronic properties such as the energy spectrum and
quantum diffusion in the FK model have been studied[11].
Quite recently, entanglement properties were studied in the
Harper model[12], another paradigm of nonlinear science,
and some connections are revealed between entanglement
and localization[13]. In contrast to the Harper model that
has been often used to study electron properties in incom-
mensurate systems[12,14], the FK model has two control
parametersK andl, which lead to more rich physics. More-
over, the Harper model exhibits a symmetry of self-duality,
whereas the FK model does not. Next, we study ground-state
entanglement properties of the FK model, and find that the
entanglement changes drastically when one goes from one
configuration of atoms to another.

Let us start by recalling some basic facts about(spinless)
fermions on a lattice of atoms. ConsiderN local fermionic

modes(LFMs)—sites which can be either empty or occupied
by an electron[15]. In the second-quantized picture the basic
objects are the creation and annihilation operatorscn

† andcn
of nth LFM, satisfying the canonical anticommutation rela-
tions fcn,cmg+=0,fcn,cm

† g+=dnm. The Hilbert space naturally
associated with theN LFMs, known as Fock spaceHF, is
spanned by 2N basis vectorsun1, . . . ,nNl : =pl=1

N scl
†dnlu0lsnl

=0,1∀ ld.
The fermionic system is indistinguishable and there is no

natural tensor product structure, which is essential for the
existence of entanglement. However, it is evident thatHF is
isomorphic to theN-qubit space. This is easily seen by de-
fining the mapping[16,17]

L: = p
l=1

N

scl
†dnlu0l ° ^ l=1

N unll = ^ l=1
N ssl

+dnlu0l, s1d

where sl
+ is the raising operator oflth qubit. This is a

Hilbert-space isomorphism betweenHF and C^N. So, we
now have a tensor product structure and the entanglement of
fermions can be studied by computing entanglement of qu-
bits.

For a single electron moving on the 1D chain, the general
state of the system is given by

uCl = o
n=1

N

cnunl = o
n=1

N

cncn
†u0l, s2d

whereu0l is the vacuum state. After the mapping, the above
state maps to a multiqubit stateon=1

N cnsn
+u0l with only one

excitation. This state belongs to theN-dimensional subspace
of the whole 2N-dimensionalN-qubit Hilbert space, and the
pairwise entanglement quantified by the concurrencef18g is
well defined.

Consider an electron hopping in a 1D FK chain described
by the following Hamiltonian:

H = − to
n=1

N

scn
†cn+1 + cn+1

† cnd + o
n=1

N

Vncn
†cn, s3d

wheret is a nearest-neighbor hopping integral which is set to
1 throughout the paper, andVn=l coss2psxn

0d is the on-site
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potential, which is controlled by the parameterl and the
configurationhxn

0j. Here,l is the amplitude of the on-site
potential,s=Fn/Fn−1 is the inverse distance between two
consecutive atoms forK=0, and hFnj is a Fibonacci se-
quence and the series of truncated fractionFn−1/Fn con-
verse to the inverse golden meansÎ5−1d /2. The number
of lattice sites is chosen to beN=Fn.

The configurationhxn
0j of the FK model is determined by

minimizing the functional

U = o
n

1

2
sxn+1 − xnd2 + Kf1 − coss2pxndg, s4d

whereK is a coupling constant controlling configurations of
atoms. Moreover, the periodic boundary condition is as-
sumed for Hamiltonians3d. We can also consider the Heisen-
berg XY model governed by Hamiltonian H8=
−ton=1

N ssn
+sn+1

− +sn
−sn+1

+ d+on=1
N sz, which describes interac-

tion amongN qubits. TheXY model with one magnon is
equivalent to the electronic model with one electron, and all
entanglement properties are identical.

From Eqs.(2) and(3), we obtain the eigenequation of the
system

− tscn+1 + cn−1d + Vncn = Ecn. s5d

Then, we can obtain the ground state. One-particle ground
states are always extended for periodic systems, and can be
localized for the FK model as the on-site potentialVn may
lead to aperiodicity.

For state(2), the concurrence for two LFMsi and j is
easily found to be[19] Cij =2ucic ju. Specifically, whenucnu
=1/ÎN, the state becomes the so-calledW state[20] and the
concurrence is given by 2/N. In this study, we are more
interested in the gross measure of entanglement, the average
concurrence[13]

kCl =
1

M
o
i, j

Cij =
1

MFSo
n=1

N

ucnuD2

− 1G , s6d

which have connections to localization. Here,M =NsN
−1d /2. We will mainly concentrate pairwise entanglement of
ground states and briefly discuss bipartite entanglement.

As a first step of numerical calculations, we obtain the
configuration forN atoms by the gradient method[9], adopt-
ing the periodic boundary condition. It is well known that
there exists a critical valueKc=0.154 641 separating two
configurations of atoms. The configurations determine the
on-site potentialVn, and thus ground-state entanglement.

Figure 1 displays behaviors of the average concurrence
(6) for the ground state of the FK model as a function ofK.
When the parameterK increases, we observe an abrupt de-
crease of the average concurrence near critical valueKc.
There is a strong interrelation between the electronic proper-
ties and the configurations of atoms, and thus this transition
of entanglement results from the transition by breaking of
analyticity in configurations of atoms. In other words, the
entanglement stronglyfeels the classical transition. For
K,Kc, the configuration of atoms corresponds to the invari-

ance circle. In this case, the concurrenceskCl<2/N and the
ground states are extended. ForK.Kc, the configuration
corresponds to cantorus, and ground states are quite different
from the case ofK,Kc. In this case, the concurrence tends
to disappear and the ground state is localized.

To see clearly between the entanglement and localization,
we show in Fig. 2 the average concurrence against the par-
ticipation ratio. The participation ratio characterizing the de-
gree of localization is defined by

p = 1YSNo
n=1

N

ucnu4D . s7d

We see that the average concurrence increases with the in-
crease of the participation ratio, illustrating that the more

FIG. 1. Average concurrence against parameterK for FK chains
with different lengths. The parameterl=3.

FIG. 2. Average concurrence against the participation ratio. The
parametersl=3 andN=377.
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localized ground states are, the less the average pairwise en-
tanglement.

Now, we investigate effects of amplitudel of the on-site
potential on ground-state entanglement. The average concur-
rence as a function ofl is shown in Fig. 3 for differentK.
WhenK=0.1, the concurrence is nearly unchanged, and ap-
proximately given by 2/377=0.005305. AsK,Kc, atoms
are in the configuration before the breaking of analyticity,
and this configuration is nearly the same as that forK=0.
Then, the on-site potentialVn=l coss2psxn

0d are approxi-
mately of no difference, and the second term of Eq.(3) con-
tributes a constant to the Hamiltonian for one-particle states.
The concurrence of the ground state is then only determined
by the first term of Eq.(3), and is thus independent ofl.
WhenK=0.3, the concurrence reduces quickly to zero asl

increases. In this case, the atoms are in the configuration
after the breaking of analyticity, and the second term of Eq.
(3) no longer commutes with the first one and has significant
effects on ground-state properties. For largerl, the second
term dominates over the first one, and thus reduces the en-
tanglement. It is evident that the concurrence goes to zero as
l→`. The curves forK=0.16 and 0.165 display the inter-
mediate behaviors. ForK=0.3, we observe a critical value
lc, after which the entanglement tends to zero. The critical
value is dependent on parameterK.

So far, we have studied ground-state entanglement prop-
erties in the FK model. Next, we investigate dynamics of
entanglement with the initial state beingu1l=c1

†u0l. Thus,
there is no initial entanglement. The time evolution is de-
scribed by a time-dependent equations"=1d

isdcnd/sdtd = − cn+1 − cn−1 + l coss2psxn
0dcn, s8d

which can be integrated numerically by various methods
such as the fourth-order Runge-Kutta method.

Figure 4 displays dynamical behaviors of the average con-
currence for differentK and l. From Figs. 4(a)–4(c) for K
=0.1, we observe that the concurrence first linearly increases
with time, and finally reaches a plateau, oscillating irregu-
larly around a steady value. The dynamical behaviors only
differ slightly for different l. The reason is similar to that
discussed above, namely, for this case the terml coss2psxn

0d
contributes a constant to the Hamiltonian and does not alter
the system dynamics. In contrast, forK=0.3, as seen from
Fig. 4(d), the increase ofl suppresses the entanglement gen-
eration. Whenl becomes larger, the electronic states be-
comes more localized, and the entanglement diminishes. The
slight dependence ofl for K=0.1 and the strong dependence
of l for K=0.3 corresponds to extended and localized
ground states, respectively.

FIG. 3. Average concurrence against the parameterl for differ-
ent K. The parameterN=377.

FIG. 4. Time evolution of the average concur-
rence. The parameterN=377. (a), (b), and (c)
correspond tol=1, l=2, andl=4, respectively;
K=0.1. (d) corresponds toK=0.3 for differentl.
The parameterN=233.
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From the above results on ground-state and dynamical
behaviors of entanglement, we see that the more localized a
state is, the less the entanglement. Now, we build a direct
quantitative connection between the concurrence, quantify-
ing the pairwise entanglement, and the participation ratio,
characterizing the degree of localization. For the one-particle
state uCl (2), the concurrence between LFMsi and j Cij
=2ucic ju. We make an average of the square of concurrence,
rather than the concurrence,

kC2l =
1

M
o
i, j

sCijd2 =
4

M
o
i, j

uciu2uc ju2=
2

M
S1 − o

i=1

N

uciu4D
=

4

NsN − 1d
S1 −

1

Np
D . s9d

In deriving the above equation, we have used Eq.s7d and the
identity 2oi, juciu2uc ju2=1−oi=1

N uciu4, which results from the
normalization conditionoi=1

N uciu2=1. Thus, the average of
the square of concurrence can be written as a simple function
of the participation ratio, and this relation builds a direct
connection between pairwise entanglement and localization.
It is evident that the largerp is, the larger the concurrence.
For the two extreme cases,p=1/N andp=1, the concurrence
C becomes 0 and 4/N2, respectively, as we expected. Note
that the relation is applicable to arbitrary one-particle states,
irrespective of model Hamiltonians.

We have discussed the pairwise entanglement above. For
other types of entanglement, such as the bipartite pure-state
entanglement quantified by the linear entropy, we also find
similar relations as Eq.(9) between the linear entropy and
participation ratio[21]. The connections between entangle-
ment and localization are not restricted to electronic systems,

and can be applied to other systems such as spin systems
with one-magnon excitations. The investigation of multipar-
tite entanglement other than pairwise and bipartite entangle-
ment is more interesting, but at the same time more difficult
and complicated.

In conclusion, we have studied ground-state and dynami-
cal pairwise entanglement of two LFMs in the one-
dimensional FK model, and found that the entanglement ex-
hibits distinct behaviors for the cases ofK,Kc andK.Kc.
This is a consequence of the transition by breaking of ana-
lyticity. For K,Kc, the ground state is extended and more
entangled; while forK.Kc the ground state is localized and
less or not entangled. The amplitudel of the on-site poten-
tial has slight effects on entanglement whenK,Kc, while it
has significant effects whenK.Kc. It is interesting to note
that entanglement is closely connected to localization. It be-
comes a general feature that the more extended the electron
is, the more entangled the electronic state.

Our results support the idea that quantum information
theory offers a powerful approach to the study of nonlinear
complex system. At the transition point, the concurrence is
strongly affected, just as behaviors of the concurrence in the
quantum phase transition point[22,23]. It would be more
attractive to study entanglement behaviors in other nonlinear
complex systems such as two-dimensional quasicrystals and
disorder systems.
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