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We analyze the entanglement properties of the ground state for a system of spins half embedded in a
magnetic field, mutually interacting antiferromagnetically. Contrary to the ferromagnetic case where a second-
order quantum phase transition occurs, a first-order transition is obtained at zero field and the so-called
concurrence which measures the two-spin entanglement displays a jump at the transition point.
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One of the most fascinating features of the quantum world
is certainly the entanglement, which has no classical coun-
terpart. Celebrated by the pioneering works of Schrödinger
[1] and Einstein, Podolsky, and Rosen[2] about the nonlo-
cality, ubiquitous in the field of quantum information[3–5],
entanglement properties of quantum systems have recently
attracted much attention in the context of phase transitions.
In the various models studied, such as spin chains in a trans-
verse magnetic field[6–12], spin ladders[13], spin simplex
[14,15], and the Hubbard model[16], the ground state en-
tanglement has been shown to be strongly modified at the
critical point raising the question of the universality of these
behaviors. Indeed, if the scaling of the entanglement seems
to be universal, its range depends on the model[7]. More
surprisingly, even in a second-order quantum phase transi-
tion, the entanglement as measured by the so-called concur-
rence which, roughly speaking, measures the two-spin quan-
tum correlations[17], is not always a smooth function of the
external parameters that drive the transition[14]. Thus, fur-
ther investigations are clearly required, especially in dimen-
sions larger than one where most of the calculations have, up
to now, been performed. Unfortunately, in two or three di-
mensions, very few models are exactly solvable and numeri-
cal diagonalizations are often restricted to a small number of
degrees of freedom(typically, a few tenths), so that the ther-
modynamical limit is difficult to study.

In this paper, we consider a system whereN spins half
embedded in a magnetic fieldh mutually interact. We focus
here on the antiferromagnetic case, the ferromagnetic one
being discussed in Ref.[14]. The symmetries of the Hamil-
tonian allow us to considerably simplify its diagonalization
and to determine the phase diagram in the thermodynamical
limit. A first-order quantum phase transition is found at zero
field whereas in the ferromagnetic case, a second-order tran-
sition occurs at a nonvanishing field. Next, we study the
entanglement properties of the ground state via the concur-
rence computed from the thermal density matrix at zero tem-
perature. This concurrence, which is nontrivial forh.0, is
shown to be discontinuous at the transition point where it
switches to zero.

We consider the following Hamiltonian which generalizes
the model introduced in Ref.[18]:

H = −
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where thesa’s are the Pauli matrices andSa=oi sa
i /2. The

prefactor 1/N is necessary to get a finite free energy per spin
in the thermodynamical limit. Without loss of generality, we
will set hù0 in the following. The HamiltonianH preserves
the magnitude of the total spin and does not couple states
having a different parity of the number of spins pointing in
the magnetic field directionsspin-flip symmetryd, namely,

fH,S2g = 0, s3d
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for all anisotropy parameterg. In addition, it is straightfor-
ward to show that the full spectrum ofH is odd under the
transformationl→−l and even underh→−h. Furthermore,
sinceH writes in terms of the total spin operators, the degen-
eracy of each eigenvalue belonging to a spinS sector is at
least equal to the number of spinS representations which is
simply given by

DS= S N

N/2 − S
D − S N

N/2 − S− 1
D s5d

for all N. This implies that thefull spectrum is obtained by
diagonalizing only one representation of each spin sectorS
which allows us to deal with a large number of spins. De-
noting by huS,Mlj an eigenbasis ofS2 and Sz, the matrix
elements ofH reads
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whereaM
S±

=ÎSsS+1d−MsM ±1d. These expressions, which
are valid for any value of the parameterssl ,h,gd and for
any N, generalize to any spin sector those given in Ref.
f14g for the Dicke subspacesS=N/2d. In the isotropic case
g=1, one further hasfH ,Szg=0 so thatH is diagonal in the
basishuS,Mlj.

The antiferromagnetic nature of the coupling between
spins considered heresl,0d completely modifies the phase
diagram of H as compared to the ferromagnetic case. A
simple mean-field approach analogous to the one presented
in Refs. [19,20] can be performed and predicts a first-order
phase transition in the zero field limit for any positiveg. The
magnetization(per spin) in thez direction of the ground state
is given for allgù0 by

1

N
kSzl =

1

2
sgnshd, s7d

where sgn denotes the signum function which vanishes for
h=0. In the thermodynamical limit, the ground state is thus
the fully polarized state forhÞ0. Contrary to the ferromag-
netic case, the ground state for a finite arbitraryN does not,
a priori, lie in the symmetric representation of the permuta-
tion group spanned by the Dicke statesf14g. Indeed, in the
zero field limit sh→0d, the ground state shall belong to the
lowest spin sector that minimizes the interaction term. The
main issue is thus to determine the values ofh for which
level crossings appears.

For illustration, we have displayed in Fig. 1 the ground
state energy of the different spin sector for a small number of
spins. Two different scenarios arise according to the parity of
N. In the evenN case an additional symmetry allows us to
give a complete description of the ground state properties.
Indeed, as recently pointed out by Unanyan and Fleischhauer
[21], when

uhsusyu =
uluÎg

N
, s8d

the Hamiltonian is supersymmetricf22g. When the super-
symmetricsSUSYd conditions8d is fulfilled for an antiferro-

magnetic interactionsl,0d, the authors of Ref.f21g claim
that the ground state is nondegenerate and given by

uc0l = Ae−hSzuN/2,0yl, s9d

whereA is a normalization constant and whereuN/2 ,0yl de-
notes the eigenstate ofS2 and Sy with eigenvalues
sN/2dsN/2+1d and 0, respectively. The parameterh is de-
termined by the relationf23g: tanhh=l /N. Even though
uc0l is a ground state ofH with total spin S=N/2, the
spectrum at the SUSY point is, however,highly degener-
ate. Indeed, at the SUSY pointhsusy, all the lowest eigen-
values of each spin representation are equalfE0=ls1
+gd /2g and the degeneracy of the ground state is thus
given by

dgsl = lsusyd = o
S=0

N/2

DS= S N

N/2
D . s10d

This collapse of the spectrum can be easily analyzed in the
isotropic caseg=1 for which any stateuS,Ml is an eigenstate
with an eigenvalue

EsS,Md = −
2l

N
fSsS+ 1d − M2g + l − 2hM. s11d

For l,0 andh.0, EsS,Md is minimum forM =Sand at the
SUSY pointEsS,Sd=l for any S.

The existence of this supersymmetric point enables us to
locate the ground state for any value of the parameters. In-
deed,H describes a competition between the magnetic field
h, which aims to align the spin in the field direction, and the
interaction term which favors antiferromagnetic configura-
tions. Thus, since at the SUSY point there exists a ground
state lying in the maximum spin sectorS=N/2, the ground
state forh.hsusy also lies in this sector anddgsh.hsusyd
=DN/2=1. Similarly, since singlet statesu0,0l are also ground
states at the SUSY point, they remain ground states for
h,hsusyanddgsh,hsusyd=D0. In the thermodynamical limit
sN→`d, hsusy goes to zero and the level crossing between
S=N/2 andS=0 ground states thus occurs at zero field. Nev-
ertheless, forh=0, it is clear that the ground states have a
zero total spin for allgù0.

For oddN, the situation is more complex since the ground
states of each spin sector do not degenerate as in the evenN
case, except in the thermodynamical limit. In fact, as previ-
ously shown the ground state belongs to theS=N/2 sector
for h.hsusy, and then switches to the other spin sector with
decreasingS when h is lowered belowhsusy. Naturally, for
h=0, the ground state lies in the minimum spin sector and is
given by all statesu1/2,1/2l. Its degeneracyDS thus
strongly depends onh. Nevertheless, in the thermodynamical
limit, the region in which these level crossings occurs
shrinks and converges to the zero field point so that the par-
ity of N becomes irrelevant for the macroscopic physical
quantities.

To analyze the entanglement properties of the ground
state, we focus on the concurrenceC which has been intro-
duced by Wootters[17] to measure the two-spin entangle-
ment. This quantity is obtained from the density matrix de-

FIG. 1. Ground state energy of each spin sector as a function of
the magnetic field forg=1/2 sl=−1d. In the even caseN=6 (left)
all levels degenerate athsusys•d, whereas in the odd oneN=5 (right)
a cascade is observed from theS=N/2 to theS=1/2 sector.
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scribing the state to be characterized. Here, we concentrate
on the ground state ofH that can, as explained above, be
degenerate. Thus, we must consider the thermal density ma-
trix (at zero temperature) defined by

rth. =
1

dg
o
i=1

dg

ucilkciu, s12d

where dg is the degeneracy of the ground state and where
hucil , i =1, . . . ,dgj constitutes anorthogonal basis of the
dg-dimensional lowest energy subspaceE0. Indeed, if we
would consider the projector onto a specific state belonging
to E0, the entanglement properties would strongly depend on
this choicef6g. Then, letr be the reduced density matrix
obtained by tracing outrth over sN−2d spins. Of course, in
our system, the choice of the two spins kept is irrelevant
because of the permutation symmetry. Next, we introduce
the spin-flipped density matrixr̃=sy ^ syr

*sy ^ sy, where
r* is the complex conjugate ofr. The concurrenceC is
then defined by

C = maxh0,m1 − m2 − m3 − m4j, s13d

where them j are the square roots of the four real eigenvalues
of rr̃, classified in decreasing order. This concurrence van-
ishes for an unentangled two-body state whereasC=1 for a
maximally entangled one. As explained in Ref.f14g, it is
further important to deal with a rescaled concurrenceCR
=sN−1dC to take into account the coordination number of
each spin. For a large number of spins, the difficulty comes
from the trace step which requires operation in the full Hil-
bert space which is 2N dimensional.

For h.hsusy, this can be achieved since the ground state
lies in the sectorS=N/2. Indeed,(i) the S=N/2 subspace is
nondegenerate so that the thermal density matrix of the
unique ground state[24] ucl=oM aMuN/2 ,Ml simply writes
rth= uclkcu, and (ii ) the symmetry of the Dicke states
uN/2 ,Ml [25] allows us to write down in a simple form the
reduced density matrix r in the standard basis
hu↑↑l , u↑↓l , u↓↑l , u↓↓lj. One has[26]

r11 = o
M

uaMu2
sN + 2MdsN + 2M − 2d

4NsN − 1d
, s14d

r22 = o
M

uaMu2
sN − 2MdsN + 2Md

4NsN − 1d
, s15d

r44 = o
M

uaMu2
sN − 2MdsN − 2M − 2d

4NsN − 1d
, s16d

r14 = o
M

aMaM+2
* ÎsN + 2MdsN + 2M − 2d

3
ÎsN − 2M + 2dsN − 2M + 4d

4NsN − 1d
. s17d

Furthermore, one hasr23=r33=r22, and r* =r. The other
matrix elements can also be computed for an arbitrary

state belonging toS=N/2 subspace but since they vanish
for the eigenstates ofH because of Eq.s4d, we do not give
them here. Note that for the Dicke states, one recovers the
expressions given in Refs.f26,27g.

For h,hsusy, the ground state lies in the minimum spin
sector and is highly degenerate. The thermal density matrix
is then simply the projector onto the subspace corresponding
to S=0 for evenN and S=1/2 for oddN. The concurrence
computed from such a density matrix is known to vanish for
N.3 (see Ref.[27]).

Figure 2 shows the behavior of the rescaled concurrence
of the ground state as a function of the magnetic field. Note
that for g=1 and h.hsusy the ground state is simply the
Dicke stateuN/2 ,N/2l for which C=0. The same result also
trivially holds in the largeh limit for any g.

For h=hsusy the worst situation is reached, at least for
evenN, since there is one ground state in each spin sector. As
a consequence, the thermal density matrix is a sum of pro-
jectors onto states of very different natures so that the trace
operation is a rather difficult task for largeN. Here, we have
chosen to focus onuc0l whose analytic expression(9) allows
one to compute its concurrence for any evenN. The coeffi-
cientsaM entering in its decomposition onto the Dicke states
are simply given by

aN/2−2j = e−hsN/2−2jdSN/2

j
DYSN

2j
D1/2

, s18d

where we have setM =N/2−2j because of the symmetry
pi sz

i uc0l= uc0l. Two limiting cases can be easily analyzed:
the XY casesg=1d for which CR=0, and the Ising model
sg=0d for which h=0 andCR=1. The rescaled concurrence
of uc0l as a function ofg is displayed in Fig. 3.

In the largeN limit, the behavior of the rescaled concur-
rence ofuc0l can be computed and is given by

CRsgd = 1 −Îg s19d

for 0øgø1. Of course, this information does not enable us
to conclude anything about the concurrence computed with

FIG. 2. Rescaled concurrence of the ground state as a function
of the magnetic field for various anisotropy parameterg and for
N=103 spinssl=−1d. Note that for anyg, one hasCR=0 at zero
field.
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the full thermal density matrix involving all spin sectors but
it certainly points out a nontrivial behavior of the true ground
state ath=hsusy

+ .
Such a discontinuity of the concurrence at the transition

point has already been obtained in other frustrated spin mod-
els, such as spin ladders or Heisenberg antiferromagnets in
the Kagomé lattice[13]. However, in these systems the
ground state entanglement properties are very simple

(valence-bond-like states) so that its concurrence is constant
in each region of the phase diagram. If a jump of the ground
state concurrence seems reasonable for a system undergoing
a first-order quantum phase transition, it is not obvious that
other measures of the entanglement would have shown dis-
continuity. More precisely, in the above-mentioned example
as well as in our model, the concurrence is found to become
trivial for some parameter values.

An interesting perspective would be to study other mea-
sures of the entanglement in systems undergoing a quantum
phase transition, such as theN tangle [28] or the
Minkovskian-square norm of the Stokes tensor[29] which
investigate theN-spin entanglement. Indeed, the trace opera-
tion performed in the concurrence calculation undoubtedly
kills some correlations between spins that could be captured
by other types of measurement. One may also wonder how
the entanglement would be affected if one changes the range
of the interaction. This could be achieved, for example, by
considering a one-dimensional system with periodic bound-
ary conditions and long-range interactions. Such a model
would interpolate between the one-dimensional Ising-like
model for short-ranged interactions(nearest neighbors) and
our model in the(constant) infinite-range limit.

We are indebted to B. Douçot and D. Mouhanna for fruit-
ful and valuable discussions.
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