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Entanglement in a first-order quantum phase transition
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We analyze the entanglement properties of the ground state for a system of spins half embedded in a
magnetic field, mutually interacting antiferromagnetically. Contrary to the ferromagnetic case where a second-
order quantum phase transition occurs, a first-order transition is obtained at zero field and the so-called
concurrence which measures the two-spin entanglement displays a jump at the transition point.
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One of the most fascinating features of the quantum world We consider the following Hamiltonian which generalizes
is certainly the entanglement, which has no classical counthe model introduced in Ref18]:
terpart. Celebrated by the pioneering works of Schrodinger \
[1] and Einstein, Podolsky, and Rosglj about the nonlo- . i AN i
cality, ubiquitous in the field of quantum informati¢g8-5], H N2 (a+ yayay) hzi 7z @)
entanglement properties of quantum systems have recently
attracted much attention in the context of phase transitions. 2\ N
In the various models studied, such as spin chains in a trans- =- —(Sf + 733) -2hS+—-(1+v), (2)
verse magnetic fiel@l—12, spin ladderg13], spin simplex N 2
[14,15, and the Hubbard mod¢lL6], the ground state en- here thes,’s are the Pauli matrices ar),=3; ¢ /2. The
tanglement has been shown to be strongly modified at thgrefactor 1N is necessary to get a finite free energy per spin
critical point raising the question of the universality of thesejn the thermodynamical limit. Without loss of generality, we
behaviors. Indeed, if the scaling of the entanglement seemgi|| set h=0 in the following. The Hamiltoniai preserves
to be universal, its range depends on the md@gl More  the magnitude of the total spin and does not couple states
surprisingly, even in a second-order quantum phase transhaying a different parity of the number of spins pointing in

tion, the entanglement as measured by the so-called concifie magnetic field directioispin-flip symmetry, namely,
rence which, roughly speaking, measures the two-spin quan-

i<j

tum correlationg17], is not always a smooth function of the [H,$*]=0, 3
external parameters that drive the transitj@d]. Thus, fur-

ther investigations are clearly required, especially in dimen- [HH O-iz:| =0, (4)
sions larger than one where most of the calculations have, up i

to now, been performed. Unfortunately, in two or three di- . . o .
mensions, very few models are exactly solvable and numeri" all anisotropy parametey. In addition, it is straightfor-
cal diagonalizations are often restricted to a small number of/ard to show that the full spectrum &f is odd under the

degrees of freedortypically, a few tenthy so that the ther- ransformatiom — -\ and even undehn— —h. Furthermore,
modynamical limit is difficult to study. sinceH writes in terms of the total spin operators, the degen-

In this paper, we consider a system whétespins half ~ €racy of each eigenvalue belonging to a sﬁi_Bector i_s at
embedded in a magnetic fiekdmutually interact. We focus €ast equal to the number of spirepresentations which is
here on the antiferromagnetic case, the ferromagnetic ondMPIy given by
being discussed in Refl4]. The symmetries of the Hamil- N N
tonian allow us to considerably simplify its diagonalization 5= ( ) —( )
and to determine the phase diagram in the thermodynamical Ni2-$ Nf2-S-1
limit. A first-order quantum phase transition is found at zerofor all N. This implies that thdull spectrum is obtained by
field whereas in the ferromagnetic case, a second-order tragiagonalizing only one representation of each spin seStor
sition occurs at a nonvanishing field. Next, we study thewhich allows us to deal with a large number of spins. De-
entanglement properties of the ground state via the concupoting by {|S,M)} an eigenbasis o8? and S,, the matrix
rence computed from the thermal density matrix at zero temg|ements oH reads
perature. This concurrence, which is nontrivial for 0, is
shown to be discontinuous at the transition point where it
switches to zero.

©)

(S M'[H[SM) = 533{[— %<1+y><s<s+ 1) - M2 - N/2)

Ml-9) s &
- ZhM} oMM~ oN (@y-13% Sw’ M2
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-0.68

S=3 magnetic interactioriA <0), the authors of Ref{21] claim
07 that the ground state is nondegenerate and given by

o) = AET7IN/2,0y), 9

whereA is a normalization constant and whgh#2,0Q,) de-
notes the eigenstate of% and S, with eigenvalues
(N/2)(N/2+1) and 0, respectively. The parameteris de-
termined by the relatiori23]: tanh »=\/N. Even though
l) is a ground state ofH with total spin S=N/2, the
| \ ‘ spectrum at the SUSY point is, howevéiighly degener-
-0.82 ‘ o ! . ‘ ate. Indeed, at the SUSY poiriiy,, all the lowest eigen-
0.1 0.11 0.12 0.13 0.14 0.15 0.16 . .
h values of each spin representation are eqE=x(1
+7v)/2] and the degeneracy of the ground state is thus
FIG. 1. Ground state energy of each spin sector as a function gjiven by
the magnetic field fory=1/2 (\=-1). In the even casbl=6 (left) N/2
all levels degenerate &g, (¢), whereas in the odd orfé=>5 (right) do(h =\ 9 _ E Doz ( N )
a cascade is observed from tBeN/2 to theS=1/2 sector. g S STAN2)

-0.72 |

-0.74

-0.76
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-0.78

-0.8

(10

st_ _ ; . This collapse of the spectrum can be easily analyzed in the
\évrr;e:;m fc}rséli+ 1\3alll\1/le( '\gfi tlh)é Tgfz:rieet)ég;ehsg;)gidm;gfh isotropic casey=1 for which any stat¢S, M) is an eigenstate
y P 'Y with an eigenvalue

any N, generalize to any spin sector those given in Ref.

[14] for the Dicke subspac€S=N/2). In the isotropic case 2\ 5
y=1, one further hafH,S,]=0 so thatH is diagonal in the E(SM) =- K[S(SJ' D-MT]+r-20M.  (11)
basis{|S,M)}.

The antiferromagnetic nature of the coupling betweenForA <0 andh>0, E(S,M) is minimum forM=Sand at the
spins considered hefa <0) completely modifies the phase SUSY pointE(S,S)=A for any S.
diagram of H as compared to the ferromagnetic case. A The existence of this supersymmetric point enables us to
simple mean-field approach analogous to the one presentéecate the ground state for any value of the parameters. In-
in Refs.[19,20 can be performed and predicts a first-orderdeed,H describes a competition between the magnetic field
phase transition in the zero field limit for any positiyeThe  h, which aims to align the spin in the field direction, and the
magnetizatior{per spin in thez direction of the ground state interaction term which favors antiferromagnetic configura-

is given for all y=0 by tions. Thus, since at the SUSY point there exists a ground
state lying in the maximum spin sect8=N/2, the ground
1(8):lsgr(h) (77 state forh>h,q also lies in this sector andy(h>hys)
N 2 ' =Dy2=1. Similarly, since singlet staté®, 0) are also ground

states at the SUSY point, they remain ground states for

Wbere sgn denotes the signum f_unctlon which vanlghes foI':|< hgysy@nddg(h <hgys) =Do. In the thermodynamical limit
h=0. In the thermodynamical limit, the ground state is thus(N_mo) heys, GOES 10 zero and the level crossing between

the fully polarized state fon+ 0. Contrary to the ferromag- __ y '
netic case, the ground state for a finite arbitrBryloes not, Sr_t;]\le/ Iisasniiiwggr???sd ;Eaa;(rastr:gﬁh%cc%iﬁszsetftéflﬁé\l:l:\g
a priori, lie in the symmetric representation of the permuta- T 9

zero total spin for ally=0.

tion group spanned by the Dicke sta{dd]. Indeed, in the For oddN, the situation is more complex since the ground

zero field limit (h— 0), the ground state shall belong to the : ;
. e . . states of each spin sector do not degenerate as in theNeven
lowest spin sector that minimizes the interaction term. The

main issue is thus to determine the valueshalor which o€ except in the thermodynamical limit. In fact, as previ-
i ously shown the ground state belongs to 8wN/2 sector
level crossings appears.

. - . N for h>hg,, and then switches to the other spin sector with
For illustration, we have displayed in Fig. 1 the ground Susy .
. . ecreasingS whenh is lowered belowhg,, Naturally, for
state energy of the different spin sector for a small number o, —0 the ground state lies in the minimun%’ spin sector and is
spins. Two different scenarios arise according to the parity o ' 9 P

N. In the evenN case an additional symmetry allows us to

given by all states|1/2,1/2. Its degeneracyDg thus
give a complete description of the ground state propertiesiStrongly depends oh. Nevertheless, in the thermodynamical
Indeed, as recently pointed out by Unanyan and Fleischhaue

imit, the region in which these level crossings occurs
ghrinks and converges to the zero field point so that the par-

[21], when ity of N becomes irrelevant for the macroscopic physical
INVy quantities.
|hsusJ= N (8) To analyze the entanglement properties of the ground

state, we focus on the concurrenCewnhich has been intro-
the Hamiltonian is supersymmetrj@2]. When the super- duced by Wootter§17] to measure the two-spin entangle-
symmetric(SUSY) condition(8) is fulfilled for an antiferro- ment. This quantity is obtained from the density matrix de-
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scribing the state to be characterized. Here, we concentrat 1
on the ground state dfl that can, as explained above, be 0.9
degenerate. Thus, we must consider the thermal density me 08 —0
trix (at zero temperatuyalefined by 07 | =

1 dg 0.6 |

pun.= 2 [, (12)  Cr o5
gi=1 04 |
) 0s L 12

where d, is the degeneracy of the ground state and where :
{|¢i>,i:1,...,dg} constitutes anorthogonal basis of the 02 \
dg-dimensio_nal lowest energy subspa.&@_ _Indeed, if we _ 01 1 =1
would consider the projector onto a specific state belonging 0 ' ' ' ' ' ' ' ' '
to &, the entanglement properties would strongly depend on 0 02 04 06 08 111 12 14 16 18 2
this choice[6]. Then, letp be the reduced density matrix
obtained by tracing out, over (N-2) spins. Of course, in FIG. 2. Rescaled concurrence of the ground state as a function

our system, the choice of the two spins kept is irrelevanif the magnetic field for various anisotropy parameteand for
becau_se o_f the permL_Jtatlon sgmmetry. *Next, we introducey=10® spins(A=-1). Note that for anyy, one hasCg=0 at zero
tr*le_ spin-flipped densny matrig=oy,® oyp oy ® oy, Whelre field.

p is the complex conjugate gs. The concurrence is

then defined by state belonging t®=N/2 subspace but since they vanish

_ o for the eigenstates dfl because of Eq4), we do not give
C=max0.ps = pp = 3~ pal, (13 them here. Note that for the Dicke states, one recovers the
where they; are the square roots of the four real eigenvaluegxpressions given in Ref§26,27.
of pp, classified in decreasing order. This concurrence van- For h<hg, the ground state lies in the minimum spin
ishes for an unentangled two-body state whei@ad for a  sector and is highly degenerate. The thermal density matrix
maximally entangled one. As explained in REf4], it is  is then simply the projector onto the subspace corresponding
further important to deal with a rescaled concurrefize to S=0 for evenN and S=1/2 for oddN. The concurrence
=(N-1)C to take into account the coordination number of computed from such a density matrix is known to vanish for
each spin. For a large number of spins, the difficulty comes\>3 (see Ref[27]).
from the trace step which requires operation in the full Hil-  Figure 2 shows the behavior of the rescaled concurrence
bert space which is"2dimensional. of the ground state as a function of the magnetic field. Note
For h> hg, this can be achieved since the ground statghat for y=1 andh>hg,, the ground state is simply the
lies in the sectoS=N/2. Indeed(i) the S=N/2 subspace is Dicke statgN/2,N/2) for which C=0. The same result also
nondegenerate so that the thermal density matrix of th#&ivially holds in the largeh limit for any y.
unique ground statf24] )=, ay|N/2,M) simply writes For h=hg,, the worst situation is reached, at least for
pwn=lw)Xyl, and (ii) the symmetry of the Dicke states evenN, since there is one ground state in each spin sector. As
IN/2,M) [25] allows us to write down in a simple form the @ consequence, the thermal density matrix is a sum of pro-
reduced density matrix p in the standard basis jectors onto states of very different natures so that the trace
4110101, 1L 1)} One hag26] operation is a rather difficult task for largé Here, we have
chosen to focus o) whose analytic expressi@f) allows
one to compute its concurrence for any ewnrhe coeffi-
cientsay, entering in its decomposition onto the Dicke states
are simply given by

>(N+2M)(N +2M - 2)
AN(N - 1)

p11=2 |y , (14
M

N - 2M)(N + 2M _ 12
Pzzz% |CVM|2( 4N(I)\l(— I) ), (15) anj2-2) :e_”(NIZ_ZJ)(NjQ)/(;) , (18

where we have seM=N/2-2j because of the symmetry

L(N=2M)(N=2M - 2)

pas= > o , (16) I o)) =|v). Two limiting cases can be easily analyzed:
M 4AN(N - 1) the XY case(y=1) for which Cx=0, and the Ising model
(y=0) for which =0 andCr=1. The rescaled concurrence
- s N+ 2M) N+ 2M = 2 of | as a function ofy is displayed in Fig. 3.
Pra EM" amam2\( ) ) In the largeN limit, the behavior of the rescaled concur-

rence of|,) can be computed and is given by

VIN=-2M + 2)(N - 2M + 4) 17 _
AN(N - 1) ' A7 Cr(y)=1-\y (19

Furthermore, one hap,s=ps;3=p,2, and p’'=p. The other for 0=<y<1. Of course, this information does not enable us
matrix elements can also be computed for an arbitrarnto conclude anything about the concurrence computed with
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FIG. 3. Rescaled concurrence of the ground stétg at the
SUSY point as a function of the anisotropy paramejefor N
=10* spins.
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(valence-bond-like statgso that its concurrence is constant

in each region of the phase diagram. If a jump of the ground
state concurrence seems reasonable for a system undergoing
a first-order quantum phase transition, it is not obvious that
other measures of the entanglement would have shown dis-
continuity. More precisely, in the above-mentioned example
as well as in our model, the concurrence is found to become
trivial for some parameter values.

An interesting perspective would be to study other mea-
sures of the entanglement in systems undergoing a quantum
phase transition, such as thd tangle [28] or the
Minkovskian-square norm of the Stokes ten$®®] which
investigate theN-spin entanglement. Indeed, the trace opera-
tion performed in the concurrence calculation undoubtedly
kills some correlations between spins that could be captured
by other types of measurement. One may also wonder how
the entanglement would be affected if one changes the range
of the interaction. This could be achieved, for example, by

the full thermal density matrix involving all spin sectors but considering a one-dimensional system with periodic bound-
it certainly points out a nontrivial behavior of the true ground@ry conditions and long-range interactions. Such a model

state ath=h{,q

would interpolate between the one-dimensional Ising-like

Such a discontinuity of the concurrence at the transitiormodel for short-ranged interactionisearest neighboysand
point has already been obtained in other frustrated spin modur model in the(constant infinite-range limit.
els, such as spin ladders or Heisenberg antiferromagnets in

the Kagomé lattice[13]. However, in these systems the

We are indebted to B. Dougot and D. Mouhanna for fruit-

ground state entanglement properties are very simpléul and valuable discussions.
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