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Continuous-variable entanglement of phase-locked light beams
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We explore in detail the possibility of intracavity generation of continuous-vari@\ entangled states of
light beams under mode phase-locked conditions. We show that such quantum states can be generated in a
self-phase-locked nondegenerate optical parametric osci(ld@PO based on type Il phase-matched down-
conversion combined with a linear mixer of two orthogonally polarized modes of the subharmonics in a cavity.
A quantum theory of this device, recently realized in the experiment, is developed for both subthreshold and
above-threshold operational regimes. We show that the system providing high-level phase coherence between
two generated modes, unlike the ordinary NOPO, also exhibits different types of quantum correlations between
photon numbers and phases of these modes. We quantify the CV entanglement as two-mode squeezing and
show that the maximal degree of the integral two-mode squedmihgch is 50% relative to the level of
vacuum fluctuationsis achieved at the pump field intensity close to the generation threshold of a self-phase-
locked NOPO, provided that the constant of linear coupling between the two polarizations is much less than the
mode detunings. The peculiarities of CV entanglement for the case of unitary, nondissipative dynamics of the
system under consideration are also cleared up.
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[. INTRODUCTION diffusion proces$4] stipulated by vacuum fluctuations. As a
rule, the NOPO phase diffusion noise is substantially greater
It is now believed that entanglement of quantum composthan the shot noise level, which limits the usage of NOPO in
ite systems with a continuous degree of freedom is the basisrecision phase-sensitive measurements. Various methods
of most applications in the field of quantum informatidj. = based on phase-locking mechanisfis1( have been pro-
Interest in continuous-variablgCV) entanglement is being posed for reducing such phase diffusion. In the compara-
extensively excited by successful experiments on quanturfively simple scheme realized in the experimg6i, self-
teleportation based on two-mode squeezed sfaless well ~ Phase-locking was achieved in NOPO by adding an
as the experiments dealing with entanglement in atomic erihtracavity quarter-wave plate to provide polarization mixing
sembleg[3]. Since then, remarkable theoretical and experietween two orthogonally polarized modes of the subhar-

mental efforts have been devoted to generating and quanfifonics. The evidence of self-phase-locking was provided
fying CV entangled states. there by the high level of phase coherence between the signal

In this paper we propose a type of CV entangled states Oﬁrlwnedolr?/le(r)fﬂilssh Fﬁlgl\;vggvcglss %Ixe?gll(;gigt, [tl%? ssglgL&;ﬁ/Slcal

light-field with reduced phase noise. They are different fromschemes of multiphoton parametric oscillators based on cas
the well-known entangled Einstein-Podolsky-Rog&P ; g . ! )
states qenerated in agnonde enerate o ticaﬁ amséﬂ#i;) caded down-conversion processeg'# media placed inside

€S genel gene P . ' the same cavity and showing self-phase-locking have been
which exhibit large phase fluctuations. We believe that suc roposed8]. As was demonstrated 9], the system based
entangled states of light-field with localized phases can bg o combiﬁation of OPO and second—harmonic generation
generated in a self-phase-locked nondegenerate optical parg, displays self-phase-locking. The formation of self-

metric oscillator (NOPO, based on the type Il phase- phase-locking and its connection with squeezing in the para-

matched down-conversion and additional phase-locking PrOietric four-wave mixing under two laser fields has been

cess §tipu|ated by the intraqavity waveplate. The mOtiV"’monﬁlemonstrated if10]. An important characteristic of self-
for_IER'S ét\l;dy are tlh‘(aj followmgf. liah di d phase-locked devices concerns the phase structure of gener-
q € egtang e stateﬁ 0 Slgf t were SJU led4nand 5404 subharmonics. Indeed, the formation of the variety of
lemonstrated experimenta y [8] for a nondegenerate op- distinct phase states under self-phase-locked conditions has
tical parametric amplifie(NOPA). Then a CV entanglement been obtained in Ref§6—1. It was recently noted that the

source was built from two single-mode squeezed Vacuudchemes involving phase locking are potentially useful for

statﬁs :c:orr]nblnehd on alkljeaml s_pllt[dé}. Ig'? well knovx(/jn that %recise interferometric measurements and optical frequency
each of the orthogonally polarized and frequency degeneratg,isinn hecause they combine fine-tuning capability and sta-

fields generated by NOPO is a f|e|.d O.f zero-mean values. ThBility of type Il phase matching with effective suppression of
phase sum of g_enera;ed modeg is fixed by the phase of tguase noise. That is why we believe it will be interesting to
pump laser, while their phase difference undergoes a pha nsider phase-locked dynamics also from the perspective of
quantum optics and, in particular, from the standpoint of pro-
duction of CV entanglement.
*Email address: adam@unicad.am A further motivation for such a task is connected with the
"Email address: gkryuchk@server.physdep.r.am problem of experimental generation of bright entangled light.
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FIG. 1. The principal scheme of a self-phase-locked NOPO in a triply resonant cavity for the pump mode at frequeemtywo
subharmonic modes of two orthogonal polarizatiopjsand(—) at frequencyw/2. We have chosen the special path for the pump mode to
underscore the fact that the pump mode rapidly deCgys v1, y,) and is eliminated adiabatically. The type Il phase-matching condition for
the processs— w/2(1)+w/2(—) is satisfied in the¢® medium. The intracavity quarter wavepld@WP) provides a polarization mixing
between the orthogonally polarized subharmonics.

So far, to the best of our knowledge, there has been no exwo-mode squeezing for both subthreshold and above-
perimental demonstration of CV entanglement above théhreshold operational regimes. We also discuss in Sec. IV the
threshold of NOPO. Progress in experimental study of acase of unitary, nondissipative dynamics using a well-
bright two-mode entangled state from a cw nondegeneratgistified small-interaction-time approximation. We summa-
optical parametric amplifier has been madgid]. A theo-  rize our results in Sec. V.
retical investigation of CV entangled light in transition
through the generation threshold of NOPO is giverjig].
One of the principal experimental difficulties in attaining a
high-intensity level is the impossibility to control the fre-  As an entangler we consider a combination of two pro-
guency degeneration of modes above the threshold. We hopesses in a triply resonant cavity, namely type Il parametric
that the usage of phase-locked NOPO may open a new intedown-conversion in @ medium and polarization mixing
esting possibility to avoid this difficulty. between subharmonics in a lossless symmetric quarter-wave
In this paper, we report what is believed to be the firstplate. The Hamiltonian describing intracavity interactions is
investigation of self-phase-locked CV entangled states. We ) (@) =)t iy =) _ D ot
develop the quantum theory of self-phase-locked NOPO, H=IRE(€™L™Vag —e™™ ag) +ifik(e M agas a;
with decoherence included, ip applicatiqn to the generation. _ ‘i‘l’kagalaz) +hx(ei¢xa’1'a2+e“q’xa1a§), (1)
of such entangled states. This scheme is based on a combi-
nation of two processes, namely type Il parametric downWherea; are the boson operators for the cavity modgs
conversion and linear polarization mixing with cavity- The modea; at frequencyw is driven by an external field
induced feedback. The parametric down-conversion is aith amplitudeE and phaseb,, while a; and a, describe
standard technique used to produce entangled photon pairs $igoharmonics of two orthogonal polarizations at degenerate
well as CV two-mode squeezed stafg@s The beam splitter frequenciesw/2. The constanke® determines the effi-
and the polarization mixer are also considered to be experiiency of the down-conversion process. The linear coupling
mentally accessible devices for production of entanglectonstant denoted ag®x describes the energy exchange be-
light-fields[13]. Besides these, there have been some studid¥een only the subharmonic modesijs determined by the
of a beam splitter for various nonclassical input states, inamount of polarization rotation due to the intracavity wave-
cluding two-mode squeezing statgl4]. It is obvious, and plate, and®, determines the phase difference between the
also follows from the results qB-10, that the operational transformed modes. We take into account the detunings of
regimes of the combined system with cavity-induced feedsubharmonics); and the cavity damping rateg and con-
back and dissipation drastically differ from those for puresider the case of high cavity losses for pump mdgg
processes. We show below that an analogous situation takésyi,y2), when this mode can be adiabatically eliminated.
place in the investigation of quantum-statistical properties oHowever, in our analysis we take into account the pump
a combined system such as the self-phase-locked NOPO. depletion effects. The principal scheme of this device, the
The paper is arranged as follows. In Sec. Il we formulateso-called self-phase-locked NOPO, is shown in Fig. 1 for the
the model of the combined NOPO based on the processes special configuration when the coupling of in- and out-
two-photon splitting and polarization mixing, and we presentradiation fields occurs at one of the ring cavity mirrors. Note
a semiclassical analysis of the system. Section Il is devotethat a comparison of this configuration with the analogous
to an analysis of quantum fluctuations of both modes withirone considered if7], where the pump field is a traveling
the framework of the linearization procedure around thewave, is discussed below.
stable steady state. In Sec. IV we investigate the CV entan- Due to the explicit presence of dissipation in this problem,
gling resources of self-phase-locked NOPO on the basis afne has to write the master equation for the reduced density

1. MODEL OF SELF-PHASE-LOCKED NOPO
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matrix of the system. The reduced density operatarithin d By ) ) .
the framework of the rotating wave approximation and in the T (y1=iADB1+KBsar +ixB2 + Ry, (7)
interaction picture is governed by the master equation
3
dp 1 _ | + 4 . dag_ _ _
S0 el 2 n(2apa - alap - paa), () ot reetE-kaa, ®)
i=1
where 9 Bs
3 T ¥aB3+ E —KpB1s. 9

H' = 2‘1 fidia]a; +ihE(a; — ag) + ifk(aza @y — azaay) The equations for,, B, are obtained from Eqgg6) and

(7) by exchanging the subscript$) = (2). R, , are Gaussian

+hix(aja; + a;a;). (3 noise terms with zero means and the following nonzero cor-
Let us also note that this equation is rewritten through thd©€/ators:
transformed boson operatoas— a; exp(—id;), with @, be- (Ry(DR(t')) = kgt — 1), (10)
ing ®a=®, Dy=3(PL+P-D,), D1=3(D +B+P,).
T.hat leads to a cancella}tlon of the phases on the interme- (REORS()) = kBsd(t ). (11)
diate stages of calculations. As a result, the Hamiltonian
H’ depends only on real-valued coupling constants. Recall that we consider the regime of adiabatic elimination

In order to proceed further, we now consider the phaseef the pump mode. In this approach, the stochastic ampli-
space symmetry properties of the two subharmonic modes. tidesa; and B3 are given by
is easy to check that the interaction Hamiltonian satisfies the
commutation relatiodH’,U()]=0 with the operatotJ(4) a3 = (E - kayap)lys, (12)
=exdif(aja;—a,a,)]. Moreover, analogous symmetry
[p(t),U(m)]=0 takes place for the density operator of the Bs=(E=KB1B)!vs. (13
system, which obeys the master equat(@). Using this Substituting amplitudesss, 35 into Egs.(6), (7), (10), and
symmetry we establish the following selection rules for the(ll), we arrive at
normal-ordered moments of the mode operators of the sub-

harmonics: day . .
— =-(n+idDag+ (e - Naqay) B~ ixap + Ry,

(ay‘a;"ahah) =0, ) ot

if k+l+m+n#2j, j=0,+£1,+2,....Another peculiarity of

NOPO with Hamiltonian(1) is displayed in the phase space 2B

of each of the subharmonic modes. The reduced density op- == _ (. _jA)B, + (e =\ a+iyB,+ R,
erator for each of the modes is constructed from the density at & VBt Pubr)az*ixpz* Ry
operatorp by tracing over the other modes =Tr,Trs(p), (15)
po=TriTrs(p). Therefore, we find that[p,(t),U ()]

:[pz(t),uz(ﬁ)]zo, WhereUi(G):eX[XiHafa,-) (|:1,2) is the <R1(t)R2(t,)>:(8—7\61116(2)5(':—'[’), (16)
rotation operator. It is easy to check using these equations
that the Wigner function®V; andW, of the modes have a b s ,
twofold symmetry under the rotation of the phase space by (RIOR(t")) = (e =AB1Br) At~ t'). (17)
angle around its origin, Here e =KE/ y5, A\=K?/ y5. So Egs.(14) and (15) and corre-
sponding equations fat,, B,, involve the depletion effect of

(14)

VU(r, 0) = VU(r, 0+ m), ®) the pump mode, which leads to the appearance of the above-
wherer, # are the polar coordinates of the complex phasehreshold operational regime.
space. Note that such symmetry relationshigs and (5) It should be noted that EqE8) and(9) for the pump mode

radically differ from those taking place for the usual NOPOamplitude do not involve terms of the linear coupling be-
without the quarter-wave plate. Indeed, in this cgbe case tween the modes of subharmonics. From this we can imme-
of x=0 in Egs.(1)—(3)], the Wigner functiondV,; are rota- diately recognize that Eq§l12) and(13) and hence Eqg14)
tionally symmetric and the symmetry properti@s read as and(15) take place for arbitrary values of the parameter
(atkalay™al)y=0 if k-1 #m-n. Nevertheless, the effect of linear coupling between the
We perform concrete calculations in the positReepre- modes is displayed in the dynamics of the pump mode

sentation[15] in the frame of stochastic equations for the through the amplitudes; anda,. In the adiabatic approach,
complexc-number variablesy, and 8; corresponding to the these effects are described through the pump depletion terms
operatorsy; anda;, kaqas! y3, KB1Bo!/ v3 in the expressions for the pump field

5 amplitudeg12) and(13) and hence are completely taken into

oa _ ; s consideration in Eqg14) and(15) as well as in the correla-

e (1 +iApay +kasBy—ixa + Ry, (6) tors (16) and (17).
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First, we shall study the steady-state solution of the stosolutions(see. Sec. I)l We reach stability if the real parts of
chastic equations in semiclassical treatment, ignoring theigenvalues of these matrices are positive. This analysis dis-

noise terms for the mean photon numbegsand phases,
of the modesn;=«;8;, ¢;=(1/2)In(e;/ B;)]. The mean pho-
ton numbers read

. 1(A 12 ST =5 ~
nzf{(i) [e?- e8P+ 7 -7, (19
. 1[A 12 ST = —
n50=;<A—;) [Ve? = (eg)*+7 =71, (19
where
~:ﬁ<&>1/2+lz<A_1>1/2 20
[PAVY 2\a,)

As we can see from Eq$18) and(19), nj, andnj, are real
and positive fore exceeding two critical points,

(65)2= y1ya+ AjAg+ X2 F VAX2A1A; - (7145 - 12A9)2,
(21)

and, besides, the solutiong, andnj, (i=1,2) correspond to

plays an evident dependence on the sign of the detunings
A;=A,=A. For the positive detuning) >0, only the steady-
state solutionsn;,=n,, and ¢,0— @10 0t P10 are stable,
while for the case of negative detuning the stability holds for
the solutions with thé+) superscript. As this analysis shows,
for either sign of detuning, the threshold is reachede at
=gy, Where

en=\V(x ~[AD?+ ¥, (25

and the steady-state stable solution for mean photon numbers
can be written in the general form as

1 ——mm—
n0=n10=n20=X[\r’82—(X— |A)Z= 7] (26)
The phases are found to be
1 1
®10= P20= Earcsm—()( +|A]) + 7k (27)
&

for A>0. For the opposite sign of the detuning< 0, as we
noted, the mean photon numbers are given by the same Eq.

two distinct values:., ande_, accordingly. The steady-state (26), while the phases read

values of the phases corresponding to each of the critical

pointse_, e, are obtained as

sin(¢30 = ¢10) = SiN(@20= ¢10)
1 AZ)lIZ <A1>1’2]
=— — - — , 22
ZX[%( A, Y2 A, (22

1 5—=5 =
e? - (SEr)Z + 72

cod @z + ¢1p) = 2V (23)

It is easy to check that these solutions exist for both modeﬁl

only if the following relation holds:
A°D1A, > (1185 = y,A1)2. (24)

Let us note that the steady-state soluti@® and(23) com-

1 1 1
@10= =arcsin-(xy +|A]) + w k+ = |,
2 e 2

©o0= }arcsin%()ﬁ |A]) + w(k— }) (29
2 e 2

(k=0,1,2,..). In the regione < &, the stability condition is
fulfilled only for the zero-amplitude steady-state solution
ay=ay,=B,=B,=0. So, the set of above-threshold stable so-
lutions for both modes has twofold symmetry in phase space,
hich was indeed expected from symmetry argumebits

Let us now consider the output behavior of the system for
the special scheme of generation, when the couplings of in
and out fields occur at only one of the ring-cavity mirrors
(see Fig. 1 Taking into account that only the fundamental

pletely determine the absolute phases of the orthogonalljhode is coherently driven by the external field witay)
polarized modes, which are hence self-locked, unlike the or=g/,, while the subharmonic modes are initially in the

dinary NOPO. These results are in accordance with the onggcuum state, we obtain for the mean photon numbiers

obtained in[6,7], but for another configuration of NOPO. In ynjts of photon number per unit timenyy = E2/ 25, no!"
the scheme proposed 6], only the signal and idler modes =2yno(i=1,2 and hencend=nd"'=2yn,. Accordingly,

i
2

are excited in the cavity, while the pump field is a traveling harametric oscillation can occur above the threshold pump
wave. Nevertheless, in the adiabatic regime considered heff'ower Pm:ﬁw3E12h/273 where the threshold value of the

there is correspondence between both schemes. Indeed, itdﬁmp field is equal to

not difficult to check that the resultd8) and(19) transform
to the corresponding results of the mentioned schgthey

replacing the parameterwith the corresponding pump field

amplitude.

We now turn to the standard linear stability analysis of

Y3 [ _ANZL 2
En=- VOx—[A)+ 2, (29

We are now in a position to study quantum effects in

between the modes, provided that the cavity decay rates arifié Paper concerning CV entanglement.

the detunings do not depend on the polarizatigh= v,

=y,A;=A,=A). The stability of the system is governed by
the matrice andF,,F_ describing the dynamics of small
and 8B; from the semiclassical steady-state statistical properties of self-phase-locked NOPO in linear

deviationsdg;

III. ANALYSIS OF QUANTUM FLUCTUATIONS

The aim of the present section is to study the quantum-
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treatment of quantum fluctuations. Quantum analysis of thgion. As a consequence, we arrive at the expresﬁie’ﬁTt
system using th@ representation is standard. A detailed de-=¢FD. Finally we obtain

scription of the method can be found[ib5]. We assume that
the quantum fluctuations are sufficiently small so that Egs.
(14) and(15) can be linearized around the stable semiclassi-
cal steady statey(t)=al+d¢(t), Bi(1)=8%+8B(1). This is
appropriate for analyzing the quantum-statistical effects@nd hence fot=t’
namely CV entanglement, for all operational regimes with
the exception of the vicinity of threshold, where the level of
quantum noise increases substantially. It should also be em-
phasized at this stage that in the above-threshold regime of a
self-phase-locked NOPO, the steady-state phases of each &;

the modes are well-defined in contrast to what happens in the . =~ ¢ 4 o quantum fluctuationsa;, 3, in a more simple
case of ordinary NOPO, where phase diffusion takes placg, through the t\/vo—dimensiorl1:';1I Icolumn vectosy

According to this effect, the difference between the phases, T _ T Formi h lou-
as well as each of the phases, cannot be defined in the abowg(ﬁic:]l’ffé%ir’]aéf a(r(:f/le i’?Z) - Upon performing the calcu
threshold regime of generation of the ordinary NOPO. On ' y
the whole, the well-founded linearization procedure cannot . s { <—2XA, [ )
ba(da)'y=—F—5
{a(8a)) St— 4A%y2 4 S, -2xA

(S50 (1) == SFED),, (39

1
(Sa(t) a"(1)) = = E(F'lD) v (37

This formula, however, is not very convenient for practi-
| calculations. Therefore, we rewrite the correlation func-

be applied for this case. Nevertheless, the linearization pro-
cedure and analysis of quantum fluctuations for ordinary

NOPO become possible due to the additional assumptions
about temporal behavior of the difference between the phases
of the generated mod€¢46].

We begin with a consideration of the below-threshold op-
erational regime, foE<Ey, where the equations linearized

_.<x(82—2A2), A(SZ—2X2)>]
"AF-20), (-209)) ]

around the zero-amplitude solution can be written in the fol-

lowing matrix form:

J
556\7“ == FMV5C¥V + Rl’v(a’t) ] (30)
where ©=1,2,3,4 and dSa*=(Say,day, Sas, Say)

:(5CY1, 5[12, 5B1, 5ﬁ2), R’u:(Rl, R2, RI, RZ) The 4x< 4 matrIX
F . is written in the block form

(85 )T>-8—2< S _ZXA) (39)
OB )= oSt \— o, & )
where&? is introduced as

F=9y+ 2 +A%2-¢2 (39

Note thatS?>0 in the below-threshold regime.

As an application of these results, the mean photon num-
ber in the below-threshold regime can be calculated as fol-
lows:

A B
(o ) o N N
’ LTS - a2
with 2X 2 matrices .
Next we focus on the mode-locked regime, t©F Ey,,
A= +i6, iy B= 0, 1 32 considering Eqs(14) and (15) in terms of the fluctuations
“\ iy,  y+is) -¢€ 1, 0/ (32) Sn;(t) =n;(t) —njg and 8¢ (t) = i (t) — ¢jp Of photon number and
_ _ phase variables. In this regime, the dynamics described by
The noise correlators are determined as the linearized equations of motion actually decouples into
, , two independent dynamics for two groups of combinations
L 14 = —_
(R )R 1')) =D (@) At - 1') (33 sn,=onyt ony, S, = Syt Sey. In fact, one has
with the following diffusion matrix: 5 on s R,
B, 0 —< +)=—F+< >+< +>, (41)
D= ( ’ . ) . (34 It\op, o, R¢+
0, B
First, we calculate the temporal correlation functions of J[on) on_ Rn_
the fluctuation operators. The expectation values of interest It sp_) -F- S + R /- (42)
- _ -

can be written as the integral

min(t,t’) T
(Sat(t) 6a(t')) :f dr(e" D" 7)., (35)

The drift, F,, and the diffusion matrices(R(t)R;(t"))
=D &(t~t') (i,j=n,,8¢,), (R(DRy(t")=Da(t=t")(n,m
=n_,¢_) are, respectively,

FT being the transposition of the matri The integration
overdr can be performed using the following useful formula
for operatordDF'=FD, obtained by straightforward calcula-

053814-5
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2y, 4ngy sinn/A below-threshold regime. The temporal correlation functions
F.= : (44 are derived as
A/ng, 0
on,(t 1 1y,
4nyy, = 2¢ sin (@20 + ¢10) ( . >(5ni(t,)|5()ot(t,)) == _File_Fil‘t_t ‘DJ_,,
DW=+ , : ¢4 (t) 2
— 2& sin (¢0+ ¢10), = vyIng (46)
(45
Due to the decoupling betweé) and(—) combinations of and hence
the modes, we conclude that the following temporal correla-
. . on, 1,
tion functions are equal to zero,(Sg.(t)de_(t')) (ony,8¢.) ) == —F, " D.. (47
=(an, () (') =(AN.() 8= (t))=0, and  hence((Spy)?) 0. 2

=((8¢2)?), ((8n1)?)=((ny)?). The other correlation functions  Performing the concrete calculations for each of the cases
can be calculated in the same way as described above for the>0 andA <0, we arrive at the following results:

on, B 1 4ang[Y(y+\ng) + (x = [A])?], —hno(x-lAl)sgr(A)>
<<5go+ )whﬂ 5¢+)> ~ANng(y + \ng) ( - 2\ng(x = |A])sgn(A), -\y ' (48)
< n > 1 Anox(x - |A)), 2xy sgn(A)
“lon_, Sp) ) =—— 1 . 49
<5<p_>( ¢-) 4lA|x\ 2xy sgr(A), n—o[f—lAl(X—lAl)] (49

We see that the considered system displays different type®n the theoretical side, the necessary and sufficient condi-
of quantum correlations in terms of the stochastic variablestions for the separability of bipartite CV systems have been
namely between photon-number sum and phase sum in tHally developed only for Gaussian states, which are com-
modes, as well as between photon-number difference anpletely characterized by their first and second moments. To
phase difference in the modes. These results differ radicallgharacterize the CV entanglement, we address both the in-
from the ones taking place for usual NOPO, where the corseparability and strong EPR entanglement critgt which
relation between photon-number difference and phase sum tould be quantified by analyzing the variances of the relevant
the modes is realized. The results obtained indicate the poslistanceV_=V(X;-X,) and the total momenturv/,=V(Y;
sibilities to produce entanglement with respect to the newtY,) of the quadrature amplitudes of two mode&

types of quantum correlations. =(1/\2)[ajexp(-i 6) +a, expif)], Y =(i/V2)[aiexp-if)
—-a, expif)] (k=1,2), whereV(X)=(X?-(X)? is a denota-
IV. CV ENTANGLEMENT IN THE PRESENCE tion for the variance ané is the phase of local oscillator for
OF PHASE-LOCKING the kth mode. The two quadrature§ and Y, are noncom-

muting observables. The inseparability criterion for the quan-
Let us now turn our attention to quantum-statistical ef-tum state of two optical modes reaf]

fects and the entanglement production for the case of perfect
symmetry between the modés,;=y,=v,A;=A,=A). Our V:E(V V) <1 (50)
aim in this section is to study the interplay between phase- T '
locking phenomena and CV entanglement for the self-phase-e., it indicates that the sum of variances drops below the
locked NOPO. We note that unlike the two-mode squeezetevel of vacuum fluctuations. Since the states of the system
vacuum state, the state generated in the above-threshold reensidered are non-Gaussian, the crite(i®@) is only suffi-
gime of NOPO is non-Gaussian, i.e., its Wigner function iscient for inseparability. The strong EPR entanglement crite-
non-Gaussianil7]. Recently, it has been demonstra{dd] rion is quantified by the product of variances \aS/_<%1.
that some systems involving beam splitters also generaté&/e remind the reader that the sufficient condition for insepa-
non-Gaussian states. The general consideration of this probability (50) in terms of the product of variances reads
lem for self-phase-locked NOPO seems to be very compliV,V_<1, i.e., it is weaker than the strong EPR condition.
cated. However, the mentioned results allow us to conclude In order to obtain the general expressions for variances,
that the state generated in self-phase-locked NOPO is moste first write them in terms of the boson operators corre-
probably non-Gaussian. So far, the inseparability problem fosponding to the Hamiltoniafl). We perform the transforma-
a bipartite non-Gaussian state is far from being understoodions a;— a; exp(i®;), which restore the previous phase
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structure of the intracavity interaction. Using also the sym- _KE ., . . .
metry relationshipg4), we find quite generally the variances Hine=ih—(a1a; —aqap) +ix(aja, + a18;).  (58)
at some arbitrary quadrature phase angles, as Here we neglect the pump depletion effects considering clas-
_ sically the amplitude of a driving field as a constant and we
V:=VRcos40), (53) also consider the case of zero detunidgsA,=A=0. For
where the cavity configuration considered, the validity of such an
approximation is guaranteed for short interaction time inter-
V= }(V+ +V.)=1+2n-2(yay)cogS 0+ Dy, (52)  Vals (KE/ 9t xT=At<y™, provided that the coupling
2 constantskE/y; and y exceed the dumping rates of the
modes.
R=2Rg(a))e*%) - 2/(aja,)|, (53) Note that fory— 0 the state(57) is transformed to the
well-known two-mode squeezed stat20]. We note that
AG= 0y 6,— D, 30= 0+ 6, + D, + Dy, (54)  While the entangled two-mode squeezed vacuum state is
achieved in the laboratorgin the nondegenerate parametric
and n=(aja;)=(a;a,) is the mean photon number of the amplifier[2]), the generation of the stat67) is an interest-
modes @, =arga;ay). So, in accordance with the formula ing option for the future. From an experimental point of view
(51), the relative phaseP, between the transformed it can be realized in the combined scheme, that is, parametric
modes gives the effect of the rotation of the quadraturedlown-conversion and wave plate, driven by a pulsed pump
amplitudes angl&,— 6,. field. It is obvious that the interaction timkt in this case is
Obviously, the variance¥, and hence the level of CV limited by the durationT of laser pulsesAt=<T. Roughly
entanglement depend on all parameters of the system inclugpeaking, such a scheme is similar to the optical nondegen-
ing the phases. The minimal possible level\ofs realized erate parametric amplifier in the presence of the phase-
for an appropriate selection of the phaggsnamely for6; locking process, where the interaction time is increased by a
+6,=—arga,a,)— P, - ®,. Further, in most cases we assumecavity for both subharmonic modes. However, we note again
that this phase relationship takes place, but we do not intrathat a complete study of the experimental configuration re-
duce new denotations faf andV, for the sake of simplicity. lated to the nondissipative case is beyond the scope of this
In this cas€> 0=-P,), in correspondence with the formula Paper.
(51), the variance¥, depend only on the difference between =~ Now let us examine the entangled properties of the result-

phasesA # and we arrive at ant state (57). Using formula (52), where n
=(u i (Hafau(t)) and (a(H)ay(t)y=(u ™ (Hasau(t)), after a
V=1+2n-Kayap)), (55) long but straightforward algebra we get the final result for
_ the variance\/:%(v++v_) for two different operational re-
R=2Re(adeqq) — 2(ajay)|. (56)  gimes:e <y ande > y. The variance for the range< y of a

For the NOPO without additional polarization mixing, comparatively weak scaled pump fieldkE/ y; reads

(ajay)=(a?)=(a3)=0 and hence the case of the symmetric &2 .
variancesV, =V_ is realized. The phase-locked NOPO gen- V(t) =1 - —[coq2ut) - 1] - —sin(2ut)cog2 §), (59)
erally has a nonsymmetric uncertainty region. However, the » H
variancesV, andV_ become equal for the special case of where u=\y?-¢° Thus, we observe a periodic evolution
0,—60,—®,=m/2, when the inseparability condition reads of V in this regime typical for the linear coupling. The
V<1 (V=V_=V,). We note that the relative phadg, plays level of squeezing of the two modes is periodically re-
an important role in specification of the entanglement. peated. The behavior of the two-mode variance also sig-
nificantly depends on the phase-matching condition, so
that we may tune the phase sum to maximize the entangle-
ment. We further choose for illustrations the phase sum
So far, we have considered mainly the steady-state regimgorresponding to c¢6)=1 for both operational regimes.
of generation, including the effects of dissipation and cavity-; seems perhaps more intuitive to study the time behavior
induced feedback. However, in order to better understand thgcaled on the parameter=kE/y,, which contains the
peculiarities of the entanglement for the system under consymp field amplitude and is an adjustable parameter of
sideration, it would be interesting and desirable to study thgne system. The dependence \bversus the scaled time
situation when the dissipation in the cavity is inessential angnterval is shown in Fig. 2, where the three curves corre-
the evolution of the modes, due to their interactions, is despond to three different choices of the ratiby. Common
scribed approximately by the master equati@ without 1o a|| curves is that the variance is nonclassical and
losses. In our analysis, we shall assume that both subhagyyeezed at least at the points of its minitga, which
monic modes are initially in the vacuum state. Then, thecan pe obtained by the formuletg(2ut,)=¢/u. In all
system’s state in the absence of losses is generated from tEﬁses, the maximal degree of two-mode squeeXipg

A. Entanglement in the case of unitary time evolution

vacuum state by the unitary transformation :V(t)|t=tmm=0-5 is achieved in the limit:— y. For the
| W (1)) = u(t)|0),|0), = € "Hint|0),|0),, (57)  curves in Fig. 2, the time intervals corresponding to the
where minimal values ofV,,, are equal toet.;,=0.14+0.20rk
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3.54 tion time. For the data in Fig. 3 we obtain that the time
intervals for which the variance reaches the minima are
etmin=0.53 (curve 1, et,;,=0.76 (curve 2, and ety
=0.93 (curve 3. It is easy to check that these points of
minima can be found by the formutagh(27t,i,) =&/ 5, pro-
vided that co& 6)=1.

We also conclude that the variance squeezes up to a cer-
tain interaction time, ife > y. It should be noted that al-

3.0
2.5+

2.0

V(1)

1.5

107 though the time evolution of the variances is quite different

05 for each of the operational regimes, the minimal values of
the variance are described by the formula which is the same

0-0 T T T T T T 1 i

] ) 2 3 1 3 5 7 for both regimes,
et Y
. . . Vinin= V(= = (61)
FIG. 2. Unitary evolution of the variandé(t) versus the scaled mn- g4+ y

dimensionless interaction timet for the range ofe <y and pro-
vided that co& #)=1. The parameters are/ xy=0.2 (curve J,
el x=0.4(curve 3, ande/x=0.7 (curve 3.

With increasinge/ y, in the regimee> y, the minimal
value of the variance decreases Vg,~ x/e<<1, which
means that perfect squeezing takes place in the limit of an
infinite pump field. This result is not at all trivial for the
(curve ), etyjn=0.25+0.447k (curve 2, andetnn=0.39 g qtom considered, even in the absence of dissipation and
+0.98mk (curve 3 (k=0,1,2,..). , cavity-induced feedback, because the insertion of a polariza-

If the opposite inequality holds;> y, then the nonlinear  tjon mixer usually destroys the two-mode squeezing pro-
parametric interaction becomes dominant over the lineag,ceq by nondegenerate parametric down-conversion. The
coupling and the variance is given by the following formula: .o 5500 is that the two-mode squeezed vacuum state is a su-

) perposition of two-photon Fock statg®,|n), and the polar-
V() =1+ S—Z[Cosf(Znt) -1]- Esinf‘(Znt)cos(E 0), ization mixer des_troys the Fock states _having the_same num-
7 i ber of photons, i.e.n;=n,=n. The detailed analysis of this
(60) problem can be found, for example, [ib4].
Having discussed the CV entanglement for nondissipative
where 7=1g?-y2. dynamics, we now turn our attention to the generation of

For y— 0 and co€S.6)=1, from this formula we arrive at entangled states of light beams in self-phase-locked NOPO,
a well-known result, V(t)=exp(—2st), for two-mode pompletely taking into considerat_ion dissipation z_ind cavity-
squeezed state. This shows that in the limit of infiniteinduced feedback. The _results will be presented in a steady-
squeezing the corresponding state approaches a simultaneciidte regime of generation.
eigenstate ofX;—X, andY;+Y,, and thus becomes equiva-
lent to the EPR state. Figure 3 shows the behaviaf when B. Entanglement in the self-phase-locked NOPO:
the system operates in the regime- y. This figure clearly Subthreshold regime
shows that as the interaction time increases, the variance |
decreases and reaches its minimum. Then the squeeze vari- USing formulas(38) and(55), after some algebra, we ob-

ance exponentially increases with the growth of the interac]Ea:In the r’r;inimal variance for the steady-state regime in the
ollowing form:

2.0 [ 2(2 _ 2\2
=14 ST VFSHAS - 2] (62)
S-ap3?
]
157 v It is easy to check that in the limjt— 0, the variance coin-

2) cides with the analogous one for the ordinary NORO,
£ 40 =V_=V,=1-¢/(e+Vy*+A?%. We see that the minimal
= 3) variance remains less than unity for all values of pump

intensity and is a monotonically decreasing functior:tf
0.5 For all parameters, the maximal degree of two-mode

squeezingy=0,5 is achieved within the threshold range.

It is also easy to check that this expression is well-defined
0-00 o P T e 20 for all values ofs?, including the vicinity of the threshold.

One should keep in mind, however, that the linear ap-
proach used does not describe the threshold range where
FIG. 3. Unitary time evolution of the variancé&(t) for the  the level of quantum fluctuations increases. As a conse-

range ofe >y and provided that c¢86)=1. The parameters are quence, some matrix elements of E(38), (48), and(49)
elx=1.1(curve 1), e/ x=2 (curve 2, ande/x=3 (curve 3. increase infinitely in the vicinity of threshold. Neverthe-

et
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1.0 1.0
- W
0.9 0.9+
(3
0.8 @) 0.8+
M <
V 0.7 >+ 0.7
i 0.6
0.6 (@)
0.5 0.5+
0.4 T T T T 1
0-4 T T T T 1
Y 1 2 3 4 5 0 ! 2 E/E 4 s
E/E th

th

FIG. 5. The variance¥, (curve ) andV_ (curve 2 versus the
dimensionless amplitude of the pump fi&dE;,=&/&y, for the pa-
rametersy/ y=0.5A/y=3.

FIG. 4. The minimized varianc® versus the dimensionless
amplitude of the pump fieldE/Ey,=¢/ ey, for both operational re-
gimes.gy, andEy, are given by Eqs(25) and(29). The parameters
are xy/ y=0.1 (weak coupling, A/y=10 (curve 3, x/y=0.5(mod-

unity for all nonzero values of the pump field, provided
erate coupling A/y=3 (curve 2, andy/y=0.5,A/y=1 (curve 3. y purmp P

that y<|A|. This shows the nonseparability of the gener-
ated state. The maximal degree of entanglement is
less, it follows from Eq(62) and further result$64)~(67)  achieved in the vicinity of thresholdy=0,5, if x/|A|
that such infinite terms are canceled in the variaktc@s «<1. Far above the threshol&E> Eu, V increases with
well as inV_,V+ for both operational regimes. This is not mean photon numbers of the modes and reaches the
surprising, since such cancellation of infinities in the asymptotic valuev=3/4+y/4|A|. It should also be men-
quadrature amplitude variances takes place for the ordifoned that the result64) is expressed through the scaled
nary NOPO also. pump-field amplitudee=kE/y; and hence depends on
One of the differences between the squeezing effects afoupling constant& and y.
the ordinary and self-phase-locked NOPO is that the vari- We stress that the level of two-mode Squeezing in the
ancesV_ andV, for the ordinary NOPO are equal to each proposed scheme is limited due to the dissipation and pump
other, while for the self-phase-locked NOPO they are in gendepletion effects and reaches only 50% relative to the level
eral different. The values of the nonsymmetric variances aref vacuum fluctuations if the pump intensity draws near to
expressed througR according to formulg51). This quantity  the generation threshold. Such limitation on the level of int-
can be calculated with the help of the formula6). The  racavity two-mode squeezing takes place also for the ordi-

result is found to be nary NOPO, as was been demonstrated in Réf3,22 by
a_ Y. 2 analysis of quantum fluctuations in the near-threshold range.
= 8XA2 5 & [72,+ (a Xz) Iy + (2X2+ A)’] +2¢|. Analogous conclusion has been made for one-mode
S'-4A% VYPS'+AXS - 2% squeezed light generated in ORZB]. However, remember

(63)  that these results pertain to the full squeezing of intracavity

] . variances and not the spectra of the squeezing of output
As we see, the final expressiori62) and (63) below the fig|ds.

threshold are rather unwieldy. We show the corresponding

numerical results in Figs. 4—6 for illustration. 1.0
C. Entanglement in the self-phase-locked NOPO: 0.9
Above-threshold regime ] )

0.8 @

Performing calculations for each of the cages 0 and o
A <0, we find the varianc¥ in the above-threshold regime 0.7+

in the following form: 1
0.6

v=3_ 1 X (69 '
4 A1+ Y (eleg)?~1]  4A[ 057
To rewrite this expression through the original parameters, 0.4 — : : . |
we should take into account th&/Ey=¢/ey, and efh/y2 0 1 2 E/E 3 4 5
=(x/y—|Al/y)?+1. The resultg62) and (64) for both op- "

erational regimes are summarized in Fig. 4, where the F|G. 6. The product of the variances, and V_ versus the
varianceV is plotted as a function of the amplitude of the dimensionless amplitude of the pump field Ey,=¢/ey, for the
pump field. One can immediately grasp from the figureparametersy/y=0.1,A/y=10 (curve 1 and x/y=0.5A/y=1
that the sum of variance‘fz:%(v++v_) remains less than (curve 2.
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As the last step in connecting two-mode squeezing to ob- A+ x 1
servables of CV entanglement, we report the expressions of VaV-= 4|A| Y A (elen)? - (70
the nonsymmetric variances calculated with the help of the VI e/ V) (elew)” = 1]
formulas (51), (55), and(56). Upon evaluating all required |t is easy to check that the product of the variances excgeds
expectation values, we obtain even in the vicinity of the threshold. This quantity for both
operational regimes is illustrated in Fig. 6. It should be noted
R= sgrd) (Al -x 1 (65 again that a detailed analysis of this problem must include a
4 A V1 +(82_8t2h)/72 more accurate consideration of quantum fluctuations in the
critical ranges.

and hence

V. CONCLUSION
_ 3|A|+ x +sgr(A)cogAG)(|A| - x)

+ =

Our work demonstrates the possibility of the creation of

4 CV entangled states of light beams in the presence of phase-
1 +sgriA)cogAf) localizing processes. We have called such quantum states the
- 41+ (2 - 82)/)/2’ (66) entangled self-phase-locked states of lif2tt] and we have
th shown that they can be generated in NOPO recently realized
in experimen{6]. This device is based on the type Il phase-
3|A| + x — sgr(A)cogA6)(|A| - x) matched down-conversion and additional phase-localizing
-= 4[A| mechanisms stipulated by the intracavity waveplate. The

novelty is that this device provides a high level of phase

coherence between the subharmonics, in contrast to what
happens in the case of ordinary NOPO, where phase diffus-
sion takes place. We have shown that both two-mode squeez-
For the case of\¢=0, when the variances are maximally N9 @nd quantum phase-locking phenomena are combined in
different, the results are reduced to such NOPO. This development paves the way towards the
generation of bright CV entangled light beams with well-

localized phases. It appears that this scheme involving phase

_1- sgriA)cogAf)
4V/1 +(e?- stzh)/)/2 .

(67)

V_= 1 + i, locking may be useful for precise interferometric measure-
2 2A ments and quantum communications, because it combines

quantum entanglement and stability of type Il phase match-

1 ing with effective suppression of phase noise. Particularly, in
Vi=1-— > > (68) practice, this phase-locked scheme can effectively be used in
21+ (e VY (elew)” 1] homodyne detection setups, as well as for observation of an

) ) interference with nonclassical light beams. We believe that
for A<O. The case oA >0 is obtained from EQs(68) by  g,ch a source of bright entangled light providing phase co-
exchanging/, — V. andV_— V.. These results for both 0p- herence will also be applicable for realizing CV quantum
_eratlon_al regimes are _dep|cted in Fig. 5. Some features ai@leportation. The price one has to pay for these advantages
immediately evident. First of all, one can see that both variig the small aggravation of the degree of CV entanglement in
ances are minimal in the crltl_cal range but show quite differ-5 self-phase-locked NOPO in comparison with the case of an
ent dependences on the ratiéey, above the threshold. An - ginary NOPO. The quantum theory of self-phase-locked
attentive reader may ask about the dependence of the resuffspo has been developed in a linear treatment of quantum
obtained on the parametric coupling constenWe note in  fyctyations for both below- and above-threshold regimes of
this connection that the squeezed variances are eXpress&Qneration. We have studied the CV entanglement as two-
through the scaled pump-field amplitusiekE/ y; and hence  ,44e squeezing and have shown that entanglement is

depend in general on both coupling constanend x. present in the entire range of pump intensities. In all cases
In terms of demonstrating the CV strong EPR entangleine maximal degree of two-mode squeeziNg=0,5 is
ment, one has to apply another criteri¥pV_< ;. For the  achieved in the vicinity of the threshold, provided that the
case of the symmetric uncertaintiés, =V_=V), the product  coupling constany is much less than the mode detunings.
of the variancesvzzi and hence the strong EPR entangle-We have demonstrated that, as a rule, the highest degree of
ment cannot be realized. In the general case, the product @V entanglement occurs for weak linear coupling strength

the variances reads It has also been shown that the amount of entanglement can
be controlled via the phase differendg,. The other pecu-
V,V_=V?2 - R%cog(AH). (69 liarities of the system of interest have been established for

the case of unitary dynamics, which may be realized for the
It seems that,V_ lies below 1/4 at least for the relative short interaction times in the case of pulsed pump fields. One
phaseAd=+mm (m=1,2,..), and in the vicinity of thresh- of these concerns the presence of two operational regimes
old, where V=0,5. However, for such selection of the generating two-mode squeezing. If the linear coupling be-
phases we arrive at tween subharmonics dominates over the parametric down-
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conversiong < x, we have observed a periodic evolution of state has been presented. Consideration of quantum fluctua-
the squeezed variance. The maximal degree of squeezing hisns in the near-threshold operational range of self-phase-
beenV=0,5 in this regime. If the parametric interaction locked NOPO also deserves special attention for more accu-
becomes dominant; > x, the higher degree of two-mode rate identification of CV entanglement. These topics are
squeezing can be obtained,,=[x/(¢+x)]<0.5, butupto  currently being explored and will be the subject of forthcom-
a certain interaction time. ing work.

In our analysis, we have not investigated all possible
quantum effects of self-phase-locked parametric dynamics.
In particular, we have noted that the system considered dis- ACKNOWLEDGMENTS
plays different types of quantum correlations, but we have
not analyzed their connection with all possible kinds of en- We thank J. Bergou for helpful discussions. This work
tanglement. This analysis might involve also the case of uniwas supported by the NFSAT PH 098-02/CRDF 12052 grant
tary dynamics, where the generalized two-mode squeezeahd ISTC Grant No. A-823.
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