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We explore in detail the possibility of intracavity generation of continuous-variable(CV) entangled states of
light beams under mode phase-locked conditions. We show that such quantum states can be generated in a
self-phase-locked nondegenerate optical parametric oscillator(NOPO) based on type II phase-matched down-
conversion combined with a linear mixer of two orthogonally polarized modes of the subharmonics in a cavity.
A quantum theory of this device, recently realized in the experiment, is developed for both subthreshold and
above-threshold operational regimes. We show that the system providing high-level phase coherence between
two generated modes, unlike the ordinary NOPO, also exhibits different types of quantum correlations between
photon numbers and phases of these modes. We quantify the CV entanglement as two-mode squeezing and
show that the maximal degree of the integral two-mode squeezing(which is 50% relative to the level of
vacuum fluctuations) is achieved at the pump field intensity close to the generation threshold of a self-phase-
locked NOPO, provided that the constant of linear coupling between the two polarizations is much less than the
mode detunings. The peculiarities of CV entanglement for the case of unitary, nondissipative dynamics of the
system under consideration are also cleared up.
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I. INTRODUCTION

It is now believed that entanglement of quantum compos-
ite systems with a continuous degree of freedom is the basis
of most applications in the field of quantum information[1].
Interest in continuous-variable(CV) entanglement is being
extensively excited by successful experiments on quantum
teleportation based on two-mode squeezed states[2] as well
as the experiments dealing with entanglement in atomic en-
sembles[3]. Since then, remarkable theoretical and experi-
mental efforts have been devoted to generating and quanti-
fying CV entangled states.

In this paper we propose a type of CV entangled states of
light-field with reduced phase noise. They are different from
the well-known entangled Einstein-Podolsky-Rosen(EPR)
states generated in a nondegenerate optical amplifier[4,5],
which exhibit large phase fluctuations. We believe that such
entangled states of light-field with localized phases can be
generated in a self-phase-locked nondegenerate optical para-
metric oscillator (NOPO), based on the type II phase-
matched down-conversion and additional phase-locking pro-
cess stipulated by the intracavity waveplate. The motivations
for this study are the following.

The CV entangled states of light were studied in[4] and
demonstrated experimentally in[5] for a nondegenerate op-
tical parametric amplifier(NOPA). Then a CV entanglement
source was built from two single-mode squeezed vacuum
states combined on a beam splitter[2]. It is well known that
each of the orthogonally polarized and frequency degenerate
fields generated by NOPO is a field of zero-mean values. The
phase sum of generated modes is fixed by the phase of the
pump laser, while their phase difference undergoes a phase

diffusion process[4] stipulated by vacuum fluctuations. As a
rule, the NOPO phase diffusion noise is substantially greater
than the shot noise level, which limits the usage of NOPO in
precision phase-sensitive measurements. Various methods
based on phase-locking mechanisms[6–10] have been pro-
posed for reducing such phase diffusion. In the compara-
tively simple scheme realized in the experiment[6], self-
phase-locking was achieved in NOPO by adding an
intracavity quarter-wave plate to provide polarization mixing
between two orthogonally polarized modes of the subhar-
monics. The evidence of self-phase-locking was provided
there by the high level of phase coherence between the signal
and idler fields. Following this experiment, the semiclassical
theory of such NOPO was developed in[7]. Recently,
schemes of multiphoton parametric oscillators based on cas-
caded down-conversion processes inxs2d media placed inside
the same cavity and showing self-phase-locking have been
proposed[8]. As was demonstrated in[9], the system based
on a combination of OPO and second-harmonic generation
also displays self-phase-locking. The formation of self-
phase-locking and its connection with squeezing in the para-
metric four-wave mixing under two laser fields has been
demonstrated in[10]. An important characteristic of self-
phase-locked devices concerns the phase structure of gener-
ated subharmonics. Indeed, the formation of the variety of
distinct phase states under self-phase-locked conditions has
been obtained in Refs.[6–10]. It was recently noted that the
schemes involving phase locking are potentially useful for
precise interferometric measurements and optical frequency
division because they combine fine-tuning capability and sta-
bility of type II phase matching with effective suppression of
phase noise. That is why we believe it will be interesting to
consider phase-locked dynamics also from the perspective of
quantum optics and, in particular, from the standpoint of pro-
duction of CV entanglement.

A further motivation for such a task is connected with the
problem of experimental generation of bright entangled light.

*Email address: adam@unicad.am
†Email address: gkryuchk@server.physdep.r.am

PHYSICAL REVIEW A 69, 053814(2004)

1050-2947/2004/69(5)/053814(11)/$22.50 ©2004 The American Physical Society69 053814-1



So far, to the best of our knowledge, there has been no ex-
perimental demonstration of CV entanglement above the
threshold of NOPO. Progress in experimental study of a
bright two-mode entangled state from a cw nondegenerate
optical parametric amplifier has been made in[11]. A theo-
retical investigation of CV entangled light in transition
through the generation threshold of NOPO is given in[12].
One of the principal experimental difficulties in attaining a
high-intensity level is the impossibility to control the fre-
quency degeneration of modes above the threshold. We hope
that the usage of phase-locked NOPO may open a new inter-
esting possibility to avoid this difficulty.

In this paper, we report what is believed to be the first
investigation of self-phase-locked CV entangled states. We
develop the quantum theory of self-phase-locked NOPO,
with decoherence included, in application to the generation
of such entangled states. This scheme is based on a combi-
nation of two processes, namely type II parametric down-
conversion and linear polarization mixing with cavity-
induced feedback. The parametric down-conversion is a
standard technique used to produce entangled photon pairs as
well as CV two-mode squeezed states[2]. The beam splitter
and the polarization mixer are also considered to be experi-
mentally accessible devices for production of entangled
light-fields [13]. Besides these, there have been some studies
of a beam splitter for various nonclassical input states, in-
cluding two-mode squeezing states[14]. It is obvious, and
also follows from the results of[8–10], that the operational
regimes of the combined system with cavity-induced feed-
back and dissipation drastically differ from those for pure
processes. We show below that an analogous situation takes
place in the investigation of quantum-statistical properties of
a combined system such as the self-phase-locked NOPO.

The paper is arranged as follows. In Sec. II we formulate
the model of the combined NOPO based on the processes of
two-photon splitting and polarization mixing, and we present
a semiclassical analysis of the system. Section III is devoted
to an analysis of quantum fluctuations of both modes within
the framework of the linearization procedure around the
stable steady state. In Sec. IV we investigate the CV entan-
gling resources of self-phase-locked NOPO on the basis of

two-mode squeezing for both subthreshold and above-
threshold operational regimes. We also discuss in Sec. IV the
case of unitary, nondissipative dynamics using a well-
justified small-interaction-time approximation. We summa-
rize our results in Sec. V.

II. MODEL OF SELF-PHASE-LOCKED NOPO

As an entangler we consider a combination of two pro-
cesses in a triply resonant cavity, namely type II parametric
down-conversion in axs2d medium and polarization mixing
between subharmonics in a lossless symmetric quarter-wave
plate. The Hamiltonian describing intracavity interactions is

H = i"EseisFL−vtda3
+ − e−isFL−vtda3d + i"kseiFka3a1

+a2
+

− e−iFka3
+a1a2d + "xseiFxa1

+a2 + e−iFxa1a2
+d, s1d

where ai are the boson operators for the cavity modesvi.
The modea3 at frequencyv is driven by an external field
with amplitudeE and phaseFL, while a1 and a2 describe
subharmonics of two orthogonal polarizations at degenerate
frequenciesv /2. The constantkeiFk determines the effi-
ciency of the down-conversion process. The linear coupling
constant denoted asxeiFx describes the energy exchange be-
tween only the subharmonic modes,x is determined by the
amount of polarization rotation due to the intracavity wave-
plate, andFx determines the phase difference between the
transformed modes. We take into account the detunings of
subharmonicsDi and the cavity damping ratesgi and con-
sider the case of high cavity losses for pump modesg3

@g1,g2d, when this mode can be adiabatically eliminated.
However, in our analysis we take into account the pump
depletion effects. The principal scheme of this device, the
so-called self-phase-locked NOPO, is shown in Fig. 1 for the
special configuration when the coupling of in- and out-
radiation fields occurs at one of the ring cavity mirrors. Note
that a comparison of this configuration with the analogous
one considered inf7g, where the pump field is a traveling
wave, is discussed below.

Due to the explicit presence of dissipation in this problem,
one has to write the master equation for the reduced density

FIG. 1. The principal scheme of a self-phase-locked NOPO in a triply resonant cavity for the pump mode at frequencyv and two
subharmonic modes of two orthogonal polarizationss↑d ands→d at frequencyv /2. We have chosen the special path for the pump mode to
underscore the fact that the pump mode rapidly decayssg3@g1,g2d and is eliminated adiabatically. The type II phase-matching condition for
the processv→v /2s↑d+v /2s→d is satisfied in thexs2d medium. The intracavity quarter waveplate(QWP) provides a polarization mixing
between the orthogonally polarized subharmonics.
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matrix of the system. The reduced density operatorr within
the framework of the rotating wave approximation and in the
interaction picture is governed by the master equation

] r

] t
=

1

i"
fH8,rg + o

i=1

3

gis2airai
+ − ai

+air − rai
+aid, s2d

where

H8 = o
i=1

3

"Diai
+ai + i"Esa3

+ − a3d + i"ksa3a1
+a2

+ − a3
+a1a2d

+ "xsa1
+a2 + a1a2

+d. s3d

Let us also note that this equation is rewritten through the
transformed boson operatorsai →ai exps−iFid, with Fi be-
ing F3=FL, F2= 1

2sFL+Fk−Fxd, F1= 1
2sFL+Fk+Fxd.

That leads to a cancellation of the phases on the interme-
diate stages of calculations. As a result, the Hamiltonian
H8 depends only on real-valued coupling constants.

In order to proceed further, we now consider the phase-
space symmetry properties of the two subharmonic modes. It
is easy to check that the interaction Hamiltonian satisfies the
commutation relationfH8 ,Uspdg=0 with the operatorUsud
=expfiusa1

+a1−a2
+a2dg. Moreover, analogous symmetry

frstd ,Uspdg=0 takes place for the density operator of the
system, which obeys the master equation(2). Using this
symmetry we establish the following selection rules for the
normal-ordered moments of the mode operators of the sub-
harmonics:

ka1
+ka2

+ma1
l a2

nl = 0, s4d

if k+ l +m+nÞ2j , j =0, ±1, ±2, . . ..Another peculiarity of
NOPO with Hamiltonians1d is displayed in the phase space
of each of the subharmonic modes. The reduced density op-
erator for each of the modes is constructed from the density
operatorr by tracing over the other modesr1=Tr2Tr3srd,
r2=Tr1Tr3srd. Therefore, we find that fr1std ,U1spdg
=fr2std ,U2spdg=0, whereUisud=expsiuai

+aid si =1,2d is the
rotation operator. It is easy to check using these equations
that the Wigner functionsW1 andW2 of the modes have a
twofold symmetry under the rotation of the phase space by
anglep around its origin,

Wisr,ud = Wisr,u + pd, s5d

where r, u are the polar coordinates of the complex phase
space. Note that such symmetry relationshipss4d and s5d
radically differ from those taking place for the usual NOPO
without the quarter-wave plate. Indeed, in this casefthe case
of x=0 in Eqs.s1d–s3dg, the Wigner functionsWi are rota-
tionally symmetric and the symmetry propertiess4d read as
ka1

+ka1
l a2

+ma2
nl=0 if k− l Þm−n.

We perform concrete calculations in the positiveP repre-
sentation[15] in the frame of stochastic equations for the
complexc-number variablesai andbi corresponding to the
operatorsai andai

+,

] a1

] t
= − sg1 + iD1da1 + ka3b2 − ixa2 + R1, s6d

] b1

] t
= − sg1 − iD1db1 + kb3a2 + ixb2 + R1

+, s7d

] a3

] t
= − g3a3 + E − ka1a2, s8d

] b3

] t
= − g3b3 + E − kb1b2. s9d

The equations fora2, b2 are obtained from Eqs.(6) and
(7) by exchanging the subscriptss1d� s2d. R1,2 are Gaussian
noise terms with zero means and the following nonzero cor-
relators:

kR1stdR2st8dl = ka3dst − t8d, s10d

kR1
+stdR2

+st8dl = kb3dst − t8d. s11d

Recall that we consider the regime of adiabatic elimination
of the pump mode. In this approach, the stochastic ampli-
tudesa3 andb3 are given by

a3 = sE − ka1a2d/g3, s12d

b3 = sE − kb1b2d/g3. s13d

Substituting amplitudesa3, b3 into Eqs.s6d, s7d, s10d, and
s11d, we arrive at

] a1

] t
= − sg1 + iD1da1 + s« − la1a2db2 − ixa2 + R1,

s14d

] b1

] t
= − sg1 − iD1db1 + s« − lb1b2da2 + ixb2 + R1

+,

s15d

kR1stdR2st8dl = s« − la1a2ddst − t8d, s16d

kR1
+stdR2

+st8dl = s« − lb1b2ddst − t8d. s17d

Here «=kE/g3, l=k2/g3. So Eqs.s14d and s15d and corre-
sponding equations fora2, b2, involve the depletion effect of
the pump mode, which leads to the appearance of the above-
threshold operational regime.

It should be noted that Eqs.(8) and(9) for the pump mode
amplitude do not involve terms of the linear coupling be-
tween the modes of subharmonics. From this we can imme-
diately recognize that Eqs.(12) and(13) and hence Eqs.(14)
and (15) take place for arbitrary values of the parameterx.
Nevertheless, the effect of linear coupling between the
modes is displayed in the dynamics of the pump mode
through the amplitudesa1 anda2. In the adiabatic approach,
these effects are described through the pump depletion terms
ka1a2/g3, kb1b2/g3 in the expressions for the pump field
amplitudes(12) and(13) and hence are completely taken into
consideration in Eqs.(14) and(15) as well as in the correla-
tors (16) and (17).
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First, we shall study the steady-state solution of the sto-
chastic equations in semiclassical treatment, ignoring the
noise terms for the mean photon numbersnj0 and phasesw j0
of the modesfnj =a jb j ,w j =s1/2idlnsa j /b jdg. The mean pho-
ton numbers read

n10
± =

1

l
SD2

D1
D1/2

fÎ«2 − s«cr
± d2 + g̃2 − g̃g, s18d

n20
± =

1

l
SD1

D2
D1/2

fÎ«2 − s«cr
± d2 + g̃2 − g̃g, s19d

where

g̃ =
g1

2
SD2

D1
D1/2

+
g2

2
SD1

D2
D1/2

. s20d

As we can see from Eqs.s18d ands19d, n10
± andn20

± are real
and positive for« exceeding two critical points,

s«cr
± d2 = g1g2 + D1D2 + x2 7 Î4x2D1D2 − sg1D2 − g2D1d2,

s21d

and, besides, the solutionsni0
+ andni0

− si =1,2d correspond to
two distinct values«cr

+ and«cr
− accordingly. The steady-state

values of the phases corresponding to each of the critical
points «cr

− , «cr
+ are obtained as

sinsw20
+ − w10

+ d = sinsw20
− − w10

− d

=
1

2x
Fg1SD2

D1
D1/2

− g2SD1

D2
D1/2G , s22d

cossw20
± + w10

± d =
1

«
Î«2 − s«cr

± d2 + g̃2. s23d

It is easy to check that these solutions exist for both modes
only if the following relation holds:

4x2D1D2 . sg1D2 − g2D1d2. s24d

Let us note that the steady-state solutionss22d ands23d com-
pletely determine the absolute phases of the orthogonally
polarized modes, which are hence self-locked, unlike the or-
dinary NOPO. These results are in accordance with the ones
obtained inf6,7g, but for another configuration of NOPO. In
the scheme proposed inf6g, only the signal and idler modes
are excited in the cavity, while the pump field is a traveling
wave. Nevertheless, in the adiabatic regime considered here
there is correspondence between both schemes. Indeed, it is
not difficult to check that the resultss18d ands19d transform
to the corresponding results of the mentioned schemef7g by
replacing the parameter« with the corresponding pump field
amplitude.

We now turn to the standard linear stability analysis of
these solutions, assuming for simplicity perfect symmetry
between the modes, provided that the cavity decay rates and
the detunings do not depend on the polarizationsg1=g2

=g ,D1=D2=Dd. The stability of the system is governed by
the matricesF andF+,F− describing the dynamics of small
deviationsdai and dbi from the semiclassical steady-state

solutions(see. Sec. III). We reach stability if the real parts of
eigenvalues of these matrices are positive. This analysis dis-
plays an evident dependence on the sign of the detunings
D1=D2=D. For the positive detuning,D.0, only the steady-
state solutionsn10

− =n20
− and w20

− −w10
− , w20

− +w10
− are stable,

while for the case of negative detuning the stability holds for
the solutions with thes+d superscript. As this analysis shows,
for either sign of detuning, the threshold is reached at«
ù«th, where

«th = Îsx − uDud2 + g2, s25d

and the steady-state stable solution for mean photon numbers
can be written in the general form as

n0 = n10 = n20 =
1

l
fÎ«2 − sx − uDud2 − gg. s26d

The phases are found to be

w10 = w20 = −
1

2
arcsin

1

«
sx + uDud + pk s27d

for D.0. For the opposite sign of the detuning,D,0, as we
noted, the mean photon numbers are given by the same Eq.
s26d, while the phases read

w10 =
1

2
arcsin

1

«
sx + uDud + pSk +

1

2
D ,

w20 =
1

2
arcsin

1

«
sx + uDud + pSk −

1

2
D s28d

sk=0,1,2, . . .d. In the region«ø«th, the stability condition is
fulfilled only for the zero-amplitude steady-state solution
a1=a2=b1=b2=0. So, the set of above-threshold stable so-
lutions for both modes has twofold symmetry in phase space,
which was indeed expected from symmetry arguments(5).

Let us now consider the output behavior of the system for
the special scheme of generation, when the couplings of in
and out fields occur at only one of the ring-cavity mirrors
(see Fig. 1). Taking into account that only the fundamental
mode is coherently driven by the external field withka3

inl
=E/g3, while the subharmonic modes are initially in the
vacuum state, we obtain for the mean photon numbers(in
units of photon number per unit time) n3

in=E2/2g3,ni
out

=2gini0si =1,2d and hencen1
out=n2

out=2gn0. Accordingly,
parametric oscillation can occur above the threshold pump
power Pth="v3Eth

2 /2g3, where the threshold value of the
pump field is equal to

Eth =
g3

k
Îsx − uDud2 + g2. s29d

We are now in a position to study quantum effects in
self-phase-locked NOPO and will state the main results of
the paper concerning CV entanglement.

III. ANALYSIS OF QUANTUM FLUCTUATIONS

The aim of the present section is to study the quantum-
statistical properties of self-phase-locked NOPO in linear
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treatment of quantum fluctuations. Quantum analysis of the
system using theP representation is standard. A detailed de-
scription of the method can be found in[15]. We assume that
the quantum fluctuations are sufficiently small so that Eqs.
(14) and(15) can be linearized around the stable semiclassi-
cal steady stateaistd=ai

0+daistd, bistd=bi
0+dbistd. This is

appropriate for analyzing the quantum-statistical effects,
namely CV entanglement, for all operational regimes with
the exception of the vicinity of threshold, where the level of
quantum noise increases substantially. It should also be em-
phasized at this stage that in the above-threshold regime of a
self-phase-locked NOPO, the steady-state phases of each of
the modes are well-defined in contrast to what happens in the
case of ordinary NOPO, where phase diffusion takes place.
According to this effect, the difference between the phases,
as well as each of the phases, cannot be defined in the above-
threshold regime of generation of the ordinary NOPO. On
the whole, the well-founded linearization procedure cannot
be applied for this case. Nevertheless, the linearization pro-
cedure and analysis of quantum fluctuations for ordinary
NOPO become possible due to the additional assumptions
about temporal behavior of the difference between the phases
of the generated modes[16].

We begin with a consideration of the below-threshold op-
erational regime, forE,Eth, where the equations linearized
around the zero-amplitude solution can be written in the fol-
lowing matrix form:

]

] t
dam = − Fmndan + Rmsa,td, s30d

where m=1,2,3,4 and dam=sda1,da2,da3,da4d
=sda1,da2,db1,db2d, Rm=sR1,R2,R1

+,R2
+d. The 434 matrix

Fmn is written in the block form

F = S A, B

B* , A* D s31d

with 232 matrices

A = Sg + id, ix

ix, g + id
D, B = «S0, 1

1, 0
D . s32d

The noise correlators are determined as

kRmsa,tdRnsa,t8dl = Dmnsaddst − t8d s33d

with the following diffusion matrix:

D = SB, 0

0, B* D . s34d

First, we calculate the temporal correlation functions of
the fluctuation operators. The expectation values of interest
can be written as the integral

kdamstddanst8dl =E
−`

minst,t8d
dtseFst−tdDeFTst8−tddmn, s35d

FT being the transposition of the matrixF. The integration
overdt can be performed using the following useful formula
for operatorsDFT=FD, obtained by straightforward calcula-

tion. As a consequence, we arrive at the expressionDeFTt

=eFtD. Finally we obtain

kdamstddanst8dl = −
1

2
sF−1eFut−t8uDdmn, s36d

and hence fort= t8

kdamstddanstdl = −
1

2
sF−1Ddmn. s37d

This formula, however, is not very convenient for practi-
cal calculations. Therefore, we rewrite the correlation func-
tions of the quantum fluctuationsdai ,dbi in a more simple
form through the two-dimensional column vectorsda
=sda1,da2dT, db=sdb1,db2dT. Upon performing the calcu-
lation, we finally arrive at

kdasdadTl =
«

S4 − 4D2x2FgS− 2xD, S2

S2, − 2xD
D

− iSxsS2 − 2D2d, DsS2 − 2x2d
DsS2 − 2x2d, xsS2 − 2D2d

DG ,

kdasdbdTl =
«2

2sS4 − 4D2x2d
S S2, − 2xD

− 2xD, S2 D , s38d

whereS2 is introduced as

S2 = g2 + x2 + D2 − «2. s39d

Note thatS2.0 in the below-threshold regime.
As an application of these results, the mean photon num-

ber in the below-threshold regime can be calculated as fol-
lows:

n1 = n2 =
«2S2

2sS4 − 4D2x2d
. s40d

Next we focus on the mode-locked regime, forE.Eth,
considering Eqs.(14) and (15) in terms of the fluctuations
dnistd=nistd−ni0 anddwistd=wistd−wi0 of photon number and
phase variables. In this regime, the dynamics described by
the linearized equations of motion actually decouples into
two independent dynamics for two groups of combinations
dn±=dn2±dn1, dw±=dw2±dw1. In fact, one has

]

] t
Sdn+

dw+
D = − F+Sdn+

dw+
D + SRn+

Rw+
D , s41d

]

] t
Sdn−

dw−
D = − F−Sdn−

dw−
D + SRn−

Rw−

D . s42d

The drift, F±, and the diffusion matrices,kRistdRjst8dl
=Dij

s+ddst− t8d si , j =n+,dw+d, kRnstdRmst8dl=Dnm
s−ddst− t8dsn,m

=n−,w−d are, respectively,

F+ = S2ln0, 4n0« sinsw20 + w10d
0, 2sg + ln0d

D , s43d
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F− = S 2g, 4n0x sin n/D

D/n0, 0
D , s44d

Ds±d = ± S 4n0g, − 2« sin sw20 + w10d
− 2« sin sw20 + w10d, − g/n0

D .

s45d

Due to the decoupling betweens+d ands−d combinations of
the modes, we conclude that the following temporal correla-
tion functions are equal to zero,kdw+stddw−st8dl
=kdn+stddn−st8dl=kdn±stddw7st8dl=0, and henceksdw1d2l
=ksdw2d2l, ksdn1d2l=ksdn2d2l. The other correlation functions
can be calculated in the same way as described above for the

below-threshold regime. The temporal correlation functions
are derived as

KSdn±std
dw±std

D„dn±st8d,dw±st8d…L = −
1

2
F±

−1e−F±
−1ut−t8uD±,

s46d

and hence

KSdn±

dw±
Dsdn±,dw±dL = −

1

2
F±

−1D±. s47d

Performing the concrete calculations for each of the cases
D.0 andD,0, we arrive at the following results:

KSdn+

dw+
Dsdn+,dw+dL =

1

4ln0sg + ln0d
S4n0fgsg + ln0d + sx − uDud2g, − ln0sx − uDudsgnsDd

− 2ln0sx − uDudsgnsDd, − lg
D , s48d

KSdn−

dw−
Dsdn−,dw−dL =

1

4uDux14n0xsx − uDud, 2xg sgnsDd

2xg sgnsDd,
1

n0
fg2 − uDusx − uDudg 2 . s49d

We see that the considered system displays different types
of quantum correlations in terms of the stochastic variables,
namely between photon-number sum and phase sum in the
modes, as well as between photon-number difference and
phase difference in the modes. These results differ radically
from the ones taking place for usual NOPO, where the cor-
relation between photon-number difference and phase sum in
the modes is realized. The results obtained indicate the pos-
sibilities to produce entanglement with respect to the new
types of quantum correlations.

IV. CV ENTANGLEMENT IN THE PRESENCE
OF PHASE-LOCKING

Let us now turn our attention to quantum-statistical ef-
fects and the entanglement production for the case of perfect
symmetry between the modessg1=g2=g ,D1=D2=Dd. Our
aim in this section is to study the interplay between phase-
locking phenomena and CV entanglement for the self-phase-
locked NOPO. We note that unlike the two-mode squeezed
vacuum state, the state generated in the above-threshold re-
gime of NOPO is non-Gaussian, i.e., its Wigner function is
non-Gaussian[17]. Recently, it has been demonstrated[18]
that some systems involving beam splitters also generate
non-Gaussian states. The general consideration of this prob-
lem for self-phase-locked NOPO seems to be very compli-
cated. However, the mentioned results allow us to conclude
that the state generated in self-phase-locked NOPO is most
probably non-Gaussian. So far, the inseparability problem for
a bipartite non-Gaussian state is far from being understood.

On the theoretical side, the necessary and sufficient condi-
tions for the separability of bipartite CV systems have been
fully developed only for Gaussian states, which are com-
pletely characterized by their first and second moments. To
characterize the CV entanglement, we address both the in-
separability and strong EPR entanglement criteria[19] which
could be quantified by analyzing the variances of the relevant
distanceV−=VsX1−X2d and the total momentumV+=VsY1

+Y2d of the quadrature amplitudes of two modesXk

=s1/Î2dfak
+exps−iukd+ak expsiukdg, Yk=si /Î2dfak

+exps−iukd
−ak expsiukdg sk=1,2d, whereVsXd=kX2l−kXl2 is a denota-
tion for the variance anduk is the phase of local oscillator for
the kth mode. The two quadraturesXk and Yk are noncom-
muting observables. The inseparability criterion for the quan-
tum state of two optical modes reads[19]

V =
1

2
sV+ + V−d , 1, s50d

i.e., it indicates that the sum of variances drops below the
level of vacuum fluctuations. Since the states of the system
considered are non-Gaussian, the criterions50d is only suffi-
cient for inseparability. The strong EPR entanglement crite-
rion is quantified by the product of variances asV+V−,

1
4.

We remind the reader that the sufficient condition for insepa-
rability s50d in terms of the product of variances reads
V+V−,1, i.e., it is weaker than the strong EPR condition.

In order to obtain the general expressions for variances,
we first write them in terms of the boson operators corre-
sponding to the Hamiltonian(1). We perform the transforma-
tions ai →ai expsiFid, which restore the previous phase
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structure of the intracavity interaction. Using also the sym-
metry relationships(4), we find quite generally the variances
at some arbitrary quadrature phase anglesu1, u2 as

V± = V ± R cossDud, s51d

where

V =
1

2
sV+ + V−d = 1 + 2n − 2uka1a2lucossSu + Fargd, s52d

R= 2Reska1
2leiSud − 2uka1

+a2lu, s53d

Du = u2 − u1 − Fx,Su = u1 + u2 + Fl + Fk, s54d

and n=ka1
+a1l=ka2

+a2l is the mean photon number of the
modes,Farg=argka1a2l. So, in accordance with the formula
s51d, the relative phaseFx between the transformed
modes gives the effect of the rotation of the quadrature
amplitudes angleu2−u1.

Obviously, the variancesV± and hence the level of CV
entanglement depend on all parameters of the system includ-
ing the phases. The minimal possible level ofV is realized
for an appropriate selection of the phasesui, namely foru1
+u2=−argka1a2l−Fl −Fk. Further, in most cases we assume
that this phase relationship takes place, but we do not intro-
duce new denotations forV andV± for the sake of simplicity.
In this casesSu=−Fargd, in correspondence with the formula
(51), the variancesV± depend only on the difference between
phasesDu and we arrive at

V = 1 + 2sn − uka1a2lud, s55d

R= 2Reska1
2learg

−iFd − 2uka1
+a2lu. s56d

For the NOPO without additional polarization mixing,
ka1

+a2l=ka1
2l=ka2

2l=0 and hence the case of the symmetric
variancesV+=V− is realized. The phase-locked NOPO gen-
erally has a nonsymmetric uncertainty region. However, the
variancesV+ and V− become equal for the special case of
u2−u1−Fx=p /2, when the inseparability condition reads
V,1 sV=V−=V+d. We note that the relative phaseFx plays
an important role in specification of the entanglement.

A. Entanglement in the case of unitary time evolution

So far, we have considered mainly the steady-state regime
of generation, including the effects of dissipation and cavity-
induced feedback. However, in order to better understand the
peculiarities of the entanglement for the system under con-
sideration, it would be interesting and desirable to study the
situation when the dissipation in the cavity is inessential and
the evolution of the modes, due to their interactions, is de-
scribed approximately by the master equation(2) without
losses. In our analysis, we shall assume that both subhar-
monic modes are initially in the vacuum state. Then, the
system’s state in the absence of losses is generated from the
vacuum state by the unitary transformation

uCstdl = ustdu0l1u0l2 = e−si/"dHinttu0l1u0l2, s57d
where

Hint = i"
kE

g3
sa1

+a2
+ − a1a2d + "xsa1

+a2 + a1a2
+d. s58d

Here we neglect the pump depletion effects considering clas-
sically the amplitude of a driving field as a constant and we
also consider the case of zero detuningsD1=D2=D=0. For
the cavity configuration considered, the validity of such an
approximation is guaranteed for short interaction time inter-
vals skE/g3d−1,x−1&Dt!g−1, provided that the coupling
constantskE/g3 and x exceed the dumping rates of the
modes.

Note that forx→0 the state(57) is transformed to the
well-known two-mode squeezed state[20]. We note that
while the entangled two-mode squeezed vacuum state is
achieved in the laboratory(in the nondegenerate parametric
amplifier [2]), the generation of the state(57) is an interest-
ing option for the future. From an experimental point of view
it can be realized in the combined scheme, that is, parametric
down-conversion and wave plate, driven by a pulsed pump
field. It is obvious that the interaction timeDt in this case is
limited by the durationT of laser pulses,Dt&T. Roughly
speaking, such a scheme is similar to the optical nondegen-
erate parametric amplifier in the presence of the phase-
locking process, where the interaction time is increased by a
cavity for both subharmonic modes. However, we note again
that a complete study of the experimental configuration re-
lated to the nondissipative case is beyond the scope of this
paper.

Now let us examine the entangled properties of the result-
ant state (57). Using formula (52), where n
=ku−1stdai

+aiustdl and ka1stda2stdl=ku−1stda1a2ustdl, after a
long but straightforward algebra we get the final result for
the varianceV= 1

2sV++V−d for two different operational re-
gimes:«,x and«.x. The variance for the range«,x of a
comparatively weak scaled pump field«=kE/g3 reads

Vstd = 1 −
«2

m2fcoss2mtd − 1g −
«

m
sins2mtdcossSud, s59d

wherem=Îx2−«2. Thus, we observe a periodic evolution
of V in this regime typical for the linear coupling. The
level of squeezing of the two modes is periodically re-
peated. The behavior of the two-mode variance also sig-
nificantly depends on the phase-matching condition, so
that we may tune the phase sum to maximize the entangle-
ment. We further choose for illustrations the phase sum
corresponding to cossSud=1 for both operational regimes.
It seems perhaps more intuitive to study the time behavior
scaled on the parameter«=kE/g3, which contains the
pump field amplitude and is an adjustable parameter of
the system. The dependence ofV versus the scaled time
interval is shown in Fig. 2, where the three curves corre-
spond to three different choices of the ratio« /x. Common
to all curves is that the variance is nonclassical and
squeezed at least at the points of its minimatmin, which
can be obtained by the formulactgs2mtmind=« /m. In all
cases, the maximal degree of two-mode squeezingVmin
=Vstdut=tmin

=0.5 is achieved in the limit«→x. For the
curves in Fig. 2, the time intervals corresponding to the
minimal values ofVmin are equal to«tmin.0.14+0.20pk
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scurve 1d, «tmin.0.25+0.44pk scurve 2d, and «tmin.0.39
+0.98pk scurve 3d sk=0,1,2, . . .d.

If the opposite inequality holds,«.x, then the nonlinear
parametric interaction becomes dominant over the linear
coupling and the variance is given by the following formula:

Vstd = 1 +
«2

h2fcoshs2htd − 1g −
«

h
sinhs2htdcossSud,

s60d

whereh=Î«2−x2.
For x→0 and cossSud=1, from this formula we arrive at

a well-known result, Vstd=exps−2«td, for two-mode
squeezed state. This shows that in the limit of infinite
squeezing the corresponding state approaches a simultaneous
eigenstate ofX1−X2 and Y1+Y2, and thus becomes equiva-
lent to the EPR state. Figure 3 shows the behavior ofV when
the system operates in the regime«.x. This figure clearly
shows that as the interaction time increases, the variance
decreases and reaches its minimum. Then the squeeze vari-
ance exponentially increases with the growth of the interac-

tion time. For the data in Fig. 3 we obtain that the time
intervals for which the variance reaches the minima are
«tmin.0.53 (curve 1), «tmin.0.76 (curve 2), and «tmin
.0.93 (curve 3). It is easy to check that these points of
minima can be found by the formulactghs2htmind=« /h, pro-
vided that cossSud=1.

We also conclude that the variance squeezes up to a cer-
tain interaction time, if«.x. It should be noted that al-
though the time evolution of the variances is quite different
for each of the operational regimes, the minimal values of
the variance are described by the formula which is the same
for both regimes,

Vmin = Vstdt=tmin
=

x

« + x
. s61d

With increasing« /x, in the regime«.x, the minimal
value of the variance decreases asVmin,x /«!1, which
means that perfect squeezing takes place in the limit of an
infinite pump field. This result is not at all trivial for the
system considered, even in the absence of dissipation and
cavity-induced feedback, because the insertion of a polariza-
tion mixer usually destroys the two-mode squeezing pro-
duced by nondegenerate parametric down-conversion. The
reason is that the two-mode squeezed vacuum state is a su-
perposition of two-photon Fock statesunl1unl2 and the polar-
ization mixer destroys the Fock states having the same num-
ber of photons, i.e.,n1=n2=n. The detailed analysis of this
problem can be found, for example, in[14].

Having discussed the CV entanglement for nondissipative
dynamics, we now turn our attention to the generation of
entangled states of light beams in self-phase-locked NOPO,
completely taking into consideration dissipation and cavity-
induced feedback. The results will be presented in a steady-
state regime of generation.

B. Entanglement in the self-phase-locked NOPO:
Subthreshold regime

Using formulas(38) and(55), after some algebra, we ob-
tain the minimal variance for the steady-state regime in the
following form:

V = 1 +
«f«S2 − Îg2S4 + D2sS2 − 2x2d2g

S4 − 4D2x2 . s62d

It is easy to check that in the limitx→0, the variance coin-
cides with the analogous one for the ordinary NOPO,V
=V−=V+=1−« / s«+Îg2+D2d. We see that the minimal
variance remains less than unity for all values of pump
intensity and is a monotonically decreasing function of«2.
For all parameters, the maximal degree of two-mode
squeezingV.0,5 is achieved within the threshold range.
It is also easy to check that this expression is well-defined
for all values of«2, including the vicinity of the threshold.
One should keep in mind, however, that the linear ap-
proach used does not describe the threshold range where
the level of quantum fluctuations increases. As a conse-
quence, some matrix elements of Eqs.s38d, s48d, ands49d
increase infinitely in the vicinity of threshold. Neverthe-

FIG. 2. Unitary evolution of the varianceVstd versus the scaled
dimensionless interaction time«t for the range of«,x and pro-
vided that cossSud=1. The parameters are« /x=0.2 (curve 1),
« /x=0.4 (curve 2), and« /x=0.7 (curve 3).

FIG. 3. Unitary time evolution of the varianceVstd for the
range of«.x and provided that cossSud=1. The parameters are
« /x=1.1 (curve 1), « /x=2 (curve 2), and« /x=3 (curve 3).
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less, it follows from Eq.s62d and further resultss64d–s67d
that such infinite terms are canceled in the varianceV, as
well as inV−,V+ for both operational regimes. This is not
surprising, since such cancellation of infinities in the
quadrature amplitude variances takes place for the ordi-
nary NOPO also.

One of the differences between the squeezing effects of
the ordinary and self-phase-locked NOPO is that the vari-
ancesV− and V+ for the ordinary NOPO are equal to each
other, while for the self-phase-locked NOPO they are in gen-
eral different. The values of the nonsymmetric variances are
expressed throughR according to formula(51). This quantity
can be calculated with the help of the formula(56). The
result is found to be

R=
«xD

S4 − 4D2x2F«4 − fg2 + sD − xd2gfg2 + sx + Dd2g
Îg2S4 + D2sS2 − 2x2d2

+ 2«G .

s63d

As we see, the final expressionss62d and s63d below the
threshold are rather unwieldy. We show the corresponding
numerical results in Figs. 4–6 for illustration.

C. Entanglement in the self-phase-locked NOPO:
Above-threshold regime

Performing calculations for each of the casesD.0 and
D,0, we find the varianceV in the above-threshold regime
in the following form:

V =
3

4
−

1

4Î1 + s«th/gd2fs«/«thd2 − 1g
+

x

4uDu
. s64d

To rewrite this expression through the original parameters,
we should take into account thatE/Eth=« /«th and «th

2 /g2

=sx /g− uDu /gd2+1. The resultss62d and s64d for both op-
erational regimes are summarized in Fig. 4, where the
varianceV is plotted as a function of the amplitude of the
pump field. One can immediately grasp from the figure
that the sum of variancesV= 1

2sV++V−d remains less than

unity for all nonzero values of the pump field, provided
that x, uDu. This shows the nonseparability of the gener-
ated state. The maximal degree of entanglement is
achieved in the vicinity of threshold,V.0,5, if x / uDu
!1. Far above the threshold,E@Eth, V increases with
mean photon numbers of the modes and reaches the
asymptotic valueV=3/4+x /4uDu. It should also be men-
tioned that the results64d is expressed through the scaled
pump-field amplitude«=kE/g3 and hence depends on
coupling constantsk and x.

We stress that the level of two-mode squeezing in the
proposed scheme is limited due to the dissipation and pump
depletion effects and reaches only 50% relative to the level
of vacuum fluctuations if the pump intensity draws near to
the generation threshold. Such limitation on the level of int-
racavity two-mode squeezing takes place also for the ordi-
nary NOPO, as was been demonstrated in Refs.[12,22] by
analysis of quantum fluctuations in the near-threshold range.
Analogous conclusion has been made for one-mode
squeezed light generated in OPO[23]. However, remember
that these results pertain to the full squeezing of intracavity
variances and not the spectra of the squeezing of output
fields.

FIG. 5. The variancesV+ (curve 1) andV− (curve 2) versus the
dimensionless amplitude of the pump fieldE/Eth=« /«th for the pa-
rametersx /g=0.5,D /g=3.

FIG. 6. The product of the variancesV+ and V− versus the
dimensionless amplitude of the pump fieldE/Eth=« /«th for the
parametersx /g=0.1,D /g=10 (curve 1) and x /g=0.5,D /g=1
(curve 2).

FIG. 4. The minimized varianceV versus the dimensionless
amplitude of the pump fieldE/Eth=« /«th for both operational re-
gimes.«th andEth are given by Eqs.(25) and(29). The parameters
arex /g=0.1 (weak coupling), D /g=10 (curve 1), x /g=0.5 (mod-
erate coupling), D /g=3 (curve 2), andx /g=0.5,D /g=1 (curve 3).
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As the last step in connecting two-mode squeezing to ob-
servables of CV entanglement, we report the expressions of
the nonsymmetric variances calculated with the help of the
formulas (51), (55), and (56). Upon evaluating all required
expectation values, we obtain

R=
sgnsDd

4 S uDu − x

uDu
−

1

Î1 + s«2 − «th
2 d/g2D s65d

and hence

V+ =
3uDu + x + sgnsDdcossDudsuDu − xd

4uDu

−
1 + sgnsDdcossDud

4Î1 + s«2 − «th
2 d/g2

, s66d

V− =
3uDu + x − sgnsDdcossDudsuDu − xd

4uDu

−
1 − sgnsDdcossDud

4Î1 + s«2 − «th
2 d/g2

. s67d

For the case ofDu=0, when the variances are maximally
different, the results are reduced to

V− =
1

2
+

x

2D
,

V+ = 1 −
1

2Î1 + s«th/gd2fs«/«thd2 − 1g
s68d

for D,0. The case ofD.0 is obtained from Eqs.(68) by
exchangingV+→V− andV−→V+. These results for both op-
erational regimes are depicted in Fig. 5. Some features are
immediately evident. First of all, one can see that both vari-
ances are minimal in the critical range but show quite differ-
ent dependences on the ratio« /«th above the threshold. An
attentive reader may ask about the dependence of the results
obtained on the parametric coupling constantk. We note in
this connection that the squeezed variances are expressed
through the scaled pump-field amplitude«=kE/g3 and hence
depend in general on both coupling constantsk andx.

In terms of demonstrating the CV strong EPR entangle-
ment, one has to apply another criterionV+V−,

1
4. For the

case of the symmetric uncertaintiessV+=V−=Vd, the product
of the variancesV2ù

1
4 and hence the strong EPR entangle-

ment cannot be realized. In the general case, the product of
the variances reads

V+V− = V2 − R2cos2sDud. s69d

It seems thatV+V− lies below 1/4 at least for the relative
phaseDu= ±pm sm=1,2, . . .d, and in the vicinity of thresh-
old, where V.0,5. However, for such selection of the
phases we arrive at

V+V− =
uDu + x

4uDu S2 −
1

Î1 + s«th/gd2fs«/«thd2 − 1g
D . s70d

It is easy to check that the product of the variances exceeds1
4

even in the vicinity of the threshold. This quantity for both
operational regimes is illustrated in Fig. 6. It should be noted
again that a detailed analysis of this problem must include a
more accurate consideration of quantum fluctuations in the
critical ranges.

V. CONCLUSION

Our work demonstrates the possibility of the creation of
CV entangled states of light beams in the presence of phase-
localizing processes. We have called such quantum states the
entangled self-phase-locked states of light[21] and we have
shown that they can be generated in NOPO recently realized
in experiment[6]. This device is based on the type II phase-
matched down-conversion and additional phase-localizing
mechanisms stipulated by the intracavity waveplate. The
novelty is that this device provides a high level of phase
coherence between the subharmonics, in contrast to what
happens in the case of ordinary NOPO, where phase diffus-
sion takes place. We have shown that both two-mode squeez-
ing and quantum phase-locking phenomena are combined in
such NOPO. This development paves the way towards the
generation of bright CV entangled light beams with well-
localized phases. It appears that this scheme involving phase
locking may be useful for precise interferometric measure-
ments and quantum communications, because it combines
quantum entanglement and stability of type II phase match-
ing with effective suppression of phase noise. Particularly, in
practice, this phase-locked scheme can effectively be used in
homodyne detection setups, as well as for observation of an
interference with nonclassical light beams. We believe that
such a source of bright entangled light providing phase co-
herence will also be applicable for realizing CV quantum
teleportation. The price one has to pay for these advantages
is the small aggravation of the degree of CV entanglement in
a self-phase-locked NOPO in comparison with the case of an
ordinary NOPO. The quantum theory of self-phase-locked
NOPO has been developed in a linear treatment of quantum
fluctuations for both below- and above-threshold regimes of
generation. We have studied the CV entanglement as two-
mode squeezing and have shown that entanglement is
present in the entire range of pump intensities. In all cases
the maximal degree of two-mode squeezingV.0,5 is
achieved in the vicinity of the threshold, provided that the
coupling constantx is much less than the mode detunings.
We have demonstrated that, as a rule, the highest degree of
CV entanglement occurs for weak linear coupling strengthx.
It has also been shown that the amount of entanglement can
be controlled via the phase differenceFx. The other pecu-
liarities of the system of interest have been established for
the case of unitary dynamics, which may be realized for the
short interaction times in the case of pulsed pump fields. One
of these concerns the presence of two operational regimes
generating two-mode squeezing. If the linear coupling be-
tween subharmonics dominates over the parametric down-
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conversion,«,x, we have observed a periodic evolution of
the squeezed variance. The maximal degree of squeezing has
been V.0,5 in this regime. If the parametric interaction
becomes dominant,«.x, the higher degree of two-mode
squeezing can be obtained,Vmin=fx / s«+xdg,0.5, but up to
a certain interaction time.

In our analysis, we have not investigated all possible
quantum effects of self-phase-locked parametric dynamics.
In particular, we have noted that the system considered dis-
plays different types of quantum correlations, but we have
not analyzed their connection with all possible kinds of en-
tanglement. This analysis might involve also the case of uni-
tary dynamics, where the generalized two-mode squeezed

state has been presented. Consideration of quantum fluctua-
tions in the near-threshold operational range of self-phase-
locked NOPO also deserves special attention for more accu-
rate identification of CV entanglement. These topics are
currently being explored and will be the subject of forthcom-
ing work.

ACKNOWLEDGMENTS

We thank J. Bergou for helpful discussions. This work
was supported by the NFSAT PH 098-02/CRDF 12052 grant
and ISTC Grant No. A-823.

[1] Quantum Information Theory with Continuous Variables, ed-
ited by S. L. Braunstein and A. K. Pati(Kluwer, Dordrecht,
2003), and references therein.

[2] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett.80, 869
(1998); A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A.
Fuchs, H. J. Kimble, and E. S. Polzik, Science282, 706
(1998); W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam,
Phys. Rev. Lett.89, 253601(2002).

[3] J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, Phys. Rev.
Lett. 83, 1319 (1999); B. Julsgaard, A. Kozhekin, and E. S.
Polzik, Nature(London) 413, 400 (2000); A. Kuzmich, L.
Mandel, and N. P. Bigelow, Phys. Rev. Lett.85, 1594(2000);
L. M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik,ibid. 85,
5643 (2000).

[4] M. D. Reid and P. D. Drummond, Phys. Rev. Lett.60, 2731
(1988); M. D. Reid, Phys. Rev. A40, 913(1989); P. D. Drum-
mond and M. D. Reid,ibid. 41, 3930(1990).

[5] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.
Rev. Lett. 68, 3663(1992); S. F. Pereira, Z. Y. Ou, and H. J.
Kimble, Phys. Rev. A62, 042311(2002).

[6] E. I. Mason and N. C. Wong, Opt. Lett.23, 1733(1998).
[7] C. Fabre, E. I. Mason, and N. C. Wong, Opt. Commun.170,

299 (1999).
[8] G. Yu. Kryuchkyan and N. T. Muradyan, Phys. Lett. A286,

113 (2001); G. Yu. Kryuchkyan, L. A. Manukyan, and N. T.
Muradyan, Opt. Commun.190, 245 (2001).

[9] J. J. Zondy, A. Douillet, A. Tallet, E. Ressayre, and M. L.
Berre, Phys. Rev. A63, 023814(2001).

[10] G. Yu. Kryuchkyan and K. V. Kheruntsyan, Zh. Eksp. Teor.
Fiz. 103, 18 (1993); 104, 1161(1994).

[11] Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys.
Rev. A 62, 023813(2000); X. Li, Q. Pan, J. Jing, J. Zhang, C.
Xie, and K. Peng, Phys. Rev. Lett.88, 047904(2002).

[12] G. Yu. Kryuchkyan and L. A. Manukyan, Phys. Rev. A69,
013813(2004).

[13] S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett.66,
252 (1991); S. M. Tan, M. J. Holland, and D. F. Walls, Opt.
Commun.77, 285(1990); B. C. Sanders, K. S. Lee, and M. S.
Kim, Phys. Rev. A 52, 735 (1995); P. van Loock and S. L.
Braunstein, Phys. Rev. Lett.84, 3482(2000).

[14] M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Phys. Rev. A
65, 032323(2002); X. B. Wang,ibid. 66, 024303(2002); 66,
064304(2002).

[15] P. D. Drummond and C. W. Gardiner, J. Phys. A13, 2353
(1980); K. J. McNeil and C. W. Gardiner, Phys. Rev. A28,
1560 (1983).

[16] M. D. Reid and P. D. Drummond, Phys. Rev. A40, 4493
(1989).

[17] K. V. Kheruntsyan and K. G. Petrosyan, Phys. Rev. A62,
015801(2000).

[18] G. Toth, C. Simon, and J. I. Cirac, Phys. Rev. A68, 062310
(2003).

[19] L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000); R. Simon, ibid. 84, 2726 (2000); G.
Giedke, B. Kraus, M. Lewenstein, and J. I. Cirac,ibid. 87,
167904(2001); R. F. Werner and M. M. Wolf,ibid. 86, 3658
(2001).

[20] B. Schumacher and C. M. Caves, Phys. Rev. A31, 3093
(1985).

[21] H. H. Adamyan and G. Yu. Kryuchkyan, e-print quant-ph/
0309203.

[22] K. Dechoum, P. D. Drummond, S. Chaturvedi and M. D. Reid,
e-print quant-ph/0310129.

[23] S. Chaturvedi, K. Dechoum, and P. D. Drummond, Phys. Rev.
A 65, 033805(2002); P. D. Drummond, K. Dechoum, and S.
Chaturvedi,ibid. 65, 033806(2002).

CONTINUOUS-VARIABLE ENTANGLEMENT OF PHASE-… PHYSICAL REVIEW A 69, 053814(2004)

053814-11


