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Cascaded second-order contribution to the third-order nonlinear susceptibility
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Cascading of second-order nonlinear effects leads to an effective third-order nonlinearity. In addition to the
macroscopic electric field at the intermediate frequencies another term has to be taken into account which is
due to the locality of the intermediate polarization sources. Combining the correction terms at the three
intermediate frequencies gives rise to a third-order susceptibility tensor, which exhibits the same symmetry
properties as an intrinsic susceptibility. This particularly applies to the contributions from the rectified and the
second-harmonic fields to the degenerate susceptibility.
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[. INTRODUCTION effect have been considered in Rgt0] and especially in
) ) degenerate four-wave mixing in Refid1-14, for solitary
It is well known that the cascading of second-order nonyaves[15] and various cascading situations in Rif6]. In

linearities contributes to higher-order nonlinear effddt®]  addition to the correction term in the rectified field, the con-
such as harmonic generati@8] or frequency shiftind4,5].  tribution from the second harmonic field is taken into ac-
In the case of only weak electromagnetic fields at the intercount in Ref[12]. In most references, Refil1-15, the two
mediate frequencies the cascaded process can be describedtagtributions (macroscopic field and correction teyrbe-
Kerr nonlinearity by means of an equivalent third-order non-jonging to one intermediate field are combined at the same
linear susceptibility or a nonlinear refractive index. This hastime in the calculations, but looked at separately for the dif-
been shown for the self-action of electromagnetic waves byerent intermediate frequencies or wave vectors in the degen-
cascading via the second harmonic fig#d7], cascading via erate case. Because of the locality of the correction terms in
the rectified field[8—10, and also in degenerate four-wave contrast to the macroscopic geometry-dependent fields, it is
mixing [11,13. In the first step of the cascading process areasonable to consider their contributions to a macroscopic
polarization at an intermediate frequency is generated by thgird-order susceptibility separately from the contributions of
second-order nonlinearity from one or two fundamentalthe macroscopic fields in order to obtain a property that char-
waves. This polarization acts as a source for an electromagcterizes the material independent of the geometry. Since
netic field at the intermediate frequency, which is the soluthere are up to three different intermediate frequencies, gen-
tion of the inhomogeneous Maxwell equations. This macroerally three different contributions to this susceptibility have
scopic field mixes with another field to produce a nonlinearto be combined. This has been done, e.g., in REf], but
polarization at their sum or difference frequency in the seconly in a scalar manner.
ond step. In addition to the macroscopic field another contri- |n this paper a special emphasis is laid on the susceptibil-
bution exists at the intermediate frequency which is due taty containing the local source, especially on its tensorial
the nonlinear source term that has to be included in the relahature. The main objective is to show that the resulting mac-
tion between the local and the macroscopic fields at the inroscopic susceptibility tensor has the same important proper-
termediate frequency. The fact that there are two contributies as all susceptibility tensors have, provided that the con-
tions to the generated polarization in the second step hasgibuting first- and second-order susceptibilities exhibit these
been shown in Ref41,2]. Compared with a straightforward properties, which are described in many textbooks, e.g., in
calculation with cascading of macroscopic susceptibilitiesRef.[18]. As a material characteristic it can be directly added
the second contribution can be regarded as a correction terg the intrinsic susceptibility. The paper is organized as fol-
due to cascading through the local field. Other authors conows: in Sec. Il an expression for the additional susceptibility
sider it as the primary contribution and the resulting macrois derived, some symmetry properties of which are examined
scopic electric field as a depolarization figltB]. The cor- in Sec. Ill. The degenerate case regarding only one fre-
rection term can be neglected in many cascading situationguency is considered in Sec. IV.
where the macroscopic field at the intermediate frequency is
strong compared to the additional field. But if both contribu- Il. DERIVATION OF THE LOCAL CASCADING
tions are of the same order of magnitude, they both have to SUSCEPTIBILITY
be regarded in calculations. This necessity can occur in cas- The basic equation for describing the dependence of the
cading via an intermediate field in a situation far away frommacroscopic polarization on the macroscopic electric field in
the phase-matching condition or via the rectified field. Connonlinear materials is the well-known expansionFointo a
tributions via optical rectification and the linear electro-optic\plterra series irE, which in the frequency domain reads as

P(w) =2 PM(w), (1a)
n=1
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P(n)(w) - (2:—;)n-1f h f X<n)(w; @1, - Wp-1, ®p) Psumo = SOX(z)(‘Usum; w1, 0im)Eq[3(e + 2 )_1E|oc]- (6)
Similarly, the macroscopic fiel&, could be expressed by its
‘E(wy) -+ E(wn-1):E(wp)dw; - dong,  (1D) respective local field. Equatiof6) represents the basic rela-
tionship between the sum-frequency polarization and the
intermediate-frequency electric field. Of course, if E4). is
valid as a result of external sources, E5). is equivalent to

wherew=3!", ;. P" is thenth-order nonlinear polarization

and is described by the convolutidib). This expansion
. . . g, (n) _

with .th‘? macroscopic suscept|b|l|t|§x (_expects macro Eq. (6). However, in cascading the total macroscopic polar-

scopic fieldsE as a result of sources in a distance sufficiently =" "7~ ) ) )

far away from the observed points. We assume some monof2ation Pin at the intermediate frequency consists of two

requent waves; with phasorsE; and a time dependence of ?alr;s, "e('i)éhe ter;ntEroTortli)nal toéhe miﬁrosct(:]plcl ele::trlc
the form Ej(t)=3E;e“'+c.c. The polarization vectorsP, €10 £oX ™ Eim aNnd the ocal SoUrcEime. Thus, the foca

also follow this notation. If, for example, two wavés and field (3) takes the form

E, at some frequencies; and w,, respectively, are coupled A 1 )2 1 -~
into a nonlinear material which lacks a center of inversion, Eoc=|1+ §x( ) Eim + 3_Pim,0- (7)
. . . . . - €0
then a polarizatiorP;, o at an intermediate frequenayiy,
=w;+w, is generated with a phasor according to Using Eq.(7) in Eq. (6) results in
Pim,O = 80X<2)(wim; w1, (1)2):E1E2. (2) ﬁ)sumo = SOX(Z)(wSUm; w1, wim):él{éim + [80(8 + 2l )](_1)|5im,0}-
It is part of the second-order polarizati®? from Eq. (1b). (8)

It acts as a source for an electromagnetic fiElg, at the In addition to Eq.(5), thi i tai d i
frequencyw;,, which is solution of the Maxwell equations =~ = 0 =a. ' IS equation contains g secon c.on
and strongly depends on the geometry of the considered d&ibution to Pg,me which accounts for the locality of the in-
vice and the exciting optical waves. At the sum frequenciestermediate source and which always exists in cascading re-
for example, awg,,= wim+ w1, @ polarization is produced by gardless of the ge.om.etry and independent of the ev.olutllon. of
the nonlinear interaction d;,, andE,. The electric field;,, ~ an electromagnetic field. In many cases of cascading in in-
is not the resulting field of sources in greater distance but ofégrated optics this additional term can be neglected, as the
the local sourcé®;, o in the vicinity of the fields. Thus, the electromagnetic fieldE;, at the intermediate frequency is
polarization Pg,o at the sum frequency is not expressedoften — intentionally or not — much larger than the contri-
analogous to Eq2) but contains another term, which has to pytion[¢y(e+2l )](_1)|5im,o- But in some cases, e.g., at optical
be added to the electric fielfli, and which is directly de-  yectification, the energy transfer from the fundamental field
pendent on the sourdéy,o. A short explanation for the 0C- o the intermediate fieldquasistatic fieldl is very small.
currence of this additional term is recalled as follows. Sincerpys, hoth contributions in E48) can be of the same order
the nonlinear polarizations basically depend on the microgs magnitude and have to be regarded in calculations.
scopic(local) and not on the macroscopic fields, it is neces- | the following we will restrict the examinations on the
sary to look at the relationship between the macroscopic pGsecond contribution in Eq¢8) that explicitly contains the
larization Pi,, the macroscopic electric fielén, and the  polarization source®;, . Its effect on the polarization at the
local electric fieldE,q; at the places of the microscopic di- gym frequencPsymo can be regarded as the result of a third-

poles: order nonlinearity that only depends on the properties of the
material and not on the geometry. It can be looked at sepa-

. —E 1 rately from the first contribution in Eq8), i.e., the contri-

Eloc E|m+ le- (3) K . - . .
3gg bution from the macroscopic electric field at the intermediate

_ . _ . _ frequency. A combination of the three contributions at the up
This relationship has been derived by Lorefitg] for cubic o three intermediate frequencies yields an equivalent third-
crystals but is assumed to be also valid for other crystals. Ihrder susceptibility, a general expression for which is derived
the macroscopic field;,, was the result of external sources, in the following. For this susceptibility®'S(w4; w1, 0, w3)

the macroscopic polarization would B, =eoxVEin: (the upper index Is stands for local sourcevith w,
:2?:1 w;, all three intermediate frequencies;;=w;i=w;
Eroc= (1 + 2xD)Em=2(e + 20)E, (4 *o;ij=1,2,3j#] have to be included in the calculation.
oc 3 im~— 3 im -~

As before,E; are phasors of the electriinput) fields and
Here,e=1+x'"is used and is the unity tensor. Solving for Pij.o. With i # ], are the phasors of the intermediate polariza-

E;n and substituting it in an expression for the sum-tjons at the frequencies;;. Each 0f|5”.’0 is given by
frequency polarization analogous to Eg), i.e.,

R o A Pii 0= eox?(wjj; i, ) EE;. (9
Psumo = €0X (®sum ©1, ©im):E1Eim, 6) . . . L .
The tensory is defined in the principal-axis system of the
yields nonlinear material as
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7(w) =[e(w) + 2172 (10 xR k(@ 0)=R k (C oo )]

e K
and accounts for the tensor that appears in front of the inter- (19

mediate source in Eq8). W'th. the three 'frequenues»ij The asterisk denotes complex conjugation. Also the intrinsic
three contributions for the nonlinear polarization at the Su"bermutation symmetry

frequencyw,=w;+ w,+ w5 are obtained:

(n) .
Xi;kl,...,kp,...,kq,...,kn(w1wlv co Wy 0, -, Op)

Pa.0= X2 (w4; 01, 029):Eq[ 723 P23 o
+ X (w4, 09,019 Eo (w19 P13l
+ X (wg; 03,01 E pr)Prod.  (12)

The direct contribution of an intrinsic susceptibiligf® to
the polarizatiorP, o would be

=Xi(;nk)1,...,kq,---,kp,---,kn(w;wl’ @ e @, e ,0p)
(16)

is fulfilled: if any two of the indices 1, 2, 3 together with the
respective indiceg,k,| are interchanged in Eq13), then
one of the expressions on the right-hand side remains un-
changed while the other two change their roles mutually. The
- 3 A a overall permutation symmetry

P4.0= 580X (w4; 01,05, 3): E1E5Es. (12
. . . . Xi(?lzl,...,kp,...,kn(w;wl' ey @p, -, 0p)
Using Eq.(9) in Eg. (11) and comparing the result with Eq.

(12) yield the equivalent susceptibility of third ordgf®"'s, :Xf(r;);kl,...,i,...,kn(— Op 01, -0, o) (17)

the components of which are given by ) ) o ] o
is valid for ¥ if it is valid for the contributing tensors: let

Is; . _2 . [ .g. ibili
Xi(jak)l S(wA:wlva:wS)_é)(i(jzn)q(wmwl:w23) Tror{ @29 us consider, e.g., the susceptibility

| . _2 .
Xnglzl(wzs Wy, w3) X](ii)l (= w15 w4, ws)—é)(}izn)](‘ W15 W4, 023) Nn( @22)
+ 2 X2 (043 02, 013) P @12) X Xl (@235 w5, 023)
2 .
X)(gzjl)(wIS; w1, 3) + §X1%n(‘ W1} W2, @12) P~ 1)
+ SXion(@4; 3, 0019) Dy @12) XX (= w12 = w4, 03)
2 .
X X123, 01). (13) + SXfn(= @15 03,~ ©19) T~ w13)
(2 _ e —
Note that the sum convention is applied, i.e., E®) has to X Xki— W13, 02, ~ @y), (18)
be summed over repeated indices. The total third-order sU$;aced on the definitionf13) and the equationv,=w;+w,
ceptibility is the sum of all contributions: +ws. Application of Eq.(17) on Eq.(18) for each of they®
. elements containing negative frequencies as arguments
X(3),t0t: X(3),Is+ X(B),E+ X(B),lnt_ (14) yields
Here, x®'F denotes the cascaded susceptibility due to the 5 o 2@ .
macroscopic electric intermediate fields ggld " is the in- Xkl (= 013~ @4, 0, 03)= 5 Xjjm( @4} 01, 023) mn( @23)
trinsic sys_gept|blllty. Maybe further contrlbutl_ons to the'total % Xﬁ)l( W3, Wy 3)
susceptibility can be found, e.g., by cascading from higher- 2
order nonlinearities. + 3 Xmi( @12; 02, ©1) i~ @12)

X X2 (wg; w3, w19)

lll. PROPERTIES OF THE ADDITIONAL SUSCEPTIBILITY +2 Xﬁﬁ,?.(wls: 01, 03) T~ @13)

(3!?‘|Sall thr_ee_ contribu_tions are regarded for the s_usceptibility XX%(%; Wo, w13). (19
X as it is done in Eq(13), then the resulting tensor
exhibits some important symmetry properties, provided thafhe first term on the right-hand side of EJ.9) is identical
the contributing tensorsy and ' have these properties. to the first one in Eq(13), and the other two change their
One important implication of these symmetries is the factroles if the order of the factors is reversed, the indicesm
that, for example, a mathematical model for a nonlinear in-are interchanged, and the symme(ty) of the 5 tensor{ 25]
teraction of multiple optical waves can be energy conservings used. So the validity of the overall permutation symmetry
if each susceptibility involved is losslegse., it has no  (17) for x®'sis shown. The prerequisite thgt? obeys Egs.
imaginary parnt and obeys the symmetry relations. The men-(15) and (16) is fulfilled as these are intrinsic properties of
tioned general properties are described, for instance, in Refhe susceptibilities; Eq(17) applies tox? in lossless mate-

[18]. rials. This is also true fo as long as the tensorial definition
The first property, the time-reversal symmetry, can be di{10) or a similar expression based on the permittivétyis
rectly seen from Eq(13) in the frequency domain: valid.
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A further property is the spatial symmetry of the respec-different wave vectors in the rectified field. Equati¢25)
tive crystal class. The interdependence of the tensor elemenstiows that by summing up these two contributions and the
and the zero elements is determined by the symmetry operaeontribution from cascading over the second-harmonic field,
tions that can be performed on a crystal of the respectivéhe resulting tensog®'s has the properties discussed in Sec.
class. Lets; be the elements of the matrix of such an operadll as a local susceptibility tensor of third order. Thus, also in
tion. Then a tensor is transformed into the new coordinatéhe degenerate case energy conservation of the physical sys-

system according to tem can be shown in a macroscopic view when the local-
~(n) B - field cascading is accounted for, even if no macroscopic
Xty = SiiSiky T Sk Xisky, kg (20 electric rectified or second-harmonic field exists.

The susceptibility(24) can be expressed in terms of the
ommonly given electro-optic coefficientg, and the non-
inear coefficientsl;,. With the relation between the electro-
optic coefficients'; and the respective susceptibility

It can be shown that the tens(3) exhibits the same inter-
dependencies of the elements as an intrinsic tensor doe
each of the three products on the right-hand side of( Eg),
performed on transformed tensors, is of the form
(D)~ (2) 0) = — Inn?r; 25
XA = S S oSS (21) (0.0 == iy @9
ith (2 —
SiNce SenSep= Omp aNd SyeSun= 8qn [20], Where &, equals 1 and with x;i (20, 0, 0)=2d;, Eq. (24) becomes
for m=p and 0 form# p, it follows that . -
P P! W Xi(j?’lgle(wa 0,0,~ )= f_lsniznjznﬁnlznmn(o)(rijmrlkn + ikl tjn)
~(2) = ~(2) — (2) (2)
XabcTTcdXdet = SaiSojXijm ZmnSekSfi Xnkl- (22) + £ 0 260) Ay, (26)
This means that the whole tendd3), when transformed to . S o
the new coordinate system ci)e;s the transformation la \Browded that_ the susceptibilities are real qu_an_tltles. o
' As a practical example we consider a uniaxial material in

(20): which a z-polarized optical wave exists. The effective ele-
Dl = SaiSbjSekSnXi(j?f()HS- (23)  ment of the equivalent susceptibility is the 3333-element:
Therefore it has the same spatial symmetries as an intrinsic @)ls, . 1 ni(w)rés 8 d§3
ibili X3333(0; 0,0,~ @) = = +o— . 27
susceptibility. 3e35(0)+2 3n(2w)+2

The second cascading contributigf?F in Eq. (14) depends
IV. DEGENERATE SUSCEPTIBILITIES on the geometry of the system. The macroscopic electric
) ) ) } field may vanish at the second-harmonic frequency in a situ-
Equation(13) is deduced for different frequencies but  atjon far away from the phase-matching condition. Also the
can be equally applied to degenerate cases with commoRacroscopic rectified field can be zero or negligible: if the
frequencies. Especially the susceptibility describing self- angixtension of the optical wave and the nonlinear source term

cross action of waves at one frequency, % *(w;w,@,  in the(quas static field is much larger in the direction of the
-w), can be written according to E¢L3) as static polarizatior(i.e., thez direction) than in the directions
@)ls; . 2. @ @n.. . perpendicular to it. In that case, E@7) is the only cascad-
Xij (@} 0,0, = ©)=3 Xjjm(@; @, 0) 7 O xria(0; 0, ~ @) ing contribution. If the extension of the optical wave is small
+§Xi(|fr)n(wiw:0) Umn(o)ngj?(O;wv_w) in the direction of the static polarization compared to the
2 (2, . perpendicular directions, then the macroscopic rectified field
* 3Xim(@; = @, 20) 7 200) reaches its maximum value &,=-P,o/(goe39 [21], and
xxg?j(z(u;w,w)_ (24) with its negative sign, it is directed in the opposite direc-

The first two addends can be identified as cascading contrit-Ion .Of the polarlz:_;ltl_qn source o. |t§ contribution to the
onlinear susceptibility can be derived to

butions with zero as intermediate frequency, and the third"
one has the second harmonic as intermediate field. It should 1nd(w)r,
be noted that there are no other degeneracy factors in Eq. X%é%(w;w,w,—w) ==
(24) than in Eq.(13). This can either be seen when the three 3 e330)
frequencies (w;,w;,w3) are continuously approaching Conclusively, depending on the macroscopic rectified field
(0,w,-w), or it can be shown in a direct deduction via the — the depolarization field — the sum of the two cascading
rectified and the second-harmonic fields. In the latter caseontributions ranges between

only one of the first two expressions in E&4) would occur 8 o ,
at first, but with a degeneracy factor of 4/3 instead of 2/3. (3635, 1) 19— ) = 1 2ng(e)rgs L8 Ui
The splitting of this expression into the first two ones in Eq. X333 (@@ 3egs(ess+2)  3n(2w) +2

(24) complies with the averaging over permutations of (29)
index-frequency pairgl8] in order to fulfill the intrinsic per-

mutation symmetry(16) for Xi(jBI?IJS' These two terms corre- and the value given by E@27). To assess the order of mag-
spond to the two contributions which are investigated, fomitude of the sum of both cascading contributions, some av-
example, in Ref[12] in degenerate four-wave mixing due to eraged data are taken from Ref22,23 for lithium niobate.

(28)
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The nonlinear refractive indep24] n2:320X§3;34(4n§) cor- V. CONCLUSIONS
responding to Eq(29) and (27) then ranges between 3.2
X 1017 and 3.6 107'°cn?/W at a wavelength of Jum Among the contributions of cascaded second-order non-

and low-frequency modulation. This means that in thelinearities to effective third-order susceptibilities, the contri-
case of a maximum macroscopic electric field, the sum obution that accounts for the locality of the intermediate non-
the cascading contributions is two orders of magnituddinear polarizations is considered in this paper. This
smaller than in the case of a vanishing macroscopic fieldsusceptibility consists of up to three different parts due to
Further configurations are discussed, for instance, in Refthree intermediate polarizations. It is shown that this third-
[16]. Of course, the intrinsic third-order susceptibility has order susceptibility exhibits the same symmetry properties
to be added, too. It should be mentioned that E2B) is  that are known fronintrinsic) susceptibilities. The elements
based on a static calculation, i.e., that the optical wave isf the tensor can be of considerable magnitude, but they can
continuous or slowly varying. For very short optical significantly be compensated by the cascading contribution
pulses the depolarization field leading to E@8) is no  via the macroscopi¢depolarization field, depending on the
longer directly proportional to the polarization source butgeometry of the configuration and the shape of the optical
takes a more complicated temporal shapg]. waves.
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