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Cascading of second-order nonlinear effects leads to an effective third-order nonlinearity. In addition to the
macroscopic electric field at the intermediate frequencies another term has to be taken into account which is
due to the locality of the intermediate polarization sources. Combining the correction terms at the three
intermediate frequencies gives rise to a third-order susceptibility tensor, which exhibits the same symmetry
properties as an intrinsic susceptibility. This particularly applies to the contributions from the rectified and the
second-harmonic fields to the degenerate susceptibility.
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I. INTRODUCTION

It is well known that the cascading of second-order non-
linearities contributes to higher-order nonlinear effects[1,2]
such as harmonic generation[3] or frequency shifting[4,5].
In the case of only weak electromagnetic fields at the inter-
mediate frequencies the cascaded process can be described as
Kerr nonlinearity by means of an equivalent third-order non-
linear susceptibility or a nonlinear refractive index. This has
been shown for the self-action of electromagnetic waves by
cascading via the second harmonic field[6,7], cascading via
the rectified field[8–10], and also in degenerate four-wave
mixing [11,12]. In the first step of the cascading process a
polarization at an intermediate frequency is generated by the
second-order nonlinearity from one or two fundamental
waves. This polarization acts as a source for an electromag-
netic field at the intermediate frequency, which is the solu-
tion of the inhomogeneous Maxwell equations. This macro-
scopic field mixes with another field to produce a nonlinear
polarization at their sum or difference frequency in the sec-
ond step. In addition to the macroscopic field another contri-
bution exists at the intermediate frequency which is due to
the nonlinear source term that has to be included in the rela-
tion between the local and the macroscopic fields at the in-
termediate frequency. The fact that there are two contribu-
tions to the generated polarization in the second step has
been shown in Refs.[1,2]. Compared with a straightforward
calculation with cascading of macroscopic susceptibilities,
the second contribution can be regarded as a correction term
due to cascading through the local field. Other authors con-
sider it as the primary contribution and the resulting macro-
scopic electric field as a depolarization field[13]. The cor-
rection term can be neglected in many cascading situations
where the macroscopic field at the intermediate frequency is
strong compared to the additional field. But if both contribu-
tions are of the same order of magnitude, they both have to
be regarded in calculations. This necessity can occur in cas-
cading via an intermediate field in a situation far away from
the phase-matching condition or via the rectified field. Con-
tributions via optical rectification and the linear electro-optic

effect have been considered in Ref.[10] and especially in
degenerate four-wave mixing in Refs.[11–14], for solitary
waves[15] and various cascading situations in Ref.[16]. In
addition to the correction term in the rectified field, the con-
tribution from the second harmonic field is taken into ac-
count in Ref.[12]. In most references, Refs.[11–15], the two
contributions (macroscopic field and correction term) be-
longing to one intermediate field are combined at the same
time in the calculations, but looked at separately for the dif-
ferent intermediate frequencies or wave vectors in the degen-
erate case. Because of the locality of the correction terms in
contrast to the macroscopic geometry-dependent fields, it is
reasonable to consider their contributions to a macroscopic
third-order susceptibility separately from the contributions of
the macroscopic fields in order to obtain a property that char-
acterizes the material independent of the geometry. Since
there are up to three different intermediate frequencies, gen-
erally three different contributions to this susceptibility have
to be combined. This has been done, e.g., in Ref.[17], but
only in a scalar manner.

In this paper a special emphasis is laid on the susceptibil-
ity containing the local source, especially on its tensorial
nature. The main objective is to show that the resulting mac-
roscopic susceptibility tensor has the same important proper-
ties as all susceptibility tensors have, provided that the con-
tributing first- and second-order susceptibilities exhibit these
properties, which are described in many textbooks, e.g., in
Ref. [18]. As a material characteristic it can be directly added
to the intrinsic susceptibility. The paper is organized as fol-
lows: in Sec. II an expression for the additional susceptibility
is derived, some symmetry properties of which are examined
in Sec. III. The degenerate case regarding only one fre-
quency is considered in Sec. IV.

II. DERIVATION OF THE LOCAL CASCADING
SUSCEPTIBILITY

The basic equation for describing the dependence of the
macroscopic polarization on the macroscopic electric field in
nonlinear materials is the well-known expansion ofP into a
Volterra series inE, which in the frequency domain reads as

Psvd = o
n=1

`

Psndsvd, s1ad
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Psndsvd =
«0

s2pdn−1E
−`

`

¯E
−`

`

xsndsv;v1, . . . ,vn−1,vnd

:Esv1d ¯ Esvn−1d:Esvnddv1 ¯ dvn−1, s1bd

wherev=oi=1
n vi. Psnd is thenth-order nonlinear polarization

and is described by the convolution(1b). This expansion
with the macroscopic susceptibilitiesxsnd expects macro-
scopic fieldsE as a result of sources in a distance sufficiently
far away from the observed points. We assume some monof-

requent wavesEi with phasorsÊi and a time dependence of

the form Eistd= 1
2Êie

jvit+c.c. The polarization vectorsPi

also follow this notation. If, for example, two wavesE1 and
E2 at some frequenciesv1 andv2, respectively, are coupled
into a nonlinear material which lacks a center of inversion,
then a polarizationPim,0 at an intermediate frequencyvim
=v1+v2 is generated with a phasor according to

P̂im,0 = «0xs2dsvim;v1,v2d:Ê1Ê2. s2d

It is part of the second-order polarizationPs2d from Eq. s1bd.
It acts as a source for an electromagnetic fieldEim at the
frequencyvim which is solution of the Maxwell equations
and strongly depends on the geometry of the considered de-
vice and the exciting optical waves. At the sum frequencies,
for example, atvsum=vim+v1, a polarization is produced by
the nonlinear interaction ofEim andE1. The electric fieldEim
is not the resulting field of sources in greater distance but of
the local sourcePim,0 in the vicinity of the fields. Thus, the
polarization Psum,0 at the sum frequency is not expressed
analogous to Eq.s2d but contains another term, which has to
be added to the electric fieldEim and which is directly de-
pendent on the sourcePim,0. A short explanation for the oc-
currence of this additional term is recalled as follows. Since
the nonlinear polarizations basically depend on the micro-
scopicslocald and not on the macroscopic fields, it is neces-
sary to look at the relationship between the macroscopic po-
larization Pim, the macroscopic electric fieldEim, and the
local electric fieldEloc at the places of the microscopic di-
poles:

Êloc = Êim +
1

3«0
P̂im. s3d

This relationship has been derived by Lorentzf19g for cubic
crystals but is assumed to be also valid for other crystals. If

the macroscopic fieldÊim was the result of external sources,

the macroscopic polarization would beP̂im=«0xs1dÊim:

Êloc = sI + 1
3xs1ddÊim = 1

3s« + 2I dÊim. s4d

Here,«= I +xs1d is used andI is the unity tensor. Solving for

Êim and substituting it in an expression for the sum-
frequency polarization analogous to Eq.s2d, i.e.,

P̂sum,0 = «0xs2dsvsum;v1,vimd:Ê1Êim, s5d

yields

P̂sum,0 = «0xs2dsvsum;v1,vimd:Ê1f3s« + 2I d−1Êlocg. s6d

Similarly, the macroscopic fieldÊ1 could be expressed by its
respective local field. Equations6d represents the basic rela-
tionship between the sum-frequency polarization and the
intermediate-frequency electric field. Of course, if Eq.s4d is
valid as a result of external sources, Eq.s5d is equivalent to
Eq. s6d. However, in cascading the total macroscopic polar-

ization P̂im at the intermediate frequency consists of two
parts, i.e., the term proportional to the macroscopic electric

field «0xs1dÊim and the local sourceP̂im,0. Thus, the local
field s3d takes the form

Êloc = SI +
1

3
xs1dDÊim +

1

3«0
P̂im,0. s7d

Using Eq.s7d in Eq. s6d results in

P̂sum,0 = «0xs2dsvsum;v1,vimd:Ê1hÊim + f«0s« + 2I dgs−1dP̂im,0j.

s8d

In addition to Eq.s5d, this equation contains a second con-

tribution to P̂sum,0 which accounts for the locality of the in-
termediate source and which always exists in cascading re-
gardless of the geometry and independent of the evolution of
an electromagnetic field. In many cases of cascading in in-
tegrated optics this additional term can be neglected, as the

electromagnetic fieldÊim at the intermediate frequency is
often — intentionally or not — much larger than the contri-

bution f«0s«+2I dgs−1dP̂im,0. But in some cases, e.g., at optical
rectification, the energy transfer from the fundamental field
to the intermediate fieldsquasistatic fieldd is very small.
Thus, both contributions in Eq.s8d can be of the same order
of magnitude and have to be regarded in calculations.

In the following we will restrict the examinations on the
second contribution in Eq.(8) that explicitly contains the
polarization sourcePim,0. Its effect on the polarization at the
sum frequencyPsum,0 can be regarded as the result of a third-
order nonlinearity that only depends on the properties of the
material and not on the geometry. It can be looked at sepa-
rately from the first contribution in Eq.(8), i.e., the contri-
bution from the macroscopic electric field at the intermediate
frequency. A combination of the three contributions at the up
to three intermediate frequencies yields an equivalent third-
order susceptibility, a general expression for which is derived
in the following. For this susceptibilityxs3d,lssv4;v1,v2,v3d
(the upper index ls stands for local source), with v4
=oi=1

3 vi, all three intermediate frequenciesvi j =v ji =vi
+v j ; i , j =1,2,3;i Þ j have to be included in the calculation.

As before,Êi are phasors of the electric(input) fields and

P̂i j ,0, with i Þ j , are the phasors of the intermediate polariza-

tions at the frequenciesvi j . Each ofP̂i j ,0 is given by

P̂i j ,0 = «0xs2dsvi j ;vi,v jd:ÊiÊ j . s9d

The tensorh is defined in the principal-axis system of the
nonlinear material as
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hsvd = f«svd + 2I g−1 s10d

and accounts for the tensor that appears in front of the inter-
mediate source in Eq.s8d. With the three frequenciesvi j
three contributions for the nonlinear polarization at the sum
frequencyv4=v1+v2+v3 are obtained:

P̂4,0= xs2dsv4;v1,v23d:Ê1fhsv23dP̂23,0g

+ xs2dsv4;v2,v13d:Ê2fhsv13dP̂13,0g

+ xs2dsv4;v3,v12d:Ê3fhsv12dP̂12,0g. s11d

The direct contribution of an intrinsic susceptibilityxs3d to

the polarizationP̂4,0 would be

P̂4,0= 3
2«0xs3dsv4;v1,v2,v3d: Ê1Ê2Ê3. s12d

Using Eq.s9d in Eq. s11d and comparing the result with Eq.
s12d yield the equivalent susceptibility of third orderxs3d,ls,
the components of which are given by

xi jkl
s3d,lssv4;v1,v2,v3d= 2

3xi jm
s2d sv4;v1,v23dhmnsv23d

3xnkl
s2dsv23;v2,v3d

+ 2
3xikm

s2d sv4;v2,v13dhmnsv13d

3xnjl
s2dsv13;v1,v3d

+ 2
3xilm

s2d sv4;v3,v12dhmnsv12d

3xnkj
s2d sv12;v2,v1d. s13d

Note that the sum convention is applied, i.e., Eq.s13d has to
be summed over repeated indices. The total third-order sus-
ceptibility is the sum of all contributions:

xs3d,tot = xs3d,ls + xs3d,E + xs3d,int. s14d

Here,xs3d,E denotes the cascaded susceptibility due to the
macroscopic electric intermediate fields andxs3d,int is the in-
trinsic susceptibility. Maybe further contributions to the total
susceptibility can be found, e.g., by cascading from higher-
order nonlinearities.

III. PROPERTIES OF THE ADDITIONAL SUSCEPTIBILITY

If all three contributions are regarded for the susceptibility
xs3d,ls as it is done in Eq.(13), then the resulting tensor
exhibits some important symmetry properties, provided that
the contributing tensorsh and xs2d have these properties.
One important implication of these symmetries is the fact
that, for example, a mathematical model for a nonlinear in-
teraction of multiple optical waves can be energy conserving
if each susceptibility involved is lossless(i.e., it has no
imaginary part) and obeys the symmetry relations. The men-
tioned general properties are described, for instance, in Ref.
[18].

The first property, the time-reversal symmetry, can be di-
rectly seen from Eq.(13) in the frequency domain:

xi;k1,. . .,kn

snd sv;v1, . . . ,vnd=fxi;k1,. . .,kn

snd s− v;− v1, . . . ,−vndg* .

s15d

The asterisk denotes complex conjugation. Also the intrinsic
permutation symmetry

xi;k1,. . .,kp,. . .,kq,. . .,kn

snd sv;v1, . . . ,vp, . . . ,vq, . . . ,vnd

=xi;k1,. . .,kq,. . .,kp,. . .,kn

snd sv;v1, . . . ,vq, . . . ,vp, . . . ,vnd

s16d

is fulfilled: if any two of the indices 1, 2, 3 together with the
respective indicesj ,k, l are interchanged in Eq.s13d, then
one of the expressions on the right-hand side remains un-
changed while the other two change their roles mutually. The
overall permutation symmetry

xi;k1,. . .,kp,. . .,kn

snd sv;v1, . . . ,vp, . . . ,vnd

=xkp;k1,. . .,i,. . .,kn

snd s− vp;v1, . . . ,−v, . . . ,vnd s17d

is valid for xs3d,ls if it is valid for the contributing tensors: let
us consider, e.g., the susceptibility

x jikl
s3d,lss− v1;− v4,v2,v3d= 2

3x jim
s2d s− v1;− v4,v23dhmnsv23d

3xnkl
s2dsv23;v2,v3d

+ 2
3x jkm

s2d s− v1;v2,− v12dhmns− v12d

3xnil
s2ds− v12;− v4,v3d

+ 2
3x jlm

s2d s− v1;v3,− v13dhmns− v13d

3xnki
s2ds− v13;v2,− v4d, s18d

based on the definitions13d and the equationv4=v1+v2
+v3. Application of Eq.s17d on Eq.s18d for each of thexs2d

elements containing negative frequencies as arguments
yields

x jikl
s3d,lss− v1;− v4,v2,v3d= 2

3xi jm
s2d sv4;v1,v23dhmnsv23d

3xnkl
s2dsv23;v2,v3d

+ 2
3xmkj

s2d sv12;v2,v1dhmns− v12d

3xiln
s2dsv4;v3,v12d

+ 2
3xmjl

s2d sv13;v1,v3dhmns− v13d

3xikn
s2dsv4;v2,v13d. s19d

The first term on the right-hand side of Eq.s19d is identical
to the first one in Eq.s13d, and the other two change their
roles if the order of the factors is reversed, the indicesn↔m
are interchanged, and the symmetrys17d of theh tensorf25g
is used. So the validity of the overall permutation symmetry
s17d for xs3d,ls is shown. The prerequisite thatxs2d obeys Eqs.
s15d and s16d is fulfilled as these are intrinsic properties of
the susceptibilities; Eq.s17d applies toxs2d in lossless mate-
rials. This is also true forh as long as the tensorial definition
s10d or a similar expression based on the permittivity« is
valid.
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A further property is the spatial symmetry of the respec-
tive crystal class. The interdependence of the tensor elements
and the zero elements is determined by the symmetry opera-
tions that can be performed on a crystal of the respective
class. Letsij be the elements of the matrix of such an opera-
tion. Then a tensor is transformed into the new coordinate
system according to

x̃ j ;l1,. . .,ln
snd = sjisl1k1

¯ slnkn
xi;k1,. . .,kn

snd . s20d

It can be shown that the tensors13d exhibits the same inter-
dependencies of the elements as an intrinsic tensor does:
each of the three products on the right-hand side of Eq.s13d,
performed on transformed tensors, is of the form

x̃abc
s2d h̃cdx̃def

s2d = saisbjscmxi jm
s2d scpsdqhpqsdnseksflxnkl

s2d . s21d

Sincescmscp=dmp and sdqsdn=dqn f20g, wheredmp equals 1
for m=p and 0 formÞp, it follows that

x̃abc
s2d h̃cdx̃def

s2d = saisbjxi jm
s2d hmnseksflxnkl

s2d . s22d

This means that the whole tensors13d, when transformed to
the new coordinate system, obeys the transformation law
s20d:

x̃abef
s3d,ls = saisbjseksflxi jkl

s3d,ls. s23d

Therefore it has the same spatial symmetries as an intrinsic
susceptibility.

IV. DEGENERATE SUSCEPTIBILITIES

Equation(13) is deduced for different frequenciesvi but
can be equally applied to degenerate cases with common
frequencies. Especially the susceptibility describing self- and
cross action of waves at one frequency, i.e.,xs3d,lssv ;v ,v ,
−vd, can be written according to Eq.(13) as

xi jkl
s3d,lssv;v,v,− vd= 2

3xi jm
s2d sv;v,0dhmns0dxnkl

s2ds0;v,− vd

+ 2
3xikm

s2d sv;v,0dhmns0dxnjl
s2ds0;v,− vd

+ 2
3xilm

s2d sv;− v,2vdhmns2vd

3xnkj
s2d s2v;v,vd. s24d

The first two addends can be identified as cascading contri-
butions with zero as intermediate frequency, and the third
one has the second harmonic as intermediate field. It should
be noted that there are no other degeneracy factors in Eq.
s24d than in Eq.s13d. This can either be seen when the three
frequencies sv1,v2,v3d are continuously approaching
sv ,v ,−vd, or it can be shown in a direct deduction via the
rectified and the second-harmonic fields. In the latter case
only one of the first two expressions in Eq.s24d would occur
at first, but with a degeneracy factor of 4/3 instead of 2/3.
The splitting of this expression into the first two ones in Eq.
s24d complies with the averaging over permutations of
index-frequency pairsf18g in order to fulfill the intrinsic per-
mutation symmetrys16d for xi jkl

s3d,ls. These two terms corre-
spond to the two contributions which are investigated, for
example, in Ref.f12g in degenerate four-wave mixing due to

different wave vectors in the rectified field. Equations25d
shows that by summing up these two contributions and the
contribution from cascading over the second-harmonic field,
the resulting tensorxs3d,ls has the properties discussed in Sec.
III as a local susceptibility tensor of third order. Thus, also in
the degenerate case energy conservation of the physical sys-
tem can be shown in a macroscopic view when the local-
field cascading is accounted for, even if no macroscopic
electric rectified or second-harmonic field exists.

The susceptibility(24) can be expressed in terms of the
commonly given electro-optic coefficientsr ijk and the non-
linear coefficientsdijk. With the relation between the electro-
optic coefficientsr ijk and the respective susceptibility

xi jk
s2dsv,v,0d = − 1

2ni
2nj

2r ijk , s25d

and withxi jk
s2ds2v ,v ,vd=2dijk, Eq. s24d becomes

xi jkl
s3d,lssv;v,v,− vd = 1

6ni
2nj

2nk
2nl

2hmns0dsr ijmrlkn + r ikmrljnd

+ 8
3hmns2vddmlidnkj, s26d

provided that the susceptibilities are real quantities.
As a practical example we consider a uniaxial material in

which a z-polarized optical wave exists. The effective ele-
ment of the equivalent susceptibility is the 3333-element:

x3333
s3d,lssv;v,v,− vd =

1

3

ne
8svdr33

2

«33s0d + 2
+

8

3

d33
2

ne
2s2vd + 2

. s27d

The second cascading contributionxs3d,E in Eq. s14d depends
on the geometry of the system. The macroscopic electric
field may vanish at the second-harmonic frequency in a situ-
ation far away from the phase-matching condition. Also the
macroscopic rectified field can be zero or negligible: if the
extension of the optical wave and the nonlinear source term
in thesquasid static field is much larger in the direction of the
static polarizationsi.e., thez directiond than in the directions
perpendicular to it. In that case, Eq.s27d is the only cascad-
ing contribution. If the extension of the optical wave is small
in the direction of the static polarization compared to the
perpendicular directions, then the macroscopic rectified field

reaches its maximum value ofÊz=−P̂z,0/ s«0«33d f21g, and
with its negative sign, it is directed in the opposite direc-

tion of the polarization sourceP̂z,0. Its contribution to the
nonlinear susceptibility can be derived to

x3333
s3d,Esv;v,v,− vd = −

1

3

ne
8svdr33

2

«33s0d
. s28d

Conclusively, depending on the macroscopic rectified field
— the depolarization field — the sum of the two cascading
contributions ranges between

x3333
s3d,cascsv;v,v,− vd = −

1

3

2ne
8svdr33

2

«33s«33 + 2d
+

8

3

d33
2

ne
2s2vd + 2

s29d

and the value given by Eq.s27d. To assess the order of mag-
nitude of the sum of both cascading contributions, some av-
eraged data are taken from Refs.f22,23g for lithium niobate.
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The nonlinear refractive indexf24g n2=3Z0x3333
s3d / s4ne

2d cor-
responding to Eq.s29d and s27d then ranges between 3.2
310−17 and 3.6310−15 cm2/W at a wavelength of 1mm
and low-frequency modulation. This means that in the
case of a maximum macroscopic electric field, the sum of
the cascading contributions is two orders of magnitude
smaller than in the case of a vanishing macroscopic field.
Further configurations are discussed, for instance, in Ref.
f16g. Of course, the intrinsic third-order susceptibility has
to be added, too. It should be mentioned that Eq.s28d is
based on a static calculation, i.e., that the optical wave is
continuous or slowly varying. For very short optical
pulses the depolarization field leading to Eq.s28d is no
longer directly proportional to the polarization source but
takes a more complicated temporal shapef8,9g.

V. CONCLUSIONS

Among the contributions of cascaded second-order non-
linearities to effective third-order susceptibilities, the contri-
bution that accounts for the locality of the intermediate non-
linear polarizations is considered in this paper. This
susceptibility consists of up to three different parts due to
three intermediate polarizations. It is shown that this third-
order susceptibility exhibits the same symmetry properties
that are known from(intrinsic) susceptibilities. The elements
of the tensor can be of considerable magnitude, but they can
significantly be compensated by the cascading contribution
via the macroscopic(depolarization) field, depending on the
geometry of the configuration and the shape of the optical
waves.
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