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In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-
condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal
fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid4He, a Bose-Einstein-
condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain
both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas
could be investigated in existing experiments.
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I. INTRODUCTION

The achievement of Bose-Einstein condensation(BEC) in
dilute atomic gases[1] represents the establishment of sev-
eral new exciting possibilities. The investigation of degener-
ate quantum gases provides, for instance, a good testing
ground for innumerable many-body theories developed along
the past few decades. Those theories were mainly developed
within the context of explaining the striking properties of
4He below thel point. Among other features, this fluid be-
haves as having zero viscosity(a superfluid) and also appar-
ently as having zero entropy[2].

The zero-entropy hypothesis seemed to be the only expla-
nation for two other(although related) remarkable properties
of superfluid 4He. The first notable property is called the
thermomechanical effect(or the “fountain” effect), where a
temperature gradient across the fluid produces motion of
matter. The force responsible for imparting the motion to the
fluid is a “thermoforce”(a term used first by London[3]). On
the other hand, the motion of the superfluid also produces
temperature gradients. This second effect is the so-called
mechanocaloric effect. Both effects were very important to
understand the behavior of superfluids, giving valuable hints
about the nature of the processes involved.

In earlier times the first proposal of London[3] and Tisza
[4], considering the superfluidity as a macroscopic manifes-
tation of BEC, was somehow overruled by the good agree-
ment of the hydrodynamic theory of Landau[5] to the first
experiments measuring the second sound velocity[6]. Just
later, after much of the development of the many-body
theory, especially by Bogoliubov[7], it became clear that
BEC was in fact behind the appearance of superfluidity. Even
then, the hydrodynamic formalism has been quite useful for
calculating and understanding the4He superfluid. Recently,
after the experimental achievement of quantum degenerate
gases, the formalisms developed initially to understand su-
perfluidity of helium have been extended to explore the di-
lute atomic gases as well[8]. A full historical account of

these developments, although exciting, is much beyond the
scope of this present paper. The interested reader, however,
could look, for instance, at Ref.[9], and the references
therein.

In this paper we deal with some aspects of the hydrody-
namics of a Bose-Einstein-condensed phase. In particular we
show that both effects(the mechanocaloric and the thermo-
mechanical effects) are always expected to happen in any
Bose-Einstein condensate.

The way we deal with these two phenomena is derived
from the same equation, showing the clear relation between
them. Furthermore, we do not have to use the zero-entropy
property for the superfluid or the BEC system to explain both
effects.

The presentation of this paper is arranged as follows. In
Sec. II we introduce the hydrodynamic quantization ap-
proach to the Bose-Einstein condensation of a system of
charged spin-0 bosons under the action of external fields. A
chemical potential is introduced later in order to discuss the
equilibrium conditions for this system. In Sec. III we present
the equations of motion and define averages over the en-
semble.

In Sec. IV we write the hydrodynamic equations of Bose-
Einstein condensates under the action of external fields.
These equations do not take into account temperature effects.

The relevant equilibrium equation, a generalized Ber-
noulli equation, is introduced in Sec. V. From this zero tem-
perature equilibrium condition we then propose a natural ex-
tension that allows us also to take into account the
temperature effects.

The force equation and explicit expression for the thermo-
force are presented in Sec. VI. Finally, the conclusions in
Sec. VII close the paper.

II. HYDRODYNAMIC QUANTIZATION

In earlier papers[10,11] we have presented the hydrody-
namic quantization approach and some aspects of the fluidity
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of a Bose-Einstein-condensed system. In this section we
shall analyze these equations for the quite general and im-
portant case of a condensate in the presence of electric and
magnetic fields and when the number of particles varies. In
order to do so we introduce a chemical potential. Further-
more, the introduction of a chemical potential is also relevant
in order to study the equilibrium conditions for condensation
under the action of external fields[12].

We shall discuss here the field theoretic approach aimed at
the description of a system of scalar Bose particles. Within
the field theoretic approach, charged spin-0 bosons are asso-
ciated with a complex scalar fieldcsxd. In what follows,x is
a shorthand notation for a time and space pointfx=st ,xWdg.

The quantization of the theory is carried out by imposing
equal-time commutation relations between the field and its
canonically conjugated variablec* , followed by a typical
quantization scheme implemented with the introduction of
the Fock space. This method is especially useful when we
deal with systems whose number of particles is well defined,
for example, in the description of scattering processes. One
can use, however, an alternative procedure: the so-called hy-
drodynamic quantization of the field[13]. In this scheme we
use a new set of variablesrsxd and wsxd, which are more
convenient in the description of properties related to Bose-
Einstein condensation. These new variables are defined as

rsxd = c*sxd csxd,

csxd = Îrsxd eiwsxd, s2.1d

denominated density and phase variables, respectively. They
are canonically conjugated to each other, as we shall see
below. For this reason we impose the following commutation
relations among the density operator and the phase operator:

fr̂sxd,ŵsx8dg = idsx − x8d. s2.2d

The quantization method, based on commutation relations
among density and phase operators, is called a hydrodynamic
quantization, and its application in superfluidity, where
Bose-Einstein condensation is known to occur, was proposed
by Landauf12g. The commutation relation in Eq.s2.2d, in
conjunction with an explicit representation for these opera-
tors, requires a departure from more usual quantization ap-
proaches.

An explicit representation of the algebra of operators(2.2)
can be realized by making use of the so-called density rep-
resentation. In this representation the density operator is a
classicalc number. That is,

r̂sxd = rsxd, s2.3d

and the phase operator is represented by the operator

ŵsxd = − i
d

drsxd
. s2.4d

Within the density representation the states vectors are
represented as functionals of the density

c = cfrg. s2.5d

In Ref. [10] we give examples of how to construct wave
functionals associated with the vacuum and Fock states.

The state functionals, as well as other relevant physical
quantities, are written in terms of the density and phase op-
erators(2.1), or in terms of integrals over space-time densi-
ties. We shall give below several examples that will be used
through this paper. We start with the Lagrangian and the
Hamiltonian.

In terms of the fieldc, the classical Lagrangian densityL,
for the nonrelativistic scalar particles, is written as

L =
i

2
hc*sxdf]t csxdg − f]t c*sxdgcsxdj −

¹W c*sxd ·¹W csxd
2m

− HIfc*sxd csxdg, s2.6d

whereHI is the interaction Hamiltonian density. We define
the Hamiltonian densityH as composed of two terms:

Hsxd ;
¹W c*sxd ·¹W csxd

2m
+ HIfc*sxd csxdg ; K + HI .

s2.7d

The first term in Eq.(2.7), containing derivatives of the
field, is the kinetic energy termsKd and the second is the
interaction HamiltonianHI, which contains no field deriva-
tive terms.

Placing Eq.(2.1) into Eq. (2.6) one can see that the clas-
sical Lagrangian density can be written under the general
form

Lsxd = − rsxd
] wsxd

] t
− Hfx,r,wg, s2.8d

thus showing that phase and density are canonically conju-
gated variables.

The quantum action is defined as

S=E Lsxd dx. s2.9d

If the system is under the action of external magnetic fields

sBW =¹W 3AW d the kinetic term can be written, in terms of the
variablesrsxd andwsxd, as

Ksr,w,AW d = rsxd
f¹W wsxd − eAW sxdg2

2m
+

f¹W Îrsxd g2

2m
,

s2.10d

wheree is the electric charge of the spin-0 bosons.
Whereas, in the presence of an external potentialUsxd, the

interaction Hamiltonian takes the general form

HIsrd = rsxd Usxd + rsxd «sr,xd ; rsxd Usxd + Hint,

s2.11d

where «sr ,xd in Eq. s2.11d is the per-particle interaction
internal energy density. If we assume binary interactions
among the particles,«sr ,xd is given by
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«sr,xd =
1

2
E dxW8 VsxW − xW8d rsxW8d. s2.12d

Let us consider the expression, in terms of density and
phase, of other physically relevant quantities in the study of
quantum fluids. We start with the expression for the momen-
tum. The classical definition of momentum is the integral

over the space of the momentum operator densitysPW sxdd of
the field:

pW =E dxWPW sxWd =
1

2
E dx w*sxd¹W wsxd =E d3x rsxd¹W wsxd.

s2.13d

From Eq.(2.13) it follows that the per-particle momentum

PW sxWd is given by

PW sxWd = ¹W wsxd = ¹W S− i
d

drsxd
D ; mVW sxWd. s2.14d

In quantum theory there is, however, another relevant mo-

mentum. This quantum momentumfPW qsxdg is defined as12 of
the gradient of the log of the density. That is,

PW qsxWd ; ¹W fln Îrsxd g = m VW qsxd. s2.15d

The quantum origin ofPW qsxWd defined in Eq.s2.15d is ex-
plained in Ref.f14g.

The analysis of a hard sphere gas provides a good ex-
ample for the understanding of both types of momenta[11].
The classical momentumPW sxWd is associated with the quan-

tized vortices, whereas the quantum momentumPW q is more
relevant in understanding the dependence of the fluid density
upon the distance of the vortex center[11].

In terms of the velocities defined in Eqs.(2.13) and(2.14)
one can write, by using Eqs.(2.10) and (2.11), the Hamil-
tonian densityH as

Hfr,wg = rsxd
m

2
fVW 2sxd + VW 2

qsxdg + rsxdfUsxd + esr,xdg.

s2.16d

If the bosonic system is under the action of an external

magnetic field the above expression remains valid forVW sxd
defined by

VW sxd =
PW sxd − eAW sxd

m
. s2.17d

The interaction of the particles with external fields is car-
ried out, in field theory, as usual. For the coupling with ex-

ternal magnetic fieldssBW =¹W 3AW d we use the minimum sub-

stitution ¹W →AW − ieAW . The potentialUsxd takes into account
the interaction with external electric fields as well as external
gravitational fields.

All the above definitions are relevant in the understanding
of fluidity aspects of Bose-Einstein-condensed systems.

In the following section we shall analyze the dynamical
equations.

III. EQUATIONS OF MOTION AND ENSEMBLE
AVERAGES

The time evolution of a physical quantity represented by
the operatorOsxd is given by the Heisenberg equation of
motion,

] Osxd
] t

= ifH,Osxdg. s3.1d

The Hamiltonian operator in Eq.(3.1) is the integral of
the Hamiltonian density

H =E dx Hfw,rg. s3.2d

Within the density representation the equations of motion
of the density and phase operators are

] wsxd
] t

= −
dH

drsxd
, s3.3d

] rsxd
] t

=
dH

dwsxd
. s3.4d

These equations follow also from Eq.s2.8d by takingr andw
as independent dynamical variables.

By taking the gradient of Eq.(3.3) we define a new equa-
tion that we name the force equation:

] PW sxd
] t

= FW sxd. s3.5d

The force equation gives the rate of change of the per-
particle momentum and is the relevant equation in the under-
standing of superfluidity and the thermoforce. As we shall
see, the thermoforce is a new type of force that arises in a
BEC system.

The local force operatorFW sxd is, formally, written as

FW sxd = − ¹W S dH

drsxd
D . s3.6d

One of the interesting features of the hydrodynamic quan-
tization is that the quantum equation of motion resembles
that of a classical fluid(from this fact derives the “hydrody-
namic” name). Using Hamiltonian(2.16), the time evolution
equations are

−
] wsxd

] t
=

PW 2sxd
2m

+ Usxd + hsxd +
PW q

2

2m
+

1

2mr
¹W · sr PW qd,

s3.7d

] r sxd
] t

= − ¹W ·
rsxdPW sxd

m
, s3.8d
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] PW

] t
= − ¹W S PW 2

2m
D + FW extsxd − ¹W hsxd

− ¹W S PW q
2

2m
+

1

2mr
¹W · sr PW qdD , s3.9d

wherehsxd in Eqs.s3.7d ands3.9d is the per-particle enthalpy

hsxd ;
d Hint

drsxd
= esr,xd +

Psxd
rsxd

. s3.10d

The pressurePsxd in Eq. (3.10) is, as can be inferred from
Eqs.(3.10) and (2.11), given by

Psxd
rsxd

=E dx8 rsx8d
desr,x8d

drsxd
e„rsx8d,x8…. s3.11d

The termFW extsxd in Eq. (3.9) is the force exerted on each
of the charged particles of the system as a result of the ex-
ternal potentialUsxd,

FW extsxd = − ¹W Usxd. s3.12d

Equations(3.7)–(3.9) are valid as time evolution equa-
tions of operators. In order to deal with classicalc numbers
one can consider expectation values and averages over the
ensemble.

Any of the quantum versions of the equations of motion
(3.7)–(3.9) are obviously valid when one considers expecta-
tion values. Defining the trace of an operatorO as

TrOsxd = o
c

kcuOsxducl
1

kcucl
, s3.13d

we can write the following equations:

]

] t
fTr wsxdg = − TrS dH

drsxd
D , s3.14d

]

] t
fTr rsxdg = TrS dH

dwsxd
D . s3.15d

Ehrenfest theorems can be defined as averages over the
ensemble of quantum equations. In order to define averages
over the ensemble, we define the quantum-mechanical parti-
tion function of a Bose system.

For the quantum actionS, given by Eq.(2.9), we define
the partition function as

Z = Tr eiS. s3.16d

This is just an extension of the usual finite temperaturesTd
definition of the partition function

Z = Tr se−H/kTd. s3.17d

The average over the ensemble of a physical quantity
Osxd is usually defined by

kOsxdl =
1

Z
TrheiS Osxdj. s3.18d

Taking averages over the ensemble, one writes

] kwsxdl
] t

= −K dH
drsxdL , s3.19d

] krsxdl
] t

= +K dH
dwsxdL . s3.20d

Averages over the ensemble are relevant in the context of
statistical mechanics. In the next section we shall consider
matrix elements of the equations of motion under the form
(3.14) and (3.15).

IV. HYDRODYNAMIC EQUATIONS FOR BOSE-
EINSTEIN-CONDENSED STATES

One expects some basic distinctions, at the level of states,
between a condensed system and a normal one. We have
proposed, in Ref.[10], that the basic distinction can be traced
back to special properties of the wave functional associated
with BEC states. We have proposed that the wave functional
of BEC systems is endowed with two distinctive properties
[10,11].

A. Property (1) of the condensate wave functional

The wave function of the system associated withccfrg
[11,15] is a product of wave functions

ccsx1 ¯ xNd = p
i=1

N

ccsxid. s4.1d

The wave functionccsxd in Eq. s3.1d is, by definition, the
condensate wave function which will be written as

ccsxd = Îrcsxd eiwcsxd. s4.2d

The variablesrcsxd and wcsxd will be identified as the
density and phase of the condensate.

B. Property (2) of the condensate wave functional

The condensate wave functional describes coherent states
for which the following factorization property holds true:

c*frgĉsxd cfrg
c*frg cfrg

= ccsxd = Îrcsxd eiwcsxd s4.3d

and

c*frg · ĉsx1d ¯ ĉsxNd cfrg
c*frg cfrg

= ccsx1d ¯ ccsxNd. s4.4d

Propertys1d is an obvious requirement in order that the wave
functional be associated with a condensed state, whereas
propertys2d allows us to identify the condensate wave func-
tion with the order parameter of the phase transitionf16,17g.
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The factorization property(3.4) is the analog of the “off-
diagonal long-range order” introduced by Penrose and On-
sager[18] in the context of superfluidity of4He.

In Refs.[10,11] we have shown that the wave functional

ccfrg = expSE rsxdln ccsxddxD s4.5d

exhibits the properties above mentioned propertiess1d and
s2d, thus providing an explicit example of such wave func-
tionals.

The relevance of the factorization property in the under-
standing of superfluidity has been already emphasized by
Anderson in Ref.[16]. By taking averages over states satis-
fying Eq. (4.4), we conclude that the wave function of the
condensate, defined in Eq.(4.3), satisfies the equations

] wcsxd
] t

= U− S dH
drsxd

DU r=rcsxd

w=wcsxd

, s4.6d

] rcsxd
] t

= US dH
dwsxd

DU r=rcsxd

w=wcsxd

. s4.7d

Since ac-number fieldcsxd is the wave function in thexW
representation of a stateucl, Eqs.s4.6d ands4.7d specify the
equation for the condensate wave function. They are
c-number equations.

By taking the functional derivatives ofH given by Eq.
(2.2), now expressed as a functional ofr and w, we obtain
the following set of equations:

] rcsxd
] t

+ ¹W ·JWcsxd = 0, s4.8d

−
] wcsxd

] t
=

m

2
VW 2sxd +

m

2
VW q

2sxd −
¹W ·JWqsxd
2rcsxd

+ Usxd + hsxd,

s4.9d

where we have used forVW ,VW q, andhsxd the definitionss2.7d,
s2.15d, and s3.10d. The density currentsJWc and JWq are given
by

JWqsxd = rcsxd VW qsxd, s4.10d

JWcsxd ; rcsxd VW csxd. s4.11d

Taking the gradient of Eq.(3.9) we get the force equation

] PW c

] t
+ msVW c ·¹W dVW c + msVW q ·¹W dVW q

= e VW c ∧ BW − ¹W HU + h +
1

2r
¹W · r VW qJ . s4.12d

In the presence of an external magnetic field the motion is
necessarily rotational since the rotational of the condensate
velocity is related to the magnetic field by

¹W 3 VW c = −
e

m
¹W 3 AW = −

e

m
BW . s4.13d

In the absence of a magnetic field the motion of the con-
densate is irrotational.

Equation (3.8) is a continuity equation which we have
shown to be true for the condensed component of the system.

As we shall see in the next section, Eq.(3.9) corresponds
to a generalized Bernoulli equation. We refer to it as the
equilibrium equation. It gives the condition of equilibrium
for a Bose-Einstein-condensed fluid under the action of ex-
ternal fields.

Equation(3.13) is the dynamic equation satisfied by the
fluid in motion under external fields. We shall see that it is an
extension of one of Anderson’s equations in Ref.[16].

This allows us to conclude that the dynamical equations
for the density and phase of the wave function of the con-
densate, are Eqs.(4.8), (4.9), and(4.12). As a result of these
equations we can conclude, on quite general grounds, that
the condensed fluid satisfies the continuity equation and that
in the absence of magnetic fields the motion of the fluid is
irrotational.

V. EQUILIBRIUM EQUATION

We show in this section that, for stationary states, Eq.
(4.9) gives the equilibrium condition when the system is un-
der the action of external fields and that this equilibrium
condition is a generalized Bernoulli equation.

As usual, we assume that the equilibrium condition for a
system under the action of external fields is the chemical
potentialsmd to be constant:

m = m0. s5.1d

Remembering that the fieldc is the wave function of a
statec in the rW representation, the field associated with a
stationary state is

csxW,td = eifm0t+wcsxWdg ÎrcsxWd, s5.2d

wherem0 is a constant.
For a stationary state the equilibrium equation, for the

phase given by Eq.(5.2), is

m0 = hsxd + Usxd +
m VW c

2sxd
2

+
m

2
VW q

2sxd −
¹W ·Jqsxd
2rcsxd

.

s5.3d

Taking now into account the explicit expression forhsxd, we
write

m0 = «„x,rcsxd… +
Psxd
rcsxd

+
m

2
VW c

2sxd + Usxd +
m

2
VW q

2sxd

−
¹W ·JWqsxd
2rcsxd

. s5.4d

In order to show thatm0 is the chemical potential we
multiply Eq. (5.4) by rcsxd and integrate overxW. The result
can be written as
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m0 Nc = Ec +E PsxWd d3x, s5.5d

whereNc in Eq. s5.5d is the number of particles in the con-
densate

Nc =E d3x rcsxWd, s5.6d

andEc is the condensate energy defined as the integral of the
density Hamiltonian:

Ec =E d3x Hfrc,wcg. s5.7d

Expression(5.5) shows thatm0 is the chemical potential
sincem0Nc is the total enthalpy of the system[12].

For a uniform condensate, the Bogoliubov condensate
[20] is

rcsxd = r0c. s5.8d

The quantum velocity vanishes so that for a uniform conden-
sate, Eq.s4.3d is Bernoulli’s equation:

m0 = «„x,r0csxd… + m
Psxd
r0c

+
m

2
VW c

2sxd + Usxd. s5.9d

Since the first four terms of Eq.(4.4) correspond to the
usual Bernoulli equation, one can predict that deviations
from the usual fluid is expected as a result of the quantum
velocity term. This prediction deserves to be tested experi-
mentally.

We notice that for a non-self-interacting system,

hsxd = 0. s5.10d

Such non-self-interacting fluid, the fluid described by Eqs.
s4.2d and s4.3d, is a Mahdelung fluidf19g. Therefore, ne-
glecting self-interaction of particles, the BEC is a Mahdelung
fluid.

One can extend some of the previous equations to finite
temperatures. In order to do so we just recall that the equi-
librium condition for a fluid under external fields takes the
form [12]

m = gsP,Td + m8, s5.11d

wheregsP,Td is the per-particle Gibbs energy in the absence
of the external fields andm8 takes into account the external
fields.

Remembering also that at zero temperatures the per-
particle Gibbs free energy is equal to the per-particle en-
thalpy

gsP,0d = «sx,r0cd + m
Psxd

r0csxd
= hsxd, s5.12d

we can write Eq.s4.6d under the following form:

m0 = gsP,0d +
m

2
VW c

2sxd + Usxd. s5.13d

The natural extension of Eq.s5.5d to finite temperatures, in
view of Eq. s5.13d, is

m0 = gsP,Td +
m VW c

2sxd
2

+ Usxd

= «sx,r0d + m
Psxd
r0

− TssTd + m
VW c

2

2
+ Usxd. s5.14d

Notice that for nonstationary states the generalization of
Eq. (4.11) to finite temperatures should be, from Eqs.(5.2)
and (5.14),

] wc

] t
= gsP,Td + m

VW c
2

2
+ Usxd. s5.15d

The interesting aspect of Eq.s5.14d is that one can imagine
an entropy filter. That is, one can devise experiments by
means of which a low entropy component is separated from
a large entropy component of the BEC fluid. This would be
similar to what happens in superfluid4He.

In fact, one can think of two experimental setups in order
to check the validity of the predictions made here. These
experiments are analogous to the ones done with superfluid
4He. Let us consider two containers(A and B) of a Bose-
Einstein-condensed fluid in which we keep the temperature
initially constant on each side and keep the density constant.
At this point we consider no external fields. Suppose that
these containers are now physically connected by a tube, in
which we can have a flow of the condensate. Since

dg=
1

r
dP− s dT s5.16d

it follows from Eq. s5.14d, that

1

r
dP− s dT= − dSm VW c

2

2
D , s5.17d

so that the flow through the superleak occurs untilVW c=0.
Under this condition, it follows from Eq.s5.17d that

dP= ssTd dT. s5.18d

The temperature difference giving rise to a pressure dif-
ference is the thermomechanical effect. Equation(5.18) is
London’s relation[3].

If the containers discussed above are kept at constant
pressure, then from Eq.(5.16) it follows that

dSm VW c
2sxd

2
D = s dT. s5.19d

As a consequence of Eq.(5.19) one can see that if there is
mass flow in one of the containers, it will be colder than the
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other one. That is, the mechanocaloric effect is expected to
happen in any BEC system.

We can see, from Eq.(5.19), that in any BEC system a
gradient temperature leads to motion of the fluid and vice
versa. It follows, also from Eq.(5.19) that, along a stream
line, the difference between the kinetic energy of the fluid at
two pointsB andA, in each container, is

m VW c
2sBd
2

−
m VW c

2sAd
2

= ssTdsTB − TAd. s5.20d

From Eq.s5.20d it follows that if the fluid flows fromA to B
fVsBd.VsAdg, the containerB will be warmer. On the other
hand, if one of the containers is now considered as a thick
tube the pressuredP will cause a fountain of Bose-Einstein
condensate. We predict, in this way, the fountain effect for
any BEC system.

In superfluid4He these two phenomena are explained by
assuming that the superfluid component is a zero-entropy
fluid. We have seen here that this is not necessary.

VI. FORCE EQUATION

In this section we will show that the phenomenon of su-
perfluidity for a BEC system is intimately connected to the
two effects present in4He, the thermomechanic and mecha-
nocaloric effects. Usually, they are considered as indepen-
dent properties of the superfluid helium. We shall give, also
in this section, formal expressions for the thermoforce.

First, we recall that

dg=
1

r
dP− ssTd dT. s6.1d

Now we take the gradient of Eq.(5.14), and the dynamic
equation for a nearly uniform fluid becomes

] PW c

] t
+ msVW c ·¹W dVW c = FW ext −

m

r
¹W P + e VW c 3 BW + ssTd¹W T.

s6.2d

All terms in Eq. (6.2) have a simple interpretation. The
term in the left-hand side of Eq.(6.2) is the total derivative

of PW c, that is,

DPW c

Dt
; S ]

] t
+ VW c ·¹W DPW c. s6.3d

The first term in the right-hand side of Eq.(6.2) is the
external force

FW ext = − ¹W U. s6.4d

The second term in the right-hand side of Eq.(6.2) is the
usual force that induces motion in the fluid as a result of
pressure gradients,

FW 1 = −
m

r
¹W P. s6.5d

The third term in the right-hand side of Eq.(6.2) is the
Lorentz force due to the external magnetic field,

FW Lorentz= e VW c 3 BW . s6.6d

The last term in Eq.(6.2) is our main contribution to the
BEC motion. We propose that this term is the thermoforce:

FW ther= ssTd¹W T. s6.7d

The presence of the thermoforce in Eq.(6.2) means that
there will be motion of the fluid as a result of temperatures
gradients. The motion is towards the greatest temperatures.

Putting all this together, we write

DPW c

Dt
; FW ext + FW ther+

1

r
¹W P + e VW c 3 BW . s6.8d

Except for the thermoforce, Eq.(6.8) is just the Euler
equation for an ideal fluid. Under similar assumptions made
here, Anderson derived the usual Euler equation for4He
[16].

The conclusion, therefore, is that the same phenomenon
(Bose-Einstein condensation) is responsible for all the strik-
ing properties of superfluid4He: the superfluidity and both
the related thermomechanical and mechanocaloric effects. In
fact, in principle, we expect that any BEC system should
present those phenomena. At least one of them has already
been experimentally confirmed[21].

VII. CONCLUSIONS

We have shown in this paper that the thermomechanical
and mechanocaloric effects are always expected to occur in a
Bose-Einstein condensate. Besides the understanding of
these effects, we have shown that they can be predicted by
using the same equation that leads to the Euler equation(the
equation that we have named force equation).

We have proposed a generalized Bernoulli equation that
would lead, for nonuniform density fluids, to a departure
from the usual Bernoulli equation. The generalized Bernoulli
equation is valid for stationary BEC states. For time-
independent states the chemical potential is zero; in this case
the Bose-Einstein-condensed state is characterized as a zero
Gibbs energy fluid.

Another important property of a superfluid is the fact that
it is irrotational[22]. As a consequence of the presented cal-
culation, we have deduced that this is not generally the case.
It only happens in the absence of external magnetic fields.

We have derived an expression for the thermoforce. It is
interesting to note that the same expression was also found
by London[3], using a different approach. Experimental evi-
dence for the specific form(6.7) is, to our knowledge, miss-
ing. However, it predicts that as the temperature is lowered
the thermoforce tends to zero[since limT→0 ssTd→0]. This
fact is quite well known in superfluid4He. The thermoforce
becomes negligible for temperatures below 0.6 K[3].
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Another important contribution of this present paper is
that in order to explain some aspects of the BEC phenom-
enon, there is no need for the zero-entropy fluid hypothesis.

Finally, we would like to mention that some of our spe-
cific quantitative predictions contained in the presented equa-
tions can be tested using present experimental conditions.
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