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In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-
condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal
fluid and a Bose-Einstein-condensed one. We show that, in close analogy with sugetéualBose-Einstein-
condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain
both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas
could be investigated in existing experiments.
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I. INTRODUCTION these developments, although exciting, is much beyond the

The achievement of Bose-Einstein condensatBEC) in scope of this present paper. The interested reader, however,
dilute atomic gasefl] represents the establishment of sev-could look, for instance, at Ref9], and the references
eral new exciting possibilities. The investigation of degenertherein.
ate quantum gases provides, for instance, a good testing In this paper we deal with some aspects of the hydrody-
ground for innumerable many-body theories developed alonfamics of a Bose-Einstein-condensed phase. In particular we
the past few decades. Those theories were mainly develop&fiow that both effectéthe mechanocaloric and the thermo-
within the context of explaining the striking properties of mechanical effecjsare always expected to happen in any
“He below the\ point. Among other features, this fluid be- Bose-Einstein condensate.
haves as having zero viscosiig superfluidl and also appar- The way we deal with these two phenomena is derived
ently as having zero entrog{]. from the same equation, showing the clear relation between

The zero-entropy hypothesis seemed to be the on|y exp|éhem. Furthermore, we do not have to use the zero-entropy
nation for two othealthough relatedremarkable properties Property for the superfluid or the BEC system to explain both
of superfluid*He. The first notable property is called the effects.
thermomechanical effe¢or the “fountain” effec), where a The presentation of this paper is arranged as follows. In
temperature gradient across the fluid produces motion ofec. Il we introduce the hydrodynamic quantization ap-
matter. The force responsible for imparting the motion to theProach to the Bose-Einstein condensation of a system of
fluid is a “thermoforce’(a term used first by Londojg]). On  charged spin-0 bosons under the action of external fields. A
the other hand, the motion of the superfluid also produceshemical potential is introduced later in order to discuss the
temperature gradients. This second effect is the so-callegquilibrium conditions for this system. In Sec. Il we present
mechanocaloric effect. Both effects were very important tothe equations of motion and define averages over the en-

understand the behavior of superfluids, giving valuable hintsemble.
about the nature of the processes involved. In Sec. IV we write the hydrodynamic equations of Bose-

In earlier times the first proposal of Lond$8] and Tisza Einstein condensates under the action of external fields.
[4], considering the superfluidity as a macroscopic manifesThese equations do not take into account temperature effects.
tation of BEC, was somehow overruled by the good agree- The relevant equilibrium equation, a generalized Ber-
ment of the hydrodynamic theory of Land§si to the first ~ noulli equation, is introduced in Sec. V. From this zero tem-
experiments measuring the second sound Ve|qﬁ]:yjust perature equilibrium condition we then propose a natural ex-
later, after much of the development of the many-bodytension that allows us also to take into account the
theory, especially by Bogoliubo}7], it became clear that temperature effects.

BEC was in fact behind the appearance of superfluidity. Even The force equation and explicit expression for the thermo-
then, the hydrodynamic formalism has been quite useful foforce are presented in Sec. VI. Finally, the conclusions in
calculating and understanding thile superfluid. Recently, Sec. VI close the paper.

after the expenmgntal ach|evemer_1t_(_)f quantum degenerate Il. HYDRODYNAMIC QUANTIZATION

gases, the formalisms developed initially to understand su-
perfluidity of helium have been extended to explore the di- In earlier paper$10,11] we have presented the hydrody-
lute atomic gases as weflB]. A full historical account of namic quantization approach and some aspects of the fluidity
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of a Bose-Einstein-condensed system. In this section we In Ref.[10] we give examples of how to construct wave
shall analyze these equations for the quite general and infunctionals associated with the vacuum and Fock states.
portant case of a condensate in the presence of electric and The state functionals, as well as other relevant physical
magnetic fields and when the number of particles varies. Imquantities, are written in terms of the density and phase op-
order to do so we introduce a chemical potential. Furthererators(2.1), or in terms of integrals over space-time densi-
more, the introduction of a chemical potential is also relevanties. We shall give below several examples that will be used
in order to study the equilibrium conditions for condensationthrough this paper. We start with the Lagrangian and the
under the action of external field$2]. Hamiltonian.

We shall discuss here the field theoretic approach aimed at In terms of the fieldy, the classical Lagrangian densify
the description of a system of scalar Bose particles. Withirfor the nonrelativistic scalar particles, is written as
the field theoretic approach, charged spin-0 bosons are asso-

ciated with a complex scalar fielgx). In what follows,x is i . %l/i*(X) -ﬁzjz(x)
a shorthand notation for a time and space ppt(t,x)]. L= QLd px)] = 6 ¢ (}) Jx} = om
The quantization of the theory is carried out by imposing -
equal-time commutation relations between the field and its ~ ~ HL¥ (X) ¢(X)], (2.6)

canonically conjugated variablg’, followed by a typical
quantization scheme implemented with the introduction o h
the Fock space. This method is especially useful when we
deal with systems whose number of particles is well defined,
for example, in the description of scattering processes. One  (x) =
can use, however, an alternative procedure: the so-called hy-
drodynamic quantization of the fie[d 3]. In this scheme we (2.7
use a new set of variablggx) and ¢(x), which are more ) ) o o
convenient in the description of properties related to Bose- The first term in Eq(2.7), containing derivatives of the

Einstein condensation. These new variables are defined asfield, is the kinetic energy ternK) and the second is the

interaction Hamiltoniar{', which contains no field deriva-

here’H' is the interaction Hamiltonian density. We define
e Hamiltonian density{ as composed of two terms:

V(//*(X;r:nVI,Z/(X) +H W ) p0]=K+H'.

p(X) = (X) (x), tive terms.
Placing Eq.(2.1) into Eqg.(2.6) one can see that the clas-
— /o (%) de® sical Lagrangian density can be written under the general
Y(x) = p(x) €97, (2.1 torm
denominated density and phase variables, respectively. They 5 (%)
) 4 o(x
are canonically conjugated to each other, as we shall see L(X) == p(x) pn ~H[xp, 0], (2.9)

below. For this reason we impose the following commutation

relations among the density operator and the phase operator: , , i ,
thus showing that phase and density are canonically conju-

[p(X), (X )] =id(x=x"). (2.2 gated variables.
o ) ) The quantum action is defined as
The quantization method, based on commutation relations

among density and phase operators, is called a hydrodynamic

guantization, and its application in superfluidity, where S= f L(x) dx. (2.9
Bose-Einstein condensation is known to occur, was proposed

by Landau[12]. The commutation relation in Ed2.2), in  If the system is under the action of external magnetic fields

conjunction with an explicit representation for these operag=v x A) the kinetic term can be written, in terms of the
tors, requires a departure from more usual quantization ARzariablesp(x) and ¢(x), as

proaches.

An explicit representation of the algebra of operat@:®) . - —eA)T2 TV/n(x) 12
can be realized by making use of the so-called density rep- K(p,@,A) = p(X) [Ve(x) = eAX)] + [VNp() ] ,
resentation. In this representation the density operator is a 2m 2m
classicalc number. That is, (2.10

p(X) = p(x), (2.39)  whereeis the electric charge of the spin-0 bosons.
Whereas, in the presence of an external potebkia), the

and the phase operator is represented by the operator  jnteraction Hamiltonian takes the general form

P =—i——. (2.4 H'(p) = p(¥) UX) + p(x) s(p,X) = p(x) U(X) +H™,
Ip(x) (2.1
Within the density representation the states vectors are ] . ] . )
represented as functionals of the density where &(p,x) in Eq. (2.11) is the per-particle interaction
internal energy density. If we assume binary interactions
w=y{pl. (2.5  among the particleg;(p,x) is given by
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i In the following section we shall analyze the dynamical
s(p,X)=§ f dX' V(X=X') p(X'). (212 equations.

Let us consider the expression, in terms of density and
phase, of other physically relevant quantities in the study of
quantum fluids. We start with the expression for the momen-
tum. The classical definition of momentum is the integral The time evolution of a physical quantity represented by

over the space of the momentum operator der@ix)) of  the operatorO(x) is given by the Heisenberg equation of

IIl. EQUATIONS OF MOTION AND ENSEMBLE
AVERAGES

the field: motion,
B, 1 - - d0(x)
p= J d)?P()?):E J dx ¢ (X)Ve(x) = J d* p(x)V (). pr =i[H,0(x)]. (3.1
(2.13 The Hamiltonian operator in Eq3.1) is the integral of

From Eq.(2.13) it follows that the per-particle momentum the Hamiltonian density

P(X) s given by H= [ axrren) (3.2

P(X) =V p(x) = V(‘ IT) =mUx). (2.19 Within the density representation the equations of motion
of the density and phase operators are
In quantum theory there is, however, another relevant mo-

mentum. This quantum momenttﬂﬁq(x)] is defined a% of ﬁ";(x) =— ﬂ1 (3.3
the gradient of the log of the density. That is, Jt 3p(x)
By(%) = VI \p() 1= m V0. (2.19 p(x) __oH .0
N It Se(x)’ '

The quantum origin oqu(i) defined in Eqg.(2.15 is ex-
plained in Ref[14]. These equations follow also from E@&.8) by takingp and¢

The analysis of a hard sphere gas provides a good ex@s independent dynamical variables.
ample for the understanding of both types of momét3. By taking the gradient of Eq3.3) we define a new equa-
The classical momenturR(X) is associated with the quan- tion that we name the force equation:
tized vortices, whereas the quantum momentyris more a|5(x) .
relevant in understanding the dependence of the fluid density = F(x). (3.5

upon the distance of the vortex ceniéf]. It

In terms of the velocities defined in Eq2.13) and(2.14)
one can write, by using Eq$2.10) and (2.11), the Hamil-
tonian densityH as

The force equation gives the rate of change of the per-
particle momentum and is the relevant equation in the under-
standing of superfluidity and the thermoforce. As we shall

see, the thermoforce is a new type of force that arises in a

m_- >

Hlp,¢]= p(9TVE0) + V3001 + p(I[U(X) +e(p,)]. BEC system. :

The local force operatdf(x) is, formally, written as
(2.16
- -( 6H

If the bosonic system is under the action of an external F(x) = —V( 5 (x)>' (3.6
magnetic field the above expression remains valid\fog) P
defined by One of the interesting features of the hydrodynamic quan-

tization is that the quantum equation of motion resembles
R P(x) — eAX) that of a classical fluidfrom this fact derives the “hydrody-
V(x) = - (2.17  npamic” name. Using Hamiltonian(2.16), the time evolution
equations are

The interaction of the particles with external fields is car- .

ried out, in field theory, as usual. For the coupling with ex- Je(X) Pz(x) Py
-——= + + + 4+ —

ternal magneuc fle|d$B V><A) we use the minimum sub- at 2m UG +hix) 2m  2m, V (p Pq)
stitution V— A—ieA. The potentialU(x) takes into account (3.7
the interaction with external electric fields as well as external
gravitational fields. -

All the above definitions are relevant in the understanding dp () __ . P(X)P(X) (3.9
of fluidity aspects of Bose-Einstein-condensed systems. at m
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AN )
—=-V o + Fext(X) = Vh(x)

. Ei 1 . B,
-V 2m+2—mpv-(p Py |, (3.9

whereh(x) in Egs.(3.7) and(3.9) is the per-particle enthalpy

B Hint _ w
)= ot ~ P

The pressur®(x) in Eq.(3.10 is, as can be inferred from
Egs.(3.10 and(2.11), given by

P& _ [ .,
o) 'fdx

(3.10

o) ZPX) ) ).

5000 (3.11)

The termlzext(x) in Eq. (3.9) is the force exerted on each
of the charged particles of the system as a result of the ex-

ternal potentialJ(x),

Fex(¥) = = VU(X). (3.12

PHYSICAL REVIEW A 69, 053808(2004)

(O(x)) = %Tr{e‘s O(x)}. (3.18
Taking averages over the ensemble, one writes
oe(x) _ [ oM
()
3{p(X) _ SH
Praa +<5¢(X)>' (3.20

Averages over the ensemble are relevant in the context of
statistical mechanics. In the next section we shall consider
matrix elements of the equations of motion under the form
(3.14 and(3.15.

IV. HYDRODYNAMIC EQUATIONS FOR BOSE-
EINSTEIN-CONDENSED STATES

One expects some basic distinctions, at the level of states,
between a condensed system and a normal one. We have
proposed, in Refl10], that the basic distinction can be traced
back to special properties of the wave functional associated

Equations(3.7~(3.9) are valid as time evolution equa- With BEC states. We have proposed that the wave functional

tions of operators. In order to deal with classicatiumbers

of BEC systems is endowed with two distinctive properties

one can consider expectation values and averages over tht0,13.

ensemble.

Any of the quantum versions of the equations of motion

A. Property (1) of the condensate wave functional

(3.7—3.9) are obviously valid when one considers expecta-

tion values. Defining the trace of an opera®mas

1

TrO(x):§<w|O(x)|w> s (3.13
we can write the following equations:
au ()1——T( ) (3.14
gt EIETIN S0 ) '
a T =T ( ) 3.1
at[ rp(x)]=Tr o)) (3.19

Ehrenfest theorems can be defined as averages over the

The wave function of the system associated wilip]
[11,15 is a product of wave functions

N
Pelxq %) = 1T wiex). (4.2)
i=1

The wave functiony(x) in Eq. (3.1) is, by definition, the
condensate wave function which will be written as
Ye(X) = \pe(x) €9, (4.2

The variablesp.(x) and ¢.(x) will be identified as the
density and phase of the condensate.

B. Property (2) of the condensate wave functional

ensemble of quantum equations. In order to define averages The condensate wave functional describes coherent states
over the ensemble, we define the quantum-mechanical partier which the following factorization property holds true:

tion function of a Bose system.
For the quantum actio®, given by Eq.(2.9), we define
the partition function as
Z=Tré". (3.1
This is just an extension of the usual finite temperat{ire
definition of the partition function

Z=Tr (e"kT), (3.17

¢ [pl(x) ¥ip]
¥ [p] Up]

= geX) = Vp¥) €5¥  (4.3)

and

Vo) I o) o)
¥'[p] vlp] = X)) ). (4.9)

Property(1) is an obvious requirement in order that the wave
functional be associated with a condensed state, whereas

The average over the ensemble of a physical quantitproperty(2) allows us to identify the condensate wave func-

O(x) is usually defined by

tion with the order parameter of the phase transifib®,17.
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The factorization property3.4) is the analog of the “off- - - e -
diagonal long-range order” introduced by Penrose and On- VXVe==-—VXA= _EB' (4.13
sager[18] in the context of superfluidity ofHe.

In Refs.[10,11 we have shown that the wave functional  In the absence of a magnetic field the motion of the con-

densate is irrotational.
_ Equation (3.8) is a continuity equation which we have
el pl= ex;{f pOJIn %(X)dX) (4.5 shown to be true for the condensed component of the system.

- . ) As we shall see in the next section, E8.9) corresponds
exhibits the properties above mentioned propertibsand ¢4 5 generalized Bernoulli equation. We refer to it as the

(2), thus providing an explicit example of such wave func-eqyilibrium equation. It gives the condition of equilibrium

tionals. o , for a Bose-Einstein-condensed fluid under the action of ex-
The relevance of the factorization property in the under+grnal fields.

standing qf superfluidity ha_s been already emphasized_ by Equation(3.13) is the dynamic equation satisfied by the
Anderson in Ref[16]. By taking averages over states salis-fiq in motion under external fields. We shall see that it is an
fying Eq. (4.4), we conclude that the wave function of the oytansion of one of Anderson’s equations in Raf].

condensate, defined in E@t.3), satisfies the equations This allows us to conclude that the dynamical equations

9 0u(%) SH for the density and phase of the wave function of the con-
A S A ( ) o () (4.6) densate, are Eq#4.8), (4.9), and(4.12). As a result of these
at op(X) Z=i°(x equations we can conclude, on quite general grounds, that
¢ the condensed fluid satisfies the continuity equation and that
5 o0%) SH in the absence of magnetic fields the motion of the fluid is
Pc i i
Tt = <5¢(x)> po®) (4.7) irrotational.

C

. V. EQUILIBRIUM EQUATION
Since ac-number field (x) is the wave function in the

representation of a state), Egs.(4.6) and(4.7) specify the We_show in thi_s_ s_ection thz_it_, for stationary stateg., Eq.
equation for the condensate wave function. They aré4.9) gives the equilibrium condition when the system is un-
c-number equations. der the action of external fields and that this equilibrium
By taking the functional derivatives df given by Eq. condition is a generalized Bernoulli eg.ua.uon. N
(2.2), now expressed as a functional pfand ¢, we obtain As usual, we assume that the equilibrium condition for a
the following set of equations: system under the action of external fields is the chemical
potential(u) to be constant:
IpX) = =
o PV k=0, (4.9 B= uo. (5.0)
Remembering that the fielg is the wave function of a
p Y. state ¢ in the I representation, the field associated with a
_9edx) = TQZ(X) + TQZ(X) _Vd™ +U(X) +h(x), stationary state is
at 2 2 2p(x) _ —
(4.9 Y1) = el ypy(), (5.2
- - o where g is a constant.
where we have used fof,V,, andh(x) the definitions(2.7), For a stationary state the equilibrium equation, for the
(2.19, and(3.10. The density currentd; andJ, are given  phase given by Eq5.2), is
by 7 -
mVE(x) m- V - J4(X)
o - =h(x) + + V(X)) - —
3400 = o) Vg9, (4.10 Ho=hOY + U0+ 2+ 2 Ve =
R R (5.3
Je(X) = pe(X) Ve(X). (4.11

Taking now into account the explicit expression fgk), we
Taking the gradient of Eq3.9) we get the force equation write

- P(x) m- m-
P 5 s 5 s s _ 72 LY
8tc + MV - VIV +m(Vg- V)V, Ko =£(X,pe(X)) + o0 5 Vel¥) +U(x) + 2 Vg(x)
. 1. - V - Jy(x)
=eV.OB-V{iU+h+—V -pV,(. (4.1 -—a= 5.4
eV, { 2" P q} (4.12 2p(x) (5.9

In the presence of an external magnetic field the motion is In order to show thafu, is the chemical potential we
necessarily rotational since the rotational of the condensateultiply Eq. (5.4) by p.(x) and integrate ovex. The result
velocity is related to the magnetic field by can be written as
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m -

Mo N = Ec+f P(x) d3x, (5.5 Ho=9(P,0) + EVg(X) +U(X). (5.13
whereN; in Eqg. (5.5 is the number of particles in the con- The natural extension of E¢5.5) to finite temperatures, in
densate view of Eq.(5.13, is

m VA(x
Nc:f d® pe(X), (5.6) Mo:g(P,T)+%+U(x)
andE_ is the condensate energy defined as the integral of the P(x) \75
density Hamiltonian: =&(X,p) + m—p =TT+ m>+ Ux). (5.14
0
B 3 Notice that for nonstationary states the generalization of
E.= | d H[pe @cl. (5.7 Eq. (4.1]) to finite temperatures should be, from E¢5.2)
. . _ ~and(5.19,
Expression(5.5) shows thatug is the chemical potential
since uoN, is the total enthalpy of the systefh?2]. PP V2
For a uniform condensate, the Bogoliubov condensate (?—tC:g(P,T)+mEC+U(x). (5.19
[20] is

(5.8 The interesting aspect of E¢6.14) is that one can imagine
an entropy filter That is, one can devise experiments by
means of which a low entropy component is separated from
a large entropy component of the BEC fluid. This would be
similar to what happens in superfluftie.
P(x) m.- In fact, one can think of two experimental setups in order
o= e(X,poc(X)) +m—— + —VA(x)+U(x). (5.9  to check the validity of the predictions made here. These
poc 2 experiments are analogous to the ones done with superfluid
Since the first four terms of Eq4.4) correspond to the “He. Let us consider two containef and B) of a Bose-
usual Bernoulli equation, one can predict that deviationd=instein-condensed fluid in which we keep the temperature
from the usual fluid is expected as a result of the quantuninitially constant on each side and keep the density constant.
velocity term. This prediction deserves to be tested experi&t this point we consider no external fields. Suppose that

pc(X) = poc-

The quantum velocity vanishes so that for a uniform conden
sate, Eq(4.3 is Bernoulli's equation:

mentally. these containers are now physically connected by a tube, in
- 1
h(x)=0. (5.10 dg==-dP-s dT (5.16
P

Such non-self-interacting fluid, the fluid described by Egs.
(4.2 and (4.3, is a Mahdelung fluid[19]. Therefore, ne- it follows from Eq. (5.14), that

glecting self-interaction of particles, the BEC is a Mahdelung

fluid. 1 m \2

One can extend some of the previous equations to finite —dP-sdT= —d( > C>, (5.17
temperatures. In order to do so we just recall that the equi- p

librium condition for a fluid under external fields takes the
form [12]

so that the flow through the superleak occurs uﬁ‘g’t:O.
Under this condition, it follows from Eq5.17) that
whereg(P,T) is the per-particle Gibbs energy in the absence The temperature difference giving rise to a pressure dif-
of the external fields ang’ takes into account the external ference is the thermomechanical effect. Equatiri8 is
fields. _ London’s relation3].

Remembering also that at zero temperatures the per- If the containers discussed above are kept at constant
particle Gibbs free energy is equal to the per-particle enpressure, then from E@5.16) it follows that

thalpy
m \7(x)
P(x) d( < ) =sdT. (5.19
g(P,0) = &(X, pgc) + mp 0 =h(x), (5.12 2
Oc
As a consequence of E(p.19) one can see that if there is
we can write Eq(4.6) under the following form: mass flow in one of the containers, it will be colder than the
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other one. That is, the mechanocaloric effect is expected to - m.-

happen in any BEC system. Fi=-—VP. (6.5
We can see, from Eq5.19), that in any BEC system a P

gradient temperature leads to motion of the fluid and vice The third term in the right-hand side of E¢6.2) is the

versa. It follows, also from Eq5.19 that, along a stream Lorentz force due to the external magnetic field,

line, the difference between the kinetic energy of the fluid at R I

two pointsB andA, in each container, is FLorenz=€ Ve X B. (6.6)

The last term in Eq(6.2) is our main contribution to the

m \Z(B) m \Z(A) BEC motion. We propose that this term is the thermoforce:
e S(M(Tg=Ta). (5.20

[Ether: S(T)%T. (67)

From Eq.(5.20 it follows that if the fluid flows fromA to B The presence of the thermoforce in K§.2) means that
[V(B)>V(A)], the containeB will be warmer. On the other there will be motion of the fluid as a result of temperatures
hand, if one of the containers is now considered as a thickradients. The motion is towards the greatest temperatures.
tube the pressuréP will cause a fountain of Bose-Einstein ~ Putting all this together, we write

condensate. We predict, in this way, the fountain effect for -
any BEC system. _ P F i+ Frart SVP+e V, X B, (6.8)
In superfluid*He these two phenomena are explained by Dt p

assuming that the superfluid component is a zero-entropy

fluid. We have seen here that this is not necessary. Except for the thermoforce, Eq6.8) is just the Euler

equation for an ideal fluid. Under similar assumptions made
here, Anderson derived the usual Euler equation “de
VI. FORCE EQUATION [16].
The conclusion, therefore, is that the same phenomenon

In this section we will show that the phenomenon of su-(Bose-Einstein condensatipis responsible for all the strik-
perfluidity for a BEC system is intimately connected to theing properties of superfluidHe: the superfluidity and both
two effects present ifiHe, the thermomechanic and mecha-the related thermomechanical and mechanocaloric effects. In
nocaloric effects. Usually, they are considered as indeperfact, in principle, we expect that any BEC system should
dent properties of the superfluid helium. We shall give, alsgresent those phenomena. At least one of them has already
in this section, formal expressions for the thermoforce. been experimentally confirmg@1].

First, we recall that

VII. CONCLUSIONS

1
dg=-dP-g(T) dT. (6.2) L _
p We have shown in this paper that the thermomechanical

and mechanocaloric effects are always expected to occur in a

Bose-Einstein condensate. Besides the understanding of

these effects, we have shown that they can be predicted by

using the same equation that leads to the Euler equétien

P. N m_ - > equation that we have named force equation

PY M(Ve - V)Ve = Fex~ ;VP"’ e Ve XB+s(MVT. We have proposed a generalized Bernoulli equation that

would lead, for nonuniform density fluids, to a departure

(6.2 from the usual Bernoulli equation. The generalized Bernoulli

All terms in Eq. (6.2 have a simple interpretation. The €quation is valid for stationary BEC states. For time-

term in the left-hand side of Eg6.2) is the total derivative independent states the chemical potential is zero; in this case
of P.. that is the Bose-Einstein-condensed state is characterized as a zero
Cc il

Gibbs energy fluid.
R Another important property of a superfluid is the fact that
DP, d - =\- it is irrotational[22]. As a consequence of the presented cal-
Dt Pe- (6.3 culation, we have deduced that this is not generally the case.
It only happens in the absence of external magnetic fields.
The first term in the right-hand side of E(f.2) is the We have derived an expression for the thermoforce. It is
external force interesting to note that the same expression was also found
by London[3], using a different approach. Experimental evi-
F —_vU (6.4) Qence for the s_pecific_ forrg6.7) is, to our knowledge_, miss-
ext ' ' ing. However, it predicts that as the temperature is lowered
The second term in the right-hand side of B8}2) is the  the thermoforce tends to zefsince lim;_q s(T)—0]. This
usual force that induces motion in the fluid as a result offact is quite well known in superfluidHe. The thermoforce
pressure gradients, becomes negligible for temperatures below 0.63K

Now we take the gradient of E¢5.14), and the dynamic
equation for a nearly uniform fluid becomes

>
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