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Improving perturbation theory via a variational optimization has generally produced in higher orders an
embarrassingly large set of solutions, most of them unphysgicathple®y. We introduce an extension of the
optimized perturbation method which leads to a drastic reduction of the number of acceptable solutions. The
properties of this method are studied and it is then applied to the calculation of relevant quantities in different
¢* models, such as the anharmonic oscillator energy levels and the critical Bose-Einstein condensation tem-
perature shiftAT. recently investigated by various authors. Our present estimatA§ gfincorporating the
most recently available six and seven loop perturbative information, are in excellent agreement with all the
available lattice numerical simulations. This represents a very substantial improvement over previous
treatments.
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The variationally improved or optimized perturbation being complex, are to be considered when increasing the
based on the linea$ expansionLDE) [1-3] is a well-used order. This nonuniqueness of the optimized solution requires
modification of the usual perturbation theory, based on a reextra choice criteria, and thus may seriously obscure the in-
organization of the interacting Lagrangian such that it deterpretation and the convergence towards the correct result in
pends on an arbitrary mass parameter, to be fixed by sonfBany nontrivial cases where the exact nonperturbative result
optimization prescription. IilD=1 theories, such as the quan- IS totally unknown. Moreover, the fact that most solutions are
tum mechanical anharmonic oscillafd, the LDE turns out cqmplex is embarrassing, as one has to invoke still an extra
to be equivalent[5] to the “order-dependent mapping” Criterion to select asupposedly corregteal result. I_:or some
(ODM) resummation methof8]. At the same time, the prin- of the simplest models where the method applies, like the
ciple of minimal sensitivity(PMS) [2] optimization, which ~ oscillator energy levels typically, fortunately all of the com-
takes extrema with respect to the mass parameter, is equivBléx optimization solutions have actually small imaginary
lent at large orders to a rescaling of the adjustable oscillatop@rts and are rapidly decreasing as the perturbative order
mass with perturbative order, which can essentially suppredgcreasessee, e.g., Belleet al. in Refs. [6]), so that the
the factorial large order behavior of ordinary perturbativeCOnvergence properties are not very obscured by this incon-
coefficients. This appropriate rescaling of the adjustable/€nience of the PMS. Butin less trivial situations, the imagi-
mass gives a convergent seri&s6], e.g., for the oscillator Nary parts of the PMS solutions may be la(gee, e.g., Refs.
energy levelg4] and related quantities. Any physical quan- [9-11) and thus their physical intepretation unclear.
tity whose ordinary perturbative sequence is available can !N this paper, we propose a simple generalization of the
then be evaluated to an ord&fusing simply modified Feyn- PMS criterion as performed on the LDE series, which turns
man rules as implied by the following formal substitution OUt t0 lead to a drastic reduction of physically acceptable real

valid for a scalar field theory: optimization solutions at each successive perturbative order
in all the physical cases we have applied it to. First, we treat
w—w(l-9Y% g—gs, (1)  the oscillator ground state energy, both in the lagease

[for the vectorO(N)-symmetric¢* mode] and the ordinary
wherew andg are the mass and coupling, respectively. Noteoscillator (scalar,N=1) ¢* model. We then apply it to a less
that for theD=1 quantum mechanical anharmonic oscillatortrivial and more interesting problem associated with the
described by a¢* theory no renormalization is need@t],  breakdown of perturbation theory near a critical point,
while for D>1 models, the parametegsand w in Eq. (1)  namely the evaluation of the critical transition temperature
are to be considered implicitly bare parameters, and the prdor a dilute, weakly interacting homogeneous Bose gas. This
cedure can be made in this case fully consis{&rf] with has been the source of controversy for many years and re-
the renormalization program of ordinary perturbation theorycently several independent groups have provided comparable
In particular, appropriate renormalization takes into accounevaluations of the critical temperature. The relevant field
properly any(mass or fielglanomalous dimensions when the theoretic framework is @* D=3 model(after dimensional
latter are relevant. reduction with an O(2) symmetry(see, e.g., Refd.12,1q4

Now, a definite drawback of the optimization prescriptionfor reviews. Here, for completeness we also consider the
is that it involves minimization of a polynomial equation of largeN limit of the O(N) symmetric model case where the
orderk in the relevant mass parameterat perturbative or- exact next-to-leading N result is known analytically. In all
der &, such that more and more solutions, most of themthese cases, the method seems to give excellent approxima-
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tions in comparison with the standard PMS ones. TABLE |. Improved-PMS results for the oscillator ground state
energy level, at different ordeks with the corresponding values of
the optimal mass parametérand the main interpolation parameter

I. BASIC METHOD AND THE OSCILLATOR ENERGY a. Eoyac=0.420 804 97. (4g)Y3,

LEVELS
. . . . . / ~
Let us start with the basic perturbative series of the oscilX Epus/ (49" @ a

Iatodr ?royirr:d state.energy level as described ypd D=1 1 0.429 268 1.82
model with masso. 2 0.418 483 2.04 1.05
© n g q 3 0.422 341 2.18 1.08
EY = >t w2 (- 1)q+1cq<3) : 2 4 0.419 138 2.28 1.09
=1 5 0.423 496 2.37 1.11
with ¢;=3/4, c,=21/8, etc.[4]. As discussed in the Intro- 6 0.41523 2.45 112
duction, the LDE procedure is implemented by the substitu’ 0.436 015 2.51 1.15
tions 8 0.380 812 2.59 1.15
9 0.647 259 2.60 1.25

o— o(l-8Y2, g—gé, (3)

into the perturbative series EQZ),_then reexpanding thellat— used mainl;ﬂ\/lathematica[l?]).z The real solution is unique
ter to orderk in the new expansion parametérNext, 5is  (at least up to the highest perturbative orders that we ana-
set to the valuey=1, such as to recover the origin@hass- |yzed, as given in Table)land we also indicate for later
less theory, while at any finite ordek there remains a de- giscussion the corresponding values obtained for the extra
pendence om in the LDE resultE®(w, 5=1). The standard, interpolation parametea as defined in Eqs(4) and (5).
mostly used optimization criterion is the principle of mini- [Note that actually thgunique real optimization solution
mal sensitivity(PMS), requiring at each successive perturba-gives values for the other parametérs. . in, e.g., Eq(5) at

tive orderk: gE®(w,6=1)/dw=0 for optimalw values. The  higher orders, which are almost always small with respect to
modification(generalizatiopthat we propose here is first to a. More on this latei.

introduce extra arbitrary parameters, starting at order two \We see that after approaching the exact answer to within

with one more parameter: 4 1072 at fourth order, the approximation becomes worse in
U - a way strongly reminiscent of the behavior of an asymptotic
®— o(l-0 " 1+(1-a)d]", (4 expansion with alternating signs evaluated at a finite value of

o . - its parameter. This is clearly related to the fact that the origi-
such that .the modﬂed Lagrangian still interpolates .b.etweerhal series in Eq(2) has factorially growing coefficients at
the fr?e flﬁld(m?ss;/_elthseory Z)r 5—Othanthge (_)trlg_mal_ large orders, and thus our alternative method apparently
(mass e.S)St eory foro=_1. econ(z), nov! € c(r2|)er|02n 'S Joses the property of compensating this divergent behavior
g%neril!zﬁd py requmn? botlﬁlenN/aw—O,tand &iE b/‘?w | qt})y an appropriate rescalin®,6] of the optimized mass pa-
. \|/¥ Ic g|}/e? a sysderpFo _Ole%'g('oni 0 b€ S0 Ive ameter, unlike the standard LDE-PMS. More precisely, one
simuftaneously 1ora and . -or a=_, w) has N réal  -an see from the third column of Table | that the values of
minimum, but an inflection point with an almost horizontal the optimized mass parametdy after increasing regularly
tangent, and a small value af-1 makes this tangent hori- i e perturbative order for the first few orders, appear

zontal, removing the embarrassment of complex extrema. Alather to have a slower increase for the highest perturbative

higher orders, the generalization is easily done with add"orders we could consider.

t@onal par%neters and additional vgnishing of higher deriva- Nevertheless, we can try to better exploit these results by
tives of E™(w). For example, at third order, we introduce gian4ard resummation methods applied on the obtained per-
two parameterga andb) as turbative sequence, typically considering simple Padé ap-
proximants. Accordingly, let us define the following pertur-

o— o(l-8Y{1+(1-a)s+bs "2, ) pative series:

together withlthe extra requirement on the third derivative: D
PED d°=0. | EP =E;+ X (Egea— EQX, (6)
The results of the method for thecalar caseoscillator =1
energy level are shown in Table |, up to order nine, where
higher order generalizations of E(p) are still reasonably whereE, denotes the results for the ground-state energy at
tractable upon using efficient polynomial equation sotvee  ordersq in Table I, so that Eq(6) simply givesE('”:Ep for
x=1. Now a simplg3,3) Padé approximant of E¢6) using

For completeness, note that we generalize &g.at arbitrary
higher orders by simply adding to the expression within the right- At is clearly becoming more cumbersome and CPU consuming to
handed bracket of E@5), a termb, & at each ordek, whereb, are  apply such a method at very large perturbative orders due to the
new parameters. increase in the number of parameters at successive orders.
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TABLE II. Improved-PMS results for the oscillator ground state 1 * T'(2p+ 1/2) p
energy level at largd\, for different ordersk, with the correspond- [Pe(g,m) = > (- 1)P—<%) . (8
ing values of the optimal mass parame&emnd interpolation pa- [(1/2mpo, p! m

rametera. Eq,,c=0.429 267 840 9. (4g/3)*3, . .
exact (49/3) Now the exact result of the integral fon=0 is

k E|PM /(49/3)1/3 Z) a fl_
> 1(g,0) = 2‘3’2L(1/4)g'1/4: 1.022 765672 1. g7 Y4,

1 0.429 268 1.26 I'(1/2)

2 0.429 589 1.37 0.96 (9)

3 0.429 400 1.43 0.92 . . .

4 0.429 326 1.47 0.89 which we can compare with the results of the application
of the method: 0.954 325, 1.0865771, 0.942 138 24,

5 0.429 296 1.50 0.87 1.244 391 803, 0.703 884 6, respectively, for orders one to

6 0.429 282 1.52 0.85 five. Then, there is no real solution at order six. Nevertheless,

7 0.429 275 1.54 0.84 a Pade approximar®; ;; (thus constructed from the first

8 0.429 272 1.55 0.83 three ordergstill gives 1.017 54. Thus, the behavior is quite

9 0.429 270 1.56 0.82 similar to the one of thé€scalay oscillator where there are

also no physically acceptable solutions at higher orders.
(However, the quality of the results from Padé approximants
the first seven orders of Table | gives 0.420 841, artd,4  of higher orders appears to deteriorate more rapidly than in
Padé using all the numbers of Table | gives 0.420 838, stilthe previous oscillator case: For exampleRa, thus con-
an improvement, within & 10°° of the exact answer, in spite structed from the first five orders gives 1.056.7Vhis any-
of the superficially disastrous results of the eighth and ninttway confirms that the generalized method is not appropriate
orders. to turn a factorially divergent large order behavior into a
Next, the same analysis is performed for the lakyap-  more convergent one, while it definitely improves the LDE
proximation of the vecto©O(N) symmetric oscillator, which convergence when starting from a less divergent original se-
consists of considering only the “cactus” Feynman graphsries.
As is well-known, the resulting perturbative series for the
ground state energy of a form similar to Eg) can be ob-
tained simply in this case to arbitrary orders by solving the Il. CRITICAL THEORY AND BEC CRITICAL
largeN gap equation exactly, and expanding in a perturba- TEMPERATURE
tive series ing the corresponding exact lardgéexpression of .
the ground rsgtlate energy.pWhengwritten wi%éthepsame normal-, e now turn to the more recent and qhallenglng problem
ization as in Eq(2) the first few coefficients of this series are of the BE% g,”t'c.al temperature evaluation. We first recall
¢,=1/4,c,=1/4,c,=1/2,....However, an important differ- that, toO(a’n?®), its functional form was found to bl 3]
ence with the scalar case oscillator is that the resulting per- T.=To{1 +can®+ [ciin(ant®) + cj]a2n?3,  (10)
turbative series has no factorially growing coefficients at eT oM 2 2 ’
large orders and a finite convergence radius. As one can se&hereT, is the ideal gas condensation temperatares the
the method performs very well in this case, approaching raps-wave scattering lengtm is the density ana,, c;, c; are
idly very close to the exact solution when the order in-numerical coefficients. Some early analytical predictions in-
creases. Again, there is only one real positive solution acluded the self-consistent resummation scherjie§ (c;
each order. One can also notice from the last column of Table=2.90, the 1N expansion at leading ordefl5] (c;
[l the more regular behavior of the extra interpolation param-=2.33) and at next to leading ord¢t6] (c;=1.71), and also
etera, as compared to Table |, which now appears to tendhe LDE at second ordefl8] (c;=3.06. The numerical
towards a constant valugThe other parametets etc., cor- methods include essentially lattice simulatiofisS). The
responding to the analysis in Table Il are numerically quitemost recent LS results are reported by the authors of Ref.
negligible with respect ta, so that we do not give their [19] (c;=1.29+0.05 and of Ref.[20] (c;=1.32+0.02. Very
explicit values) recent analytical studies predict=1.27+0.11[21]. The
In order to better understand why the method seems nqjroblem is that these coefficientsxceptcy) are sensitive to
so efficient when applied to a factorially divergent seriesihe infrared physics at the critical point and, so, no perturba-
like Eq. (2) for the standardscalar casgoscillator, let us tive approach can be used to compute them. At the critical
consider now the even Simpler functional integral of EUClid-point, one can describe a Weak|y interacting dilute homoge_
ian ¢* theory in zero dimension: neous Bose gas by an effective action analogous 9@
scalar field model in three dimensions given by

!/_
|

V2o (7

I(gm) =———| dxexp—mx42 -gx*4}. 7

@m =15 ) dxe X4y, (7) o [flogeal o8
5= | XSV o 0t (1D

As is well-known, this can be expanded in a perturbative '

series ing with alternating signs, factorially growing coeffi- whered¢ is a two-component real scalar field. The parameters

cients at large orders: w andg are related to the original parameters of the nonrel-
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TABLE IIl. Improved-PMS (IPMS) versus standard results for TABLE IV. Improved-PMS(IPMS) versus standard results for

the largeN BEC AT, at different orders. C; exac=2.328 47.... the largeN BEC AT, at different orders. ¢; gyac=2.328 47.. ..
k C1iPms a C1 bestPMS K C1iPms a C1 bestPMS

2 2.163 2.163 2 2.852 2.852

3 1.85 1.44 1.88+0.17 3 2.367 71 1.49 2.444+0.2I6
4 1.93 1.69 1.96 4 2.344 51 1.53 2.244+0.20
5 2.00 1.78 1.91+0.03 5 2.336 86 1.56 2.397+0.079
6 2.04 1.83 1.94 6 2.328 47 2.0 2.333+£0.08
7 2.08 1.89 1.93+0.0015 7 2.328 47 2.0 2.298+0.06
8 2.10 1.88 1.935 8 2.328 47 2.0 2.342+0.04
9 2.12 1.89 1.95 9 2.328 47 2.0 2.324+0.086
10 2.14 1.91 1.95+0.03

the optimized values approach reasonably close to the exact
ativistic action byw=-2mu andg=48m7amT [15,16 where  largeN value, ¢;=2.328 47.... Thus the advantage of the
u represents the chemical potentialthe atomic mass ani ~ improved PMS approach is not obvious in this case, since it
the temperature. The leading order coefficient of the criticals evidently less algebraically tractable than the standard

temperature shift can be expressed b4 method at very large perturbative orders. Nevertheless, one
s a3 can see from the improved-PMS results in Table IlI that the
1=~ (256N)m[{(3/12)] "k, (120 method performs much better, giving always a unique real

where ax=A(dD = () —(dD- The subscriptsy and o Selution and seemingly converging m_uch fast_er towards the
mean t%’;t trfg) %eléﬁl&%téi[ii)ons are to be erz/:\?uated in th gxpected result. In fact, as motivated in R0}, in order to
. . . . Eéitudy the eventual LDE convergence properties of the large-
presence and in the absence of interactions, respectively. N expression ot it is more instructive to consider an ap-
vie;lx—vr:a?j :nmpl:aec;rlltsat;on Iiggtilz)?*[g—vi"lthllg t&? urzof(ijri![ (l;nr_e— proximated form of the corresponding larbjeperturbative
. previc PP e T o series which takes into account only the relevant infrared
sider the LDE in the larg® limit extending the relevant

i . - limit of the auxiliary field propagatofsee Ref[10] for more
0(2) mode_l to grO(N) symmetric one. The 'nterESt of such detaily. This has the advantage of giving a simple geometric
an approximation is that the exact result is known by

: i . . Y series with exact coefficients:
direct evaluatiorj15]. The original perturbation series in this

case can be written as No gNk—l gN\!
-t . (=2 S Gi(‘ _) B
2w - _ N  Ng 9Ny 4m 3 e
(@) =-+ 3 2G| (13)
& i=1 @ whereG; =[(6472)(8)']™%, such that the straightforward re-
_ — 0, which accordingly can be reached smoothly in contrast
3 (1N (T zZ i with the genuine larg®t series Eq.(13). The alternative
Gi= 1673\ 87/ J, 2(22+ 1)(Z2 +4) [A@T, 14 hethod results applied on the original seri&§) are shown

in Table IV, together with those obtained by the standard
with PMS optimization procedure, the latter for the best converg-
ing family of solutions.
A(2) = garctan%, (15) _ In that.case, the convergence of the standgrd PMS method
z is faster in comparison of Table lll, but the improved-PMS
_ . . method performs even better: starting from order six and
and z=k/w, and can be calculated analytically to arbitrary . . :
beyond, the exact result is always obtained as the unique

precision using, e.gMathematica[17] numerical integra- . . 7 )
tion. By applying the generalized LDE procedure as de_physmally acceptable solution. It is interesting to trace what

scribed above in Eqg4) and (5), etc., up to order®, one happens in more detail. In fact, the solutions found at LDE

. : ; orders k=6 by applying the procedure ia=2, b=c=d

T i e e L =0, i s sl seen by comparig wih <4 and
. . : %5) to correspond to a basic interpolation of the form
the latter for the best converging family of solutions
C1pestpms(see Ref[10] for details on the lattgr w— o(l-25+F+0)2=w(1-95). (17)
As illustrated and discussed in detail in R¢1L0], the

convergence of the standard LDE-PMS method when apThen, applying the substitutiail7) on any geometric series
plied to the exact largdl series Eq.(13) is actually very instead of the standard LDE substituti) canonical for a
slow (leaving apart the accidentally good result at first or-scalar theory, one can easily see from simple algebraic prop-
dern, so that only at very large perturbative orders0 do  erties that the improved-PMS solution always reproduces the

053624-4



IMPROVED OPTIMIZATION OF PERTURBATION.. PHYSICAL REVIEW A 69, 053624(2004)

exact solution, and this is at any arbitrary LDE ordter 2. TABLE V. Improved-PMS(IPMS) versus standar@PMS) re-
This case exhibits a spectacular improvement over the stasults forc; at N=2 in the BEC case at different ordeks Also
dard LDE results, which converges only rather slowly andshown are the Padé approxima(f®é,) resummation results applied
with nonzero(a'beit Smau imaginary parts] a source of to the improved-PMS cases. The lattice resultsqttel.ZQi0.0S,
much frustrationA posteriorj there is nothing particularly 1.32+0.02.

remarkable in this result which is essentially an algebraic
accident of the noncanonical substitution Etj7) followed K Ciipms @ PACyipms) C1pms
by the LDE when performed on a simple geometric series

. . . . 3.06 3.06
However, what is perhaps more interesting is that our 098 105 2 45+1.86
improved-PMS procedure is in that way guessing a moré ' ' _ e
appropriate value of the rescaling power within the LDE sub? 1426 281 Pr1,y=1.347 1.53+2.32

stitution ansatz Eq3): Alternatively we could have param- 5 1.247 275 Py =1.283,P,1=1.298 0.76+2.58

etrized the basic LDE substitution according to 6 1.300 2.83 Pr2,2=1.286 2.40£1.69
w— o(l-96)7, (18) 5
<¢2>(6) - _ M + gz Kl - 9 l (20)
with an arbitrary powely to begin with, and then look for the 9 Aar S5\ e/’

best value ofy such that the LDE series converges faster
towards the exact result, which is clearly the caseyfol in ~ where the coefficients are given b;=3.221 74<10°°, K,
this largeN case. Now, it is worth noting that considering an =1.517 921075, K;=9.665 12<10°%,  K,=7.51366
arbitrary power coefficienty according to Eq(18) when X107 andKs=6.7493x 1071°° The results of our alterna-
applied to the BEC series turns out in practice to be esseriive procedure are shown in Table V, together with the re-
tially equivalent to modifying the simplest LDE substitution sults from applying simple Padé approximants similar to the
formula Eq.(1) by introducing the relevant critical exponent: ones discussed above for the oscillator, i.e., defining a per-
turbative series similar to Eq6) but where thek; are now
replaced by the values @f in Table V at successive orders
k. One can notice that at ordeks=2,3 and 4 thelPMS
_ ) i results quickly oscillate around the MC results. From order
wherew'=20/(2-7), 7 is the anomalous dimension of the s¢ onwards the oscillation is reduced drastically and the
critical propagator~1/p?” and 0=p'(gc), g. being the  |pMS procedure generates stable results which agree remark-
critical coupling(see, e.g., Refl12]). This renormalization  aply well with the lattice results. Furthermore, we also indi-
group inspired modification Eq19) of the standard LDE cated in Table V the corresponding values obtained at each
Eq. (3) is indeed the approach followed, e.g., in Refs.qrder for the parametes, whereas as already indicated, in
[21,23, where numerical values @' as obtained by differ-  the generalized LDE substitutions E&), etc., at higher or-
ent methods(including the variational perturbation theory ders the remaining parametets etc. are numerically
[23]) are used in ansat9) prior to an(otherwise standayd  smaller. Accordingly, to first order approximation,
PMS optimization. Now in our case, a major difference is
that the relevant exponent = 2/a is simply guessed by the o— o[l-ad-(1-a)F+bs(1-9) + 2= w(1
generalized optimization procedure, at the same time as ob- - 8)2, (21)
taining as optimized solution the relevant physical quantity
c;. More precisely, the correct exact larevalue w’'=1,  so that in a rough approximation one has=2/a. Taking
Q=1 (see, e.g.,, Ref[12]) is clearly guessed by our the latter approximate relation at face value would give, e.g.,
improved-PMS procedure, with’=2/a, at least for the in- for the successive orders considered in Tablew/>~ 1.03,
frared approximated largd-case as illustrated in Table IV. 0.71, 0.73, 0.71, which do not compare badly with the re-
Note also that the values of the paramedeat successive ported values ofv’ =0.8+£0.04[12,23 obtained numerically
perturbative orders are also clearly approaching quite closelygy other methods. Note, however, that the present method
though more slowly, the correct critical value when consid-does not pretend at this stage to accurately predict in that
ering the genuine largh- series, as illustrated in Table 1l way the relevant critical exponeat', (), etc. Indeed, in this
(noting, however, that in this case the other paramédegtc. N=2 case the other parametdxsetc. are small with respect
are small with respect ta but not strictly zerg. to a but not strictly negligible. Nevertheless, though the es-
We will consider now mainly the physically relevaht

=2 case, as well as the cae=1 andN=4 for comparison 53— . . .
. . : . . - Throughout this paper we use the perturbative loop coefficients
with other available lattice simulation and analytical results. . L
results of Ref[21] to evaluate all these coefficients, since in par-

We_w'” See that many of the previous results fqr the Img_et icular the latter are obtained as much as possible from exact inte-
series generalize, at Iegst qzu(%lltatlvely, to-th|s less tI"V'agrals. There are therefore some very small differences in the lowest
case. FoN=2, the quantit(¢?),” has been first evaluated, orders numerical results with respect to some previous analysis
up to orders®, in Ref.[9]. Recently, higher order terms have [9,10}, since the latter used numerical integration, not always very

been evaluated by Kastenirigl] so that, to order®, the  precise. Note also a trivial difference of normalization with respect

perturbative series can be written as to Ref.[21] in our defining series, Eq20).

w— o(1 - (19)
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sential motivation of our approach introducing more interpo- TABLE VI. Same as Table \(improved versus standgréMS
lation parameters in Eq5) is to get rid of the unwanted results but forN=1 at different ordersk. The lattice result is
complex optimization solutions, it is interestingly connected1.09+0.09.

with the parametrization of corrections to scaling, the leading
correction being correctly described according to EiD) k Cripms @ PA(Cy 1pm9) C1pMs
(see, e.g., Refqd21,22 for further motivation of Eq(19)).

However, to be complete one should note that, in contrast 2.65 2.65
with the previous oscillator and largé-BEC series, the real 3 0817 1.9 2.12+1.47
IPMS solutions in Table V are not always unique: actually, at4 1.237 2.88 Pr1,11=1.159 1.31+2.06
ordersk=4 andk=6 there appears a second réalt nega- 5 1.047 277 Pp;=1.086;P=1.106 0.62+2.20
tive) solution. But these extra solutions can be immediately 1114 2.90 Pp2,2=1.095 2.11+1.54
eliminated as they correspond to largely unreasonable values

of the interpolation parameters: for instance, for4 the

extra real solution isa=-13.9, b=55.5, andw=-0.02, =2.108 495 6<10°° and Ks=1.742 0267 1072, and K,
which givesc, =-55.4, while we can expect consistent val- =9.664 779 4< 10°°, K,=5.464 517 K 1075, Ks

ues of these parameters to be reasonably close to their cas4,095 845 761077, K,=3.702611 9% 108, and Ks
responding largé\ values, i.e., typicallya should be not too = 3,833 335 8< 1079, respectively, foN=1 andN=4.
far from its largeN valuea=2, as also supported from the  Qur results are given in Tables VI and VI, respectively,
results of the above mentioned leading corrections to scalinfor N=1 andN=4. As one can see, the results from our
analysis. alternative method are again showing very good convergence
At the same time, the results from the standard LDE-PM$roperties and approaching very closely the lattice results.
optimization method shown in Table V also oscillate some-The Padé approximants are also in excellent agreement with
how around the MC result, as anticipated in R&d], butthe  the latter. In addition, the corresponding values obtained for
convergence is not at all obvious: after approaching rathethe parametea, as related in first approximation to the criti-
closely the lattice result at orde¥, the results of the next ca] exponent’ in Eq. (18), appear qualitatively very con-
two higher orders depart sensibly from the lattice one. In th&sistent to known results fas’ for N=1 andN=4[12,23. On
absence of any indication on the higher orders, we can hardiyye other hand, the results from the standard LDE-PMS
speculate but, by comparison with the results of RE@] for ~ method show a behavior very similar to the cike2: after
the largeN case, as summarized in Tables Il and 1V, it ap- approaching not too far from the lattice result at fourth order
pears possible that the standard LDE ultimately Convergeg)ut with very |arge imaginary pamghe results from h|gher
towards the same result, but in a much slower way than ousrders are not satisfactory, with trends very similar to the
improved method given in the left column of Table V. More- caseN=2.
over, the latter standard PMS results will look much less e finally apply our alternative method to the other non-
attractive if one recalls that they have been selected amongerturbative relevant coefficient, in the defining Eq(10).
several possible complex results with large imaginary partshis coefficient, which is not generally considered by most
(101, requiring an extra selection critefldn contrast to the  authors working on the BEQ@T, problem, was first evalu-
improved version. ated with lattice simulations. To our knowledge, its sole ana-
One can also note the remarkable results of the Padé aBrtical evaluation made use of the standard LDE-PPJ.Q]
proximants based on the improved-PMS results at differengip to orders* (five loops. This O(a2n?3) coefficient appear-
orders, even for the lowest order o 5, though it only  ing in the AT, expansion, Eq(10), can be written a§l3]
uses the second and third order IPMS results. This is cer- 5 . 64
tainly not coincidental and should be mainly attributed to the , _ £ 53, ! -8/3 3 \2, 04T
oscillatory property of the IPMS results. Indeed, the verycz_ 3[§(3/2)] b * 9[5(3/2)] (192mk)"+ 9 (112
same Padé approximants using inst€eshl parts of the _
standard PMS results of the rightmost column of Table V are X482 In £(3/2), (22
far away from any reasonable result: this would give, e.g. a
P1.=4.26 andPp, ;=3.66. wherebz is
Next, we consider t_he cqmpletely similar calculation of TABLE VII. Same as Table \(improved versus standar8MS
the coefficientc, as d(_ef'ned In Eq(_12) bu? for the ca;eN results but forN=4 at different ordersk. The lattice result is
=1 andN=4, respectively, for which lattice calculations of 1 5940 10.
¢, have been recently performed in R&S6]. The original

perturbative series reads like EQO) with now the relevant
coefficients K; given by K;=1.20809%%10°, K, “ Cups @ PAC1PuS CLpums
=5.122 985 X 1077, K3=2.964 522 5 1078, Ky 2 3.75 3.75
3 1.222 1.94 2.99£1.99
“More precisely, we selectdd0] among the different LDE-PMS 4 1.665 2.68 Pr1,17=1.589 1.90+2.74
real or complex solutions the ones having the smalle$tiRe 0 5 1524 2,66 Py 2=1.550;P,j=1.558 0.99+3.0
value of the optimized mass, motivated by the fact that the exacg 1556 2.74 Pr2,2=1.549 2.90+1.98

solution would correspond te— 0.
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TABLE VIII. Improved-PMS results forc, in the N=2 BEC ~ shown in the right column of Table VIII, their behavior is

case at different ordeils The lattice result i€3=75.7+0.4. again very similar to the ones for tlg coefficient above in
Tables V-VII: after approaching very closely the lattice re-

k S pMs Padé(c pys) C3 bestPMS sult at fourth(five-loop) order, the six-loop result starts to

5 101.2 101.2 decrease a bit further.

3 69.83 94.2+31P

4 77.90 P[1,1=76.25 75.0x4141 IIl. CONCLUSION

5 7346 Py y=79.31;P,yy=75.04  60.4:41D

We have introduced a conceptually rather simple gener-
alization of the optimizedor variationally improved pertur-

1 1 bation method, which considerably reduces the number of
b} = 327 [—In(128773) += - 72m°R - 9677%} X {(1/2) irrelevant optimization solutions at each perturbative order.
2 2 We have applied this variant of the PMS method to the cal-
[ In 2 culation of certain nonperturbative quantities in the simple
+ 7 K,- ——=[£(1/2)71? ¢, (23) guantum mechanical oscillator as well as the more challeng-
2 2\ ing BEC critical temperature determination.

Just like the usual LDE/PMS procedures, it is a recipe
without a formal general justification. For quantities de-
scribed by a perturbative series which is originally factorially

; . . ~divergent, such as the series relevant for the oscillator, we
ily obtained from Eq.(20) whereasR can be obtained di- finq that this procedure, though it helps in selecting only a

rectly from the perturbative evaluation E(_O). We refer thg few (if not always uniquelyamong the many possible com-
mtere;ted regder _to Ref9] for the.deta|ls and subtleties plex solutions, does not exhibit obvious convergence im-
associated with this type of evaluation. Thanks to the recent,oyement behavior, in contrast with the standard method
availability of improved six-loop result24] one obtains, at \yhose rigorous convergence is established in simple cases.
N=2, Our experience from several toy series as well as the physi-
cal systems considered in this paper seems to point to the
following behaviors which remain somewhat mysterious to
us: Compared to the usual LDE/PMS procedures, it seems
more superior conceptually when applied to series with finite
s _ radius of convergence or at least a less divergent series, like
’ -g\ the ones relevant to the BEC critical temperature. When one
ol A, (24) deals with an asymptotic expansi@with zero radius of con-
vergence but alternating signiypical of those appearing in
perturbative calculations for physical systems, it seems that
where M is an arbitrary mass scale introduced by dimen-the recipe breaks down at high order, but that at low order it
sional regularization ané,=1.407 24< 1073, A;=8.508 88  gives excellent numerical results, provided that the
X 1078 A,=3.572 59< 10 ® andAs=2.253 32x 10°7. As dis-  asymptotic expansion is not too different in its first few or-
cussed in Ref[9] it is interesting to note that the optimized ders from a series with finite radius of convergerea-
o defined by the standard PMS, or as well by the IPMSamples are provided by finitd-versus largeN theories.
introduced in the present work, are scale independent to any Moreover, quite interestingly, the method appears in non-
Order iné (e} thatz) is on|y g dependent_ Note alSO tha‘t7 t_I’IVIa| cases to estimate numen-catlw Opt|m|zat|0r) ess.en'
contrary toA(¢?), r. is a divergent quantity. In this case, the tially correct values of the leading corrections to scaling be-
optimization procedure must be implemented after renormalf@vior, since the introduction of more interpolation
ization as advocated in ReBJ. Finally, let us point out that Parameters in the LDE ansatz is, to a first approximation,
the potential technical difficulty associated with the evalua-8auivalent to introducing the relevant critical exponent. Fi-
tion of r, stems from the fact that, whila(¢?) depends on nally, our numerical results obtained for the BEC cr!tlcql
the (finite) differenceX(p)-2(0), the former depends on the temperature when using the latest available perturbative in-
(divergeny %(0) only. Here, we had acce$&5] to values of formation are in excellent agreement with the numerical lat-
3(0) up to orders’ (six loops only. Unfortunately, at order t|ced3|r|nul?t|onhs rlesults for the all avaﬂe:jble f;]nlll‘é cases
55 only the results for the joink(p)—-=(0) contribution are I(atri]c rz;tjnmor the largér case as compared to the exact ana-
known [24]. y '
The results of the alternative method are shown in Table
VIII below for M=g/3 which was the value chosen in the
lattice evaluationg13]. As one can see, the results of our
alternative method show again a remarkable agreement with M.B.P. is partially supported by CNPqg-Brazil. We thank
the numerical lattice result up to the fifth ordeix loop). Boris Kastening for useful communication relevant to the six
Concerning the results of the standard PMS method, a®op evaluation of ..

with K,=-0.135 083 353 73 and’R=r, wherer.=-2(0)
(Hugenholtz-Pines theoremAs before, the quantity is eas-

M
o =-33(0)= g—: + ngz{m( ) 05977

w
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