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Improving perturbation theory via a variational optimization has generally produced in higher orders an
embarrassingly large set of solutions, most of them unphysical(complex). We introduce an extension of the
optimized perturbation method which leads to a drastic reduction of the number of acceptable solutions. The
properties of this method are studied and it is then applied to the calculation of relevant quantities in different
f4 models, such as the anharmonic oscillator energy levels and the critical Bose-Einstein condensation tem-
perature shiftDTc recently investigated by various authors. Our present estimates ofDTc, incorporating the
most recently available six and seven loop perturbative information, are in excellent agreement with all the
available lattice numerical simulations. This represents a very substantial improvement over previous
treatments.
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The variationally improved or optimized perturbation
based on the lineard expansion(LDE) [1–3] is a well-used
modification of the usual perturbation theory, based on a re-
organization of the interacting Lagrangian such that it de-
pends on an arbitrary mass parameter, to be fixed by some
optimization prescription. InD=1 theories, such as the quan-
tum mechanical anharmonic oscillator[4], the LDE turns out
to be equivalent[5] to the “order-dependent mapping”
(ODM) resummation method[3]. At the same time, the prin-
ciple of minimal sensitivity(PMS) [2] optimization, which
takes extrema with respect to the mass parameter, is equiva-
lent at large orders to a rescaling of the adjustable oscillator
mass with perturbative order, which can essentially suppress
the factorial large order behavior of ordinary perturbative
coefficients. This appropriate rescaling of the adjustable
mass gives a convergent series[5,6], e.g., for the oscillator
energy levels[4] and related quantities. Any physical quan-
tity whose ordinary perturbative sequence is available can
then be evaluated to an orderdk using simply modified Feyn-
man rules as implied by the following formal substitution
valid for a scalar field theory:

v → vs1 − dd1/2; g → gd, s1d

wherev andg are the mass and coupling, respectively. Note
that for theD=1 quantum mechanical anharmonic oscillator
described by agf4 theory no renormalization is needed[4],
while for D.1 models, the parametersg and v in Eq. (1)
are to be considered implicitly bare parameters, and the pro-
cedure can be made in this case fully consistent[7,8] with
the renormalization program of ordinary perturbation theory.
In particular, appropriate renormalization takes into account
properly any(mass or field) anomalous dimensions when the
latter are relevant.

Now, a definite drawback of the optimization prescription
is that it involves minimization of a polynomial equation of
orderk in the relevant mass parameterv at perturbative or-
der dk, such that more and more solutions, most of them

being complex, are to be considered when increasing the
order. This nonuniqueness of the optimized solution requires
extra choice criteria, and thus may seriously obscure the in-
terpretation and the convergence towards the correct result in
many nontrivial cases where the exact nonperturbative result
is totally unknown. Moreover, the fact that most solutions are
complex is embarrassing, as one has to invoke still an extra
criterion to select a(supposedly correct) real result. For some
of the simplest models where the method applies, like the
oscillator energy levels typically, fortunately all of the com-
plex optimization solutions have actually small imaginary
parts and are rapidly decreasing as the perturbative order
increases(see, e.g., Belletet al. in Refs. [6]), so that the
convergence properties are not very obscured by this incon-
venience of the PMS. But in less trivial situations, the imagi-
nary parts of the PMS solutions may be large(see, e.g., Refs.
[9–11]) and thus their physical intepretation unclear.

In this paper, we propose a simple generalization of the
PMS criterion as performed on the LDE series, which turns
out to lead to a drastic reduction of physically acceptable real
optimization solutions at each successive perturbative order
in all the physical cases we have applied it to. First, we treat
the oscillator ground state energy, both in the large-N case
[for the vectorOsNd-symmetricf4 model] and the ordinary
oscillator(scalar,N=1) f4 model. We then apply it to a less
trivial and more interesting problem associated with the
breakdown of perturbation theory near a critical point,
namely the evaluation of the critical transition temperature
for a dilute, weakly interacting homogeneous Bose gas. This
has been the source of controversy for many years and re-
cently several independent groups have provided comparable
evaluations of the critical temperature. The relevant field
theoretic framework is af4 D=3 model(after dimensional
reduction) with an Os2d symmetry(see, e.g., Refs.[12,16]
for reviews). Here, for completeness we also consider the
large-N limit of the OsNd symmetric model case where the
exact next-to-leading 1/N result is known analytically. In all
these cases, the method seems to give excellent approxima-

PHYSICAL REVIEW A 69, 053624(2004)

1050-2947/2004/69(5)/053624(8)/$22.50 ©2004 The American Physical Society69 053624-1



tions in comparison with the standard PMS ones.

I. BASIC METHOD AND THE OSCILLATOR ENERGY
LEVELS

Let us start with the basic perturbative series of the oscil-
lator ground state energy level as described by agf4 D=1
model with massv:

E0
snd =

v

2
+ vo

q=1

n

s− 1dq+1cqS g

v3Dq

, s2d

with c1=3/4, c2=21/8, etc.[4]. As discussed in the Intro-
duction, the LDE procedure is implemented by the substitu-
tions

v → vs1 − dd1/2, g → gd, s3d

into the perturbative series Eq.(2), then reexpanding the lat-
ter to orderk in the new expansion parameterd. Next, d is
set to the valued=1, such as to recover the original(mass-
less) theory, while at any finite orderk there remains a de-
pendence onv in the LDE resultEskdsv ,d=1d. The standard,
mostly used optimization criterion is the principle of mini-
mal sensitivity(PMS), requiring at each successive perturba-
tive orderk: ]Eskdsv ,d=1d /]v=0 for optimalv values. The
modification(generalization) that we propose here is first to
introduce extra arbitrary parameters, starting at order two
with one more parameter:

v → vs1 − dd1/2f1 + s1 − addg1/2, s4d

such that the modified Lagrangian still interpolates between
the free field (massive) theory for d=0 and the original
(massless) theory ford=1. Second, now the PMS criterion is
generalized by requiring both]Es2d /]v=0, and]2Es2d /]v2

=0, which gives a system of two equations to be solved
simultaneously fora and v: For a=1, Es2dsvd has no real
minimum, but an inflection point with an almost horizontal
tangent, and a small value ofa−1 makes this tangent hori-
zontal, removing the embarrassment of complex extrema. At
higher orders, the generalization is easily done with addi-
tional parameters and additional vanishing of higher deriva-
tives of Eskdsvd. For example, at third order, we introduce
two parameters(a andb) as

v → vs1 − dd1/2f1 + s1 − add + bd2g1/2, s5d

together with the extra requirement on the third derivative:
]3Es3d /]v3=0.1

The results of the method for the(scalar case) oscillator
energy level are shown in Table I, up to order nine, where
higher order generalizations of Eq.(5) are still reasonably
tractable upon using efficient polynomial equation solver(we

used mainlyMathematica[17]).2 The real solution is unique
(at least up to the highest perturbative orders that we ana-
lyzed, as given in Table I) and we also indicate for later
discussion the corresponding values obtained for the extra
interpolation parametera as defined in Eqs.(4) and (5).
[Note that actually the(unique) real optimization solution
gives values for the other parametersb, . . . in, e.g., Eq.(5) at
higher orders, which are almost always small with respect to
a. More on this later.]

We see that after approaching the exact answer to within
4310−3 at fourth order, the approximation becomes worse in
a way strongly reminiscent of the behavior of an asymptotic
expansion with alternating signs evaluated at a finite value of
its parameter. This is clearly related to the fact that the origi-
nal series in Eq.(2) has factorially growing coefficients at
large orders, and thus our alternative method apparently
loses the property of compensating this divergent behavior
by an appropriate rescaling[5,6] of the optimized mass pa-
rameter, unlike the standard LDE-PMS. More precisely, one
can see from the third column of Table I that the values of
the optimized mass parameterṽ, after increasing regularly
with the perturbative order for the first few orders, appear
rather to have a slower increase for the highest perturbative
orders we could consider.

Nevertheless, we can try to better exploit these results by
standard resummation methods applied on the obtained per-
turbative sequence, typically considering simple Padé ap-
proximants. Accordingly, let us define the following pertur-
bative series:

Espd = E1 + o
q=1

p

sEq+1 − Eqdxq, s6d

whereEq denotes the results for the ground-state energy at
ordersq in Table I, so that Eq.(6) simply givesEspd=Ep for
x=1. Now a simple(3,3) Padé approximant of Eq.(6) using

1For completeness, note that we generalize Eq.(5) at arbitrary
higher orders by simply adding to the expression within the right-
handed bracket of Eq.(5), a termbkd

k at each orderk, wherebk are
new parameters.

2It is clearly becoming more cumbersome and CPU consuming to
apply such a method at very large perturbative orders due to the
increase in the number of parameters at successive orders.

TABLE I. Improved-PMS results for the oscillator ground state
energy level, at different ordersk, with the corresponding values of
the optimal mass parameterṽ and the main interpolation parameter
a. Eexact=0.420 804 97. . .s4gd1/3.

k EIPMS/ s4gd1/3 ṽ a

1 0.429 268 1.82

2 0.418 483 2.04 1.05

3 0.422 341 2.18 1.08

4 0.419 138 2.28 1.09

5 0.423 496 2.37 1.11

6 0.415 23 2.45 1.12

7 0.436 015 2.51 1.15

8 0.380 812 2.59 1.15

9 0.647 259 2.60 1.25
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the first seven orders of Table I gives 0.420 841, and a(4,4)
Padé using all the numbers of Table I gives 0.420 838, still
an improvement, within 8310−5 of the exact answer, in spite
of the superficially disastrous results of the eighth and ninth
orders.

Next, the same analysis is performed for the large-N ap-
proximation of the vectorOsNd symmetric oscillator, which
consists of considering only the “cactus” Feynman graphs.
As is well-known, the resulting perturbative series for the
ground state energy of a form similar to Eq.(2) can be ob-
tained simply in this case to arbitrary orders by solving the
large-N gap equation exactly, and expanding in a perturba-
tive series ing the corresponding exact large-N expression of
the ground state energy. When written with the same normal-
ization as in Eq.(2) the first few coefficients of this series are
c1=1/4, c2=1/4, c3=1/2, . . ..However, an important differ-
ence with the scalar case oscillator is that the resulting per-
turbative series has no factorially growing coefficients at
large orders and a finite convergence radius. As one can see,
the method performs very well in this case, approaching rap-
idly very close to the exact solution when the order in-
creases. Again, there is only one real positive solution at
each order. One can also notice from the last column of Table
II the more regular behavior of the extra interpolation param-
eter a, as compared to Table I, which now appears to tend
towards a constant value.(The other parametersb, etc., cor-
responding to the analysis in Table II are numerically quite
negligible with respect toa, so that we do not give their
explicit values.)

In order to better understand why the method seems not
so efficient when applied to a factorially divergent series,
like Eq. (2) for the standard(scalar case) oscillator, let us
consider now the even simpler functional integral of Euclid-
ian f4 theory in zero dimension:

Isg,md ;
Î2

Gs1/2d
E

0

`

dx exph− m2x2/2 − gx4/4j. s7d

As is well-known, this can be expanded in a perturbative
series ing with alternating signs, factorially growing coeffi-
cients at large orders:

Ipertsg,md =
1

Gs1/2dmo
p=0

`

s− 1dpGs2p + 1/2d
p!

S g

m4Dp

. s8d

Now the exact result of the integral form=0 is

Isg,0d = 2−3/2
Î2Gs1/4d

Gs1/2d
g−1/4 = 1.022 765 672 1 . . .g−1/4,

s9d

which we can compare with the results of the application
of the method: 0.954 325, 1.086 577 1, 0.942 138 24,
1.244 391 803, 0.703 884 6, respectively, for orders one to
five. Then, there is no real solution at order six. Nevertheless,
a Padé approximantPf1,1g (thus constructed from the first
three orders) still gives 1.017 54. Thus, the behavior is quite
similar to the one of the(scalar) oscillator where there are
also no physically acceptable solutions at higher orders.
(However, the quality of the results from Padé approximants
of higher orders appears to deteriorate more rapidly than in
the previous oscillator case: For example, aPf2,2g thus con-
structed from the first five orders gives 1.056 77). This any-
way confirms that the generalized method is not appropriate
to turn a factorially divergent large order behavior into a
more convergent one, while it definitely improves the LDE
convergence when starting from a less divergent original se-
ries.

II. CRITICAL THEORY AND BEC CRITICAL
TEMPERATURE

We now turn to the more recent and challenging problem
of the BEC critical temperature evaluation. We first recall
that, toOsa2n2/3d, its functional form was found to be[13]

Tc = T0h1 + c1an1/3 + fc28lnsan1/3d + c29ga
2n2/3j, s10d

whereT0 is the ideal gas condensation temperature,a is the
s-wave scattering length,n is the density andc1, c28, c29 are
numerical coefficients. Some early analytical predictions in-
cluded the self-consistent resummation schemes[14] sc1

.2.90d, the 1/N expansion at leading order[15] sc1

.2.33d and at next to leading order[16] sc1.1.71d, and also
the LDE at second order[18] sc1.3.06d. The numerical
methods include essentially lattice simulations(LS). The
most recent LS results are reported by the authors of Ref.
[19] sc1=1.29±0.05d and of Ref.[20] sc1=1.32±0.02d. Very
recent analytical studies predictc1=1.27±0.11 [21]. The
problem is that these coefficients(exceptc28) are sensitive to
the infrared physics at the critical point and, so, no perturba-
tive approach can be used to compute them. At the critical
point, one can describe a weakly interacting dilute homoge-
neous Bose gas by an effective action analogous to anOs2d
scalar field model in three dimensions given by

Sf =E d3xS1

2
s¹fd2 +

1

2
vf2 +

g

4!
f4D , s11d

wheref is a two-component real scalar field. The parameters
v andg are related to the original parameters of the nonrel-

TABLE II. Improved-PMS results for the oscillator ground state
energy level at largeN, for different ordersk, with the correspond-
ing values of the optimal mass parameterṽ and interpolation pa-
rametera. Eexact=0.429 267 840 9. . .s4g/3d1/3.

k EIPMS/ s4g/3d1/3 ṽ a

1 0.429 268 1.26

2 0.429 589 1.37 0.96

3 0.429 400 1.43 0.92

4 0.429 326 1.47 0.89

5 0.429 296 1.50 0.87

6 0.429 282 1.52 0.85

7 0.429 275 1.54 0.84

8 0.429 272 1.55 0.83

9 0.429 270 1.56 0.82
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ativistic action byv=−2mm andg=48pamT [15,16] where
m represents the chemical potential,m the atomic mass andT
the temperature. The leading order coefficient of the critical
temperature shift can be expressed as[14]

c1 = − s256/Ndp3fzs3/2dg−4/3k, s12d

where gk=Dkf2l;kf2lg−kf2l0. The subscriptsg and 0
mean that the field fluctuations are to be evaluated in the
presence and in the absence of interactions, respectively.

The implementation of LDE within this model is re-
viewed in previous applications[9–11,18]. Let us first con-
sider the LDE in the large-N limit extending the relevant
Os2d model to anOsNd-symmetric one. The interest of such
an approximation is that the exactc1 result is known by
direct evaluation[15]. The original perturbation series in this
case can be written as

kf2lg
skd = −

Nv

4p
+

Ng

3 o
i=1

k−1

CiS−
gN

6v
Di

, s13d

where the perturbative coefficients are given by

Ci =
3

16p3S 1

8p
DiE

0

`

dz
z2

sz2 + 1dsz2 + 4d
fAszdgi , s14d

with

Aszd =
2

z
arctan

z

2
, s15d

and z=k/v, and can be calculated analytically to arbitrary
precision using, e.g.,Mathematica[17] numerical integra-
tion. By applying the generalized LDE procedure as de-
scribed above in Eqs.(4) and (5), etc., up to orderd9, one
obtains the results shown in Table IIIsc1,IPMSd, together with
those obtained by the standard PMS optimization procedure,
the latter for the best converging family of solutions
c1,bestPMS(see Ref.[10] for details on the latter).

As illustrated and discussed in detail in Ref.[10], the
convergence of the standard LDE-PMS method when ap-
plied to the exact large-N series Eq.(13) is actually very
slow (leaving apart the accidentally good result at first or-
der), so that only at very large perturbative orders,50 do

the optimized values approach reasonably close to the exact
large-N value, c1.2.328 47. . .. Thus the advantage of the
improved PMS approach is not obvious in this case, since it
is evidently less algebraically tractable than the standard
method at very large perturbative orders. Nevertheless, one
can see from the improved-PMS results in Table III that the
method performs much better, giving always a unique real
solution and seemingly converging much faster towards the
expected result. In fact, as motivated in Ref.[10], in order to
study the eventual LDE convergence properties of the large-
N expression ofc1, it is more instructive to consider an ap-
proximated form of the corresponding large-N perturbative
series which takes into account only the relevant infrared
limit of the auxiliary field propagator(see Ref.[10] for more
details). This has the advantage of giving a simple geometric
series with exact coefficients:

kf2lIR
skd = −

Nv

4p
+

gN

3 o
i=1

k−1

GiS−
gN

6v
Di

, s16d

whereGi ;fs64p2ds8pdig−1, such that the straightforward re-
summation of(16) is well defined for the relevant limitv
→0, which accordingly can be reached smoothly in contrast
with the genuine large-N series Eq.(13). The alternative
method results applied on the original series(16) are shown
in Table IV, together with those obtained by the standard
PMS optimization procedure, the latter for the best converg-
ing family of solutions.

In that case, the convergence of the standard PMS method
is faster in comparison of Table III, but the improved-PMS
method performs even better: starting from order six and
beyond, the exact result is always obtained as the unique
physically acceptable solution. It is interesting to trace what
happens in more detail. In fact, the solutions found at LDE
orders kù6 by applying the procedure isa=2, b=c=d
=¯ =0, which is easily seen by comparing with Eqs.(4) and
(5) to correspond to a basic interpolation of the form

v → vs1 − 2d + d2 + 0d1/2 = vs1 − dd. s17d

Then, applying the substitution(17) on any geometric series
instead of the standard LDE substitution(1) canonical for a
scalar theory, one can easily see from simple algebraic prop-
erties that the improved-PMS solution always reproduces the

TABLE III. Improved-PMS (IPMS) versus standard results for
the large-N BEC DTc at different ordersk. c1,exact=2.328 47. . ..

k c1,IPMS a c1,bestPMS

2 2.163 2.163

3 1.85 1.44 1.88±0.17I

4 1.93 1.69 1.96

5 2.00 1.78 1.91±0.03I

6 2.04 1.83 1.94

7 2.08 1.89 1.93±0.0015I

8 2.10 1.88 1.935

9 2.12 1.89 1.95

10 2.14 1.91 1.95±0.03I

TABLE IV. Improved-PMS(IPMS) versus standard results for
the large-N BEC DTc at different ordersk. c1,exact=2.328 47. . ..

k c1,IPMS a c1,bestPMS

2 2.852 2.852

3 2.367 71 1.49 2.444±0.276I

4 2.344 51 1.53 2.244±0.20I

5 2.336 86 1.56 2.397±0.079I

6 2.328 47 2.0 2.333±0.08I

7 2.328 47 2.0 2.298±0.06I

8 2.328 47 2.0 2.342±0.04I

9 2.328 47 2.0 2.324±0.036I
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exact solution, and this is at any arbitrary LDE orderkù2.
This case exhibits a spectacular improvement over the stan-
dard LDE results, which converges only rather slowly and
with nonzero (albeit small) imaginary parts, a source of
much frustration.A posteriori, there is nothing particularly
remarkable in this result which is essentially an algebraic
accident of the noncanonical substitution Eq.(17) followed
by the LDE when performed on a simple geometric series.
However, what is perhaps more interesting is that our
improved-PMS procedure is in that way guessing a more
appropriate value of the rescaling power within the LDE sub-
stitution ansatz Eq.(3): Alternatively we could have param-
etrized the basic LDE substitution according to

v → vs1 − ddg, s18d

with an arbitrary powerg to begin with, and then look for the
best value ofg such that the LDE series converges faster
towards the exact result, which is clearly the case forg=1 in
this large-N case. Now, it is worth noting that considering an
arbitrary power coefficientg according to Eq.(18) when
applied to the BEC series turns out in practice to be essen-
tially equivalent to modifying the simplest LDE substitution
formula Eq.(1) by introducing the relevant critical exponent:

v → vs1 − dd1/v8, s19d

wherev8=2V / s2−hd, h is the anomalous dimension of the
critical propagator,1/p2−h and V;b8sgcd, gc being the
critical coupling (see, e.g., Ref.[12]). This renormalization
group inspired modification Eq.(19) of the standard LDE
Eq. (3) is indeed the approach followed, e.g., in Refs.
[21,22], where numerical values ofv8 as obtained by differ-
ent methods(including the variational perturbation theory
[23]) are used in ansatz(19) prior to an(otherwise standard)
PMS optimization. Now in our case, a major difference is
that the relevant exponentv8.2/a is simply guessed by the
generalized optimization procedure, at the same time as ob-
taining as optimized solution the relevant physical quantity
c1. More precisely, the correct exact large-N value v8=1,
V=1 (see, e.g., Ref.[12]) is clearly guessed by our
improved-PMS procedure, withv8=2/a, at least for the in-
frared approximated large-N case as illustrated in Table IV.
Note also that the values of the parametera at successive
perturbative orders are also clearly approaching quite closely,
though more slowly, the correct critical value when consid-
ering the genuine large-N series, as illustrated in Table III
(noting, however, that in this case the other parametersb, etc.
are small with respect toa but not strictly zero).

We will consider now mainly the physically relevantN
=2 case, as well as the caseN=1 andN=4 for comparison
with other available lattice simulation and analytical results.
We will see that many of the previous results for the large-N
series generalize, at least qualitatively, to this less trivial
case. ForN=2, the quantitykf2lg

skd has been first evaluated,
up to orderd4, in Ref. [9]. Recently, higher order terms have
been evaluated by Kastening[21] so that, to orderd6, the
perturbative series can be written as

kf2lg
s6d = −

Nv

4p
+ go

i=1

5

KiS−
g

v
Di

, s20d

where the coefficients are given byK1=3.221 74310−5, K2
=1.517 92310−6, K3=9.665 12310−8, K4.7.513 66
310−9, andK5.6.7493310−10.3 The results of our alterna-
tive procedure are shown in Table V, together with the re-
sults from applying simple Padé approximants similar to the
ones discussed above for the oscillator, i.e., defining a per-
turbative series similar to Eq.(6) but where theEi are now
replaced by the values ofc1 in Table V at successive orders
k. One can notice that at ordersk=2,3 and 4 theIPMS
results quickly oscillate around the MC results. From order
d4 onwards the oscillation is reduced drastically and the
IPMS procedure generates stable results which agree remark-
ably well with the lattice results. Furthermore, we also indi-
cated in Table V the corresponding values obtained at each
order for the parametera, whereas as already indicated, in
the generalized LDE substitutions Eq.(5), etc., at higher or-
ders the remaining parametersb, etc. are numerically
smaller. Accordingly, to first order approximation,

v → vf1 − ad − s1 − add2 + bd2s1 − dd + ¯g1/2 . vs1

− dda/2, s21d

so that in a rough approximation one hasv8.2/a. Taking
the latter approximate relation at face value would give, e.g.,
for the successive orders considered in Table V:v8,1.03,
0.71, 0.73, 0.71, which do not compare badly with the re-
ported values ofv8=0.8±0.04[12,23] obtained numerically
by other methods. Note, however, that the present method
does not pretend at this stage to accurately predict in that
way the relevant critical exponentv8, V, etc. Indeed, in this
N=2 case the other parametersb, etc. are small with respect
to a but not strictly negligible. Nevertheless, though the es-

3Throughout this paper we use the perturbative loop coefficients
results of Ref.[21] to evaluate all these coefficients, since in par-
ticular the latter are obtained as much as possible from exact inte-
grals. There are therefore some very small differences in the lowest
orders numerical results with respect to some previous analysis
[9,10], since the latter used numerical integration, not always very
precise. Note also a trivial difference of normalization with respect
to Ref. [21] in our defining series, Eq.(20).

TABLE V. Improved-PMS(IPMS) versus standard(PMS) re-
sults for c1 at N=2 in the BEC case at different ordersk. Also
shown are the Padé approximants(PA) resummation results applied
to the improved-PMS cases. The lattice results arec1=1.29±0.05,
1.32±0.02.

k c1,IPMS a PAsc1,IPMSd c1,PMS

2 3.06 3.06

3 0.98 1.95 2.45±1.66I

4 1.426 2.81 Pf1,1g=1.347 1.53±2.32I

5 1.247 2.75 Pf1,2g=1.283;Pf2,1g=1.298 0.76±2.53I

6 1.300 2.83 Pf2,2g=1.286 2.40±1.69I
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sential motivation of our approach introducing more interpo-
lation parameters in Eq.(5) is to get rid of the unwanted
complex optimization solutions, it is interestingly connected
with the parametrization of corrections to scaling, the leading
correction being correctly described according to Eq.(19)
(see, e.g., Refs.[21,22] for further motivation of Eq.(19)).
However, to be complete one should note that, in contrast
with the previous oscillator and large-N BEC series, the real
IPMS solutions in Table V are not always unique: actually, at
ordersk=4 andk=6 there appears a second real(but nega-
tive) solution. But these extra solutions can be immediately
eliminated as they correspond to largely unreasonable values
of the interpolation parameters: for instance, fork=4 the
extra real solution isa.−13.9, b.55.5, andṽ.−0.02,
which givesc1.−55.4, while we can expect consistent val-
ues of these parameters to be reasonably close to their cor-
responding large-N values, i.e., typicallya should be not too
far from its large-N value a=2, as also supported from the
results of the above mentioned leading corrections to scaling
analysis.

At the same time, the results from the standard LDE-PMS
optimization method shown in Table V also oscillate some-
how around the MC result, as anticipated in Ref.[11], but the
convergence is not at all obvious: after approaching rather
closely the lattice result at orderd4, the results of the next
two higher orders depart sensibly from the lattice one. In the
absence of any indication on the higher orders, we can hardly
speculate but, by comparison with the results of Ref.[10] for
the large-N case, as summarized in Tables III and IV, it ap-
pears possible that the standard LDE ultimately converges
towards the same result, but in a much slower way than our
improved method given in the left column of Table V. More-
over, the latter standard PMS results will look much less
attractive if one recalls that they have been selected among
several possible complex results with large imaginary parts
[10], requiring an extra selection criteria,4 in contrast to the
improved version.

One can also note the remarkable results of the Padé ap-
proximants based on the improved-PMS results at different
orders, even for the lowest order onePf1,1g, though it only
uses the second and third order IPMS results. This is cer-
tainly not coincidental and should be mainly attributed to the
oscillatory property of the IPMS results. Indeed, the very
same Padé approximants using instead(real parts of) the
standard PMS results of the rightmost column of Table V are
far away from any reasonable result: this would give, e.g.,
Pf1,1g=4.26 andPf2,2g=3.66.

Next, we consider the completely similar calculation of
the coefficientc1 as defined in Eq.(12) but for the casesN
=1 andN=4, respectively, for which lattice calculations of
c1 have been recently performed in Ref.[26]. The original
perturbative series reads like Eq.(20) with now the relevant
coefficients Ki given by K1=1.208 097310−5, K2
=5.122 985 3310−7, K3=2.964 522 5310−8, K4

.2.108 495 6310−9, and K5.1.742 0267310−10, and K1
=9.664 779 4310−5, K2=5.464 517 7310−6, K3
=4.095 845 76310−7, K4.3.702 611 98310−8, and K5
.3.833 335 8310−9, respectively, forN=1 andN=4.

Our results are given in Tables VI and VII, respectively,
for N=1 and N=4. As one can see, the results from our
alternative method are again showing very good convergence
properties and approaching very closely the lattice results.
The Padé approximants are also in excellent agreement with
the latter. In addition, the corresponding values obtained for
the parametera, as related in first approximation to the criti-
cal exponentv8 in Eq. (18), appear qualitatively very con-
sistent to known results forv8 for N=1 andN=4 [12,23]. On
the other hand, the results from the standard LDE-PMS
method show a behavior very similar to the caseN=2: after
approaching not too far from the lattice result at fourth order
(but with very large imaginary parts), the results from higher
orders are not satisfactory, with trends very similar to the
caseN=2.

We finally apply our alternative method to the other non-
perturbative relevant coefficientc29 in the defining Eq.(10).
This coefficient, which is not generally considered by most
authors working on the BECDTc problem, was first evalu-
ated with lattice simulations. To our knowledge, its sole ana-
lytical evaluation made use of the standard LDE-PMS[9,10]
up to orderd4 (five loops). ThisOsa2n2/3d coefficient appear-
ing in theDTc expansion, Eq.(10), can be written as[13]

c29 = −
2

3
fzs3/2dg−5/3b29 +

7

9
fzs3/2dg−8/3s192p3kd2 +

64p

9
zs1/2d

3fzs3/2dg−5/3ln zs3/2d, s22d

whereb29 is

4More precisely, we selected[10] among the different LDE-PMS
real or complex solutions the ones having the smallest Refṽg.0
value of the optimized mass, motivated by the fact that the exact
solution would correspond tov→0.

TABLE VI. Same as Table V(improved versus standard) PMS
results but forN=1 at different ordersk. The lattice result is
1.09±0.09.

k c1,IPMS a PAsc1,IPMSd c1,PMS

2 2.65 2.65

3 0.817 1.95 2.12±1.47I

4 1.237 2.88 Pf1,1g=1.159 1.31±2.06I

5 1.047 2.77 Pf1,2g=1.086;Pf2,1g=1.106 0.62±2.29I

6 1.114 2.90 Pf2,2g=1.095 2.11±1.54I

TABLE VII. Same as Table V(improved versus standard) PMS
results but forN=4 at different ordersk. The lattice result is
1.59±0.10.

k c1,IPMS a PAsc1,IPMSd c1,PMS

2 3.75 3.75

3 1.222 1.94 2.99±1.99I

4 1.665 2.68 Pf1,1g=1.589 1.90±2.74I

5 1.524 2.66 Pf1,2g=1.550;Pf2,1g=1.558 0.99±3.01I

6 1.556 2.74 Pf2,2g=1.549 2.90±1.98I
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b29 = 32pHF1

2
lns128p3d +

1

2
− 72p2R − 96p2kG 3 zs1/2d

+
Îp

2
− K2 −

ln 2

2Îp
fzs1/2dg2J , s23d

with K2=−0.135 083 353 73 andg2R=rc where rc=−Ss0d
(Hugenholtz-Pines theorem). As before, the quantityk is eas-
ily obtained from Eq.(20) whereasR can be obtained di-
rectly from the perturbative evaluation ofSs0d. We refer the
interested reader to Ref.[9] for the details and subtleties
associated with this type of evaluation. Thanks to the recent
availability of improved six-loop results[24] one obtains, at
N=2,

drc
s5d = − Sren

s5ds0d =
gv

6p
+ g2A2FlnSM

v
D − 0.597 75G

+ v2o
i=3

5 S− g

v
Di

Ai , s24d

where M is an arbitrary mass scale introduced by dimen-
sional regularization andA2=1.407 24310−3, A3=8.508 88
310−5, A4=3.572 59310−6 andA5=2.253 32310−7. As dis-
cussed in Ref.[9] it is interesting to note that the optimized
ṽ defined by the standard PMS, or as well by the IPMS
introduced in the present work, are scale independent to any
order in d so that ṽ is only g dependent. Note also that,
contrary toDkf2l, rc is a divergent quantity. In this case, the
optimization procedure must be implemented after renormal-
ization as advocated in Ref.[8]. Finally, let us point out that
the potential technical difficulty associated with the evalua-
tion of rc stems from the fact that, whileDkf2l depends on
the (finite) differenceSspd−Ss0d, the former depends on the
(divergent) Ss0d only. Here, we had access[25] to values of
Ss0d up to orderd 5 (six loops) only. Unfortunately, at order
d 6 only the results for the jointSspd−Ss0d contribution are
known [24].

The results of the alternative method are shown in Table
VIII below for M =g/3 which was the value chosen in the
lattice evaluations[13]. As one can see, the results of our
alternative method show again a remarkable agreement with
the numerical lattice result up to the fifth order(six loop).
Concerning the results of the standard PMS method, as

shown in the right column of Table VIII, their behavior is
again very similar to the ones for thec1 coefficient above in
Tables V–VII: after approaching very closely the lattice re-
sult at fourth(five-loop) order, the six-loop result starts to
decrease a bit further.

III. CONCLUSION

We have introduced a conceptually rather simple gener-
alization of the optimized(or variationally improved) pertur-
bation method, which considerably reduces the number of
irrelevant optimization solutions at each perturbative order.
We have applied this variant of the PMS method to the cal-
culation of certain nonperturbative quantities in the simple
quantum mechanical oscillator as well as the more challeng-
ing BEC critical temperature determination.

Just like the usual LDE/PMS procedures, it is a recipe
without a formal general justification. For quantities de-
scribed by a perturbative series which is originally factorially
divergent, such as the series relevant for the oscillator, we
find that this procedure, though it helps in selecting only a
few (if not always uniquely) among the many possible com-
plex solutions, does not exhibit obvious convergence im-
provement behavior, in contrast with the standard method
whose rigorous convergence is established in simple cases.
Our experience from several toy series as well as the physi-
cal systems considered in this paper seems to point to the
following behaviors which remain somewhat mysterious to
us: Compared to the usual LDE/PMS procedures, it seems
more superior conceptually when applied to series with finite
radius of convergence or at least a less divergent series, like
the ones relevant to the BEC critical temperature. When one
deals with an asymptotic expansion(with zero radius of con-
vergence but alternating signs) typical of those appearing in
perturbative calculations for physical systems, it seems that
the recipe breaks down at high order, but that at low order it
gives excellent numerical results, provided that the
asymptotic expansion is not too different in its first few or-
ders from a series with finite radius of convergence(ex-
amples are provided by finite-N versus large-N theories).

Moreover, quite interestingly, the method appears in non-
trivial cases to estimate numerically(by optimization) essen-
tially correct values of the leading corrections to scaling be-
havior, since the introduction of more interpolation
parameters in the LDE ansatz is, to a first approximation,
equivalent to introducing the relevant critical exponent. Fi-
nally, our numerical results obtained for the BEC critical
temperature when using the latest available perturbative in-
formation are in excellent agreement with the numerical lat-
tice simulations results for the all available finiteN cases
(and also for the large-N case as compared to the exact ana-
lytic result).
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TABLE VIII. Improved-PMS results forc29 in the N=2 BEC
case at different ordersk. The lattice result isc29=75.7±0.4.

k c2,IPMS9 Padésc2,IPMS9 d c2,bestPMS9

2 101.2 101.2

3 69.83 94.2±31.2I

4 77.90 Pf1,1g=76.25 75.0±41.1I

5 73.46 Pf1,2g=79.31;Pf2,1g=75.04 60.4±41.2I
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