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Vortex line in a neutral finite-temperature superfluid Fermi gas
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The structure of an isolated vortex in a dilute two-component neutral superfluid Fermi gas is studied within
the context of self-consistent Bogoliubov—de Gennes theory. Various thermodynamic properties are calculated,
and the shift in the critical temperature due to the presence of the vortex is analyzed. The gapless excitations
inside the vortex core are studied, and a scheme to detect these states and thus the presence of the vortex is
examined. The numerical results are compared with various analytical expressions when appropriate.
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I. INTRODUCTION effect of superfluidity can, as for bosons, be measured

The achievement of Fermi degeneracy in a confined ga@rou_gh the energy _Shi_ﬁ of the quadrupol_e mogts. We
of alkali-metal atomg1-7] has spurred great interest both mention that in the limit of strong interactions superfluidity
theoretically and experimentally in cold atomic gases withd/!S€S due Ito Blose—E|gste|n condetr|13at|on tOf t|ghtiy bount%
Fermi statistics. The atomic interactions are well understoogoscr)gllcomigguO?esﬁ;? ggg;ggfe;rey qgsgi;lg] Vcl)r: '({‘ﬁs wi
and often may be tailored through the physics of Feshbacfi P Y P y

resonances by the application of external magnetic ﬁeldgresent paper we focus on the weak-coupling fimit.
. e . Experimental techniques currently limit the temperature
[8-10. When the atom-atom interaction is attractive, the P d Y b

d f ) dicted to b of trapped Fermi gases to not much less than one-tenth of the
ground state of a two-component gas Is predicted 10 be Si-eymi gegeneracy temperatufe. The superfluid transition
perfluid at low temperaturefl1]. Such a superfluid would  temperaturer, of a conventional uniform Bardeen-Cooper-

provide a unique test bed for the study and interpretation o§chrieffer (BCS) superconductor, however, is typically
analogous but much more complex systems, such as supggwer: T./Tp=0.28 "2 <1, with k- the momentum at
fluid 3He, unconventional superconductors, and neutronhe Fermi surfacea the s-wave Scattering |ength for low-
stars. energy two-body collisions, andg|aj<1 in the weak-
One important issue facing the cold atom community hagoupling approximation where BCS theory is valid. A num-
been how one would go about actually detecting the presendger of schemes to raisk. to a value closer to temperatures
of superfluidity in these systems. Superfluidity in Bose-already accessible with dilute Fermi gases have recently been
Einstein condensat¢BEC’s) can be inferred either by prob- proposed. One of these, referred to in the literature as “reso-
ing directly the momentum distribution of the cloud, the col- nance superfluidity,” involves tuning the scattering length to
lective modes(where the spectrum is strongly shifted an extremely large value at a Feshbach resonab@gQ;
relative to the normal phageor by generating quantized recent experimental resulsee, for examplg21-23) show
vortices(an unambiguous signature of the breakdown of ir-significant progress using this approach, culminating in the
rotational flowy and simply viewing the associated “holes” in production of a Bose-Einstein condensate of molecules
the particle density12,13. Likewise, for superfluid Fermi [24—27. Another proposal involves loading the cold Fermi
gases, the presence of superfluidity has been shown to gigas into a three-dimensional optical latti@s]: if the lattice
many observable effects on the mode spectrum of the gas made sufficiently deep, the lowest-lying band will flatten
[14,15. For fermions in the weak-coupling limit, the pres- to the point where all of the atoms participate in the pairing,
ence of a vortex would be very difficult to image directly by as opposed to regular BCS theory, where only a small frac-
looking at the density profile, as there is very little depletiontion of particles close to the Fermi surface are available for
of the density in the vortex corgl6]. However, the quanti- pair formation. Of course, the lattice depth cannot be so great
zation of angular momentum which is a striking macroscopichat coherence across the sample is destroyed, as has been
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observed for bosons in optical latticE29-37. The inability The Bogoliubov wave functions,(r) andv,(r) describe
to experimentally attain very low temperatures in dilutequasiparticle excitations with enerdy,>0. In terms of
gases is probably not fundamental, however. With an eye othese the self-consistent density is given by
future experiments, it thus seems reasonable to explore the
predictions of a weak-coupling theory of Fermi superfluidity. Ne(r) = 2 A{u(DIFFE,) +[o (OAL-FENT,  (2)
In the present paper, we examine in detail several proper- ”

ties of the vortex phase of a neutral Fermi liquid confined inyhjle the gap equation for the pairing field is
a cylindrical box, presenting the solution of the full micro-
scopic theory at finite temperature. An essential difference A(r)=-9>, uv(r)v;(r)[l - 2f(E,)]. (3)
from similar studies in the superconductivity literatsee, n
€.g.[32) IS th? absence of an arbltrar_y CUtOﬁ. N th_e SUMSthe thermal population of a quasiparticle state with energy
over quasiparticle states. Since the interactions in dilute. ; LA .

g . is determined by the Fermi distribution functidfE,)
quantum gases are characterized entirely by parameter_sf/(_}E 6T 1)1 U
which can be either calculated fromb initio theoretical '
models or measured experimentally, our theory contains no
free parameters. The paper is structured as follows: the the- Vortex phase

oretical framework is briefly discussed in Sec. Il, and we The superfluid order parameter is a complex number and

present in Sec. Il the details of our numerical procedurecan thus be written as a real amplitude times a phase
Section IV is devoted to the calculation of various thermo-

dynamic quantities of the vortex phase, which are compared A(r) =|A(r)|e"). (4)
with the corresponding quantities in both the normal stater,, g herfiuid velocity is then given by the spatial variation
and the superfluid with no vortex. Furthermore, we demon-of the phase of the order parameter

strate that the vortex causes a shift of the superfluid transi-

tion temperature. Finally, in Sec. V we propose a way of

observing the vortex through “laser probing” of the quasipar- Vs = om. v o), (5)

ticle states trapped inside the vortex core. _ 4 _ .
where 2n, is the mass of a Cooper pair. A vortex line corre-

sponds to a rotational superfluid flow with a velocity which

Il. THEORETICAL BACKGROUND decreases with the distanpefrom the axis of rotation as
We consider a two-component Fermi gas consisting of Kt
particles with internal quantum numbers: 1, | and massn, Us= : (6)
' 2myp

confined in an external potentis,(r). For atomic gases at
low temperatures and realistic densities, the interactions fdriere « is the strength of the vortex line. This form of the
from Feshbach resonances are characterized by the lowelocity field implies the existence of a core region close to
energy parametea which is thes-wave scattering length the vortex axis where the kinetic energy is large enough to
appropriate for the scattering between the two specific interoreak the Cooper pairs. Hence the order parameter will be
nal states of the atoms. Therefore, only Fermi particles irsuppressed in the vortex core and will heal to its bulk value
different internal states are able to interact. In our calculaover a length scale governed by the coherence length
tions, we assume an equal population of the two componentscd T) =fivg/ mAy(T), with ve=fike/m, the Fermi velocity
N;=N, so that their densities, are equal. The superfluid andAy(T) the temperature-dependent value of the bulk gap
phase of the gas fa< 0 can be described within mean-field away from the vortex corg36].
theory by the Bogoliubov—de Genn@&3dG) equationg33] Due to the single valuedness of the order parameter, the
phase# must return to the same value modular 2vhen
HAF— 1 A(r) u,(r) u,(r) going around the vortex line. Hence the circulatfong-d¢ is
A - w | Lo Bl o] (1) restricted to integer multiples &f/2m,. In the present work
K K we will concentrate on vortices of unit circulatigfv,-df
=h/2m.,.
In summary, a vortex line represents a topological defect
. . in the superfluid order parameter, around which the super-
and_we have_taken the Interaction to be of_zero rage. Thﬁuid velocity field vg is tangential. The quantization of the
partqlucle density and pairing field are defined a_§(r) circulation represents one of the hallmarks of a superfluid,
=N (r)) and  A(r)=-Gy(r)¢(r)), respectively, nqg therefore the production and subsequent detection of
where y7/(r) is the usual fermionic field operator creating a guantized vortices in an ultracold atomic Fermi gas would be

particle in the internal state at positionr. It is importantto 3 clear signature for superfluidity in the system.
note that the use of a contact potential gives rise to an un-

physical ultraviolet divergence of the pairing field, due to the

absence of a high-energy cutoff. We regularize the expres-
sion for A(r) using the pseudopotential methg@4,35, For a gas confined in a cylinder of radiRsand lengthL
which introduces a regularized coupling consfgnt it is natural to work in cylindrical coordinatep,z, ¢), where

Here HHF=(-%2/2m,)V2+V(r)+gn,(r) with the low-
energy effective coupling constant given by 4=h2a/m,,

Ill. COMPUTATIONAL METHODS
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p measures the perpendicular distance from the symmetrjons localized about discrete values of the coordinate. This
axis, z is the axial coordinate, and is the azimuthal angle renders local functions of the coordinate operator approxi-
aroundz. In this coordinate system the order parameter camately diagonal within the DVR basis, making DVR's ide-
be written asA(r)=|A(p,z)|lexp(—-ikg), with k=0 corre- ally suited for solving self-consistent problems like the
sponding a phase with no vortex ard 1 for a singly quan- present one, where the matrix elements of the pairing and
tized vortex along the axis of symmetry. The mean-field denHartree fieldglocal functiong have to be evaluated at each
sity is rotationally invariantn,(r)=n,(p,2). iteration. In addition the representation of the kinetic energy
Assuming free motion along the cylinder axis and impos-operator is exact. The literature on DVR's is extensive and
ing periodic boundary conditions at+L/2, we write, for ~ we shall only convey the central points here. A detailed re-
the quasiparticle modes, view of the framework can be found {i37,3§.
ime k2 A _DVR exists when there is both a spectral basi;l\bf
U, () = Uy (p) —— e_: functions, ¢,(x), orthonormal over an intervdla,b] with
7 nmis v2m L weight functionw(x) and a quadrature rule witN pointsx,
and weightsw,:
ei(m+K)go eikzZ
V(1) =Vami(p) 2r O

(7) b N
(floy = f dXW(X)f(X)g(X)EkEwkf(xk)g(xk). (11)
a =1

The allowed values of the angular momentum quantum num-

ber are {m=0,+1,+2,..} and k,=2#¢/L, with {¢ This enables a set of coordinate eigenfunctidqggx),i
=0,£1,+2,..}. The radial functiongu,my,vnm) are taken =1,N} to be defined with the property

to be real. With these definitions the BdG equati¢bsbe-

come (%) = 5—'_" (12
W,

[ Ho  Alp) ][unmk;p)} . [unmkz(m] o " |
A(p) —Ho,. Unmkz(p) = Enmk, Unml&(P) ; We expand the unknown function(x) on the basisp,,

N
here
" EDIEACICAAY (13)
B2l 19 9 m o, n=1
Hp = —op G tan(p) —p. (9) :
2m, | pdp dp p and use the quadrature rul&l) and thes function property

¥ (12) to evaluate the expansion coefficients. The coor-

These are the equations we solve self-consistently through a § X ;
Inate eigenfunctions are then given by

iterative procedure.

By exploiting the symmetry of the BAG equatiofiy, we N
can identify anegativeenergy solution with angular momen- H(X) =D \;’Wi(/,n(x) dn(X). (14)
tum m with a positiveenergy solution with angular momen- n=1
tum -m-«. We can therefore generate the entire positive_ ) )
energy spectrum by solving E¢8) for m=0 only and using This leads to functlonsl/i(x).peake.d abouxzixi (see Fig. 1
the transformation below). Although the coordinate eigenfunctions are continu-

ous functions of the coordinate, they satisfy the Kroneceker

u, v*,, property(12) on the quadrature points. Since t#éx) define
E,—-E, v I\ u ) (10) a representation in which the coordinate operator is diagonal,
7 K the matrix element of any operatd(x), which is a local
to find the eigenstates witm<0. function of x, is approximately diagonal within the DVR,
(GlOX) ) = Ox) 5, (15)

Discrete variable representation

The BdG equations in general must be solved numerithe approximation being due to the use of a truncated basis.
cally. Some of the effects of the vortex that we are interestedrurthermore, since the DVR involves an underlying spectral
in, such as the associated shifts in the critical temperature representation, it is possible to evaluate matrix elements of
and in the ground-state energy of the gas, are quite hard tearts of the Hamiltonian exactly if the,(x) are chosen to be
calculate numerically as they are very small compared witlihe eigenfunctions of the corresponding operafor ex-
the corresponding bulk values. For example, to obtain th@mple, the kinetic energy
vortex energy one needs to subtract two large numgibes For the problem of quantization in a cylinder the cylindri-
ground-state energy of the gas with and without a vortex  cal Bessel functions form an ideally suited basis for the DVR
get a small number. This requires a very accurate numericas suggested in Reff39], since the Bessel function of order
scheme to solve the BdG equations. Such a scheme is protis the eigenfuntion for the radial motion of a particle with
vided by the discrete variable representati@V/R) which  angular momentunm# in a cylindrical box. They are or-
recently enabled the microscopic calculation of the vortexhogonal over the rangg0,R] with weight functionw(p)
energy[16]. DVR’s are representations on a basis of func-=p,
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1.2

¢ilp) = \' m(Kimp) » (20
' where the\s’wT’m is necessary to ensure that the basis set is
0.8t orthonormal—i.e.{ ¢y| ¢)= 8. From Eq.(14) we thus have,
for the coordinate eigenfunctions,
~ 08F
Q - 7
= 0.4} Uim(p) = E VWi W) rdm(Knm) Im(Knmim) - (21)
Qe .
2
Examples of these functions are plotted in Fig. 1, where the
discreted function property(12) is clearly visible. The radial

functions (Uymi , nmk) can be expanded in terms of the co-
ordinate eigenfunctions—i.e.Uymi(p) == Yimthim(p). The

‘ ‘ ‘ BdG equations will then be a set of nonlinear equations for
0 0.05 0.1 0.15 0.2 the expansion coefficientg,. Due to the properties of the
coordinate eigenfunction, the value of the radial function on

FIG. 1. Examples of coordinate eigenfunctions for a BesseFhe grid points is S'mplw”m'&(p'm) 7|m/\W,m

function DVR based od, with N=150. For the particular functions We conclude this section with two important remarks.

plottedi =18 (solid line), 19 (dashed ling and 20(dotted ling. The Whlle th_e transfor_mathn from the spect_ral baS|s_to the coor-

discretes function property of the DVR function&l2) is evident, ~ dinate eigenfunctions is not mathematically unitary due to

as ¢io(p) is equal tOWi_Ol/Z at p=p;o, While vanishing on all other the truncation of the basis, the numerical procedure is none-

DVR points (). theless well defined, as the transformation can be made uni-
tary in the limit of largeN [39]. Second, although it appears
that a separate grid is needed for eachvalue, we have

R ..
f dp pIn(Kimp) Im(Kimp) = i',l (16) found through numerical experimentation that sufficient ac-
0 Wim curacy can be achieved using only two grids, one baselj on

provided the momentum grid points are given k. for evenm and one based oml .for.odd m an'd treating _the
7 IR where{z, i=1 N} are the zeros of the Bessel centrifugal barrier as an explicit single-particle potential for
=Zml %, Zmi =L - m>1. Sinceu, andv,, for a vortex state correspond to wave

function of orderm, defined throughly(z,)=0. This is a functions which differ by one unit of angular momentum,
consequence of the boundary condition which states that ﬂ}ﬁey will be represented on different spatial grids. Fortu-

wave function must vanish g=R. The coordinate normal- \5¢ely - interpolation is trivial in the DVR method. To inter-
ization constant i$40] polate from them=0 to them=1 grid amounts to multiply-
2 ing the vector of expansion coefficienty, with the
Wi,m:RZJZ—(k.R). (17)  transformation matrix given byBj=4jo(pj1). The reverse
1AM transfomation |sB =ti1(pjo)- For the purpose of solving the
Similarly, the Bessel functions are also orthogonal in mo-BdG equations the mean fields are only represented on the

mentum space, odd-m grid.
K
m S
f dk kdn(Kpim) Im(Kpjm) = W—'J- (18) IV. THERMODYNAMICS
0 m In this section, we present results for various thermody-
with the momentum normalization namic quantities of the vortex phase obtained by solving the
BdG equations numerically as described above. All calcula-
W 2 (19) tions were done for a fixedN,=28 000. The radius and
im= K232, 1(Kpim) length of the box were taken to bR=28.5um and L

=11.4um, respectively. ForlLi the scattering length is

The spatial grid is defined byim=z,/Ky,. Note that since 2160, which gives a bulk value of the transition tempera-
knm=2nm! R=Kpy andpy=2zyn/ K =R, the maximum momen-  tyre T,,=0.01 uK and a Fermi temperature d&=0.70 uK
tum and the maximum value gf are not independent, but for the chosen density. With these parameters the coherence
are inversely related to each other by the relatif,=zy, length at zero temperature §5cs=5. 4Mm
It was shown in39] that a quadrature rule can be associated In Fig. 2 we plot the free energy= (H) TSas a function
with these grid points, provided weights are chosen tahe of the temperaturd. The entrooy is found as
(w;,,) for integration over the spatigmomentum variable. P ' Py
In general there will be one spatial and one momentum grid g- _sz {f(E,)In f(E,) +[1 - f(E,)]In[1 - f(E,)T},
associated with each value of the azimuthal quantum number
m . . (22)

With the Bessel function quadrature in place we can go
ahead and construct a DVR basis. As our orthonormal basisince the quasiparticles in our mean-field approach form an
functions we choose ensemble of noninteracting fermiof83]. We have calcu-
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FIG. 2. Plot of the free energy per unit volume Nf=28 000 FIG. 3. Chemical potential in the normal and superfluid phases

fermions in the normal and superfluid phases with and without vith and without a vortex, as determined by the constraint that
vortex as a function of temperature. The solid and dashed verticdlo=28 000. We attribute the low-temperature behavior of the

lines represent analytic expressions for the vortex and condensatidliPrmal-phase chemical potential to shell effects due to the finite
energies, respectively. volume [43]. For the vortex state the transition temperature is

shifted downwards.

lated the free energy for the vortex phase, the superfluid

phase without a vortex, and for the normal phase. Al haveOf a vortex for various radii of the system. The result is

: hown in Fig. 4. We find that we get reasonable agreement
been normalized taT%, wherey=2m2N(0)k3/3 andN(0) S 9 - we get rea 9
=3n,/2¢ is the dgné?ty of sta)':es per uni% volungéor a with Eq. (24) as éges/R— 0 with a coefficienta; ~2.3. So
singTe cgmponel)tat the Fermi energy in the normal phase one can understand the decreas@&dulue to the presence of

. 'the vortex as a finite-size effect which scalestgsy(0)?/R.

er=h%kZ/2m, [41]. For T=0, the condensation energy den- For a dilute atomic Bose gas the heat capacity in the vi-
sity of the superfluid without a vortex with respect to the . . nu ' ga: pacity 1 Vi
normal hase is EundV=-N(O)A2/2, with A cinity of the BEC phase transition has been inferred from a
862 e_wr,)sz|a| the bquCS/Ta\Iue of the soupéarfluid gap. %his measurement of the energy, which is found from a ballistic
conderﬁsation energy is indicated in the figure, and we seg.pansion of the gef2]. We therefore expect that this quan-

that there is good agreement with the numerical results. Furt‘?ty will also be accessible experimentally in the future for

thermore, the vortex energy per unit axial lengthTer0 due dilute Fermi gases. Hence we plot in Fig. 5 the temperature

to the loss of condensation energy in the vortex core and thgependence of the heat capactty=(T/V)JS/dT per unit

- volume of the system. Again, we show for comparison re-
kinetic energy of the supercurrent around the corel i sults both for the system in the normal phase, in the super-
whn,

R fluid phase without a vortex, and in the vortex phase. For a
€~ om In| D £scd0) | (23) two-component gas in the normal phase, we haygymal
BC =~T for T—0. The heat capacity for the superfluid phase

The constanD was determined numerically in R¢fl6] to

be D=2.5. This expression for the vortex energy is also 0.5 \ w -
indicated in the figure.
As can be seen from Fig. 3, the critical temperature for 0.4l
the vortex phasel,, is lower than that of the bulk superfluid )
phase without a vorteX,.. For the specific parameters used, .
the difference is 1%,/ T,o~0.1. This difference can be un- 0.3}
derstood as follows: The vortex phase becomes unstable with & .
respect to the normal phase when the extent of the vortex &" o
core becomes comparable to the radRiof the system. 0.2 .
Since the size of the vortex 8(£gcs), we can estimatd,, .
from the condition &cg(Te,)~O(R). Using Ay(T) o1l e
~1.7A0(0)(1-T/T)*?[33] for 0<1-T/ T4 <1, this yields il
2 . ! .
oTe =1- Te €acs0)” a (24) % 0.05 01 , 0.15 0.2
TcO TcO RZ v (&-'BCS /Ry

wherea; is a number of order 1. We now test this expression  FIG. 4. The shift in the superfluid transition temperature for the
and determine the constast by numerically calculating the vortex state relative to a bulk superfluid with no vortex, as a func-
shift in the critical temperature§T./ T, due to the presence tion of the radius of the confining cylinder at fixed density.
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FIG. 5. Plot of the specific heat per unit volume in the normal  FIG. 6. Energy spectrum for the lowest quasiparticle states in a
and superfluid phases with and without a vortex. The inset showsuperfluid with a vortex®) and the vortex free statex) at T=0.
the low-temperature behavior for the vortex state and the superflui€for clarity only the energies of states with=0 have been plotted.
state without a vortexsame symbols as in Figs. 2 angd 3 There are branches of bound states for several valuks of

without the vortex is exponentially damped by a factor Ees
exp(—BA,) for T<T, due to the gap in the energy spectrum Cv vortex ™ Cv nomaf®2 ~ oz » (27)

[41]. Figure 5, on the other hand, shows that the heat capac-

ity in the vortex phasegy yorex depends linearly o for  explaining the lineafT dependence ofy o1ex Observed in
low temperatures. This lineaf dependence is due to the Fig. 5. A fit to the numerical data yields,~2. We remark
presence of so-called core bound states in the vortex phasidat a linear contribution to the heat capacity has been ob-
These are single-particle excitations which are spatially loserved for a superconductor in the mixed s{at@.

calized in the vortex core where the gap is small. The energy

of the core states is in general less than the bulk gap energy

Ao, and they exist only for angular momentum quantum V. LASER PROBING OF THE VORTEX PHASE

numbersm:=0 [33]. This corresponds to a quasiparticle cur- Vortices are now routinely created in dilute BEC’s where

rent around the vortex core in the opposite direction to tha[hey can be detected by direct imaging of the cores, in which

?r: the vortex cur:ent. Ir} ?hdeltaned taglalysdls I wast f?und _ttf;]a e density is significantly suppressed. Unfortunately, such a
€ energy spectium ot the fowest bound core states wi rocedure would be very difficult to implement successfully

<m<keégcs for T=0 is essentially gapless and given by ¢ "2 1 o superfluid Fermi gas, where there is no signifi-

5 cant depletion of density in the vortex cdiEs]. One way to

Ag h(6) (25) observe the vortex is to measure the shift in the quadrupole

€ sSing’ mode frequencies which is directly proportional to the angu-
lar momentum per particl&/2 associated with the supercur-

wherek,=k: cos# andh(#) is a function of order unity44]. ~ rent around the vortex cofd7]. _ .

In Fig. 6, we plot the lowest quasiparticle energies as a func- N the present section, we investigate the feasibility of

tion of m for k,=0 obtained from a numerical solution of Eq. detecting the bound quasiparticle states in the vortex core

(8). The gapless branch associated with the core states wiffrough a recently proposed laser probing schgag4g.

energies less thafy, is clearly visible. TheT=0 density of ~ The laser probing scheme is similar to scanning tunneling

vortex states per unit volume is calculated by integrating EqMicroscopy(STM) on a superconductor in that it relies on
(25) overk,, which yields induced tunneling between a superfluid and a normal phase

[49,50. Whereas a STM probe uses a bias voltage to transfer

Emkz -~ (m + 1/2)

£ population across a superconducting-normal interface exist-
N,(€) = N(0)a, B—CZS, (26) ing between the normal microscope tip and the supercon-
R ducting substrate, the laser probe instead creates an effective

interface by coupling different internal states of the atoms by
for 0<e<A, where a,~0O(1) [45]. Thus, the density of laser fields. Specifically, a spin stdte), which is Cooper
bound core states per unit volume is the same, apart from jgaired with the statg| ), is coupled via a laser field to a third
factor ap, as that of a cylindrical region of a single- state|e) that has been chosen such that it does not participate
component gas in the normal phase with radigss and in the pairing(either it does not have strong attractive inter-
lengthL. From this we conclude that the lowheat capacity actions with the two other states or the disparity in chemical
per unit volume of the gas in vortex phasg,qex aSSociated  potentials is too large Hence, thde) atoms define the nor-
with the core states is mal part of the interface. If the detuning of the laser from the
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atomic transition is=wp—w,, Where w_ is the laser fre- 1 5Xx10

guency andv, the frequency splitting between the leyé)
and|e), the rate of change in the population of tie state

(tunneling currentl :—<Ne> is [48]

2
X [f(E,)

2T %
(=== || & Q(r)u,(r)®(r)
73 |] o,

2

—f(¢&)]18(E, - é,— 0) + f d¥r Q(r)v’ (N P(r)

X[1-1(E,) = f(&)] X (E,+ &+ ). (28) 1.5/ ; - -~ No vortex |
4 — Vortex
~ . . . -+ Analytical
Here 5=u.—ut+5=Au+ 46 is the effective detuning, the -2, = o : ; 5 3
chemical potential of thde) atoms, and®, their single- 5P
particle wave functions with energy,; f(x)=[expBx)
+]_]_1 is the Fermi function andi}(r) the Rabi frequency. In FIG. 7. The tunneling current as a function of detunfimgunits
the present analysis, we assume for simplicity that|d)e of the bulk value of the gapfor tun_nelipg into a filled state from _
atoms are noninteracting such that their wave functidps both a vorte_x state and a superflwd_wﬂhout a vortex. _For compatri-
are the eigenstates of the confining cylindrical lithe cou- son Eq.(29) is also plotted. The .proflleg have been shlfted to com-
pling strength between tHe) atoms and the particles in the pensate for the Hartree mear_1-f|e|d slyft, of the energies of the
Cooper-paired states could potentially be controlled via éT) atoms. If_ theH)_atoms are in the normal state, no current flows
. . .due to Pauli blocking.
Feshbach resonance, but in any case we anticipate that in-
cluding the effect of interactions oh,, will not qualitatively
change our conclusionsWe consider the case of a constant
laser profileQ(r)=€. This gives the selection rulke;=k,  [dd[I(8)|<N;A¢/ e i.e., the current is proportional to the
wherek; is the momentum of afnf) atom coupled by the total number of Cooper pairs. Thus, the bulk signal is sup-
laser beam to afe) atom with momentunk,. pressed by a factak,/ e compared to the case when there
Let us now consider how the laser probing method can bare no|e) atoms present simply due to the Fermi blocking
used to probe the presence of the core states. We examiegfect. The current due to the vortex core states should there-
two opposite cases of interest: the case when there are infore be easier to observe as it is not overwhelmed by a huge
tially no |e) atoms presentN.=0) and the case where there packground signal. In Fig. 7 we plot te=0 laser probing
initially are an equal number dff) and|e) atoms present current1(5) for the case whemN,=N,. The effect of the
(N;=Ng). o ] Hartree fieldgn, is primarily to shift the entire profile to
From Eq.(28) it is straightforward to show that for the |ower detuningss since it shifts the energies of the) atoms
total current we havgdal () =Ne—N;. That is, the net cur- by the amoungn,, whereas thée) atoms are assumed non-
rent from thele} atoms to thé;” atoms is proportional to the  jnieracting. In the plot we have explicitly eliminated this
difference of initial populations between the two hyperfine yera)i shift for reasons of clarity. The neglect of the mean-
states. Likewise, t_he total current fr_om the core states trapp Id potential for thele) atoms causes an asymmetry of the
inside the vortex is clearly proportional to the total numberCurrent profile. We plot the current both when there is no

of core statesN Thus, when there initially are rie) atoms vortex, and when there is a vortex. In the case of no vortex,

present(N=0) the spectral weight of the current due the the current given by Eq28) at zero temperature can for a
core states as compared to the total current observed scales

asNe/N;. UsingNe~ N, AgR2L with N, given by Eq(26), DUk System be shown to be
one obtains that the current from the core states divided by

the total current scales dg e &3-R2<1. Thus, the signal

from the core states is completely overwhelmed by the bulk

signal coming from the current out of the whole Fermi sea of | =+
[1) atoms. We therefore conclude that it is most likely not

possible to probe the core states starting with initially|@o

present. This conclusion is supported by numerical simula-

tions.

Let us therefore consider the case when there initially argvhere = corresponds t@>0 and 5<0, respectively, and
an equal number dff) and|e) atoms presentN;=N,). In p(8)=VP2(AS] 5 8+2u)Y21 27%h° [47,48. From Eq.(29)
that way, the bulk signal of transitions ¢f) atoms deep it follows that there is no current for detunings with
within the Fermi sea is Pauli blocked due to the presence ofAq<d<Aq. This can be interpreted as the laser signal hav-
the [e) atoms, since we have the selection rilek,. One  ing to provide a minimum energ, to break a Cooper pair
can then show from Eq28) that the total signal scales as and generate a current. Equati@9) is also shown in Fig. 7,

A

PO =49 =

72
— 29
P (29)
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and we see good agreement with the numerical result when VI. CONCLUSIONS
there is no vortex present. Note that since the numerical cal-

culations use a Lorentzian of widfi=0.01A, instead of neutral superfluid with Fermi statistics using a microscopic
&(x) functions in Eq.(28), we have convoluted Eq29) ac-  \yeak_coupling theory. The effect of the vortex on the free
cordingly. We see that the signal when there is a vort®nergy and the heat capacity of the system was examined,
present is markedly different from the case with no vortex. Ingng we provided various analytical expressions which agree
particular, there is a significant current fé < Ao. This cur- el with the numerical results. The vortex gives rise to the
rent is directly due to the presence of the core states whicBresence of core states bound in the vortex core. We exam-
have a pairing energy less thag. The signal from the vor- ined the spectrum of these states and also suggested a way to
tex phase is finite fo6~ 0, reflecting the fact that the energy experimentally detect them. Apart from being of interest
spectrum of the core states approximately given by(B§  theoretically, it is likely that our results will have experimen-

is essentially gapless. Thus, the existence of core stateal relevance in the near future due to the recent impressive

We have studied the properties of a single vortex in a

bound in the vortex is reflected in the current profilé). experimental progress within the field of atomic Fermi gases.
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