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I. INTRODUCTION

The achievement of Fermi degeneracy in a confined gas
of alkali-metal atoms[1–7] has spurred great interest both
theoretically and experimentally in cold atomic gases with
Fermi statistics. The atomic interactions are well understood
and often may be tailored through the physics of Feshbach
resonances by the application of external magnetic fields
[8–10]. When the atom-atom interaction is attractive, the
ground state of a two-component gas is predicted to be su-
perfluid at low temperatures[11]. Such a superfluid would
provide a unique test bed for the study and interpretation of
analogous but much more complex systems, such as super-
fluid 3He, unconventional superconductors, and neutron
stars.

One important issue facing the cold atom community has
been how one would go about actually detecting the presence
of superfluidity in these systems. Superfluidity in Bose-
Einstein condensates(BEC’s) can be inferred either by prob-
ing directly the momentum distribution of the cloud, the col-
lective modes (where the spectrum is strongly shifted
relative to the normal phase), or by generating quantized
vortices(an unambiguous signature of the breakdown of ir-
rotational flow) and simply viewing the associated “holes” in
the particle density[12,13]. Likewise, for superfluid Fermi
gases, the presence of superfluidity has been shown to give
many observable effects on the mode spectrum of the gas
[14,15]. For fermions in the weak-coupling limit, the pres-
ence of a vortex would be very difficult to image directly by
looking at the density profile, as there is very little depletion
of the density in the vortex core[16]. However, the quanti-
zation of angular momentum which is a striking macroscopic

effect of superfluidity can, as for bosons, be measured
through the energy shift of the quadrupole modes[17]. We
mention that in the limit of strong interactions superfluidity
arises due to Bose-Einstein condensation of tightly bound
bosonic molecules, and consequently quantum vortices with
a pronounced density contrast are possible[18]. In the
present paper we focus on the weak-coupling limit.

Experimental techniques currently limit the temperature
of trapped Fermi gases to not much less than one-tenth of the
Fermi degeneracy temperatureTF. The superfluid transition
temperatureTc of a conventional uniform Bardeen-Cooper-
Schrieffer (BCS) superconductor, however, is typically
lower: Tc/TF.0.28e−p/2kFuau!1, with kF the momentum at
the Fermi surface,a the s-wave scattering length for low-
energy two-body collisions, andkFuau!1 in the weak-
coupling approximation where BCS theory is valid. A num-
ber of schemes to raiseTc to a value closer to temperatures
already accessible with dilute Fermi gases have recently been
proposed. One of these, referred to in the literature as “reso-
nance superfluidity,” involves tuning the scattering length to
an extremely large value at a Feshbach resonance[19,20];
recent experimental results(see, for example,[21–23]) show
significant progress using this approach, culminating in the
production of a Bose-Einstein condensate of molecules
[24–27]. Another proposal involves loading the cold Fermi
gas into a three-dimensional optical lattice[28]: if the lattice
is made sufficiently deep, the lowest-lying band will flatten
to the point where all of the atoms participate in the pairing,
as opposed to regular BCS theory, where only a small frac-
tion of particles close to the Fermi surface are available for
pair formation. Of course, the lattice depth cannot be so great
that coherence across the sample is destroyed, as has been
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observed for bosons in optical lattices[29–31]. The inability
to experimentally attain very low temperatures in dilute
gases is probably not fundamental, however. With an eye on
future experiments, it thus seems reasonable to explore the
predictions of a weak-coupling theory of Fermi superfluidity.

In the present paper, we examine in detail several proper-
ties of the vortex phase of a neutral Fermi liquid confined in
a cylindrical box, presenting the solution of the full micro-
scopic theory at finite temperature. An essential difference
from similar studies in the superconductivity literature(see,
e.g., [32]) is the absence of an arbitrary cutoff in the sums
over quasiparticle states. Since the interactions in dilute
quantum gases are characterized entirely by parameters,
which can be either calculated fromab initio theoretical
models or measured experimentally, our theory contains no
free parameters. The paper is structured as follows: the the-
oretical framework is briefly discussed in Sec. II, and we
present in Sec. III the details of our numerical procedure.
Section IV is devoted to the calculation of various thermo-
dynamic quantities of the vortex phase, which are compared
with the corresponding quantities in both the normal state
and the superfluid with no vortex. Furthermore, we demon-
strate that the vortex causes a shift of the superfluid transi-
tion temperature. Finally, in Sec. V we propose a way of
observing the vortex through “laser probing” of the quasipar-
ticle states trapped inside the vortex core.

II. THEORETICAL BACKGROUND

We consider a two-component Fermi gas consisting of
particles with internal quantum numberss=↑ ,↓ and massma
confined in an external potentialVextsr d. For atomic gases at
low temperatures and realistic densities, the interactions far
from Feshbach resonances are characterized by the low-
energy parametera which is the s-wave scattering length
appropriate for the scattering between the two specific inter-
nal states of the atoms. Therefore, only Fermi particles in
different internal states are able to interact. In our calcula-
tions, we assume an equal population of the two components
N↑=N↓ so that their densitiesns are equal. The superfluid
phase of the gas fora,0 can be described within mean-field
theory by the Bogoliubov–de Gennes(BdG) equations[33]

FHHF − m Dsr d

D*sr d − sHHF − md GFuhsr d
vhsr d G = EhFuhsr d

vhsr d G . s1d

Here HHF=s−"2/2mad¹2+Vextsr d+gnssr d with the low-
energy effective coupling constant given byg=4p"2a/ma,
and we have taken the interaction to be of zero rage. The
particle density and pairing field are defined asnssr d
=kcs

†sr dcssr dl and Dsr d=−g̃kc↑sr dc↓sr dl, respectively,
wherecs

†sr d is the usual fermionic field operator creating a
particle in the internal states at positionr . It is important to
note that the use of a contact potential gives rise to an un-
physical ultraviolet divergence of the pairing field, due to the
absence of a high-energy cutoff. We regularize the expres-
sion for Dsr d using the pseudopotential method[34,35],
which introduces a regularized coupling constantg̃.

The Bogoliubov wave functionsuhsr d andvhsr d describe
quasiparticle excitations with energyEh.0. In terms of
these the self-consistent density is given by

nssr d = o
h

huuhsr du2fsEhd + uvhsr du2f1 − fsEhdgj, s2d

while the gap equation for the pairing field is

Dsr d = − g̃o
h

uhsr dvh
* sr df1 − 2fsEhdg. s3d

The thermal population of a quasiparticle state with energy
Eh is determined by the Fermi distribution functionfsEhd
=seEh/kBT+1d−1.

Vortex phase

The superfluid order parameter is a complex number and
can thus be written as a real amplitude times a phase

Dsr d = uDsr dueiusr d. s4d

The superfluid velocity is then given by the spatial variation
of the phase of the order parameter

vs =
"

2ma
¹ usr d, s5d

where 2ma is the mass of a Cooper pair. A vortex line corre-
sponds to a rotational superfluid flow with a velocity which
decreases with the distancer from the axis of rotation as

vs =
k"

2mar
. s6d

Here k is the strength of the vortex line. This form of the
velocity field implies the existence of a core region close to
the vortex axis where the kinetic energy is large enough to
break the Cooper pairs. Hence the order parameter will be
suppressed in the vortex core and will heal to its bulk value
over a length scale governed by the coherence length
jBCSsTd="vF /pD0sTd, with vF="kF /ma the Fermi velocity
and D0sTd the temperature-dependent value of the bulk gap
away from the vortex core[36].

Due to the single valuedness of the order parameter, the
phaseu must return to the same value modulo 2p when
going around the vortex line. Hence the circulationrvs·d, is
restricted to integer multiples ofh/2ma. In the present work
we will concentrate on vortices of unit circulationrvs·d,
=h/2ma.

In summary, a vortex line represents a topological defect
in the superfluid order parameter, around which the super-
fluid velocity field vs is tangential. The quantization of the
circulation represents one of the hallmarks of a superfluid,
and therefore the production and subsequent detection of
quantized vortices in an ultracold atomic Fermi gas would be
a clear signature for superfluidity in the system.

III. COMPUTATIONAL METHODS

For a gas confined in a cylinder of radiusR and lengthL
it is natural to work in cylindrical coordinatessr ,z,wd, where
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r measures the perpendicular distance from the symmetry
axis, z is the axial coordinate, andw is the azimuthal angle
aroundẑ. In this coordinate system the order parameter can
be written asDsr d= uDsr ,zduexps−ikwd, with k=0 corre-
sponding a phase with no vortex andk=1 for a singly quan-
tized vortex along the axis of symmetry. The mean-field den-
sity is rotationally invariant:nssr d=nssr ,zd.

Assuming free motion along the cylinder axis and impos-
ing periodic boundary conditions atz=±L /2, we write, for
the quasiparticle modes,

uhsr d = unmkz
srd

eimw

Î2p

eikzz

ÎL
,

vhsr d = vnmkz
srd

eism+kdw

Î2p

eikzz

ÎL
. s7d

The allowed values of the angular momentum quantum num-
ber are hm=0,±1,±2, . . .j and kz=2p, /L, with h,
=0,±1,±2, . . .j. The radial functionssunmkz

,vnmkz
d are taken

to be real. With these definitions the BdG equations(1) be-
come

F Hm Dsrd
D*srd − Hm+k

GFunmkz
srd

vnmkz
srd G = EnmkzFunmkz

srd

vnmkz
srd G , s8d

where

Hm =
"2

2ma
F−

1

r

]

]r
r

]

] r
+

m2

r2 + kz
2G + gnssrd − m. s9d

These are the equations we solve self-consistently through an
iterative procedure.

By exploiting the symmetry of the BdG equations(1), we
can identify anegativeenergy solution with angular momen-
tum m with a positiveenergy solution with angular momen-
tum −m−k. We can therefore generate the entire positive
energy spectrum by solving Eq.(8) for mù0 only and using
the transformation

Eh → − Eh, Suh

vh
D → S vh

*

− uh
* D , s10d

to find the eigenstates withm,0.

Discrete variable representation

The BdG equations in general must be solved numeri-
cally. Some of the effects of the vortex that we are interested
in, such as the associated shifts in the critical temperatureTc
and in the ground-state energy of the gas, are quite hard to
calculate numerically as they are very small compared with
the corresponding bulk values. For example, to obtain the
vortex energy one needs to subtract two large numbers(the
ground-state energy of the gas with and without a vortex) to
get a small number. This requires a very accurate numerical
scheme to solve the BdG equations. Such a scheme is pro-
vided by the discrete variable representation(DVR) which
recently enabled the microscopic calculation of the vortex
energy[16]. DVR’s are representations on a basis of func-

tions localized about discrete values of the coordinate. This
renders local functions of the coordinate operator approxi-
mately diagonal within the DVR basis, making DVR’s ide-
ally suited for solving self-consistent problems like the
present one, where the matrix elements of the pairing and
Hartree fields(local functions) have to be evaluated at each
iteration. In addition the representation of the kinetic energy
operator is exact. The literature on DVR’s is extensive and
we shall only convey the central points here. A detailed re-
view of the framework can be found in[37,38].

A DVR exists when there is both a spectral basis ofN
functions, fnsxd, orthonormal over an intervalfa,bg with
weight functionwsxd and a quadrature rule withN pointsxk

and weightswk:

kf ugl ; E
a

b

dx wsxdfsxdgsxd ; o
k=1

N

wkfsxkdgsxkd. s11d

This enables a set of coordinate eigenfunctionshcisxd , i
=1,Nj to be defined with the property

cisxkd =
dik

Îwi

. s12d

We expand the unknown functionscisxd on the basisfn,

cisxd = o
n=1

N

fnsxdkfnucil, s13d

and use the quadrature rule(11) and thed function property
of ci (12) to evaluate the expansion coefficients. The coor-
dinate eigenfunctions are then given by

cisxd = o
n=1

N

Îwifnsxdfnsxid. s14d

This leads to functionscisxd peaked aboutx=xi (see Fig. 1
below). Although the coordinate eigenfunctions are continu-
ous functions of the coordinate, they satisfy the Kroneckerd
property(12) on the quadrature points. Since thecisxd define
a representation in which the coordinate operator is diagonal,
the matrix element of any operatorOsxd, which is a local
function of x, is approximately diagonal within the DVR,

kciuOsxduc jl . Osxiddi j , s15d

the approximation being due to the use of a truncated basis.
Furthermore, since the DVR involves an underlying spectral
representation, it is possible to evaluate matrix elements of
parts of the Hamiltonian exactly if thefnsxd are chosen to be
the eigenfunctions of the corresponding operator(for ex-
ample, the kinetic energy).

For the problem of quantization in a cylinder the cylindri-
cal Bessel functions form an ideally suited basis for the DVR
as suggested in Ref.[39], since the Bessel function of order
m is the eigenfuntion for the radial motion of a particle with
angular momentumm" in a cylindrical box. They are or-
thogonal over the rangef0,Rg with weight functionwsrd
=r,
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E
0

R

dr rJmskimrdJmskjmrd =
di j

wim8
, s16d

provided the momentum grid points are given bykim
=zim/R, wherehzim, i =1, . . . ,Nj are the zeros of the Bessel
function of orderm, defined throughJmszimd=0. This is a
consequence of the boundary condition which states that the
wave function must vanish atr=R. The coordinate normal-
ization constant is[40]

wim8 =
2

R2Jm+1
2 skimRd

. s17d

Similarly, the Bessel functions are also orthogonal in mo-
mentum space,

E
0

Km

dk kJmskrimdJmskr jmd =
di j

wim
, s18d

with the momentum normalization

wim =
2

Km
2 Jm+1

2 sKrimd
. s19d

The spatial grid is defined byrim=zim/Km. Note that since
kNm=zNm/R=Km andrN=zNm/Km=R, the maximum momen-
tum and the maximum value ofr are not independent, but
are inversely related to each other by the relationRKm=zNm.
It was shown in[39] that a quadrature rule can be associated
with these grid points, provided weights are chosen to bewim
swim8 d for integration over the spatial(momentum) variable.
In general there will be one spatial and one momentum grid
associated with each value of the azimuthal quantum number
m.

With the Bessel function quadrature in place we can go
ahead and construct a DVR basis. As our orthonormal basis
functions we choose

fisrd = Îwim8 Jmskimrd, s20d

where theÎwim8 is necessary to ensure that the basis set is
orthonormal—i.e.,kfkufll=dkl. From Eq.(14) we thus have,
for the coordinate eigenfunctions,

cimsrd = o
n

Îwimwnm8 JmsknmrdJmsknmrimd. s21d

Examples of these functions are plotted in Fig. 1, where the
discreted function property(12) is clearly visible. The radial
functionssunmkz

,vnmkz
d can be expanded in terms of the co-

ordinate eigenfunctions—i.e.,unmkz
srd=oigimcimsrd. The

BdG equations will then be a set of nonlinear equations for
the expansion coefficientsgi. Due to the properties of the
coordinate eigenfunction, the value of the radial function on
the grid points is simplyunmkz

srimd=gim/Îwim.
We conclude this section with two important remarks.

While the transformation from the spectral basis to the coor-
dinate eigenfunctions is not mathematically unitary due to
the truncation of the basis, the numerical procedure is none-
theless well defined, as the transformation can be made uni-
tary in the limit of largeN [39]. Second, although it appears
that a separate grid is needed for eachm value, we have
found through numerical experimentation that sufficient ac-
curacy can be achieved using only two grids, one based onJ0
for evenm and one based onJ1 for odd m and treating the
centrifugal barrier as an explicit single-particle potential for
m.1. Sinceuh andvh for a vortex state correspond to wave
functions which differ by one unit of angular momentum,
they will be represented on different spatial grids. Fortu-
nately, interpolation is trivial in the DVR method. To inter-
polate from them=0 to them=1 grid amounts to multiply-
ing the vector of expansion coefficientsg0 with the
transformation matrix given byBij =ci0sr j1d. The reverse
transfomation isBij

† =ci1sr j0d. For the purpose of solving the
BdG equations the mean fields are only represented on the
odd-m grid.

IV. THERMODYNAMICS

In this section, we present results for various thermody-
namic quantities of the vortex phase obtained by solving the
BdG equations numerically as described above. All calcula-
tions were done for a fixedNs=28 000. The radius and
length of the box were taken to beR=28.5mm and L
=11.4mm, respectively. For6Li the scattering length is
−2160a0, which gives a bulk value of the transition tempera-
ture Tc0=0.01mK and a Fermi temperature ofTF=0.70mK
for the chosen density. With these parameters the coherence
length at zero temperature isjBCS=5.4 mm.

In Fig. 2 we plot the free energyF=kĤl−TSas a function
of the temperatureT. The entropy is found as

S= − kBo
h

hfsEhdln fsEhd + f1 − fsEhdglnf1 − fsEhdgj,

s22d

since the quasiparticles in our mean-field approach form an
ensemble of noninteracting fermions[33]. We have calcu-

FIG. 1. Examples of coordinate eigenfunctions for a Bessel
function DVR based onJ0 with N=150. For the particular functions
plottedi =18 (solid line), 19 (dashed line), and 20(dotted line). The
discreted function property of the DVR functions(12) is evident,
as ci0srd is equal towi0

−1/2 at r=ri0, while vanishing on all other
DVR points (•).
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lated the free energy for the vortex phase, the superfluid
phase without a vortex, and for the normal phase. All have
been normalized togTc0

2 , whereg=2p2Ns0dkB
2 /3 andNs0d

=3ns /2eF is the density of states per unit volume(for a
single component) at the Fermi energy in the normal phase,
eF="2kF

2 /2ma [41]. For T=0, the condensation energy den-
sity of the superfluid without a vortex with respect to the
normal phase is Econd/V=−Ns0dD0

2/2, with D0

=8e−2eFe−p/2kFuau the bulk value of the superfluid gap. This
condensation energy is indicated in the figure, and we see
that there is good agreement with the numerical results. Fur-
thermore, the vortex energy per unit axial length forT=0 due
to the loss of condensation energy in the vortex core and the
kinetic energy of the supercurrent around the core is[17]

ev <
p"2ns

2ma
lnFD

R

jBCSs0dG . s23d

The constantD was determined numerically in Ref.[16] to
be D<2.5. This expression for the vortex energy is also
indicated in the figure.

As can be seen from Fig. 3, the critical temperature for
the vortex phase,Tcv, is lower than that of the bulk superfluid
phase without a vortex,Tc0. For the specific parameters used,
the difference is 1−Tcv /Tc0<0.1. This difference can be un-
derstood as follows: The vortex phase becomes unstable with
respect to the normal phase when the extent of the vortex
core becomes comparable to the radiusR of the system.
Since the size of the vortex isOsjBCSd, we can estimateTcv
from the condition jBCSsTcvd,OsRd. Using D0sTd
<1.7D0s0ds1−T/Tc0d1/2 [33] for 0,1−T/Tc0!1, this yields

dTc

Tc0
; 1 −

Tcv

Tc0
,

jBCSs0d2

R2 a1, s24d

wherea1 is a number of order 1. We now test this expression
and determine the constanta1 by numerically calculating the
shift in the critical temperature,dTc/Tc0, due to the presence

of a vortex for various radii of the system. The result is
shown in Fig. 4. We find that we get reasonable agreement
with Eq. (24) as jBCS/R→0 with a coefficienta1<2.3. So
one can understand the decrease inTc due to the presence of
the vortex as a finite-size effect which scales asjBCSs0d2/R2.

For a dilute atomic Bose gas the heat capacity in the vi-
cinity of the BEC phase transition has been inferred from a
measurement of the energy, which is found from a ballistic
expansion of the gas[42]. We therefore expect that this quan-
tity will also be accessible experimentally in the future for
dilute Fermi gases. Hence we plot in Fig. 5 the temperature
dependence of the heat capacitycV=sT/Vd]S/]T per unit
volume of the system. Again, we show for comparison re-
sults both for the system in the normal phase, in the super-
fluid phase without a vortex, and in the vortex phase. For a
two-component gas in the normal phase, we havecV normal
=gT for T→0. The heat capacity for the superfluid phase

FIG. 2. Plot of the free energy per unit volume ofNs=28 000
fermions in the normal and superfluid phases with and without a
vortex as a function of temperature. The solid and dashed vertical
lines represent analytic expressions for the vortex and condensation
energies, respectively.

FIG. 3. Chemical potential in the normal and superfluid phases
with and without a vortex, as determined by the constraint that
Ns=28 000. We attribute the low-temperature behavior of the
normal-phase chemical potential to shell effects due to the finite
volume [43]. For the vortex state the transition temperature is
shifted downwards.

FIG. 4. The shift in the superfluid transition temperature for the
vortex state relative to a bulk superfluid with no vortex, as a func-
tion of the radius of the confining cylinder at fixed density.
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without the vortex is exponentially damped by a factor
exps−bD0d for T!Tc due to the gap in the energy spectrum
[41]. Figure 5, on the other hand, shows that the heat capac-
ity in the vortex phase,cV vortex, depends linearly onT for
low temperatures. This linearT dependence is due to the
presence of so-called core bound states in the vortex phase.
These are single-particle excitations which are spatially lo-
calized in the vortex core where the gap is small. The energy
of the core states is in general less than the bulk gap energy
D0, and they exist only for angular momentum quantum
numbersmù0 [33]. This corresponds to a quasiparticle cur-
rent around the vortex core in the opposite direction to that
of the vortex current. In a detailed analysis it was found that
the energy spectrum of the lowest bound core states with 0
øm!kFjBCS for T=0 is essentially gapless and given by

Emkz
, sm+ 1/2d

D0
2

eF

hsud
sinu

, s25d

wherekz=kF cosu andhsud is a function of order unity[44].
In Fig. 6, we plot the lowest quasiparticle energies as a func-
tion of m for kz=0 obtained from a numerical solution of Eq.
(8). The gapless branch associated with the core states with
energies less thanD0 is clearly visible. TheT=0 density of
vortex states per unit volume is calculated by integrating Eq.
(25) over kz, which yields

Nvsed = Ns0da2
jBCS

2

R2 , s26d

for 0!e!D0 where a2,Os1d [45]. Thus, the density of
bound core states per unit volume is the same, apart from a
factor a2, as that of a cylindrical region of a single-
component gas in the normal phase with radiusjBCS and
lengthL. From this we conclude that the low-T heat capacity
per unit volume of the gas in vortex phasecV vortex associated
with the core states is

cV vortex, cV normala2
jBCS

2

R2 , s27d

explaining the linearT dependence ofcV vortex observed in
Fig. 5. A fit to the numerical data yieldsa2<2. We remark
that a linear contribution to the heat capacity has been ob-
served for a superconductor in the mixed state[46].

V. LASER PROBING OF THE VORTEX PHASE

Vortices are now routinely created in dilute BEC’s where
they can be detected by direct imaging of the cores, in which
the density is significantly suppressed. Unfortunately, such a
procedure would be very difficult to implement successfully
for a dilute superfluid Fermi gas, where there is no signifi-
cant depletion of density in the vortex core[16]. One way to
observe the vortex is to measure the shift in the quadrupole
mode frequencies which is directly proportional to the angu-
lar momentum per particle" /2 associated with the supercur-
rent around the vortex core[17].

In the present section, we investigate the feasibility of
detecting the bound quasiparticle states in the vortex core
through a recently proposed laser probing scheme[47,48].
The laser probing scheme is similar to scanning tunneling
microscopy(STM) on a superconductor in that it relies on
induced tunneling between a superfluid and a normal phase
[49,50]. Whereas a STM probe uses a bias voltage to transfer
population across a superconducting-normal interface exist-
ing between the normal microscope tip and the supercon-
ducting substrate, the laser probe instead creates an effective
interface by coupling different internal states of the atoms by
laser fields. Specifically, a spin stateu↑ l, which is Cooper
paired with the stateu↓ l, is coupled via a laser field to a third
stateuel that has been chosen such that it does not participate
in the pairing(either it does not have strong attractive inter-
actions with the two other states or the disparity in chemical
potentials is too large). Hence, theuel atoms define the nor-
mal part of the interface. If the detuning of the laser from the

FIG. 5. Plot of the specific heat per unit volume in the normal
and superfluid phases with and without a vortex. The inset shows
the low-temperature behavior for the vortex state and the superfluid
state without a vortex(same symbols as in Figs. 2 and 3).

FIG. 6. Energy spectrum for the lowest quasiparticle states in a
superfluid with a vortex(•) and the vortex free state(3) at T=0.
For clarity only the energies of states withkz=0 have been plotted.
There are branches of bound states for several values ofkz.
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atomic transition isd=vA−vL, where vL is the laser fre-
quency andvA the frequency splitting between the levelu↑ l
and uel, the rate of change in the population of theuel state

(tunneling current) I =−kN̂˙ el is [48]

Isdd = −
2p

"
o
h,n
UE d3r Vsr duhsr dFn

*sr dU2

3 ffsEhd

− fsjndgdsEh − jn − d̃d + UE d3r Vsr dvh
* sr dFn

*sr dU2

3f1 − fsEhd − fsjndg 3 dsEh + jn + d̃d. s28d

Here d̃=me−m+d;Dm+d is the effective detuning,me the
chemical potential of theuel atoms, andFn their single-
particle wave functions with energyjn; fsxd=fexpsbxd
+1g−1 is the Fermi function andVsr d the Rabi frequency. In
the present analysis, we assume for simplicity that theuel
atoms are noninteracting such that their wave functionsFn
are the eigenstates of the confining cylindrical box(the cou-
pling strength between theuel atoms and the particles in the
Cooper-paired states could potentially be controlled via a
Feshbach resonance, but in any case we anticipate that in-
cluding the effect of interactions onFn will not qualitatively
change our conclusions). We consider the case of a constant
laser profileVsr d=V. This gives the selection rulek↑=ke

wherek↑ is the momentum of anu↑ l atom coupled by the
laser beam to anuel atom with momentumke.

Let us now consider how the laser probing method can be
used to probe the presence of the core states. We examine
two opposite cases of interest: the case when there are ini-
tially no uel atoms presentsNe=0d and the case where there
initially are an equal number ofu↑ l and uel atoms present
sN↑=Ned.

From Eq.(28) it is straightforward to show that for the
total current we haveeddIsdd~Ne−N↑. That is, the net cur-
rent from theuel atoms to theu↑ l atoms is proportional to the
difference of initial populations between the two hyperfine
states. Likewise, the total current from the core states trapped
inside the vortex is clearly proportional to the total number
of core states,Ncs. Thus, when there initially are nouel atoms
presentsNe=0d the spectral weight of the current due the
core states as compared to the total current observed scales
asNcs/N↑. UsingNcs,NvD0pR2L with Nv given by Eq.(26),
one obtains that the current from the core states divided by
the total current scales asD0eF

−1jBCS
2 R−2!1. Thus, the signal

from the core states is completely overwhelmed by the bulk
signal coming from the current out of the whole Fermi sea of
u↑ l atoms. We therefore conclude that it is most likely not
possible to probe the core states starting with initially nouel
present. This conclusion is supported by numerical simula-
tions.

Let us therefore consider the case when there initially are
an equal number ofu↑ l and uel atoms presentsN↑=Ned. In
that way, the bulk signal of transitions ofu↑ l atoms deep
within the Fermi sea is Pauli blocked due to the presence of
the uel atoms, since we have the selection rulek↑=ke. One
can then show from Eq.(28) that the total signal scales as

edduIsddu~N↑D0/eF; i.e., the current is proportional to the
total number of Cooper pairs. Thus, the bulk signal is sup-
pressed by a factorD0/eF compared to the case when there
are nouel atoms present simply due to the Fermi blocking
effect. The current due to the vortex core states should there-
fore be easier to observe as it is not overwhelmed by a huge
background signal. In Fig. 7 we plot theT=0 laser probing
current Isdd for the case whenNe=N↑. The effect of the
Hartree fieldgns is primarily to shift the entire profile to
lower detuningsd since it shifts the energies of theu↑ l atoms
by the amountgns, whereas theuel atoms are assumed non-
interacting. In the plot we have explicitly eliminated this
overall shift for reasons of clarity. The neglect of the mean-
field potential for theuel atoms causes an asymmetry of the
current profile. We plot the current both when there is no
vortex, and when there is a vortex. In the case of no vortex,
the current given by Eq.(28) at zero temperature can for a
bulk system be shown to be

I = ±
pV2

"
rsddQsd2 − D0

2d
D0

2

d2 , s29d

where 6 corresponds tod.0 and d,0, respectively, and
rsdd=Vm3/2sD0

2/d−d+2md1/2/2p2"3 [47,48]. From Eq.(29)
it follows that there is no current for detunings with
−D0,d,D0. This can be interpreted as the laser signal hav-
ing to provide a minimum energyD0 to break a Cooper pair
and generate a current. Equation(29) is also shown in Fig. 7,

FIG. 7. The tunneling current as a function of detuning(in units
of the bulk value of the gap) for tunneling into a filled state from
both a vortex state and a superfluid without a vortex. For compari-
son Eq.(29) is also plotted. The profiles have been shifted to com-
pensate for the Hartree mean-field shiftgns of the energies of the
u↑l atoms. If theu↑l atoms are in the normal state, no current flows
due to Pauli blocking.
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and we see good agreement with the numerical result when
there is no vortex present. Note that since the numerical cal-
culations use a Lorentzian of widthG=0.01D0 instead of
dsxd functions in Eq.(28), we have convoluted Eq.(29) ac-
cordingly. We see that the signal when there is a vortex
present is markedly different from the case with no vortex. In
particular, there is a significant current forudu,D0. This cur-
rent is directly due to the presence of the core states which
have a pairing energy less thanD0. The signal from the vor-
tex phase is finite ford,0, reflecting the fact that the energy
spectrum of the core states approximately given by Eq.(25)
is essentially gapless. Thus, the existence of core states
bound in the vortex is reflected in the current profileIsdd.

VI. CONCLUSIONS

We have studied the properties of a single vortex in a
neutral superfluid with Fermi statistics using a microscopic
weak-coupling theory. The effect of the vortex on the free
energy and the heat capacity of the system was examined,
and we provided various analytical expressions which agree
well with the numerical results. The vortex gives rise to the
presence of core states bound in the vortex core. We exam-
ined the spectrum of these states and also suggested a way to
experimentally detect them. Apart from being of interest
theoretically, it is likely that our results will have experimen-
tal relevance in the near future due to the recent impressive
experimental progress within the field of atomic Fermi gases.
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