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Phase dynamics of a multimode Bose-Einstein condensate controlled by decay
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The relative phase between two uncoupled Bose-Einstein condensates tends to attain a specific value when
the phase is measured. This can be done by observing their decay products in interference. We discuss exactly
solvable models for this process in cases where competing observation channels drive the phases to different
sets of values. We treat the case of two modes which both emit into the input ports of two beam splitters and
of a linear or circular chain of modes. In these latter cases, the transitivity of the relative phase becomes an
issue.
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I. INTRODUCTION the beam splitter for a fixed total number of detections. It is

Since the first observation of Bose-Einstein condensatiorfemarkable that even though both detection channels are
the formation and the nature of the relative phase betweel§lentical, in a typical detection history the detections are un-
two condensates has been a central issue of many theoreti@yenly distributed over the two output ports. This is obvi-
and experimental studies. It has been predicted by Jawusly connected to the bosonic nature of the particles, for
anainen and Yo¢l] and observed by Andrevet al.[2] that ~ which boson accumulation applies. After the first few emis-
two interfering Bose-Einstein condensates exhibit a cleasions, the subsequent particles have a tendency to choose the
spatial interference pattern. This shows that in a single run g$ame port as the majority of their predecessors, and the rela-
an interference experiment, they manifest themselves as btive phase of the modes converges to one of the phases im-
ing coherent. Furthermore, it was predicted[ij that two  posed by the beam splitter. This can also be viewed as an
cases should be distinguished. When a cold cloud of atoms gxample of spontaneous symmetry breaKihtj. The role of
first split into two modes, which are separately cooled furtheiinterparticle interaction is also discussed, and it has been
into two condensatgécut then cool), two independent con- shown that it leads to collapse and revival of the relative
densates arise. Alternatively, two correlated condensatg¥hase distribution, thereby reflecting the discrete nature of
arise when a single condensate is split into two pgsol the states of the systef8].
then cut’) [2,3]. The interference pattern from two indepen-  We recalled that in the presence of a single beam splitter,
dent condensates can be different for each realization of irefter a large number of detections, the relative phase con-
terference experiment, while correlated condensates showerges to a single value. It is interesting to consider cases
the same interference pattern for each run. Cahal. [4] where more detection channels are present which tend to
showed by analytical arguments that a system consisting diroject the relative phase on different values, so that a detec-
two independent Bose-Einstein condensates evolves into tion from one beam splitter favors phase values that are in-
state with a fixed relative phase if one detects the emitte¢ompatible with the setting of another one. In the present
bosonic atoms while observing their spatial interference patpaper we consider a number of model cases where such a
tern. conflicting tendency arises. This raises the question whether

A number of authors have studied the possible manipulain the end the system simply settles down in one of the
tion of phase coherence and entanglement between two gossible phase values or whether it continues to shift be-
more Bose-Einstein condensates, with tunneling interactiotween values, without ever coming to a final decision. We
as the key mechanisfd—7]. A scheme has been proposed to consider cases where the detection statistics can be solved
use an interferometric scheme including an atomic beananalytically. Also we study the effect of a direct Hamiltonian
splitter to recombine two modes in order to reconstruct thecoupling between the condensates on both the detection sta-
state of a two-mode condens&83. The buildup of a relative tistics and the corresponding behavior of the relative phase.
phase between two independent condensates has also béstamples of such couplings are tunneling between conden-
investigated in the situation that the atoms emitted from thesates in two spatially separated potential wells or stimulated
two condensates are mixed in a 50%-50% beam splitteRaman coupling between two condensates corresponding to
[9,10. Two initially independent bosonic modes, describedtwo different internal statefl2]. We treat the condensates
by a factorized state, have a uniform distribution over thglust as modes of bosonic particles, so that most of the con-
relative phase. Hence all values of this phase are equallgiderations hold just as well for photons in cavities.
probable as the outcome of a phase measurement. After a
large number of detections in the output ports of the beam
splitter the system evolves into an entangled state of the two
modes. An exactly solvable analytical model has been dis- It will be convenient to express the states of two boson
cussed[10], which allows one to get closed expression formodes in terms of spin-coherent stat8€S’y, which is nor-
the particle detection statistics over two output channels ofmally defined for th€2J+ 1)-dimensional manifold of states

IIl. QUANTUM STATES OF TWO BOSON MODES
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with angular momentum] [13]. The spin-coherent state N 12 9 0
3 16,00 = 2 (n) CO§§SinN_n§ ™ n,N-n).

|6, ¢) is the eigenstate of the componejﬂﬁ of the angular —

momentum vector with the maximal eigenvaldiewhere(

=X C0S¢ sin 9+ sin ¢ sin 9+zcosh is the unit vector in (5
the direction specified by the spherical angbeand ¢. This _ .
state is obtained from the eigenstatelJpfvith eigenvaluel This demonstrates that the SC& ¢)y can be viewed as a

after performing the appropriate rotation. In the context of UMPer state in the mode that is a Iinea[Jrc:ombinatic_)n of the
two boson modegor two harmonic oscillatoys an Sy2) ~ ModesA andB and for which the operatdr' (¢, ¢), defined

representation arises by introducing the fictitious angulari? Ed- (4), is the creation operator. In the SCS, the distribu-
momentum operators tion of the N particles over the two modes is binomial, and

the angle # specifies the average partition byn,)
T T 1 - =N cog(6/2) and{ny,)=N sir?(6/2). The azimuthal angle
J,==(@'b+b'a), Jy = —(@'b-b'a), J,==(@'a-b'b), represents the relative phase between the modes. '[hiAs quan-
2 2 2 tity is complementary to the number differenéa—-b'b.
(1) Number states with all particles in the modeare repre-
sented by the north pole of the Bloch sphéée=0), while

wherea andb are the annihilation operators for modeand ~ the south pole represents the SCS with Mlparticles in
B. This is the well-known Schwinger representation. Thesd°deB. Points on the equat¢p=/2) stand for states with
operators obey the standard commutation rules of angulg&du@l population of the modes. Since the staje{or (5)] is

momenturr([jx,jy]:ijz, etc), so that the matrix form of the eigenstate oN, the absolute phase is fully undetermined.

. - 3 . The relation between the SCS and the more common
operators(1) on the eigenvectors al, and J* attains the  Glauber coherent stat¢6CS is easily found by represent-
shape that is well known from angular momentum algebraing the latter ones in the form

Notice thatJ?=(N/2)(N/2+1), with N=a'a+b'b the num-

“ S r r 2,2 1
ber operator. The eigenvectors af and J2 are just the Ir €7, e %) = e a2y N
double Fock statepi,,n,). A given number of particlesy, N
corresponds to the valug=N/2. The eigenstate af, with X (1,7 %aal + rbe‘i¢bE)T)N|Vac>_ (6)

this same eigenvalue is the Fock stiNe0), so that the SCS

wiih directionul can be defined by the rotation These states are eigenstatesaadnd b, and they are obvi-

ously factorized, so that they carry no entanglement between
|16, by = R(6, #)|N,0), (2)  the modes. Itis easy to check that they are related to the SCS
by the expansioif4]

with the rotation operator

_j .l — 1 i
rae7' e, rei ) = RIS wRe Hodn, (@)
N VNI

R(6, ) = exp(— i 3 )exp(— i 61,)expli ¢J,)
. Y with the parameter®, 6, and ¢ determined byR?=r2+r,
eXH-16(J,co8p ~ J,sing) . ) @n(6/2)=ry/r, andd=d, ¢, This indicates that the GCS
i has a Poissonian distribution of the total particle nunier
The SCS can be represented as a point on a sphere of radiysp, average valugN)=R?, while the absolute phases,
J, specified by the polar angi¢and the azimuthal anglé.  onq 4 of hoth modes are well specified. For bosonic atoms,

This sphere generalizes the Bloch sphere, describing the staigyeq with a different total number of particles do not super-

of a spin 1/2, or the Poincaré sphere which describes thg,qe according to the superselection rule, so that we have to
polarization state of a light beam or a photon. In the prese

) - ; strict ourselves to density matrices that are diagondl.in
case, the radius specifies the number of partiéles2J. An gjqce the particle number is conjugate to the overall phase,
explicit expansion of the SCR) in the Fock states follows we introduce the density matrix
then from the transformation of the creation operators:

2
P - i ~i(da=¢h)
. s . 0 ~ .0, . P(R,6,4) = depa|r o€ %2, 1" )
R(6,$)a'R'(6,¢) =a" cos + b sin Ee"” =¢'(6,¢). 2mJo
X(r &7 %, r, e (¢a ) 8
(4) < a b | ( )
as the uniform mixture of the GC®) over the overall phase
The SCS2) is found after operatin§yl times with the opera- ¢, for a given value of the relative phage ¢,— ¢y,. Apply-
tor ¢'(6, ¢) on the vacuum state, which leads to the expliciting Eq.(7) leads to an expansion of this same density matrix
result in the SCS in the form
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RO =S SR dod. (O
> N

The density matrixp(R, 6, ¢) is therefore diagonal in the
particle numbeiN.

In this paper we shall use density matrices that can be
represented as a superposition of the sté®dor a single FIG. 1. Sketch of setup with two decaying boson modesnd
value of the strength paramet@rin the form B. Each mode emits particles into the input port of two beam split-

ters | and II. Output ports are coupled to particle detectors 1-4.

f dQf(6,9)p(R,6,4), (10 i 1
Lop==[H,p] = -T'(Np+pN), (13
where we use the abbreviaticfrdQ:fé"dgbfg désin 6 for h 2
the integration over the Bloch sphere. When we express
p(R,6,4) as in Eq.(8), it becomes clear that ELO) is just  \yhjle the compensating probability gain is accounted for by
the two-mode version of the Glauber-Sudarshan diagonal

coherent-state representation of the initial density matrix

[15], where theP distribution is uniform in¢g,, and is non- L.p=T(apa’ + bpb"). (14)

zero only for a single value dR. This state is normalized as

soon as the distributiohis, which we shall assume. Another

special case arises when the functioils nonzero only for a  For simplicity the loss rate of the two modes is taken to be
single value off and uniform in¢. Then the density matrix the same. The solution of E¢L2) describes the evolution of
(10) can be written as the system averaged over all possible detection histories. In
fact, we are interested in the conditional evolution for spe-
cific histories, where the arrival times for particles at each
detector are specified. Depending on the specific setup, we
have to separate the total gain tefi¥) in terms correspond-

It follows from the coherent-state representat{@ that in  ing to each detector separately, in accordance with the
this case the density matrix factorizes into a product of sepamethod of quantum trajectori¢9,4,10. For instance, when
rate density matrices for the two modes, implying that thea detector is directly coupled to each mode, the téja’
state(11) is not entangled. The phase of both modes is unidescribes the effect of the detection of a particle from mode
formly distributed, and the state is diagonal in both particleA, which corresponds to the annihilation of a particle from

f dép(R, 6, )27 (17

numbersn, andn,,. this mode. Now we consider the setup sketched in Fig. 1,
where each mode emits particles into the input port of two
IIl. DECAY AND DETECTION STATISTICS different b_eam splitters. Detections in the two output ports of
OF TWO-BOSON MODES beamA sp]ltter | correspond to the detection operafrs
=(axh)/\2, and detections in the output ports of beam split-

A. Master equation and detection histories .
ter 1l correspond to the detection operatord,

We assume that particles are leaking out of the_ two bosog(aie_iga)/@_ The relative phases can be set either by us-
modesA andB at a total loss rat€'. The emitted particles are ing dephasers or by differences in the path lengths of the

detected after passing thrOL_Jgh a b_egm splitter. For SImpl'c'tychannels. Notice that the detection operators are annihilation
we assume perfect detection eff'c'ef?cy and lossless beaHberators corresponding to a spin-coherent state that is rep-
splitters. Moreover, the mode evolution is governed by §oganted by points on the equator of the Bloch sphere. For
HamiltonAianH that is Supposed to commute with the numberthis setup the gain operatdf; can be separated into four
operatorN and which describes the energy per particle anderms corresponding to the four detectors as

possibly tunneling between the modes. Since the two modes
form an open system, their evolution can be described by a
quantum master equatiqi4,13 for the two-mode density

r N A
I ma L1p=—(&,pel +& pel +d,pdl +d_pd!
matrix p, which we formally express as 1P 2( W TP +pd; +d-pd>)

4
dp i N R
4 = Lo+ Lop. (12) = 251 Cspt!
Here £, describes the coherent evolution of the system, :24:/; - (15)
which is determined by the Hamiltonian evolution, and the = 1P
loss of the probability of states due to the emission of par-
ticles. Its explicit form is given by its action on a density
matrix The integral form of the master equati¢iv),
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T 1
p(T) =€ Tp(0) + > fo dte”™0Lyp(t),  (16) &6, b0 (R, 6, $)E' (6, o) = JRH(L +0 - Gp)p(R, 0, ).

. . . . 21
allows us after iteration to express the density matrix as a 23

summation and integration over detection histories. The con- ) . . i o
tribution to p(T) from the history with detections at the suc- 1he unit vectorsi andu, in Eq. (21) are defined to point in
cessive time instants,<t,<...<t_ by the detectorss,, the directions specified by the angles, ¢) and (6o, ¢o),
S, ...,s in the time interval[0,T] is described by the op- respectively. This indicates that for these operafgi&’ is

erator proportional top. The proportionality factor takes the maxi-
mal valueR? when the two directiond, andu coincide, and
p(t,s},T) = e50<T“L—1)£1SLeﬁo(tL‘tL—1) Llsleﬁotlf)(o)_ it is zero when the directions are opposite. It is noteworthy

that this factor depends only on the inner product of the two
(17) unit vectors and thereby on the distance between the two

The effect of the detection operatofs; is a sudden change POiNts on the unit sphere. This indicates that the effect of a
in the density matrix, which indicates the quantum-jump na-detection on the density matrix is determined by the relative
ture of a detection. geometry on the Bloch sphere.

Since Eqgs(14) and (15) are different representations of ~ APPlication of Eq.(21) leads to the expression
the same gain operator, the unitarity of the evolution is guar-
anteed. The separated fo(b) represents the physical situ- L1p(R, 6,¢) =T'R2g(6, »)p(R, 6, ), (22
ation that the emitted particles from each mode can go into

two different input channels, with equal rate constantg. where the functiong; for the detectors 1 and 2 are given by

B. Detection statistics and phase distribution

1 . 1 .
As the initial statep(0) of the system we take a density 91(6:) = 4_1(1 +8in6cosg), gu(0,¢) = 4_1(1 —-singcosg),
matrix of the form(10), so that 23)

p(0) =f dQf(6,4)p(R,6,¢). (18 and for the detectors 3 and 4 by

When the Hamiltonian only attributes a fixed energy per par-

ticle, its form isH=%wN. Since all density matrices that we 0s(6,¢) = 1[1 +sinfcod ¢ —&)], gs(0,¢)

shall encounter are diagonal in the total number of particles, 4

the Hamiltonian has no effect and can be ignored. The co- 1 _

herent evolution of the density matrix is easily obtained from = Z[l -singcog¢ - §)]. (24)
the identity Lo|d, OO, d|=—TN|p, (0, @], which

when substituted into Eq9) gives the result . . . .
©g The functions are determined by the inner product of the unit

e“TH(R, 6, ¢) =exd- RA(1-e"N]p(ReTT2, 6, 4). vector U, indicated by# and ¢, and the unit vectors, cor-
(19) responding to the detection operatogsThese four unit vec-
tors are all defined by,=m/2, whereasp,=0 and for s

This shows that the evolution of the density matrix during a=1 and 2 andp,=£ and¢+ for s=3 and 4. The functiong,
detection-free period of time only gives a damping of thedd up to 1, so that the total gain operafgrwhen acting on
strength parametd®, without changing the distribution over P(R.6,¢) just gives the factof R?, as it should. According
the Bloch sphere. The action of the detection operators ofP EQ.(22), the effect of thath detection at time; by detec-
the density matrix is most easily obtained by using @).  tor s is that the distribution over the Bloch sphere is
The action of the annihilation operators on the SCS is foundnultiplied by the factor g5, while an overall factor
to be given by I'R? exp(-I't;) has to be added. In brief, the detection-free
; ) periods produce a damping 8f and the detection modifies
A — N~nd ” — Nein? the distribution over the Bloch sphere by a multiplication
86, dIn = \Ncosz 6, H)n-1,016, d)n = \NSan €916, S+ with a functiongs. For a given value of the ratitng)/(ny),
(20) as specified by the angl the factorsg, modify the distri-
bution over the relative phasg with a contrast that is maxi-
We observe that to each pair of spherical angl@®d¢  mal when both modes contain the same number of particles
or, equivalently, to each real Cartesian unit veaiotorre-  (9=7/2).
sponds a density matrix(R, 6, ¢) given in Eq.(9) and an Equations(19)—(24) allow one to evaluate explicitly the
annihilation operato€(6, ¢) as defined in Eqi4). Now con-  density matrix(17) corresponding to a given detection his-
sider the annihilation operatét 6y, ¢,), corresponding to the tory, with the initial state determined by E¢L8). The con-
unit vectorU,. Then a direct calculation shows that tribution (17) to the density matrix is then found as
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L detection is that the distribution over the Bloch sphere is
pt,shT) =exd- RA(1 -e ™[] TR ™) multiplied by one of the factorgs, which changes both the
i=1 distribution over the relative phase and the probability distri-

4 bution for subsequent detections. The probability distribution
% fde(g, ¢,)[H a’s(6, ¢)]2>(Re‘ﬁ’2, 6,), of L detections over the four detection channels is given by
s1 Eq. (29). After a detection series given by the partitiom},
(25) the normalized distribution function over the Bloch sphere is
given by f(6, ¢)I1ges6, ¢/ F({ng). The detection statistics is
with ns the total number of detections in chanre(with  jnyariant when both the distribution functidhand the de-

2ng=L). This contribution(25) does not depend on the spe- tection functionsgs are changed by the same rotation over
cific order of the detections in the various channels. Thehe Bloch sphere.

trace of Eq.(25) specifies the probability distribution of the
detection histonyt;,s;} in the factorized form
C. Special cases

L
w ({t;,s},T) = F({nd)exd - R%(1 —e‘FT)]H (TR%e M), When the detections in channels 3 and 4 are ignored and
i=1 M detections have occurred in channels 1 and 2, the distri-
(26) bution of these detections over the two channels can be
" evaluated in the same fashion. The result is
wit

) f dQf(6, $)giH 6, $)gh2(6, b),
(30)

the probability thal successive detections occur in the spe-with n,;+n,=M. The factor ¥ is needed to ensure normal-
cific order(s,,s,, ...,8). This factorF only depends on the ization, sinceg,+g,=1/2 in this case. This expression is a
number of detectionsy,, for each channel, not on the time simple generalization of the result (0] for the case of two
ordering of the detections. The remaining time-dependentlecaying modes observed through a single beam splitter. The
factor in Eq.(26) is the probability density for detections at generalization consists in the fact that the populations of the
the specified instants of time, irrespective of the detectionwo modes need not be the same in Bf). Intuitively it is
channel. The conditional density of the system, given theobvious that the partial statistics of detections in channels 1
detection history {t;,s}, is equal to p ({t,s}, T)/ and 2 is not affected when for some reason the detections in
w,_({t;,s},T), which is the normalized version of E¢R5). channels 3 and 4 are simply added without distinguishing
From the expressiof26) of the probability density one ob- them. This situation is equivalent to the case that beam split-
tains the probabilityp({ng}, T) that in the time interval0,T]  ter Il is missing and a single detector is just collecting par-
there weren, detections in channel (s=1,...,4, irrespec- ticles in both of its input channels.

tive of the order of the detections. This requires an integra- We have noticed that the effect of detections on the phase
tion over the ordered detection times and a muiltiplicationdistribution is strongest when the average number of par-
with the number of possib|e Orderings of thedetections ticles is the same in both modes, so we consider the case that

over the four detectors, given the partitin. The result the polar angle ig)=m/2 orr,=r,=R/\2=r. For this situ-

M
pm(Ng,ny) = ZM(
ny

4
F({ﬂs})=Jde(6’,¢)H 9e%(6, b) (27)
=1

can be expressed as ation, the two-channel distributiai30) has been evaluated in
Ref. [10]. When the relative phase has a well-defined
p({ng, T) = PL(M)pL(nd}), (28)  value ¢, the two-channel distribution is binomial:
whereP, (T) gives the probability that precisely detections M o . o do
occurred in the time intervdD, T], irrespective of the detec- Pm(Ng,np) = ( N )CO§ ”1? Slnznzg, (31)
1

tion channel. This distribution is Poissonian with average
R?(1-€e!'T). The factorp,({ng}) is the probability that thé&. ~ where the most probable detection history has the values
detections are distributed over the four detectors by the pan;=M cog(¢,/2) and n,=M sir?(¢,/2). When the phase

tition {ng} and takes the form distribution is uniform, the two-channel distribution was
L found as[10]
pind) = —————F({n. (29) 1 (2n\/2n
ni!ny,! ng!ny! _ 1 2
1: N2 N3Ny pu(ng,ny) = 22—M< o, )( 0, ) (32

This distribution is independent of the strength fad®ithe
detection timeT, and the decay ratE. Notice that both the This displays boson accumulation, and in a typical detection
distribution P, (T) over the total numbek of detections and history the numbers; andn, of detections in the two chan-
the distributionp, ({ng}) of the L detections over the parti- nels are quite different. In fact, the most probable history is
tions are normalized. specified by(n;,n,)=(M,0) or (0,M). After such a history,

In summary, we notice that the decay process only has thie relative-phase  distribution is proportional to
effect that the strength factd® is damped. The effect of a cogV(#? or sir?M(#2) which peaks at the positions corre-
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sponding to the output channels of the beam splitté@rhe
width of this distribution is significant, so that for large de-
tection numberaV the probability of these most probable
histories is quite small in absolute terms. Nevertheless, they
do characterize typical detection histories as being in their (m1)
neighborhood.

Now we turn to the detection statistics over the four chan- 2
nels when the initial density matrix is specified by Etfl), 10
with equal population of the two modes and initial uniform
relative phase. Then the initial density matrix is equivalent to
the factorized fornp(0)=p,® pp, With

05x10°

1 ) )
Pa=7_ f dep|re™ Pa)(re™' %4, (33
2T

FIG. 2. The probability distributiop,({ns}) as a function of,

. . N .. andng, for equal particle numbers in the modes. The total detection
and ,a S'm'l_ar prressu_)n fgn,. Both modes hgve N d,e“S'tY number isL=40, with 20 particles going into each beam splitter.
matrix that is diagonal in the number state, with a Poissoniaf,q phase difference between the beam splitters is equal to

distribution. In order to characterize the statistics, we 100k= /2 The most probable detection histories are marked.
for the detection histories with the largest probabilities. A

typical detection history can be expected to be in the neigh- |\, pETECTION STATISTICS OF TWO COUPLED

borhooq_ of these maxima. Firs_t we notice that the emission BOSON MODES

probability onto both beam splitters | and 1l is the same, so _

that for a total ofl detections a most probable history must A. Pulsed coupling between modes

have ny+n,=nz+n,=L/2. (We assume that is even for In this secton, we consider the case that the particles emit-

simplicity.) If nothing is specified on the distribution of the ted by the two boson modes and B are detected directly,
L/2 detections in channels 3 and 4, the distribution over thevithout the use of beam splitters, as sketched in Fig).3

two channels 1 and 2 is given by E@2) with M=L/2, with  Therefore we separate the gain operator in the master equa-
the most probable partitiongy,n,)=(L/2,0) or (0,L/2).  tion (12) asL,=Lq,+ Ly, Corresponding to the two terms in
The relative phase has then converged to the value Eg.(14). The coherent-evolution operat8y is given by Eq.

=0 or ¢=m, which makes the distribution over thé2 de-  (13) \where the Hamiltonia! describes coupling between
tections in channels 3 and 4 binomial. For exampleihe two modes by tunneling, in the form

for the partition(n;,n,)=(L/2,0), the partition over the two

other  detectors has maximal probability for (@ o)
(ng,ny)=(L/2)(co(£/2),sirf(£/2)). Since the pair of ~

detectors 1 and 2 is fully equivalent to the pair 3 and 4,
another history with the same maximal probability
occurs for the partition(ns,n,)=(L/2,0), with (n4,n,)
=(L/2)(co(£/2),sirf(£/2)). This corresponds to a
relative phase converging to the valug=¢. In sum-
mary, we expect four most probable histories fodetec-
tions. The partitions over the four detectors attain the
values (ng,ny,N3,n,)=(L/2)(1,0,c08(£/2),sirf(£/2)),
(L/2)(0,1,sirt(¢/2),cog(£/2)), (L/2)(co(£12),
Sirt(£/2),1,0), and (L/2)(sirf(£/2),cog(£/2),0,1), while

the phase has converged in these cases to the vaki@s,

¢, andé+r, respectively. These considerations are backed up
by a numerical calculation of the probability distribution
p.{ng}), for L=40, equal population of the two weli®
=/2), and uniform distribution over the relative phage
while the setting of the two beam splitters is maximally dif-
f_erent(g: 7/2). The distributiqn for gqual num.ber Pf detec- FIG. 3. Comparison of the geometry on the Bloch sphere for
tions through both beam splitters is plotted in Fig. 2. Theyy, cases: (a) particles emitted by modes and B are detected
most probable histories are marked. The gradual transitiogjrectly, without the use of a beam splittéb) emitted particles are
between the two distribution@1) and(32) is noticed along  detected through a beam splitter. For each case, the position of the
the axisn;, when n; varies from O(binomial distribution  detectors on the Bloch sphere is indicated in both cases. The large
over n; and n,=L/2-n;) and L/2 [bunching distribution circles on the sphere indicate the distributibthat determines the
(32)]. initial state just before the detections.
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- AS .~ N
H=- ?(aTb +ab") = - %48, (34)

In realistic cases we can imagine that the coupling can be

switched on during a time intervad, which is sufficiently

PHYSICAL REVIEW A 69, 053621(2004)
L
pLt,shT) =exd- RA(1-e ™I [ (rR%e ™)
i=1

X J dQf(6, )96, B)ga(6, ) Ugh

small so that decay during the coupling is negligible. This

means that the initial state for the decay process is found by

applying the pulse-evolution operator

Uo = exp(— iH /%) = expli 873,). (35)

X (ReTT2,9,¢)U], (39)

which looks quite similar as Eq25). The probability distri-
bution for detection histories is given by the trace of Eq.
(39), and the detection statistics can be obtained in the same
way as above. In analogy to E@28), the probability

In the picture of the Bloch sphere, this is a rotation about they(n,,n,,T) that in the time interval0,T] there weren, de-

X axis in a negative direction over an angfe. When the
initial state before the coupling is given by E@0), the state

after switching off the coupling at the beginning of the de-

tection period is

50= [ d0ra.00pROH0, @6

tections in channed andn,, in channeb, irrespective of their
order, is now

P(Na,NT) = PL(T)pL(Na, Ny,

where, as before?, (T) is the Poissonian distribution of the
total numberL=n,+n, of detections in the intervdl0,T].
The factorp, (n,,n,), which represents the probability that
the L detections are partitioned over the two detectors as

The contribution to the density matrix from a given detection(p, n) s

history {t;,s;} is expressed by Eq17), where now the indi-
cess of the jump operatorg ;¢ can take the valuea or b,

and where Eq(36) specifies the initial density matrix. The
evolution during the detection-free periods is given in Eq.

L
PL(Ng,Ny) = (n )F(na- Ny), (40

(19). The effect of the jump operators on the rotated densityvith

matrix can be expressed using the identity

Elanf’UEr) = FUoéaﬁ6;Ug

and a similar expression fof,, where we introduced the

counterrotated operatois=UJaU, and &,=UJbU,. Their
explicit expressions are then

c —écosiTHBsin&—T c —iésiniT+Bcosa—T
a” 2 20 T 2 2"

They correspond in the sense of E4) to the two unit vec-
torsl,=-Y sin 57+ cosér andl, =Y sin 57—z cos S, which
arise when the opposite rotation is applied fo By using
Eqg. (21), the action of the jump operators;, and L4, in a
detection history is given by the relation

L1.U6h(R. 6,4) U} = TRg,(6,6)Ugh(R, 6, 4) U},
L15U0p(R, 6,4)Uf = TRgy(6, $)Up(R, 6, 4)UJ, (37)
with
1 . 1 Lo
0(0.0)= (1 +0-0), g0, =(1+0-Ty). (38)

Notice that these factors add upE&?. The contribution to
the density matrix arising from the histotyf,s} is now eas-
ily found in the form

Fnm) = [ 600, 0006. 0600, (@D
As an example, we consider the case that before the cou-
pling period the two modes are fully decoupled, with equal
population, so that the functidhis uniform over the equator
of the sphere. The density matrix before coupling has then
the form(11), with 6=7/2. When moreover the pulse dura-
tion is chosen such thaftr=7/2, we findl,=-y, G,=Vy, and
the functionsg, and g, at the equator are found ag(¢)
=(1-sin¢g)/2 and g,(¢)=(1+sing)/2. The distribution
p.(n,,N,) is now exactly the same as in the case of an initally
uniform phase distribution, with detectors placed in the out-
put channel of a single 50%-50% beam splitf@0]. We
recover the bunching distribution

PL(Ng,Np) = %(Zna) <2nb ) ,

L
275\ ng n,

with (n,,n,)=(L,0) or (0,L) the most probable histories of

L detections. The identity of the distribution in these two
cases may be surprising in view of the quite different physi-
cal situations. It is the merit of the description of states and
detections as distributions on the Bloch sphere that it clarifies
this identity, since the two cases have the same relative ge-
ometry on the Bloch sphere. This is illustrated by Fig. 3. The
situation that the pulse duration deviates slightly from the
identity 67=r/2 implies that the detector positions do not lie
precisely on the large circle that describes the initial distri-
bution. Then it follows from the general expressig8) that

the contrast of the functiong, andg, on the large circle is
diminished, so that convergence to a single phase value is
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slowed down. Accordingly, the distributiop,(n,,n,) will
have a diminished bunching.

For the initially coupled modes and the detections without
the beam splitter, the relative phase is initially rather well
determined aroungh=0 and¢= . A typical detection series
now projects the state of the system onto the state with mos
particles either in mod@ or in modeB, with an undeter-
mined relative phase. If at the end of the detection series ¢
second pulsed coupling is applied as described by the opere

tor Uy, the final state after this pulse has a well-determined
relative phase. The final state after the entire scheme o
pulsed coupling, detection series, and second pulse is th
same as the result of just a detection series through the beam
splitter. In this sense, the pulsed coupling can be viewed as a FIG. 4. Relative phase distributions for two coupled modes after
replacement of the beam splitter. This scheme with pulsedi=10 detections. The sets of ten detection times are selected ran-
coupling offers a simple possibility of realizing the bunching domly, and for each set the most probable pair of detection histories

distribution (32) of bosons, without the use of a beam split- IS determined numerically. Each curve is the final phase distribution
ter. after such a detection history.

Pil({n.}.¢)

/2 n

3n/2 ¢ 2n

B. Continuous coupling between modes ) ) o
now depends on the detection time. This time dependence

The situation is different when the coupling between theqresnonds to a rotation of the directigain the yz plane.
modes is present continuously. Then in expresgi8) for For the initial state of two decoupled modes, with a uni-
the coherent-evolution operator, the Hamiltonian is given by, distribution of the phase, the functidris uniform over
Eq. (34).ASince the Hamiltonian commutes with the numbery,o equator of the Bloch sphere. A detection at tine a
operatorN, the decay terms are not affected the Hamiltonianparticle emitted by modé or B then multiplies the distribu-
evolution, and Eq(19) is replaced by the modified form tion over the relative phase by the factor g,(¢)=(1
—-sinédtsing)/2 or gy(¢p)=(1+sinédt ¢)/2. These functions
have their maximum value fap=3#/2 or ¢p=m/2. Strictly
speaking, this distribution describes the state of the system in
the Heisenberg picture, where it is not affected by continuous

with U(T)=exp-iHT/%)=expiT). The effect of the evolution, but only by the quantum jumps that describe the
Hamiltonian on the density matrix for a detection history effect of detections. The evolution of the phase distribution

{t.,s} can be expressed in the Heisenberg picture, with th&uring a typical detection history is conceptually simple. The
time-dependent detection operators total decay rafte, summed over both detectors, is autonomous
and has the time dependent r&tB? exp-I't). The branch-
ing over the two detectora and b is determined by the
expectation value of,(¢) andg,(¢), which has a contrast
that oscillates in time at the coupling frequengyas a result
of the mode coupling. The effect of a detection on the phase
distribution is a multiplication with the same factor
(1¥sinétsing)/2 for detectorsa andb. This will eventu-
PUTARRN Atre ) — D2 A ally lead to a convergence of the phase distribution to a
CGIP(R 0, 4)C(t) = R0, 4, 1p(R.6, ), (44) single peak at a value where either one of the factpris
with g4(6, ¢,t)=[1+0-Ugt)]/2. The general expressigh7)  maximal; henceg=m/2 or ¢=37/2. The convergence to
for the contribution to the density matrix from a detectionthese peaked distributions is slower than in the case of a
history {t;,s;} with the initial state(18) is found as detections through a single beam splitter, as a result of the
R oscillations of the contrast in the functioggt). In Fig. 4 we
pt,s)T) =exd-R(1-¢"7)] plot the phase distributions for a set of typical detection his-
L tories consisting oL=10 detections. These curves are nu-
x [ [ (TR2e ™) f dQf(6, ¢) merically calculated in the following way. First we randomly
i=1 select the ten time instants. Then the most probable set of ten
L detection channels at those instants is chosen. For each set of
x[1 [g%(e,¢,ti)]U(T);3(Ree‘FT’2, 6,4)01(T). time instants, there are two complementary sets of detection
-1 channels, which are related by interchanging dete@asd
b. The different curves in Fig. 4 correspond to a different
selection of the time instants of detection. As seen in Fig. 4,

e“TA(R, 6,¢) = exd— RA(1 - e NJU(M)p

X (ReTT2, 9, 4)UT(T), (42)

&t) = UT(MeU(m). (43)

Their action on the density matrix follows from E@1)
when one uses that,(t) corresponds to the directiai(t)
=-ysinft+zcosst andCy(t) to the opposite directiom(t)
=y sin st—zcosét. This gives

(45)

Each detectiors leads to a multiplication of the distribu-
tion function over the Bloch sphere by a factRp(d, ¢,t) that

after each such history, the distribution ovéris a peak
centered either a#/2 or at 3m/2.
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C. Coupling and energy shift P({n}.9)
10! ’

An energy differencéie between the two modes in addi-
tion to the effect of tunneling is described by the Hamil-
tonian

H=-#8) +hel, (46)

which replaces Eq(34). The angular momentum operators
are defined in Eq(1l). We consider the same detection
scheme used in the preceding subsection. The energy diffet
ence modifies the detection statistics and the phase distribt
tion following a representative detection history. On the

Bloch sphere, the modified evolution operafmt) is repre- FIG. 5. Same as Fig. 4, but now for coupled modes_at different
sented by a rotation in the positive direction around the axi§nergies. The ratio of the energy splitting and the coupling strength
£2— &% over an anglet, with Q=\s2+ & Equations(42) 'S&/9=1/4.

for the density matrix after a detection history a@@®) for

the detection operators in the Heisenberg representagion V. LINEAR AND CIRCULAR CHAINS OF MODES

remain valid. The detection operators are represented by Tpe dynamics of a coupled chain of condensates in an

pointsus on the sphere that are reached from the poles wheppica) lattice has been explored, with emphasis on the dif-
the opposite rotation is applied. Since the rotation axis doegrence between a linear and a circular chdiél. The cou-
not lie in the equator plane, the azimuthal angle varies congjing was due to tunneling between neighboring modes. One
tinuously with time, and the relative phase is no longer progynects analogous differences in the situation considered in
jected pref_erentlally onto the same value. These unit vectorg,is paper, where the phase relation between neighboring
are found in the form modes arises by spontaneous symmetry breaking from the
observation of emitted bosons interfering through a beam
splitter. This raises the question of the transitivity of the rela-
tive phase. When the relative phase between two médes
andB is well determined and the same holds for the relative
+<§coth+i)2. phase between two modéds and C, then one expects the

2 2 phase betweef and A should also be fixed. On the other
hand, when this latter phase is also selected by direct inter-
: o ., _action, one may expect different dynamics depending on
multiply the distribution over the sphere when a partlcleWhether the two paths of phase determination converge to

emitted by modeA or B is detected. - .___the same result or not. In the present section we compare the
As above, we consider the case of an initially factorized

S . L é)hase dynamics on a linear and a circular chain of modes.
state, which is represented by a uniform distribution over th
equator of the Bloch sphere. When a particle from maade
B is detected, the distribution ovef is multiplied by A. Linear chain of modes

5 I N
Ug(t) == Uy(t) = &(cosﬂt -1x- asm Oty

They determine the facto(6, ¢,t)=[1+U-Ugt)]/2 that

1 5 5 We consider a linear chain of modes, as sketched in Fig.
- € ; ; 6. As initial state we take the uncorrelated state given by the
=—-|1+— cos¢(cosQt-1) - —singsinOt], . ) )
Oal¢) 2( 2 Cosg(cos ) o® ¢si ) factorized density matrix

IA)(O):HIA)SZ "'Z’s—l®ﬁs®ﬁs+l"'v (47)
s

gb(qﬁ):}(l—e—icos(ﬁ(cosm— 1)+ésin¢sinﬂt). ) R
2 Q Q where the density matrixs of each modes has the form(33)
with a uniform phase¢s. Beam splitters are mixing the
The maximum of these functions no longer coincides with
the maximum of +sinp, as is the case whes=0.

In Fig. 5 the resulting phase distributions are shown after
a number of most probable detection histories, each consist-
ing of ten detections, fot/ 6=1/4. Thevarious curves differ
in the selection of the detection times. The prescription of the
calculation is the same as used in Fig. 4. Now not only the
width of the peak, but also their position varies for different
selections of the detection times. This can be explained from FIG. 6. Setup with a linear chain of boson modess=1,s,s
the time variation in the position where the maximum of +1,... . Neighboring modes emit particles in the input port of a

gs(¢,t) occurs. beam splitter, and detectors monitor the particles in the output ports.
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bosons emitted from neighboring modesand s+1, with
orthogonal detection operators in the output channels

~ 1 . VR
O = (85 €™ 58500). (48)
N

with & the annihilation operator of modeThe evolution is
described by the master equati@®), with

. |
Lop==2 E(a;rasp + Palas), L1=2 (Lige + L1g),
s s FIG. 7. Setup of a circular chain of three boson modes 1, 2, and

(49) 3, with decay channels that are pairwise coupled by beam splitters
1,2, and 3.

where the contribution t€’, corresponding to the detection
channelss, is specified by B. Circular chain of modes

dﬁﬁa;. (50 splitters and arranged into a circular chain. For 3, the
scheme is presented in Fig. 7. Equatioh®)—(49) still hold,

. - . . - with the indexs running from 1 toK. The relative phase®
Physically it is obvious that the detection statistics over the : g frorr _ P S
output channels of each beam splitter is identical to the ste@"d the detection operatods, are defined as above far

tistics for each of the two beam splitters in Sec. lll, since=1, 2,...,K-1, while we denotedy=¢x—¢; and dy.
each mode emits into two input channels with equal rate. The (c+€7%&;)/v2. The number of beam splitters is now
density matrix corresponding to a given detection historyequal to the number of modes. On the other hand, since
with ng detections in channed,, and mg detections in the

channels_ is easily written down by using the fact that a K

detection in channed, gives a factor cd§(d.—£&)/2], and a S o,.=0 (52)
detection in channes_ a factor sif[(P—&)/2]. After each =

detection history, the distribution over the phaggsof all

modes factorizes into a product of distributions for each rela- . .
tive phased,= ¢~ ., between neighbors. Aftar, detec- the_K modes have onlj(—_l independent relative phas@§, o
tions in channek, andm, detections in the channel, the which makes the detection system overdetermined. This is

it . : : the main difference with the case of the linear chain. Detec-
distribution over the relative phasg,— ¢, IS proportional . . . .
to co@ (D, &)/ 2]siP™[(®.- /2], and the distribution tions on thesth beam splitter tend to drive the relative phase
over the phases is proportional to the product s 1o the valueg, or &+ . However, these values are con-
sistent only when the values of &l add up to a multiple of
O - ¢ O - ¢ 7. The probabilityp({ns,ms,T) of a specified number of
11 [Cogns(5—5>sm2ms(s—s>] (51)  detections by each detector in the time intefM&IT] factor-
s 2 izes as in Eq(28) in a Poisson distribution for the total
numberL of detections, with the mean valu&?(1-e'T)
Because of this factorization, the detection statistics for theind the probabilityp, ({ns,md}) that theL detections are dis-

pair of output channels of each beam splitter is uncorrelategihyted over the detectors according to the indicated parti-
to the other detections. The total numiéy of detections in o, This latter distribution can be specified in analogy to

the time interva[0,T] on the two output channels of a single gq (29) by

beam splitter is Poissonian with average valu§1

—-exp(-I'T)], and the probability distribution of thig de- L

tections over the two detectors is identical to the distribution - :

(32) [10]. Therefore, the most probable histories with, Pu(ing my) I (ng! my! )F({ns,ms}), (53
detections on thisth beam splitter are given ag, my) S

=(Mg,0) and(0,My). The relative phas® between modes

ands+ 1 converges to a single peak locatedatr &+, for  with

each value o6. This also determines in a unique and unam-

biguous way the relative phase between any pair of modes. 1\K

Hence, for a !lnear chain of modes, the relative phase.qu({ns,ms}) = (—> fd¢1d¢2"'d¢K

tween two neighbors converges to one out of two possible 2m

values, in precisely the same way as it occurs for two modes K B - ¢ B - ¢

and a single beam splitter. Spontaneous symmetry breaking x |1 {Cogn{S_S)Sians(S_S)} (54)
occurs independently for each neighboring pair. =1 2 2

T Now we consider a series & modes, coupled by beam
L= E
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After a detection history witlmg detections in channal. and  use the Schwinger representation with fictitious angular mo-
mg detections in channel, the distribution over the relative mentum operators to take advantage of the underlyin@gU
phase is still proportional to E@51). However, because of symmetry of the state space. This allows us to represent the
the relation(52), the relative phases are no longer indepen-density matrix of the two-mode system with an undeter-
dent, and the detection statistics of the output channels of thained absolute phase and a Poissonian distribution of the
different beam splitters become correlated. total number of particles as an integral over the Bloch sphere
The most probable histories can now be found by similaof the fictitious angular momentum. The representation is
considerations as we used above in Sec. Ill C. For a totsdiven in Eq.(10), wheref(6, ¢) is the distribution function
number ofL=K x M detections, the distribution for the total Over the sphere. It may be viewed as the Glauber-Sudarshan
number of particles reaching th¢ beam splitters must be P function restricted to the sphere. The azimuthal anpls
multinomial, with the average valud. For a most probable the relative phase, whereas the polar anglmeasures the

history the number of particles that passed each beam splitt&atio of the average number of particles Anand B, with
is equal toM for each one of them. One might expect thatequal populations represented by points on the equator and

channel, with the most probable partitiom,, m))=(M,0) or

: > . total particle number is that the overall decay of the modes
(0,M) for all of the K beam splitters. This would indicate factors out, and the detection statistics is the product of time-

that the corresponding relative phases probed by these beg§nendent probabilities for the total number of detections
splitters will have converged to the valggor {&=m. How- 414 time-independent distributions for the partitions over the
ever, in general this can only be true for all relative phasegarious detection channels. The effect of a detection is de-
except one, because of the phase relatfiff). Assume that  scribed by the action of an annihilation operator, which also
this excepted relative phase has the indgxAs a result of  corresponds to a point on the sphere. This is equivalent to the
this relation, the value of the last relative phade  multiplication of the distribution functiori(, ¢) by a factor

is thereby also fixed. The distribution over the two outputthat depends only on the distance over the sphere between
channelssy, and s,_ will then be binomial, and the most the points(6,¢) and the detection point. This allows exact
probable partition is given by(nso,mso)=(M co§[(<I)so expressions, both for the detection statistics and for the con-
-gSO)/z],M sin2[(<p50-550)/2])_ For symmetry reasons, each ditional density matrix of the system for a given detection

beam splitter has the same probability to end up in such gistory. Italso implies that identical detection statistics arises

binomial distribution rather than a bunching one. The situafor different choices of the distributioh and the detection

tion can be summarized by stating that in addition to thePoints on t.he Bloch sphere, provided tha_t the setup has the
local spontaneous symmetry breaking for each beam splittef2M€ rélative geometry on the sphere. This can correspond to

also a global symmetry breaking occurs, by which the rela—q.Uite different experimental setups, since the effect of detec-

tive phase between two neighbors is not determined by th jon th_rough a _beam splitter can be produced by a pulsed
unneling coupling between the modes.

setting of their own shared beam splitter, but by the settings In the case that the modes are constantly coupled by tun-
ing and in the presence of an energy difference between

probability of a most probable history will be small.

As an example, consider the cake=3, as sketched in
Fig. 7. The settings of the beam splitters are givenépy
=&,=0 and &=m/2. After 30 detections, one of the parti-

ever, since the preferred phase imposed by the detections is
not the same for all detections in this case, the maximum in
the phase distribution will continue to vary in position even
. . X o after many detections. The convergence of the phase is ex-
tions with the highest probability was found to b, m;) pected to be perturbed more strongly when interparticle in-
=(5,9), (nz,m)=(10,0, and (n5,ms)=(10,0. AS On€  teractions are important during a detection histry].
would expect from symmetry considerations, other partitions e treat explicitly the case of two modes which both emit
with the same maximal probability are found by swapplg particles in an input channel of two different beam splitters.
andm for each beam splittes and also by a permutation of \yhen the settings of the beam splitters are different, they can
the three indices 1, 2, 3. This result is confirmed by a nuqjye the relative phase of the modes to values which are
merical calculation based on a direct evaluation of the probggnflicting. Such a situation of conflicting phase values oc-
ability distribution (53). curs for any number of modes which are coupled by beam
splitters and arranged in a circular chain. Our model shows
that in these cases the most probable detection histories lead
VI. DISCUSSION AND CONCLUSIONS for each pair of neighboring modes to a relative phase con-
verging with equal probability to one of the conflicting val-
The absolute phase of a single-mode or multimodeues. The partition of the detection over the channels is a
bosonic system is fully undetermined when the state of thsignature of the location of the peak in the phase distribution.
system is diagonal in the total particle number. For bosoniSuch a conflict does not arise for a linear chain of modes
atoms, this must be the case, since states with different pacoupled by a beam splitter. A common feature of these vari-
ticle numbers do not superpose. For a two-mode system weus cases is that an initially factorized state of several modes
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tecting their decay products in interference. In principle, this
means that the modes become entangled, even though they This work is part of the research program of the Stichting

have never been in direct contact. voor Fundamenteel Onderzoek der Matgéf©M).

[1] J. Javanainen and S. M. Yoo, Phys. Rev. L&&, 161(1996). 4719(1997).

[2] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, [9] Y. Castin and J. Dalibard, Phys. Rev. 35, 4330(1997.
D. M. Kurn, and W. Ketterle, Scienc75 637 (1997). [10] G. Nienhuis, J. Phys. A4, 7867 (200).

[3] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, [11] A. J. Leggett and F. Sols, Found. Phy&l, 353(1991).
Phys. Rev. Lett.81, 1543(1998. [12] J. A. Dunningham and K. Burnett, J. Phys.33, 3807(2000.

[4] J. . Cirac, C. W. Gardiner, M. Naraschewski, and P. Zoller,[13] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.
Phys. Rev. A54, 3714(1996. Rev. A 6, 2211(1972.

[5] J. Ruostekoski and D. F. Walls, Phys. Revh8 R50(1998. [14] C. W. GardinerQuantum NoisgSpringer, Berlin, 1991
[6] J. A. Dunningham, S. Bose, L. Henderson, V. Vedral, and K.[15] L. Mandel and E. WolfOptical Coherence and Quantum Op-

Burnett, Phys. Rev. A65, 064302(2002. tics (Cambridge University Press, Cambridge, England, 1995
[7] A. P. Hines, R. H. McKenzie, and G. J. Milburn, Phys. Rev. A [16] N. Tsukada, Phys. Rev. A5, 063608(2002.

67, 013609(2003. [17] T. Wong, M. J. Collett, and D. F. Walls, Phys. Rev.54, 3718
[8] E. L. Bolda, S. M. Tan, and D. F. Walls, Phys. Rev. Létg, (1996.

053621-12



