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The relative phase between two uncoupled Bose-Einstein condensates tends to attain a specific value when
the phase is measured. This can be done by observing their decay products in interference. We discuss exactly
solvable models for this process in cases where competing observation channels drive the phases to different
sets of values. We treat the case of two modes which both emit into the input ports of two beam splitters and
of a linear or circular chain of modes. In these latter cases, the transitivity of the relative phase becomes an
issue.
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I. INTRODUCTION

Since the first observation of Bose-Einstein condensation,
the formation and the nature of the relative phase between
two condensates has been a central issue of many theoretical
and experimental studies. It has been predicted by Jav-
anainen and Yoo[1] and observed by Andrewset al. [2] that
two interfering Bose-Einstein condensates exhibit a clear
spatial interference pattern. This shows that in a single run of
an interference experiment, they manifest themselves as be-
ing coherent. Furthermore, it was predicted in[1] that two
cases should be distinguished. When a cold cloud of atoms is
first split into two modes, which are separately cooled further
into two condensates(“cut then cool”), two independent con-
densates arise. Alternatively, two correlated condensates
arise when a single condensate is split into two parts(“cool
then cut”) [2,3]. The interference pattern from two indepen-
dent condensates can be different for each realization of in-
terference experiment, while correlated condensates show
the same interference pattern for each run. Ciracet al. [4]
showed by analytical arguments that a system consisting of
two independent Bose-Einstein condensates evolves into a
state with a fixed relative phase if one detects the emitted
bosonic atoms while observing their spatial interference pat-
tern.

A number of authors have studied the possible manipula-
tion of phase coherence and entanglement between two or
more Bose-Einstein condensates, with tunneling interaction
as the key mechanism[5–7]. A scheme has been proposed to
use an interferometric scheme including an atomic beam
splitter to recombine two modes in order to reconstruct the
state of a two-mode condensate[8]. The buildup of a relative
phase between two independent condensates has also been
investigated in the situation that the atoms emitted from the
two condensates are mixed in a 50%-50% beam splitter
[9,10]. Two initially independent bosonic modes, described
by a factorized state, have a uniform distribution over the
relative phase. Hence all values of this phase are equally
probable as the outcome of a phase measurement. After a
large number of detections in the output ports of the beam
splitter the system evolves into an entangled state of the two
modes. An exactly solvable analytical model has been dis-
cussed[10], which allows one to get closed expression for
the particle detection statistics over two output channels of

the beam splitter for a fixed total number of detections. It is
remarkable that even though both detection channels are
identical, in a typical detection history the detections are un-
evenly distributed over the two output ports. This is obvi-
ously connected to the bosonic nature of the particles, for
which boson accumulation applies. After the first few emis-
sions, the subsequent particles have a tendency to choose the
same port as the majority of their predecessors, and the rela-
tive phase of the modes converges to one of the phases im-
posed by the beam splitter. This can also be viewed as an
example of spontaneous symmetry breaking[11]. The role of
interparticle interaction is also discussed, and it has been
shown that it leads to collapse and revival of the relative
phase distribution, thereby reflecting the discrete nature of
the states of the system[9].

We recalled that in the presence of a single beam splitter,
after a large number of detections, the relative phase con-
verges to a single value. It is interesting to consider cases
where more detection channels are present which tend to
project the relative phase on different values, so that a detec-
tion from one beam splitter favors phase values that are in-
compatible with the setting of another one. In the present
paper we consider a number of model cases where such a
conflicting tendency arises. This raises the question whether
in the end the system simply settles down in one of the
possible phase values or whether it continues to shift be-
tween values, without ever coming to a final decision. We
consider cases where the detection statistics can be solved
analytically. Also we study the effect of a direct Hamiltonian
coupling between the condensates on both the detection sta-
tistics and the corresponding behavior of the relative phase.
Examples of such couplings are tunneling between conden-
sates in two spatially separated potential wells or stimulated
Raman coupling between two condensates corresponding to
two different internal states[12]. We treat the condensates
just as modes of bosonic particles, so that most of the con-
siderations hold just as well for photons in cavities.

II. QUANTUM STATES OF TWO BOSON MODES

It will be convenient to express the states of two boson
modes in terms of spin-coherent states(SCS’s), which is nor-
mally defined for thes2J+1d-dimensional manifold of states
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with angular momentumJ [13]. The spin-coherent state

uu ,fl is the eigenstate of the componentuW ·JŴ of the angular
momentum vector with the maximal eigenvalueJ, whereuW
; x̂ cosf sinu+ ŷ sinf sinu+ ẑcosu is the unit vector in
the direction specified by the spherical anglesu andf. This
state is obtained from the eigenstate ofJz with eigenvalueJ
after performing the appropriate rotation. In the context of
two boson modes(or two harmonic oscillators), an SU(2)
representation arises by introducing the fictitious angular-
momentum operators

Ĵx =
1

2
sâ†b̂ + b̂†âd, Ĵy =

1

2i
sâ†b̂ − b̂†âd, Ĵz =

1

2
sâ†â − b̂†b̂d,

s1d

whereâ andb̂ are the annihilation operators for modesA and
B. This is the well-known Schwinger representation. These
operators obey the standard commutation rules of angular

momentum(fĴx, Ĵyg= iĴz, etc.), so that the matrix form of the

operators(1) on the eigenvectors ofĴz and JŴ2 attains the
shape that is well known from angular momentum algebra.

Notice thatJŴ2=sN̂/2dsN̂/2+1d, with N̂= â†â+ b̂†b̂ the num-

ber operator. The eigenvectors ofĴz and JŴ2 are just the
double Fock statesuna,nbl. A given number of particles,N,

corresponds to the valueJ=N/2. The eigenstate ofĴz with
this same eigenvalue is the Fock stateuN,0l, so that the SCS
with directionuW can be defined by the rotation

uu,flN = R̂su,fduN,0l, s2d

with the rotation operator

R̂su,fd = exps− ifĴzdexps− iuĴydexpsifĴzd

= expf− iusĴycosf − Ĵxsinfdg. s3d

The SCS can be represented as a point on a sphere of radius
J, specified by the polar angleu and the azimuthal anglef.
This sphere generalizes the Bloch sphere, describing the state
of a spin 1/2, or the Poincaré sphere which describes the
polarization state of a light beam or a photon. In the present
case, the radius specifies the number of particles,N=2J. An
explicit expansion of the SCS(2) in the Fock states follows
then from the transformation of the creation operators:

R̂su,fdâ†R̂†su,fd = â† cos
u

2
+ b̂† sin

u

2
eif ; ĉ†su,fd.

s4d

The SCS(2) is found after operatingN times with the opera-
tor ĉ†su ,fd on the vacuum state, which leads to the explicit
result

uu,flN = o
n=0

N SN

n
D1/2

cosn
u

2
sinN−n u

2
eisN−ndf un,N − nl.

s5d

This demonstrates that the SCSuu ,flN can be viewed as a
number state in the mode that is a linear combination of the
modesA andB and for which the operatorĉ†su ,fd, defined
in Eq. (4), is the creation operator. In the SCS, the distribu-
tion of theN particles over the two modes is binomial, and
the angle u specifies the average partition byknal
=N cos2su /2d and knbl=N sin2su /2d. The azimuthal anglef
represents the relative phase between the modes. This quan-

tity is complementary to the number differenceâ†â− b̂†b̂.
Number states with all particles in the modeA are repre-
sented by the north pole of the Bloch spheresu=0d, while
the south pole represents the SCS with allN particles in
modeB. Points on the equatorsu=p /2d stand for states with
equal population of the modes. Since the state(2) [or (5)] is

eigenstate ofN̂, the absolute phase is fully undetermined.
The relation between the SCS and the more common

Glauber coherent states(GCS) is easily found by represent-
ing the latter ones in the form

urae
−ifa,rbe

−ifbl = e−sra
2+rb

2d/2o
N

1

N!

3srae
−ifaâ† + rbe

−ifbb̂†dNuvacl. s6d

These states are eigenstates ofâ and b̂, and they are obvi-
ously factorized, so that they carry no entanglement between
the modes. It is easy to check that they are related to the SCS
by the expansion[4]

urae
−ifa,rbe

−ifbl = e−R2/2o
N

1
ÎN!

RNe−iNfauu,flN, s7d

with the parametersR, u, and f determined byR2=ra
2+rb

2,
tansu /2d=rb/ ra, andf=fa−fb. This indicates that the GCS
has a Poissonian distribution of the total particle numberN,
with average valuekNl=R2, while the absolute phasesfa

andfb of both modes are well specified. For bosonic atoms,
states with a different total number of particles do not super-
pose, according to the superselection rule, so that we have to
restrict ourselves to density matrices that are diagonal inN.
Since the particle number is conjugate to the overall phase,
we introduce the density matrix

r̂sR,u,fd =
1

2p
E

0

2p

dfaurae
−ifa,rbe

−isfa−fdl

3krae
−ifa,rbe

−isfa−fdu s8d

as the uniform mixture of the GCS(6) over the overall phase
fa, for a given value of the relative phasef=fa−fb. Apply-
ing Eq.(7) leads to an expansion of this same density matrix
in the SCS in the form
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r̂sR,u,fd = e−R2o
N

1

N!
R2Nuu,flNNku,fu. s9d

The density matrixr̂sR,u ,fd is therefore diagonal in the
particle numberN.

In this paper we shall use density matrices that can be
represented as a superposition of the states(9) for a single
value of the strength parameterR in the form

E dVfsu,fdr̂sR,u,fd, s10d

where we use the abbreviationedV=e0
2pdfe0

p du sinu for
the integration over the Bloch sphere. When we express
r̂sR,u ,fd as in Eq.(8), it becomes clear that Eq.(10) is just
the two-mode version of the Glauber-Sudarshan diagonal
coherent-state representation of the initial density matrix
[15], where theP distribution is uniform infA, and is non-
zero only for a single value ofR. This state is normalized as
soon as the distributionf is, which we shall assume. Another
special case arises when the functionf is nonzero only for a
single value ofu and uniform inf. Then the density matrix
(10) can be written as

E dfr̂sR,u,fd/2p. s11d

It follows from the coherent-state representation(8) that in
this case the density matrix factorizes into a product of sepa-
rate density matrices for the two modes, implying that the
state(11) is not entangled. The phase of both modes is uni-
formly distributed, and the state is diagonal in both particle
numbersna andnb.

III. DECAY AND DETECTION STATISTICS
OF TWO-BOSON MODES

A. Master equation and detection histories

We assume that particles are leaking out of the two boson
modesA andB at a total loss rateG. The emitted particles are
detected after passing through a beam splitter. For simplicity,
we assume perfect detection efficiency and lossless beam
splitters. Moreover, the mode evolution is governed by a

HamiltonianĤ that is supposed to commute with the number

operatorN̂ and which describes the energy per particle and
possibly tunneling between the modes. Since the two modes
form an open system, their evolution can be described by a
quantum master equation[14,15] for the two-mode density
matrix r̂, which we formally express as

dr̂

dt
; sL0 + L1dr̂. s12d

Here L0 describes the coherent evolution of the system,
which is determined by the Hamiltonian evolution, and the
loss of the probability of states due to the emission of par-
ticles. Its explicit form is given by its action on a density
matrix

L0r̂ = −
i

"
fĤ,r̂g −

1

2
GsN̂r̂ + r̂N̂d, s13d

while the compensating probability gain is accounted for by

L1r̂ = Gsâr̂â† + b̂r̂b̂†d. s14d

For simplicity the loss rate of the two modes is taken to be
the same. The solution of Eq.(12) describes the evolution of
the system averaged over all possible detection histories. In
fact, we are interested in the conditional evolution for spe-
cific histories, where the arrival times for particles at each
detector are specified. Depending on the specific setup, we
have to separate the total gain term(14) in terms correspond-
ing to each detector separately, in accordance with the
method of quantum trajectories[9,4,10]. For instance, when
a detector is directly coupled to each mode, the termâr̂â†

describes the effect of the detection of a particle from mode
A, which corresponds to the annihilation of a particle from
this mode. Now we consider the setup sketched in Fig. 1,
where each mode emits particles into the input port of two
different beam splitters. Detections in the two output ports of
beam splitter I correspond to the detection operatorsĉ±

=sâ± b̂d /Î2, and detections in the output ports of beam split-

ter II correspond to the detection operatorsd̂±

=sâ±e−ijb̂d /Î2. The relative phases can be set either by us-
ing dephasers or by differences in the path lengths of the
channels. Notice that the detection operators are annihilation
operators corresponding to a spin-coherent state that is rep-
resented by points on the equator of the Bloch sphere. For
this setup the gain operatorL1 can be separated into four
terms corresponding to the four detectors as

L1r̂ =
G

2
sĉ+r̂ĉ+

† + ĉ−r̂ĉ−
† + d̂+r̂d̂+

† + d̂−r̂d̂−
†d

;
G

2o
s=1

4

ĉsr̂ĉs
†

= o
s=1

4

L1sr̂. s15d

The integral form of the master equation(12),

FIG. 1. Sketch of setup with two decaying boson modesA and
B. Each mode emits particles into the input port of two beam split-
ters I and II. Output ports are coupled to particle detectors 1–4.
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r̂sTd = eL0Tr̂s0d + o
i
E

0

T

dteL0sT−tdL1ir̂std, s16d

allows us after iteration to express the density matrix as a
summation and integration over detection histories. The con-
tribution to r̂sTd from the history with detections at the suc-
cessive time instantst1ø t2ø . . .ø tL by the detectorss1,
s2, . . . ,sL in the time intervalf0,Tg is described by the op-
erator

r̂Lshti,sij,Td = eL0sT−tL−1dL1sL
eL0stL−tL−1d

¯ L1s1
eL0t1r̂s0d.

s17d

The effect of the detection operatorsL1i is a sudden change
in the density matrix, which indicates the quantum-jump na-
ture of a detection.

Since Eqs.(14) and (15) are different representations of
the same gain operator, the unitarity of the evolution is guar-
anteed. The separated form(15) represents the physical situ-
ation that the emitted particles from each mode can go into
two different input channels, with equal rate constantsG /2.

B. Detection statistics and phase distribution

As the initial stater̂s0d of the system we take a density
matrix of the form(10), so that

r̂s0d =E dVfsu,fdr̂sR,u,fd. s18d

When the Hamiltonian only attributes a fixed energy per par-

ticle, its form isĤ="vN̂. Since all density matrices that we
shall encounter are diagonal in the total number of particles,
the Hamiltonian has no effect and can be ignored. The co-
herent evolution of the density matrix is easily obtained from
the identity L0uf ,ulNNku ,fu=−GNuf ,ulNNku ,fu, which
when substituted into Eq.(9) gives the result

eL0Tr̂sR,u,fd = expf− R2s1 − e−GTdgr̂sRe−GT/2,u,fd.

s19d

This shows that the evolution of the density matrix during a
detection-free period of time only gives a damping of the
strength parameterR, without changing the distribution over
the Bloch sphere. The action of the detection operators on
the density matrix is most easily obtained by using Eq.(8).
The action of the annihilation operators on the SCS is found
to be given by

âuu,flN = ÎNcos
u

2
uu,flN−1,b̂uu,flN = ÎNsin

u

2
eifuu,flN−1

s20d

We observe that to each pair of spherical anglesu andf
or, equivalently, to each real Cartesian unit vectoruW corre-
sponds a density matrixr̂sR,u ,fd given in Eq.(9) and an
annihilation operatorĉsu ,fd as defined in Eq.(4). Now con-
sider the annihilation operatorĉsu0,f0d, corresponding to the
unit vectoruW0. Then a direct calculation shows that

ĉsu0,f0dr̂sR,u,fdĉ†su0,f0d =
1

2
R2s1 + uW ·uW0dr̂sR,u,fd.

s21d

The unit vectorsuW anduW0 in Eq. (21) are defined to point in
the directions specified by the anglessu ,fd and su0,f0d,
respectively. This indicates that for these operatorsĉr̂ĉ† is
proportional tor̂. The proportionality factor takes the maxi-
mal valueR2 when the two directionsuW0 anduW coincide, and
it is zero when the directions are opposite. It is noteworthy
that this factor depends only on the inner product of the two
unit vectors and thereby on the distance between the two
points on the unit sphere. This indicates that the effect of a
detection on the density matrix is determined by the relative
geometry on the Bloch sphere.

Application of Eq.(21) leads to the expression

L1sr̂sR,u,fd = GR2gssu,fdr̂sR,u,fd, s22d

where the functionsgi for the detectors 1 and 2 are given by

g1su,fd =
1

4
s1 + sinu cosfd, g2su,fd =

1

4
s1 − sinu cosfd,

s23d

and for the detectors 3 and 4 by

g3su,fd =
1

4
f1 + sinu cossf − jdg, g4su,fd

=
1

4
f1 − sinu cossf − jdg. s24d

The functions are determined by the inner product of the unit
vectoruW, indicated byu andf, and the unit vectorsuW0 cor-
responding to the detection operatorsĉs. These four unit vec-
tors are all defined byu0=p /2, whereasf0=0 andp for s
=1 and 2 andf0=j andj+p for s=3 and 4. The functionsgs
add up to 1, so that the total gain operatorL1 when acting on
r̂sR,u ,fd just gives the factorGR2, as it should. According
to Eq.(22), the effect of theith detection at timeti by detec-
tor si is that the distribution over the Bloch sphere is
multiplied by the factor gsi

, while an overall factor
GR2 exps−Gtid has to be added. In brief, the detection-free
periods produce a damping ofR and the detection modifies
the distribution over the Bloch sphere by a multiplication
with a functiongsi

. For a given value of the ratioknal / knbl,
as specified by the angleu, the factorsgs modify the distri-
bution over the relative phasef, with a contrast that is maxi-
mal when both modes contain the same number of particles
su=p /2d.

Equations(19)–(24) allow one to evaluate explicitly the
density matrix(17) corresponding to a given detection his-
tory, with the initial state determined by Eq.(18). The con-
tribution (17) to the density matrix is then found as
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r̂Lshti,sij,Td = expf− R2s1 − e−GTdgp
i=1

L

sGR2e−Gtid

3E dVfsu,fdFp
s=1

4

gs
nssu,fdGr̂sRe−GT/2,u,fd,

s25d

with ns the total number of detections in channels (with
ons=L). This contribution(25) does not depend on the spe-
cific order of the detections in the various channels. The
trace of Eq.(25) specifies the probability distribution of the
detection historyhti ,sij in the factorized form

wLshti,sij,Td = Fshnsjdexpf− R2s1 − e−GTdgp
i=1

L

sGR2e−Gtid,

s26d

with

Fshnsjd =E dVfsu,fdp
s=1

4

gs
nssu,fd s27d

the probability thatL successive detections occur in the spe-
cific order ss1,s2, . . . ,sLd. This factorF only depends on the
number of detections,ns, for each channel, not on the time
ordering of the detections. The remaining time-dependent
factor in Eq.(26) is the probability density for detections at
the specified instants of time, irrespective of the detection
channel. The conditional density of the system, given the
detection history hti ,sij, is equal to r̂Lshti ,sij ,Td /
wLshti ,sij ,Td, which is the normalized version of Eq.(25).
From the expression(26) of the probability density one ob-
tains the probabilitypshnsj ,Td that in the time intervalf0,Tg
there werens detections in channels, ss=1, . . . ,4d, irrespec-
tive of the order of the detections. This requires an integra-
tion over the ordered detection times and a multiplication
with the number of possible orderings of theL detections
over the four detectors, given the partitionhnsj. The result
can be expressed as

pshnsj,Td = PLsTdpLshnsjd, s28d

wherePLsTd gives the probability that preciselyL detections
occurred in the time intervalf0,Tg, irrespective of the detec-
tion channel. This distribution is Poissonian with average
R2s1−e−GTd. The factorpLshnsjd is the probability that theL
detections are distributed over the four detectors by the par-
tition hnsj and takes the form

pLshnsjd =
L!

n1 ! n2 ! n3 ! n4!
Fshnsjd. s29d

This distribution is independent of the strength factorR, the
detection timeT, and the decay rateG. Notice that both the
distributionPLsTd over the total numberL of detections and
the distributionpLshnsjd of the L detections over the parti-
tions are normalized.

In summary, we notice that the decay process only has the
effect that the strength factorR is damped. The effect of a

detection is that the distribution over the Bloch sphere is
multiplied by one of the factorsgs, which changes both the
distribution over the relative phase and the probability distri-
bution for subsequent detections. The probability distribution
of L detections over the four detection channels is given by
Eq. (29). After a detection series given by the partitionhnsj,
the normalized distribution function over the Bloch sphere is
given by fsu ,fdpsgs

nsu ,f /Fshnsjd. The detection statistics is
invariant when both the distribution functionf and the de-
tection functionsgs are changed by the same rotation over
the Bloch sphere.

C. Special cases

When the detections in channels 3 and 4 are ignored and
M detections have occurred in channels 1 and 2, the distri-
bution of these detections over the two channels can be
evaluated in the same fashion. The result is

pMsn1,n2d = 2MSM

n1
D E dVfsu,fdg1

n1su,fdg2
n2su,fd,

s30d

with n1+n2=M. The factor 2M is needed to ensure normal-
ization, sinceg1+g2=1/2 in this case. This expression is a
simple generalization of the result of[10] for the case of two
decaying modes observed through a single beam splitter. The
generalization consists in the fact that the populations of the
two modes need not be the same in Eq.(30). Intuitively it is
obvious that the partial statistics of detections in channels 1
and 2 is not affected when for some reason the detections in
channels 3 and 4 are simply added without distinguishing
them. This situation is equivalent to the case that beam split-
ter II is missing and a single detector is just collecting par-
ticles in both of its input channels.

We have noticed that the effect of detections on the phase
distribution is strongest when the average number of par-
ticles is the same in both modes, so we consider the case that
the polar angle isu=p /2 or ra=rb=R/Î2; r. For this situ-
ation, the two-channel distribution(30) has been evaluated in
Ref. [10]. When the relative phasef has a well-defined
valuef0, the two-channel distribution is binomial:

pMsn1,n2d = SM

n1
Dcos2n1

f0

2
sin2n2

f0

2
, s31d

where the most probable detection history has the values
n1=M cos2sf0/2d and n2=M sin2sf0/2d. When the phase
distribution is uniform, the two-channel distribution was
found as[10]

pMsn1,n2d =
1

22MS2n1

n1
DS2n2

n2
D . s32d

This displays boson accumulation, and in a typical detection
history the numbersn1 andn2 of detections in the two chan-
nels are quite different. In fact, the most probable history is
specified bysn1,n2d=sM ,0d or s0,Md. After such a history,
the relative-phase distribution is proportional to
cos2Msf/2d or sin2Msf/2d, which peaks at the positions corre-
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sponding to the output channels of the beam splitterI. The
width of this distribution is significant, so that for large de-
tection numbersM the probability of these most probable
histories is quite small in absolute terms. Nevertheless, they
do characterize typical detection histories as being in their
neighborhood.

Now we turn to the detection statistics over the four chan-
nels when the initial density matrix is specified by Eq.(11),
with equal population of the two modes and initial uniform
relative phase. Then the initial density matrix is equivalent to
the factorized formr̂s0d= r̂a ^ r̂b, with

r̂a =
1

2p
E dfaure−ifalkre−ifau, s33d

and a similar expression forr̂b. Both modes have a density
matrix that is diagonal in the number state, with a Poissonian
distribution. In order to characterize the statistics, we look
for the detection histories with the largest probabilities. A
typical detection history can be expected to be in the neigh-
borhood of these maxima. First we notice that the emission
probability onto both beam splitters I and II is the same, so
that for a total ofL detections a most probable history must
have n1+n2=n3+n4=L /2. (We assume thatL is even for
simplicity.) If nothing is specified on the distribution of the
L /2 detections in channels 3 and 4, the distribution over the
two channels 1 and 2 is given by Eq.(32) with M =L /2, with
the most probable partitionssn1,n2d=sL /2 ,0d or s0,L /2d.
The relative phase has then converged to the valuef
=0 or f=p, which makes the distribution over theL /2 de-
tections in channels 3 and 4 binomial. For example,
for the partitionsn1,n2d=sL /2 ,0d, the partition over the two
other detectors has maximal probability for
sn3,n4d=sL /2d(cos2sj /2d ,sin2sj /2d). Since the pair of
detectors 1 and 2 is fully equivalent to the pair 3 and 4,
another history with the same maximal probability
occurs for the partitionsn3,n4d=sL /2 ,0d, with sn1,n2d
=sL /2d(cos2sj /2d ,sin2sj /2d). This corresponds to a
relative phase converging to the valuef=j. In sum-
mary, we expect four most probable histories forL detec-
tions. The partitions over the four detectors attain the
values sn1,n2,n3,n4d=sL /2d(1,0,cos2sj /2d ,sin2sj /2d),
sL /2d(0,1,sin2sj /2d ,cos2sj /2d), sL /2d(cos2sj /2d ,
sin2sj /2d ,1 ,0), and sL /2d(sin2sj /2d ,cos2sj /2d ,0 ,1), while
the phase has converged in these cases to the valuesf=0, p,
j, andj+p, respectively. These considerations are backed up
by a numerical calculation of the probability distribution
pLshnsjd, for L=40, equal population of the two wellssu
=p /2d, and uniform distribution over the relative phasef,
while the setting of the two beam splitters is maximally dif-
ferentsj=p /2d. The distribution for equal number of detec-
tions through both beam splitters is plotted in Fig. 2. The
most probable histories are marked. The gradual transition
between the two distributions(31) and (32) is noticed along
the axisn1, when n3 varies from 0(binomial distribution
over n1 and n2=L /2−n1) and L /2 [bunching distribution
(32)].

IV. DETECTION STATISTICS OF TWO COUPLED
BOSON MODES

A. Pulsed coupling between modes

In this secton, we consider the case that the particles emit-
ted by the two boson modesA and B are detected directly,
without the use of beam splitters, as sketched in Fig. 3(a).
Therefore we separate the gain operator in the master equa-
tion (12) asL1=L1a+L1b, corresponding to the two terms in
Eq. (14). The coherent-evolution operatorL0 is given by Eq.

(13), where the HamiltonianĤ describes coupling between
the two modes by tunneling, in the form

FIG. 2. The probability distributionpLshnsjd as a function ofn1

andn3, for equal particle numbers in the modes. The total detection
number isL=40, with 20 particles going into each beam splitter.
The phase difference between the beam splitters is equal toj
=p /2. The most probable detection histories are marked.

FIG. 3. Comparison of the geometry on the Bloch sphere for
two cases: (a) particles emitted by modesA and B are detected
directly, without the use of a beam splitter;(b) emitted particles are
detected through a beam splitter. For each case, the position of the
detectors on the Bloch sphere is indicated in both cases. The large
circles on the sphere indicate the distributionf that determines the
initial state just before the detections.
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Ĥ = −
"d

2
sâ†b̂ + âb̂†d = − "dĴx. s34d

In realistic cases we can imagine that the coupling can be
switched on during a time intervalt, which is sufficiently
small so that decay during the coupling is negligible. This
means that the initial state for the decay process is found by
applying the pulse-evolution operator

Û0 = exps− iĤt/"d = expsidtĴxd. s35d

In the picture of the Bloch sphere, this is a rotation about the
x axis in a negative direction over an angledt. When the
initial state before the coupling is given by Eq.(10), the state
after switching off the coupling at the beginning of the de-
tection period is

r̂s0d =E dVfsu,fdÛ0r̂sR,u,fdÛ0
†. s36d

The contribution to the density matrix from a given detection
history hti ,sij is expressed by Eq.(17), where now the indi-
cess of the jump operatorsL1s can take the valuesa or b,
and where Eq.(36) specifies the initial density matrix. The
evolution during the detection-free periods is given in Eq.
(19). The effect of the jump operators on the rotated density
matrix can be expressed using the identity

L1aÛ0r̂Û0
† = GÛ0ĉar̂ĉa

†Û0
†

and a similar expression forL1b, where we introduced the

counterrotated operatorsĉa; Û0
†âÛ0 and ĉb; Û0

†b̂Û0. Their
explicit expressions are then

ĉa = â cos
dt

2
+ ib̂ sin

dt

2
, ĉb = iâ sin

dt

2
+ b̂ cos

dt

2
.

They correspond in the sense of Eq.(4) to the two unit vec-
torsuWa=−ŷ sindt+ ẑcosdt anduWb= ŷ sindt− ẑcosdt, which
arise when the opposite rotation is applied to ±ẑ. By using
Eq. (21), the action of the jump operatorsL1a andL1b in a
detection history is given by the relation

L1aÛ0r̂sR,u,fdÛ0
† = GR2gasu,fdÛ0r̂sR,u,fdÛ0

†,

L1bÛ0r̂sR,u,fdÛ0
† = GR2gbsu,fdÛ0r̂sR,u,fdÛ0

†, s37d

with

gasu,fd =
1

2
s1 + uW ·uWad, gbsu,fd =

1

2
s1 + uW ·uWbd. s38d

Notice that these factors add up toGR2. The contribution to
the density matrix arising from the historyhti ,sij is now eas-
ily found in the form

r̂Lshti,sij,Td = expf− R2s1 − e−GTdgp
i=1

L

sGR2e−Gtid

3E dVfsu,fdga
nasu,fdgb

nbsu,fdÛ0r̂

3sRe−GT/2,u,fdÛ0
†, s39d

which looks quite similar as Eq.(25). The probability distri-
bution for detection histories is given by the trace of Eq.
(39), and the detection statistics can be obtained in the same
way as above. In analogy to Eq.(28), the probability
psna,nb,Td that in the time intervalf0,Tg there werena de-
tections in channela andnb in channelb, irrespective of their
order, is now

psna,nbTd = PLsTdpLsna,nbd,

where, as before,PLsTd is the Poissonian distribution of the
total numberL=na+nb of detections in the intervalf0,Tg.
The factorpLsna,nbd, which represents the probability that
the L detections are partitioned over the two detectors as
sna,nbd, is

pLsna,nbd = S L

na
DFsna,nbd, s40d

with

Fsna,nbd =E dVfsu,fdga
nasu,fdgb

nbsu,fd. s41d

As an example, we consider the case that before the cou-
pling period the two modes are fully decoupled, with equal
population, so that the functionf is uniform over the equator
of the sphere. The density matrix before coupling has then
the form(11), with u=p /2. When moreover the pulse dura-
tion is chosen such thatdt=p /2, we finduWa=−ŷ, uWb= ŷ, and
the functionsga and gb at the equator are found asgasfd
=s1−sinfd /2 and gbsfd=s1+sinfd /2. The distribution
pLsna,nbd is now exactly the same as in the case of an initally
uniform phase distribution, with detectors placed in the out-
put channel of a single 50%-50% beam splitter[10]. We
recover the bunching distribution

pLsna,nbd =
1

22LS2na

na
DS2nb

nb
D ,

with sna,nbd=sL ,0d or s0,Ld the most probable histories of
L detections. The identity of the distribution in these two
cases may be surprising in view of the quite different physi-
cal situations. It is the merit of the description of states and
detections as distributions on the Bloch sphere that it clarifies
this identity, since the two cases have the same relative ge-
ometry on the Bloch sphere. This is illustrated by Fig. 3. The
situation that the pulse duration deviates slightly from the
identity dt=p /2 implies that the detector positions do not lie
precisely on the large circle that describes the initial distri-
bution. Then it follows from the general expressions(38) that
the contrast of the functionsga andgb on the large circle is
diminished, so that convergence to a single phase value is
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slowed down. Accordingly, the distributionpLsna,nbd will
have a diminished bunching.

For the initially coupled modes and the detections without
the beam splitter, the relative phase is initially rather well
determined aroundf=0 andf=p. A typical detection series
now projects the state of the system onto the state with most
particles either in modeA or in modeB, with an undeter-
mined relative phase. If at the end of the detection series a
second pulsed coupling is applied as described by the opera-

tor Û0, the final state after this pulse has a well-determined
relative phase. The final state after the entire scheme of
pulsed coupling, detection series, and second pulse is the
same as the result of just a detection series through the beam
splitter. In this sense, the pulsed coupling can be viewed as a
replacement of the beam splitter. This scheme with pulsed
coupling offers a simple possibility of realizing the bunching
distribution (32) of bosons, without the use of a beam split-
ter.

B. Continuous coupling between modes

The situation is different when the coupling between the
modes is present continuously. Then in expression(13) for
the coherent-evolution operator, the Hamiltonian is given by
Eq. (34). Since the Hamiltonian commutes with the number

operatorN̂, the decay terms are not affected the Hamiltonian
evolution, and Eq.(19) is replaced by the modified form

eL0Tr̂sR,u,fd = expf− R2s1 − e−GTdgÛsTdr̂

3sRe−GT/2,u,fdÛ†sTd, s42d

with ÛsTd=exps−iĤT/"d=expsidTĴxd. The effect of the
Hamiltonian on the density matrix for a detection history
hti ,sij can be expressed in the Heisenberg picture, with the
time-dependent detection operators

ĉsstsd = Û†sTdĉsÛsTd. s43d

Their action on the density matrix follows from Eq.(21)
when one uses thatĉastd corresponds to the directionuWastd
=−ŷ sindt+ ẑcosdt and ĉbstd to the opposite directionuWbstd
= ŷ sindt− ẑcosdt. This gives

ĉsstsdr̂sR,u,fdĉs
†stsd = R2gssu,f,tsdr̂sR,u,fd, s44d

with gssu ,f ,td=f1+uW ·uWsstdg /2. The general expression(17)
for the contribution to the density matrix from a detection
history hti ,sij with the initial state(18) is found as

r̂Lshti,sij,Td = expf− R2s1 − e−GTdg

3p
i=1

L

sGR2e−Gtid E dVfsu,fd

3p
i=1

L

fgsi
su,f,tidgÛsTdr̂sRee−GT/2,u,fdÛ†sTd.

s45d

Each detections leads to a multiplication of the distribu-
tion function over the Bloch sphere by a factorgssu ,f ,td that

now depends on the detection time. This time dependence
corresponds to a rotation of the directionuWs in the yz plane.

For the initial state of two decoupled modes, with a uni-
form distribution of the phase, the functionf is uniform over
the equator of the Bloch sphere. A detection at timet of a
particle emitted by modeA or B then multiplies the distribu-
tion over the relative phasef by the factor gasfd=s1
−sindt sinfd /2 or gbsfd=s1+sindt fd /2. These functions
have their maximum value forf=3p /2 or f=p /2. Strictly
speaking, this distribution describes the state of the system in
the Heisenberg picture, where it is not affected by continuous
evolution, but only by the quantum jumps that describe the
effect of detections. The evolution of the phase distribution
during a typical detection history is conceptually simple. The
total decay rate, summed over both detectors, is autonomous
and has the time dependent rateGR2 exps−Gtd. The branch-
ing over the two detectorsa and b is determined by the
expectation value ofgasfd and gbsfd, which has a contrast
that oscillates in time at the coupling frequencyd, as a result
of the mode coupling. The effect of a detection on the phase
distribution is a multiplication with the same factor
s17sindt sinfd /2 for detectorsa and b. This will eventu-
ally lead to a convergence of the phase distribution to a
single peak at a value where either one of the factorsgs is
maximal; hence,f=p /2 or f=3p /2. The convergence to
these peaked distributions is slower than in the case of a
detections through a single beam splitter, as a result of the
oscillations of the contrast in the functionsgsstd. In Fig. 4 we
plot the phase distributions for a set of typical detection his-
tories consisting ofL=10 detections. These curves are nu-
merically calculated in the following way. First we randomly
select the ten time instants. Then the most probable set of ten
detection channels at those instants is chosen. For each set of
time instants, there are two complementary sets of detection
channels, which are related by interchanging detectorsa and
b. The different curves in Fig. 4 correspond to a different
selection of the time instants of detection. As seen in Fig. 4,
after each such history, the distribution overf is a peak
centered either atp /2 or at 3p /2.

FIG. 4. Relative phase distributions for two coupled modes after
L=10 detections. The sets of ten detection times are selected ran-
domly, and for each set the most probable pair of detection histories
is determined numerically. Each curve is the final phase distribution
after such a detection history.
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C. Coupling and energy shift

An energy difference"« between the two modes in addi-
tion to the effect of tunneling is described by the Hamil-
tonian

Ĥ = − "dĴx + "eĴz, s46d

which replaces Eq.(34). The angular momentum operators
are defined in Eq.(1). We consider the same detection
scheme used in the preceding subsection. The energy differ-
ence modifies the detection statistics and the phase distribu-
tion following a representative detection history. On the

Bloch sphere, the modified evolution operatorÛstd is repre-
sented by a rotation in the positive direction around the axis
«ẑ−dx̂, over an angleVt, with V=Î«2+d2. Equations(42)
for the density matrix after a detection history and(43) for
the detection operators in the Heisenberg representationĉsstd
remain valid. The detection operators are represented by
pointsuWs on the sphere that are reached from the poles when
the opposite rotation is applied. Since the rotation axis does
not lie in the equator plane, the azimuthal angle varies con-
tinuously with time, and the relative phase is no longer pro-
jected preferentially onto the same value. These unit vectors
are found in the form

uWastd = − uWbstd =
ed

V2scosVt − 1dx̂ −
d

V
sinVtŷ

+ S d2

V2cosVt +
e2

V2Dẑ.

They determine the factorsgssu ,f ,td=f1+uW ·uWsstdg /2 that
multiply the distribution over the sphere when a particle
emitted by modeA or B is detected.

As above, we consider the case of an initially factorized
state, which is represented by a uniform distribution over the
equator of the Bloch sphere. When a particle from modeA or
B is detected, the distribution overf is multiplied by

gasfd =
1

2
S1 +

ed

V2 cosfscosVt − 1d −
d

V
sinf sinVtD ,

gbsfd =
1

2
S1 −

ed

V2 cosfscosVt − 1d +
d

V
sinf sinVtD .

The maximum of these functions no longer coincides with
the maximum of ±sinf, as is the case when«=0.

In Fig. 5 the resulting phase distributions are shown after
a number of most probable detection histories, each consist-
ing of ten detections, for« /d=1/4. Thevarious curves differ
in the selection of the detection times. The prescription of the
calculation is the same as used in Fig. 4. Now not only the
width of the peak, but also their position varies for different
selections of the detection times. This can be explained from
the time variation in the position where the maximum of
gssf ,td occurs.

V. LINEAR AND CIRCULAR CHAINS OF MODES

The dynamics of a coupled chain of condensates in an
optical lattice has been explored, with emphasis on the dif-
ference between a linear and a circular chain[16]. The cou-
pling was due to tunneling between neighboring modes. One
expects analogous differences in the situation considered in
this paper, where the phase relation between neighboring
modes arises by spontaneous symmetry breaking from the
observation of emitted bosons interfering through a beam
splitter. This raises the question of the transitivity of the rela-
tive phase. When the relative phase between two modesA
andB is well determined and the same holds for the relative
phase between two modesB and C, then one expects the
phase betweenC and A should also be fixed. On the other
hand, when this latter phase is also selected by direct inter-
action, one may expect different dynamics depending on
whether the two paths of phase determination converge to
the same result or not. In the present section we compare the
phase dynamics on a linear and a circular chain of modes.

A. Linear chain of modes

We consider a linear chain of modes, as sketched in Fig.
6. As initial state we take the uncorrelated state given by the
factorized density matrix

r̂s0d = p
s

r̂s = ¯ r̂s−1 ^ r̂s ^ r̂s+1¯, s47d

where the density matrixr̂s of each modes has the form(33)
with a uniform phasefs. Beam splitters are mixing the

FIG. 5. Same as Fig. 4, but now for coupled modes at different
energies. The ratio of the energy splitting and the coupling strength
is « /d=1/4.

FIG. 6. Setup with a linear chain of boson modes . . . ,s−1,s,s
+1, . . . . Neighboring modes emit particles in the input port of a
beam splitter, and detectors monitor the particles in the output ports.
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bosons emitted from neighboring modess and s+1, with
orthogonal detection operators in the output channels

d̂s± =
1
Î2

sâs ± e−ijsâs+1d. s48d

with âi the annihilation operator of modei. The evolution is
described by the master equation(12), with

L0r̂ = − o
s

G

2
sâs

†âsr̂ + r̂âs
†âsd, L1 = o

s

sL1s+ + L1s−d,

s49d

where the contribution toL1 corresponding to the detection
channelss± is specified by

L1s± =
G

2
d̂s±r̂d̂s±

† . s50d

Physically it is obvious that the detection statistics over the
output channels of each beam splitter is identical to the sta-
tistics for each of the two beam splitters in Sec. III, since
each mode emits into two input channels with equal rate. The
density matrix corresponding to a given detection history
with ns detections in channels+, and ms detections in the
channels− is easily written down by using the fact that a
detection in channels+ gives a factor cos2fsFs−jsd /2g, and a
detection in channels− a factor sin2fsFs−jsd /2g. After each
detection history, the distribution over the phasesfs of all
modes factorizes into a product of distributions for each rela-
tive phaseFs;fs−fs+1 between neighbors. Afterns detec-
tions in channels+ and ms detections in the channels−, the
distribution over the relative phasefs−fs+1 is proportional
to cos2nsfsFs−jsd /2gsin2msfsFs−jsd /2g, and the distribution
over the phases is proportional to the product

p
s
Fcos2nsSFs − js

2
Dsin2msSFs − js

2
DG . s51d

Because of this factorization, the detection statistics for the
pair of output channels of each beam splitter is uncorrelated
to the other detections. The total numberMs of detections in
the time intervalf0,Tg on the two output channels of a single
beam splitter is Poissonian with average valuer2f1
−exps−GTdg, and the probability distribution of theMs de-
tections over the two detectors is identical to the distribution
(32) [10]. Therefore, the most probable histories withMs
detections on thissth beam splitter are given assns,msd
=sMs,0d ands0,Msd. The relative phaseFs between modess
ands+1 converges to a single peak located atjs or js+p, for
each value ofs. This also determines in a unique and unam-
biguous way the relative phase between any pair of modes.
Hence, for a linear chain of modes, the relative phase be-
tween two neighbors converges to one out of two possible
values, in precisely the same way as it occurs for two modes
and a single beam splitter. Spontaneous symmetry breaking
occurs independently for each neighboring pair.

B. Circular chain of modes

Now we consider a series ofK modes, coupled by beam
splitters and arranged into a circular chain. ForK=3, the
scheme is presented in Fig. 7. Equations(47)–(49) still hold,
with the indexs running from 1 toK. The relative phasesFs

and the detection operatorsd̂s± are defined as above fors

=1, 2, . . . ,K−1, while we denoteFK=fK−f1 and d̂K±
=sâK±e−ijKâ1d /Î2. The number of beam splitters is now
equal to the number of modes. On the other hand, since

o
s=1

K

Fs = 0, s52d

theK modes have onlyK−1 independent relative phasesFs,
which makes the detection system overdetermined. This is
the main difference with the case of the linear chain. Detec-
tions on thesth beam splitter tend to drive the relative phase
Fs to the valuejs or js+p. However, these values are con-
sistent only when the values of alljs add up to a multiple of
p. The probabilitypshns,msj ,Td of a specified number of
detections by each detector in the time intervalf0,Tg factor-
izes as in Eq.(28) in a Poisson distribution for the total
numberL of detections, with the mean valueKr2s1−e−GTd
and the probabilitypLshns,msjd that theL detections are dis-
tributed over the detectors according to the indicated parti-
tion. This latter distribution can be specified in analogy to
Eq. (29) by

pLshns,msjd =
L!

ps
sns ! ms ! d

Fshns,msjd, s53d

with

Fshns,msjd = S 1

2p
DKE df1df2 ¯ dfK

3p
s=1

K Fcos2nsSFs − js

2
Dsin2msSFs − js

2
DG . s54d

FIG. 7. Setup of a circular chain of three boson modes 1, 2, and
3, with decay channels that are pairwise coupled by beam splitters
1, 2, and 3.
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After a detection history withns detections in channels+ and
ms detections in channels−, the distribution over the relative
phase is still proportional to Eq.(51). However, because of
the relation(52), the relative phases are no longer indepen-
dent, and the detection statistics of the output channels of the
different beam splitters become correlated.

The most probable histories can now be found by similar
considerations as we used above in Sec. III C. For a total
number ofL=K3M detections, the distribution for the total
number of particles reaching theK beam splitters must be
multinomial, with the average valueM. For a most probable
history the number of particles that passed each beam splitter
is equal toM for each one of them. One might expect that
theseM particles display bosonic bunching into one output
channel, with the most probable partitionsns,msd=sM ,0d or
s0,Md for all of the K beam splitters. This would indicate
that the corresponding relative phases probed by these beam
splitters will have converged to the valuejs or js=p. How-
ever, in general this can only be true for all relative phases
except one, because of the phase relation(52). Assume that
this excepted relative phase has the indexs0. As a result of
this relation, the value of the last relative phaseFs0

is thereby also fixed. The distribution over the two output
channelss0+ and s0− will then be binomial, and the most
probable partition is given bysns0

,ms0
d=(M cos2fsFs0

−js0
d /2g ,M sin2fsFs0

−js0
d /2g). For symmetry reasons, each

beam splitter has the same probability to end up in such a
binomial distribution rather than a bunching one. The situa-
tion can be summarized by stating that in addition to the
local spontaneous symmetry breaking for each beam splitter,
also a global symmetry breaking occurs, by which the rela-
tive phase between two neighbors is not determined by the
setting of their own shared beam splitter, but by the settings
of all the other ones. Again, a typical detection history may
be expected to be in the neighborhood of a most probable
history, even though for large detection numbers the absolute
probability of a most probable history will be small.

As an example, consider the caseK=3, as sketched in
Fig. 7. The settings of the beam splitters are given byj1
=j2=0 andj3=p /2. After 30 detections, one of the parti-
tions with the highest probability was found to besn1,m1d
=s5,5d, sn2,m2d=s10,0d, and sn3,m3d=s10,0d. As one
would expect from symmetry considerations, other partitions
with the same maximal probability are found by swappingns
andms for each beam splitters and also by a permutation of
the three indices 1, 2, 3. This result is confirmed by a nu-
merical calculation based on a direct evaluation of the prob-
ability distribution (53).

VI. DISCUSSION AND CONCLUSIONS

The absolute phase of a single-mode or multimode
bosonic system is fully undetermined when the state of the
system is diagonal in the total particle number. For bosonic
atoms, this must be the case, since states with different par-
ticle numbers do not superpose. For a two-mode system we

use the Schwinger representation with fictitious angular mo-
mentum operators to take advantage of the underlying SU(2)
symmetry of the state space. This allows us to represent the
density matrix of the two-mode system with an undeter-
mined absolute phase and a Poissonian distribution of the
total number of particles as an integral over the Bloch sphere
of the fictitious angular momentum. The representation is
given in Eq.(10), where fsu ,fd is the distribution function
over the sphere. It may be viewed as the Glauber-Sudarshan
P function restricted to the sphere. The azimuthal anglef is
the relative phase, whereas the polar angleu measures the
ratio of the average number of particles inA and B, with
equal populations represented by points on the equator and
the poles representing states with all particles in one mode.
The merit of these states with Poissonian distribution of the
total particle number is that the overall decay of the modes
factors out, and the detection statistics is the product of time-
dependent probabilities for the total number of detections
and time-independent distributions for the partitions over the
various detection channels. The effect of a detection is de-
scribed by the action of an annihilation operator, which also
corresponds to a point on the sphere. This is equivalent to the
multiplication of the distribution functionfsu ,fd by a factor
that depends only on the distance over the sphere between
the pointssu ,fd and the detection point. This allows exact
expressions, both for the detection statistics and for the con-
ditional density matrix of the system for a given detection
history. It also implies that identical detection statistics arises
for different choices of the distributionf and the detection
points on the Bloch sphere, provided that the setup has the
same relative geometry on the sphere. This can correspond to
quite different experimental setups, since the effect of detec-
tion through a beam splitter can be produced by a pulsed
tunneling coupling between the modes.

In the case that the modes are constantly coupled by tun-
neling and in the presence of an energy difference between
the modes, the phase distribution still becomes nonuniform
by the detecting particles emitted by the two modes. How-
ever, since the preferred phase imposed by the detections is
not the same for all detections in this case, the maximum in
the phase distribution will continue to vary in position even
after many detections. The convergence of the phase is ex-
pected to be perturbed more strongly when interparticle in-
teractions are important during a detection history[17].

We treat explicitly the case of two modes which both emit
particles in an input channel of two different beam splitters.
When the settings of the beam splitters are different, they can
drive the relative phase of the modes to values which are
conflicting. Such a situation of conflicting phase values oc-
curs for any number of modes which are coupled by beam
splitters and arranged in a circular chain. Our model shows
that in these cases the most probable detection histories lead
for each pair of neighboring modes to a relative phase con-
verging with equal probability to one of the conflicting val-
ues. The partition of the detection over the channels is a
signature of the location of the peak in the phase distribution.
Such a conflict does not arise for a linear chain of modes
coupled by a beam splitter. A common feature of these vari-
ous cases is that an initially factorized state of several modes
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builds up a specific value of all relative phases by only de-
tecting their decay products in interference. In principle, this
means that the modes become entangled, even though they
have never been in direct contact.
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