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We study the quantum dynamics of a number of model systems as their coupling constants are changed
rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of
Greineret al. [Nature (London 415 39 (2002] who studied the response of a Mott insulator of ultracold
atoms in an optical lattice to a strong potential gradient. In a previous work, it had been argued that the
resonant response observed at a critical potential gradient could be understood by proximity to an Ising
guantum critical point describing the onset of density wave order. Here we obtain numerical results on the
evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This
is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain
exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also
study the evolution of transverse superfluid order in the three-dimensional case. In all cases, the order param-
eter is best enhanced in the vicinity of the quantum critical point.
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l. INTRODUCTION model) Forw, |E-U|<E,U, wherew is the tunneling ma-
trix element between nearest-neighbor lattice sites, it was
Recent experiments with ultracold atoms have achievedrgued that we need only focus on a set of states which were
reversible tuning of bosonic atoms between superfluid angesonantly coupledo the original Mott insulating state. In
Mott insulating states by varying the strength of periodicone dimension, the resonant subspace could be described
potential produced by standing laser light2]. The physics ~simply in terms of nearest-neighbdipole states, consisting
of such ultracold atoms in the Mott insulating state can beof a particle and a hole excitation about the Mott insulator on
described by bosonic Hubbard model, well known in contexii€arest-neighbor states; in higher dimensions, the particle

of other condensed-matter systefsd]. However, ultracold @nd hole were no longer constrained to be on nearest-
atoms in optical lattices offer much better control over mi-N€ighbor sites but could reside anywhere on planes orthogo-

croscopic parameters of the model. Consequently, it is poéjal to the potential gradient, but separated by a single lattice

sible to explore parameter regimes which are not available i§°2¢INg- An effective Hamiltonian on such resonant sub-
other analogous condensed-matter systems. Spaces was proposed in I, and its phase diagram was pre-

This paper will focus on a particular experiment reportedsemed' In the regime of large potential gradi&ntU >w,
by Greineret al. [1]. With the boson system in the Mott this effective Hamiltonian possessed ground states with den-

) : , . : sity wave order with a period of two lattice spacingee
insulating state, they applied a steep potential gradient to thg, Ref.[8] for conditions under which other periods may

lattice, and observed its response. In a typical condense%btaim_ It was argued in | that the proximity of the quantum
matter system, one might have expected a response analgitical point, associated with the onset of this density wave
gous to that of a sliding charge-density wave: no motion ofprder, was responsible for the resonant response observed by
atoms until a critical tilt was applied, and a sliding motion at Greineret al.
all tilts above the critical tilt. However, the experiment ob-  The tilt experiments of Greinest al. were carried out in
served strikingly different behavior: there was a stroegp-  highly nonequilibrium situations, and the approach of | was
nant response in the vicinity of tilts where the potential- to describe these, to the extent possible, by an equilibrium
energy drop between nearest-neighbor optical lattice sitegnalysis of an effective Hamiltonian describing the primary
(E) equaled the repulsion between two atoms on the saméates accessed over the experimental time scale. The pur-
site (U). For E~U, applying the tilt produced a noticeable pose of the present paper is to directly address the nonequi-
change in the ground state, lirt contrast to sliding charge- librium dynamics of the tilted Mott insulator. We will mainly
density wave systemshere was little change in the ground do this using the effective Hamiltonian of I. The specific
state for largerE until a second resonant peak BEt~-2U.  question we shall address is the following. Begin with the
This resonant response is a clear indication that the atonsystem in the ground state in a regime of snk&aE; where
experience little extrinsic dissipation, and their dynamicsthere is no density wave order. Then, suddenly change the
should be described by an energy-conserving quantumalue ofE to a E=E;, including values such that the ground
Hamiltonian. state has density wave order Bf. Allow the system to

A framework for describing the experiments of Greie¢r evolve under the resulting Hamiltonian. What is the nature of
al. [1] was proposed in Ref5] (hereafter referred to ag.1 the state to which the system evolves at long times? We will
(We also note here the numerical studies of Braundind, as conjectured in I, that the density wave order that
Munzingeret al. [6] which addressed these experiments bydevelops under this dynamic evolution is most robust when
studying the time evolution of the underlying Bose-HubbardE; is near the quantum critical point.
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We will also address a similar question for the Ising chain E.= U+ 1.310v\ng(Ng + 1), (3)
in a transverse fieldy. Like the models of I, this model also
has a regime < g, where the ground state has spontaneoushe system undergoes a quantum phase transition in the Ising
Ising order. However, this much simpler model is completelyuniversality class.
integrable, and so offers an opportunity to analyze the non- As discussed in Sec. |, we study the dynamics of the
equilibrium dynamics exactly. We initialize the Ising model Ultracold atoms when the potential gradient is changed sud-
in the ground state in a transverse figid>g.. The trans- denly. Such a situation can be very easily achieved experi-
verse field is then changed rapidly ¢g=g;, and the wave mentally in these systems by rapidly shifting the center of
function evolves at this field. We will compute equal-time the confining magnetic trap. We shall specifically consider
correlations in this wave function as a function of the tine ~the situation where the change in the potential gradient is fast
including in thet — < limit. In some cases, exact closed-form €nough for the sudden perturbation assumption to be valid
results will be obtained. The structure of these correlations aut slow enough to restrict the dynamics within the resonant
a function ofg; bears some similarity to the results of the subspaces so that the Hamiltonidn [and Eq.(26) in Sec.
model of | as a function of;; however, there are some [V]is still valid.
interesting differences which, we suspect, are related to the We assume that the atoms in the 1D lattice are initially in
integrability of the Ising chain. the ground $tatékPG> of the dipole Hamiltoniar(l) with E

We now outline the remainder of the paper. In Sec. Il we=Ei<E.. This ground state corresponds to dipole vacuum.
present numerical results on the dynamics of the OneconSider Shlftlng the center of the magnetic trap so that the
dimensional dipole model of 1. Section 11l will address the New potential gradient iE;. If this change is done suddenly,
nonequilibrium dynamics of the Ising chain in a transversethe system initially remains in the old ground state. The state
field: this analysis uses the Jordan-Wigner transformationof the system at time is therefore given by
and obtains the required dynamic correlation functions in the ,
form of Toeplitz determinants. Section IV returns to the (W (V) =2 ¢, expl-iegt/h)ln), (4)
model of I, but turns to the dynamics in three dimensions; "
here, we use a combination of mean-field theory and exaatvhere|n) denotes the complete set of energy eigenstates of
diagonalization to obtain results similar to those in Sec. Il,the HamiltonianH,p[E;] in Eq. (1), &,=(n|Hp[E{]|n) is the
but with the order parameter now being a “transverse supeenergy eigenvalue corresponding to stdt®, and c,
fluid” order. We review the results and discuss implications=(n|¥(t=0))=(n|¥s) denotes the overlap of the old ground
for experiments in Sec. V. state with the statén). Notice that the statéW(t)) is no
longer the ground state of the new Hamiltonian. Further-
more, in the absence of any dissipative mechanism, which is
the case for ultracold atoms in optical latticé®,(t)) will

This section will describe our numerical results on thenever reach the ground state of the new Hamiltonian. Rather,
guantum dynamics of the one-dimensiondD) dipole in general, we expect the system to thermalize at long
model of the Mott insulator in a potential gradient. enough times, so that the correlations are similar to those of

Starting from a parent Mott state witly, bosons per site, Hjp[E¢] at some finite temperature.
we identified the set of states which are resonantly coupled We are now in a position to study the dynamics of the
to the parent Mott state whed ~E (recall thatU is the Ising density wave order parameter
repulsive energy between two bosons on the same site, and
E, the “ele_ctric fiel_d,” is the potenti_al drop between two O:1<\If|2 (- 1)€d;rd€|\lf>, (5)
nearest-neighbor sitesn one dimension, the resonant sub- N ¢
space involves dipole states consisting of quasihole- ) ) ) ) )
quasiparticle pairs at adjacent sites, and the low-energy pavhereN is the number of sites. The time evolution ©fis
havior of the system can be described by the effective dipol@Ven by

Hamiltonian obtained in I: 1

I ) ) o) = NE CriCn €O (Ey =~ EQUATM X (= 1)ldfd,|n).
Hp[E] = —wyng(ng + 1)2 (dg+dp) +(U- E)E ded,. mn ¢

¢ ¢

Il. DIPOLE DYNAMICS IN ONE DIMENSION

(6)

@ Equation(6) is solved numerically using exact diagonaliza-
The dipoles are subject to hard-core constraints that there ifon to obtain the eigenstates and eigenvalues of the Hamil-
never more than a single dipole on any pair of nearesttonianH,p[E;]. Before resorting to numerics, it is however
neighbor sites, useful to discuss the behavior 6Xt) qualitatively. We note
+ + Ty that if E; is close toE;, the old ground state will have a large
dede <1, deagdesyded, = 0. @ overlapfwith new or;e, i.egm~g§m1. Hence in this case W%
When the electric fielcE is adiabatically tuned througt, expectO(t) to have small oscillations abo@(t=0). On the
the ground state of the system changes from one with nother hand, ifE;>E,, the two ground states will have very
dipoles (U>E) to one with maximum possible number of little overlap, and we again expe€Xt) to have a small os-
dipoles(E>U). At an intermediate critical electric field cillation amplitude. This situation is in stark contrast with the
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FIG. 1. Evolution of the Ising order parameter in E§) under f

the HamiltonianH,p[E;] for r.10:1.. The ?nitial state is the ground FIG. 3. The curve labeled “dynamic” is the long-time lim@),
state ofH;p[E;]. All the plots in this section have=40,w=1, and

E-32 and v th ilibri itical point i of the Ising order in Eq(6) as a function ofg; (for N=11), with
a{_E _,45i1n8500nsequentyt e equilibrium quantum critical point IS o, o parameters as in Fig. 1. This long-time limit can be obtained
.=41.85.

simply by settingm=n in Eqg. (6). For comparison, in the curve
labeled “adiabatic,” we show the expectation value of the Ising
order O in the ground state oH;p[E¢]; such an order would be
‘observed if the value dE was changed adiabatically. Note that the

adiabatic turning on of the potential gradient, where the sys
tems always remain in the ground state of the new Hamil
tonianH; p[E¢], and therefore has a maximal valu&@) for  gynamic curve has its maximal value nehut not exactly atthe
Ef>E.. In between, forE;~ E, the ground staté¥) has a  equilibrium quantum critical poinE,=41.85, where the system is
finite overlap with many stategn), and hence we expect able to respond most easily to the change in valu€&;ofhis dy-
O(t) to display significant oscillations. Furthermore, if the namic curve is our theory of the “resonant” response in the experi-
symmetry between the two Ising ordered states is brokements of Ref[1] discussed in Sec. I. In contrast the adiabatic result
slightly (as is the case in our studies bejpwhe time- increases monotonicallwith E; into the E>E; phase where the
average value oDO(t) will be nonzero. Ising symmetry is spontaneously broken.

This qualitative discussion is supported by numerical cal- | ) )
culations on finite-size systems for system dize9,11,13.  Visible as we go to higher system sizes, although they do
For numerical computations with finite systems, we choosdv€aken somewhat. More significantly, the time-average
systems with an odd number of sites and open boundary@/u€ of O(t) remains nonzero, and has a weaker decrease
conditions, so that dipole formation on odd sites is favoredWith system size. In Fig. 3, we plot the long-time limit of the
thus breaking theZ, symmetry. The results are shown in Ising order parametetp),, as a function of;, and compare
Figs. 1-4. Figure 1 shows the oscillation of the order paramit with the O the value of the order parameter whEn
eterO(t) for different values of; for N=13. In agreement reachesE; adiabatically and the wave function is that of the
with our qualitative expectations, the oscillations have maxi-ground state aE=E;. We find that{O), stays close t®,q as
mum amplitude wherE;~40 is near the critical valu&, long as there is a large overlap between the old and the new
=41.85. For eitheE;<E, or E;>E,, the oscillations have a ground states. However, as we approach the adiabatic phase
small amplitude aroun@®(t=0). Furthermore, it is only for

E;~E. that the time-average value @i(t) is appreciable. 0190+
Figure 2 shows the system size dependence of the time evo-< O, 1 =
lution for E;=U=40. We find that the oscillations remain i \N=7
0.075 / \
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FIG. 4. Size dependence of the “dynamic” results in Fig. 3. The

FIG. 2. System sizéN) dependence of the results of Fig. 1 for sizes range fronN=7 to N=15 (as labelegl with the intermediate
E¢=40. The curves are labeled by the valueNbf valuesN=9,11,13:(O); decreases monotonically with.
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transition point, this overlap decreases d@j; cannot fol-  quantities will be identically zero at all times. Rather, we will
low O,4 anymore. The deviation dfO), is therefore a signa- compute here the two-point correlation function of the order
ture that the system is now in a different phase for the neviparameter in an infinite chain, which is
value of the electric field.
The “dynamic” curve in Fig. 3 should be compared with Gn(t) = ()| oot (1)) (8)
Figs. He) and §f) in Ref. [1]. The latter show that the Mott
insulator has a resonantly strong response to an applied pblere|y(t)) is the state of the system at tihesvolving under
tential gradiente ~U. Here, we have found a similar reso- the Schrddinger equation specified by the time-dependent
nant enhancement in a simple model system in one dimerHamiltonianH,. In equilibrium, the information contained in
sion, induced by the proximity of a quantum critical point. a correlation function like Eq8) is related to an observable
We comment briefly on the nature of the thermodynamidike that in Eq.(6) (which is the response in the Ising order
limit N— oo for the results in Figs. 2 and 3. FOritis clear  parameter to perturbations in the boundary condjtlmnthe
that there is a nonzero limit only fd&>E;, when it equals fluctuation-dissipation theorem. However, we are not aware
the order parameter of the spontaneously broken Ising synef any analog of such a theorem for the nonequilibrium case
metry. If we assume that the system thermalizes at long timesnder consideration here, and so are not able to directly re-
for the dynamic case, the{®); corresponds to the expecta- late the results of the present section to those of Sec. Il.
tion value of the equilibrium order parameter ko[ E;] at Our analysis ofH, proceeds with the standard Jordan-
some finite temperature. In one dimension, it is not possibl&Vigner transformation, and we follow the notation and meth-
to break a discrete symmetry at finite temperatures, and seds of Chap. 4 of Refl4]. We express th&=1/2 states in
the thermodynamic limit of the order parameter must alwayderms of those of the spinless Jordan-Wigner ferntorand
vanish. By this reasoning, we expg@), to also vanish in ~ after transforming to momentum space fermions the
the thermodynamic limit. This is consistent with the resultsHamiltonian becomes
in Fig. 4, where we show thd dependence of the long-time
limit (O),. Our data are at present not extensive enough to H, -JE [2(g- cosk)ckck i sin k(c! ka+ c_xC) — gl.
definitely characterize the dependence©f; on N.
9
lll. DYNAMICS OF THE QUANTUM ISING CHAIN Now, transforming to the Heisenberg picture, we can follow
As a complement to the physically relevant, but numeri-the evolution of the system by solving the equations of mo-
cal, computations in Sec. Il, this section will describe similartion
results in a simpler, analytically tractable model. We will
consider the integrable Ising chain in a transverse field,
which also has a zero-temperature, quantum phase transition
between a phase with a broképsymmetry and a symmetric
phase. We will address questions on the evolution of therhese equations are easily solved by a Bogoliubov transfor-
wave function under a time-dependent change in the transnation. Finally, the correlator if8) is computed by a simple
verse field. Different aspects of the nonequilibrium dynamicsgeneralization of the methods appropriate for the equilibrium
of the Ising chain were studied earlier by Igloi and Ried8r  case. A few details of such a computation appear in the Ap-
using similar methods. pendix.
The model of interest in this section is Here, we discuss the results f@(t) for the case of a
sudden change frong(07)=g; to g(0*)=g;. For t<0, we
Hi = _‘]E [O'J'Zo'iz+1+g(t)o)i(]’ (7 assume the system is in the ground state appropriatg for
. =g;, and consequenti,(t<0) is independent of and equal
whereo)j“Z are Pauli matrices acting on a “spin” on the sitesto the well-known equilibrium result a=g;. Fort>0, there
j of an infinite chain. We have allowed the transverse field tois a nontrivial time dependence, and it is possible to obtain
acquire an arbitrary time dependeng). We will mainly  the general expression f@,(t) as described in the Appen-
consider here the case of a sudden change atttrdefrom  dix. We will restrict our attention here to the simpler expres-
an initial valueg(07)=g; to a final valueg(0*)=gy, but our  sjon of the long-time limitG,(t— ), which is the primary
methods easily generalize to the arbitrary time dependence iguantity of physical interest. For this, we obtain the Toeplitz
g). determinant
For time independerg(t), H, has a quantum critical point
at g=g.=1, with two equivalent ground states fgK g, re- aQ a4 " anm
lated by a globak, spin flip. However, unlike Sec. Il we will a ag - a
not introduce any external perturbation which introduces a Gp(©) = ,1 o ‘"+2
preference between these two states: all such perturbations : :
destroy the integrability oH,. Consequently, we do not ob- -1 -2 "°
tain any useful information from the analog of the time de-
pendence of the order parameter in E&$.and(6), as these  where

_t:i[Hth]- (10

; (11
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- i " —ikry
a = 277.[_7, e"a(k), (12)
with
_ 2(ggi + Dz - (g + 9) (2 + 1) z
a(k) = \/ :
2(z-g) (z-9)(1-z9)
(13
wherez=¢€k,

We now need to evaluate timex n Toeplitz determinant in
Eq.(11), especially for the case of large In the equilibrium

PHYSICAL REVIEW A9, 053616(2004)

gf<1 gf>1
—r=1
8 2
rs-1 -5 (1—gf) 0
1
r=0 & —
1 1
r=1 -= —-1
2 2g;
=2 0 ! (g2-1)
r= -8
2g;

17)

In both of these two cases, the following conditions are

met.

situation, this is aided by Szegd's lemma, and its generaliza- Condition 1.For g;>1, a,=0 forr<-1.

tion in the Fisher-Hartwig formul§9]. For the present situ-
ation, the expression in EQ13) does not obey the winding

Condition 2.Forg;<1, a,=0 forr=2.
Condition 3.For g;<1, a,=0a,,1 for r<-2.

number constraint required for application of the Fisher- Using condition 1, we can immediately wri,(=)=a;
Hartwig formula, and so we are unable to take advantage oty g, >1. Forg;<1, define

this result. However, we shall show that an exact evaluation

of Eqg. (11) is possible for two important special cas@p ar a1 " @y
= and g;=0), and supplement these by numerical evalua- a  ay v A
tion of EqQ.(11) for other values ofj;. Dh=1 . . . . ' (18)
In the caseg;=0, we have : : S
a1 A2 " Ch)

so thatG,(«)=D?. Condition 2 givesD',=a rD° ,-a,D"*}

(K = 22-g(Z+1) (14) and condition 3 giveD}=gD;* for r=2. Also, D}=a_,.
2(z-g) We can therefore write
D° -a, (DL
o) Zllet) oo
and it is straightforward to evaluatg by contour integra- D5 ay —a0i/ \Dpy
tion. This gives .
-a; \"YD
g<1 2> 1 :(ao 1 ) ( 1) (20)
-r a; — a0 Dl
8 2
=-1 ——(1- 0
r > (1-gp) a, -a \"1
= . (22)
8,% 1 a; — 0 0
r=0 I- 9 2 This can be evaluated by diagonalizing the matrix.
Collecting all the analytic results above, we have for the
] 8 1 caseg;=0
r= - == -—
g % g 1+V1-gf
e —, Cos (n+In{ —— forgi=1
= Sf 2 _ Ot
r=2 0 ) (-1 (15 Gy() = 1\
(—) forg;=1.
For the case;= +%, we have 2
(22)
29iz- (Z+1) In the limit thatn— <o, the result forgi <1 becomes
ak)=———— (16)
2(z-gy)

1 + \’rl _ng n+1
— (23

Gn(oo) - (
2

anda, is given by In the casey;= +, the corresponding results are
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1\n G, (o0
<§) cogn arcco$g;)] forgi<1 0.6"-( )
Gn() =9 (24)
1)\" 0.4
— forg;=1.
L\ 20
Note that there are spatial oscillations in the correlator for the 0.2-

case where the field is reduced from a large positive value
(gij=+«) to a value below the critical poing;<1).

Of these exact results, the cage is the one that cor-
responds most closely to the physical situation discussed in
Sec. Il. Here we start from a fully “disordered” initial state,
and then suddenly change parameters to values with increas-
ing order(this is the analog of increasirig in Sec. I)). For
final parameter valueg; >g.=1, we find here a result quite FIG. 5. Ising order correlations defined in E§). The system is
similar to that found in Sec. II: from E@24) we see that the in the ground state dfi, for t <0 with g=g;=2. At t=0*, the value
order-parameter correlations decay with the correlatiorof g is changed suddenly =g, and remains at this value for all

0.0+

length & given by t>0. Note that at long times, the order is best developedgfor
=1, which is the location of the equilibrium quantum critical point.
&= 1 (25) This result is the analog of Figs. 3 and 4 for the dipole model of
In(2g¢) Sec. Il

This increases monotonically with decreasmgand is thus
similar to the increase in the value @), with increasingg;
for Es<E. in Fig. 3. By the analogy with Fig. 3, we would

gram was found. In addition to the Ising density wave order
that appeared in one dimension, states withaasverse su-
perfluid order were present. The latter states correspond to

\?v);p?i%t dhzriéﬁ;wﬁar? lisiﬁiz ?;ﬁ)t('?gﬁaf\ﬁgﬁzgi Ho;/xe\éer, delocalization of the quasiholes and quasiparticles in the di-
@ =9 9 rection transverse to the applied electric field.

(24): the correlations do not decay in a simple exponential, In this section, we will address the quench dynamics

but now oscillate, with the period of oscillation becoming " . .
X . . . across the transition associated with the onset of transverse
smaller with decreasing;. So the correlations of the Ising : . ;
superfluid order. This was found to be a second-order transi-

ordered state are indeed best formegjatg,, but we find an tion in the mean-field theory of I, and here we will extend the
unusual oscillatory decay of correlations fpr<g.. The 0s- . yorh, S
mean-field theory to an analysis of the nonequilibrium dy-

cillations are a clear indication of the absence of thermaliza-

tion in the present model, and we expect they are specia'{fam'c.s across the superﬂwd_-lnsulator transition. We vv_|II not
L - examine here the onset of Ising order, already studied in Sec.
consequence of its integrability.

We extended these analytic results by numerical evalu II; the present mean-field theory found a strong first-order

&ransition for the onset of Ising order. Our analysis will be
tion of Eq. (11) for other values ofg;, and found closely . ; ) . .
related behavior. Our results fgg=2 are shown in Fig. 5, restricted to the regime where both the superfluid and insu-

and these are the analog here of the results in Figs. 3 and Lf.tmg states _have no |5|_ng densrgy wave order: .
. . The effective mean-field Hamiltonian describing the dy-
As g is decreased, the correlations become longer ranged, . L . :
. . O namics of these quasiparticles and quasiholes can be written
until they reach a maximum range gt=g.=1. At smaller as in I
values ofg;, the correlations acquire an oscillatory behavior, '
but are also clearly shorter ranged. So the Ising order is be§_t| [(pe).(hy):E]
developed forg; near the quantum critical point. SDAREA AT
=2 |- he(he)™ + (ng+ 1 "+H.c.
IV. DYNAMICS IN THREE DIMENSIONS ;{ WARoh(he) + (o + V(P> + H.c|
We now return to the “tilted” Mott insulator problem ad- Wt Dpghes + He) + (U- E)( o+ hih)
dressed in Sec. Il and in I. Here we will address questions of W\ No(Ng PeNe-1 +H.C. T PePe + Nene
quench dynamics for the three-dimensional case. As dis-

cussed at length in I, the resonant subspace in 3D is de- + +

scribed by quasiparticles and quasiholes which are free to _'“"(p“lp“l_hfhf)]' (26)
move in the directions transverse to the applied electric field.

Consequently, the dipoles of Sec. Il, which are boundHere ¢ is a one-dimensional site index labeling sites along

guasihole-quasiparticle pairs in adjacent sites, constitute onlthe longitudinal direction of the applied potential gradient
a small part of the resonant subspace, and an effectivéhe transverse degrees of freedom are treated in a mean-field
Hamiltonian for unbound quasiparticle and quasihole stateapproximation and so there is no dependence on the trans-
is necessary. A mean-field theory of this effective Hamil-verse site labg] p and h are quasiparticle and quasihole
tonian was examined in |, and a fairly complex phase diaannihilation operatorsZ is the number of nearest neighbors
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in the transverse directions, apg denotes chemical poten-

E;=20 Ef=30 Re(<h(t)>)

tial which enforces the constraints Qe
(Pla1Pesn) = hthe). 27 0081
Although the Hamiltonian26) has no nonlinear terms, its 0.04-
diagonalization is nontrivial because of the hard-core con- T
straint on all sites, 0.02+
pipe<1, hih,<1, plpshih,=0. (28) 0.00+
The mean fields(p,) and (h;) correspond to transverse -0.02 -
particle/hole superfluid order and were self-consistently de- 1 Im(<h(t)>)
termined by diagonalizing the 3D Hamiltonig26) while -0.04 1
maintaining Eq.(28). T
We now consider the evolution of the ground state under '°-°600 . = P e L
a sudden shift in the value d& from E=E; to E=E; at t ) ' St ’ '

=0". We placeE; in a regime where the ground state pre-

serves a” Symmetry, and there |S ne|ther |S|ng nor transverse FIG 6. Oscillations of the hole Superfluid order parameter. The
superfluid order. The initial ground staf@3P) will evolve  Plotis shown folU=40,w=1, no=1, Z=4, E;=20, and&;=30. For
according to the new HamiltoniaHsp[(p),(h); E]. How- these parameters, the quantum critical point iEat26.4.

ever, in contrast to the 1D case, here the evolutions of the

mean fields(p) and (h) have to be self-consistently deter- identically for allt by gauge invariance. However, even an

mined. Within time-dependent Hartree approximation, welnfinitesimal symmetry breaking is sufficient, in the suitable
obtain parameter regime, to induce appreciable values of the super-

fluid order. In practice, this symmetry breaking is provided
[W30(1)) = >, c(t)|m), by the coupling of the system to its environment.
m With the symmetry-breaking term present, the superfluid
order parameter§,) and(h,) are initially real. As seen in
de,(b) Fig. 6, (h(t))=2, (h.(t)) develop coherent oscillations once
IhT = 2, Ca(O(NIH3p[(pe(0), (e (1)) Eflm), the potential gradient takes the valBe (These results are
n the analog of Figs. 1 and)2The oscillations in{p(t)) are
(29 similar, but occur with a different period due to the inherent
(Pe()) = 2 et (mlpln), particle-hole asymmetry in Eq26). The long-time average
mn of the oscillations is purely real, and this is of course deter-
mined by the symmetry-breaking term. Such oscillations of
(he()) = >, c(cat)(mlh]n). the superfluid order parameter were also obtained recently in
mn a different context in Ref4.10,11 and by Levitov[12].
We also examined th&; dependence of the long-time
We used a basis of stat@ (the final results are, of course, average of the superfluid order, and the analog of Fig. 3
independent of the choice of this bgsighich are the com-  appears in Fig. 7. Again the superfluid order is most strongly
plete set of eigenkets of the Hamiltoniap[(pp),(hy);Ef],  enhanced in the vicinity of the quantum critical point. How-
where(p}) and(h}) are the ground-state values of the par-ever, unlike Fig. 3, we do not observe a precursor to the
ticle and hole order condensates forE;. All the stategn) superfluid order in the insulating phase: this is surely an
maintain Eq.(28) exactly, and so these hard-core constraintsartifact of the mean-field treatment of the transverse degrees
are fully respected by our calculation: this is what makesof freedom.
diagonalization of the Hamiltonian time consuming and nu-
merically intensive. We note that these equations also main-
tain the constrainté27) at all ¢ andt. V. CONCLUSIONS
We examined the above equations for the transverse su-
perfluid order using the same protocol used in Sec. Il for the With advent of the study of quantum phase transitions in
Ising order. The set of Eq&29) were solved self-consistently trapped atomic systems, there is a clear need for theoretical
for longitudinal system siz&l=4. We consider the starting studies in the highly nonequilibrium situations that experi-
potential gradienE; to be in the insulator phase with neither ments are often in. In particular, experiments can easily ex-
superfluid nor Ising order, and ramp up the potential gradienplore the change in the state of the system upon a sudden
to enter the superfluid phase. The gauge symmetry of thehange in a parameter in the Hamiltonian. There are few
superfluid order parameter is broken by adding a small symgeneral principles in such casgsg., there is no fluctuation-
metry breaking ternHg =-2, 7{(p,+h,)+H.c.], wheren  dissipation theorem which controls correlations of the final
is an infinitesimal positive constant. In the absence of such atatg, and theory is clearly still in its infancy. Two recent
symmetry-breaking term we would hayg,) and(h,) vanish  studies in this clasgl0,11 examined the evolution of super-
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g APPENDIX: COMPUTATIONS FOR THE ISING CHAIN
0.1 .
_ ", The Jordan-Wigner transformation allows the Hamil-
o - tonian of an Ising chain in a transverse figido be written
* Dynamic . as
00% o ? T T T T -I ~ I| — T
8 9 10 11 12 13 14 15 H = % &YYo (A1)
(U-E¢)fw

wherey, is a fermionic annihilation operatésee Chap. 4 of
FIG. 7. Analog of Fig. 3, but for the transverse superfluid order,Ref.[4]). These are related to the Jordan-Wigner fermigns

using the same paramete@part fromEy) as Fig. 3. The “static”  py a Bogoliubov transformation, parametrized by angle
curve is the equilibrium superfluid order parameter determined in lyhere

The “dynamic” curve is the long-time average of the real part of

(hit). tan = —0K_ (A2)

quid_ order under a sudden change in the optical lattice poy, ihe present case, we define thefermions as those that
tential exerted on trapped bosons. . diagonalize the Hamiltonian fdr>0, with field g;.

Itis clear that exact results on simple solvable models in gjyce the Hamiltonian is throughout translationally sym-
nonequilibrium situations would be valuable. We have pro- etric, only fermionic states with opposite pseudomomen-

Vr']ded ,SUCh r?n, e>.<ample here in S]f(:l' I, f\:\./here Wel ixamme m k and k are mixed. We may therefore write the two-
the Ising chain in a transverse field, This model has a component column vector

quantum critical point aj=g., with spontaneous ferromag-
netic order in the ground state fgr< g.. We started the Ising Y
model in the paramagnetic statg >g.), suddenly att=0 Iy=
changedg to a final valueg;, and examined the long-time
development of correlations of the ferromagnetic ord@ur  and similarly C, for the Jordan-Wigner fermion€,. The
formalism also provided results for @l 0, but we have not Bogoliubov transformation relatinG, andT'y is expressed as
examined the detailed time evolution hgréhe results are C, =R¥(6)T'y, where
summarized in Fig. 5. True long-range order does not de-
velop at any val_ue ofgs; however, significant order- R(a) = Cosg + io)‘sing (Ad)
parameter correlations do appear, and these are best formed
for g;=g.. In a general nonintegrable system we may expect ) _ _
thermalization at long times, at a temperature such that th@nd herec® is a 2x2 Pauli matrix.(These are used for
average energy equals that of the staté=a". Such ther- conciseness of notation and should not be _confusgd with the
malization does not occur for the present integrable systenfPerators representing the “spins” of the Ising chain.
and the results have certain artifacts associated with this: the FOrt<<0, the field isg; and the system is taken to be in its
long-time correlations have an oscillatory spatial dependencground state. We define thg' fermions as those which di-
for g;<ge. ag.onlallze the Ham|lton|an. in the forgM\1) W|th this field.

In the remainder of the paper we studied the nonequilib{Similarly, 6 andI'y are given by analogy with EqsA2)
rium dynamics of models introduced in a previous pdpér and(A3).] ) ) )
which addressed the response of a bosonic Mott insulator to The stately) is therefore the vacuum of’ fermions: in
a change in a strong potential gradida]. These models Matrix notation,
exhibit a number of quantum critical points associated with 10\ 1
the onset of Ising density wave and superfluid order. Our <¢|FLFLQT|¢>:( ):—(al+ 1). (A5)
numerical studies here found a feature similar to that also 00/ 2
obtained for the solvable Ising model: the order was bes ; : ;
formed when the final parameter value was in the vicinity o gi[\alglglng the Bogoliubov transformation 6, and thenl’
the associated quantum critical point, as illustrated in Fig. 3:
Here, an.d in Ref[5], we have proposed this feature as the WD) = R (6, - 9&)%(014, DR G- 6)). (AB6)
explanation for the resonant response observed by Greiner
al. [1] upon “tilting” a Mott insulator of bosons in an optical Using R(a)o?R(@)=0? cosa—o¥ sina@ with ¢=6,— 0,
lattice. gives

A3
3 (A3)
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<¢|rkrl|l/,> = %(1 +0%cos ¢y — a¥ sin &), (A7) The n-site correlator can be written as(G,)
=(BoAB; - *-Bn_1Ay), whereAj=c/ +¢; andB;=c - ¢;. Wick's
as the set of matrix elements for the initial state. theorem can then be used to write this expression in terms of

The time evolution of the operators now proceeuﬁng the eXpectation values of eXpreSSionS blllneaAﬂmnd Bi'
the Heisenberg pictuy@ccording to the Hamiltoniagd1) so ~ We therefore let
that Fk(t) = Uk(t)Fk(O), where

eiat 0 (Ak(t)> 5 (77)
— — t - =/ Y| —
Uy(t) _< 0 eiskt) =R (2¢4). (A8) () B.(1) V2R 5 G, (A9)
The expectation values at any time can therefore be evalu-
ated using the algebra of $2) matrices. whereA, (By) is the Fourier transform of; (B;) so that
|
AkA—k - AkB—k) ( 77) v
INNIE ( = 2R = [(YCCllpRT = |, A10
(UL = (Y] BA, - BB ) 5 (WCCyl ) 5 (A10)

=1 - 0*(cos 6, cos ¢, — sin ¢y sin G, cos Zgt)+ o¥(sin G, COS ¢y

+Sin ¢, COS 6, COS Zt) + g“(sin ¢y sin 2¢gt), (A11)
_< 1 - sin ¢ sin 2¢t — d%(cos ¢y +i sin ¢y cos Zt) ) (AL2)
“\-e%(cos gy —i sin ¢y COS %) 1 + sin ¢y sin 2¢t '

Transforming to real space and using the conservation of pseudomomentum gives

1 s 1 N
(AA) = MZ ekI7D(1 - sin ¢y sin 2¢t), (BB;) = MZ e I7(= 1 - sin ¢ sin 2¢),
k k

(A13)
1 Lo
(BIA) = ME e -Dem(~ cos ¢y +1i Sin ¢y COS ).
k
The long-time averages of these expressions are
(AA)=36;, (BB)=-4;, (BA)=a_1, (A14)
where
1o i
8= 2 €Ak (A15)
1 " —ikrx
:Zr e a(k), (A16)

in the limit where the number of sitéd becomes infinite. Her&(k) =—€ (% cod - 6,). Wick’s theorem then allows the
expression foKG,) to be written as Eq(11).
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