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We study the quantum dynamics of a number of model systems as their coupling constants are changed
rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of
Greineret al. [Nature (London) 415, 39 (2002)] who studied the response of a Mott insulator of ultracold
atoms in an optical lattice to a strong potential gradient. In a previous work, it had been argued that the
resonant response observed at a critical potential gradient could be understood by proximity to an Ising
quantum critical point describing the onset of density wave order. Here we obtain numerical results on the
evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This
is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain
exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also
study the evolution of transverse superfluid order in the three-dimensional case. In all cases, the order param-
eter is best enhanced in the vicinity of the quantum critical point.
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I. INTRODUCTION

Recent experiments with ultracold atoms have achieved
reversible tuning of bosonic atoms between superfluid and
Mott insulating states by varying the strength of periodic
potential produced by standing laser light[1,2]. The physics
of such ultracold atoms in the Mott insulating state can be
described by bosonic Hubbard model, well known in context
of other condensed-matter systems[3,4]. However, ultracold
atoms in optical lattices offer much better control over mi-
croscopic parameters of the model. Consequently, it is pos-
sible to explore parameter regimes which are not available in
other analogous condensed-matter systems.

This paper will focus on a particular experiment reported
by Greineret al. [1]. With the boson system in the Mott
insulating state, they applied a steep potential gradient to the
lattice, and observed its response. In a typical condensed-
matter system, one might have expected a response analo-
gous to that of a sliding charge-density wave: no motion of
atoms until a critical tilt was applied, and a sliding motion at
all tilts above the critical tilt. However, the experiment ob-
served strikingly different behavior: there was a strongreso-
nant response in the vicinity of tilts where the potential-
energy drop between nearest-neighbor optical lattice sites
sEd equaled the repulsion between two atoms on the same
site sUd. For E,U, applying the tilt produced a noticeable
change in the ground state, but(in contrast to sliding charge-
density wave systems) there was little change in the ground
state for largerE until a second resonant peak atE,2U.
This resonant response is a clear indication that the atoms
experience little extrinsic dissipation, and their dynamics
should be described by an energy-conserving quantum
Hamiltonian.

A framework for describing the experiments of Greineret
al. [1] was proposed in Ref.[5] (hereafter referred to as I).
(We also note here the numerical studies of Braun-
Munzingeret al. [6] which addressed these experiments by
studying the time evolution of the underlying Bose-Hubbard

model.) For w, uE−Uu!E,U, wherew is the tunneling ma-
trix element between nearest-neighbor lattice sites, it was
argued that we need only focus on a set of states which were
resonantly coupledto the original Mott insulating state. In
one dimension, the resonant subspace could be described
simply in terms of nearest-neighbordipole states, consisting
of a particle and a hole excitation about the Mott insulator on
nearest-neighbor states; in higher dimensions, the particle
and hole were no longer constrained to be on nearest-
neighbor sites but could reside anywhere on planes orthogo-
nal to the potential gradient, but separated by a single lattice
spacing. An effective Hamiltonian on such resonant sub-
spaces was proposed in I, and its phase diagram was pre-
sented. In the regime of large potential gradientE−U.w,
this effective Hamiltonian possessed ground states with den-
sity wave order with a period of two lattice spacings(see
also Ref.[8] for conditions under which other periods may
obtain). It was argued in I that the proximity of the quantum
critical point, associated with the onset of this density wave
order, was responsible for the resonant response observed by
Greineret al.

The tilt experiments of Greineret al. were carried out in
highly nonequilibrium situations, and the approach of I was
to describe these, to the extent possible, by an equilibrium
analysis of an effective Hamiltonian describing the primary
states accessed over the experimental time scale. The pur-
pose of the present paper is to directly address the nonequi-
librium dynamics of the tilted Mott insulator. We will mainly
do this using the effective Hamiltonian of I. The specific
question we shall address is the following. Begin with the
system in the ground state in a regime of smallE=Ei where
there is no density wave order. Then, suddenly change the
value ofE to a E=Ef, including values such that the ground
state has density wave order atEf. Allow the system to
evolve under the resulting Hamiltonian. What is the nature of
the state to which the system evolves at long times? We will
find, as conjectured in I, that the density wave order that
develops under this dynamic evolution is most robust when
Ef is near the quantum critical point.
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We will also address a similar question for the Ising chain
in a transverse field,g. Like the models of I, this model also
has a regimeg,gc where the ground state has spontaneous
Ising order. However, this much simpler model is completely
integrable, and so offers an opportunity to analyze the non-
equilibrium dynamics exactly. We initialize the Ising model
in the ground state in a transverse fieldgi .gc. The trans-
verse field is then changed rapidly tog=gf, and the wave
function evolves at this field. We will compute equal-time
correlations in this wave function as a function of the timet,
including in thet→` limit. In some cases, exact closed-form
results will be obtained. The structure of these correlations as
a function ofgf bears some similarity to the results of the
model of I as a function ofEf; however, there are some
interesting differences which, we suspect, are related to the
integrability of the Ising chain.

We now outline the remainder of the paper. In Sec. II we
present numerical results on the dynamics of the one-
dimensional dipole model of I. Section III will address the
nonequilibrium dynamics of the Ising chain in a transverse
field: this analysis uses the Jordan-Wigner transformation,
and obtains the required dynamic correlation functions in the
form of Toeplitz determinants. Section IV returns to the
model of I, but turns to the dynamics in three dimensions;
here, we use a combination of mean-field theory and exact
diagonalization to obtain results similar to those in Sec. II,
but with the order parameter now being a “transverse super-
fluid” order. We review the results and discuss implications
for experiments in Sec. V.

II. DIPOLE DYNAMICS IN ONE DIMENSION

This section will describe our numerical results on the
quantum dynamics of the one-dimensional(1D) dipole
model of the Mott insulator in a potential gradient.

Starting from a parent Mott state withn0 bosons per site,
we identified the set of states which are resonantly coupled
to the parent Mott state whenU,E (recall thatU is the
repulsive energy between two bosons on the same site, and
E, the “electric field,” is the potential drop between two
nearest-neighbor sites). In one dimension, the resonant sub-
space involves dipole states consisting of quasihole-
quasiparticle pairs at adjacent sites, and the low-energy be-
havior of the system can be described by the effective dipole
Hamiltonian obtained in I:

H1DfEg = − wÎn0sn0 + 1do
,

sd,
† + d,d + sU − Edo

,

d,
†d,.

s1d

The dipoles are subject to hard-core constraints that there is
never more than a single dipole on any pair of nearest-
neighbor sites,

d,
†d, ø 1, d,+1

† d,+1d,
†d, = 0. s2d

When the electric fieldE is adiabatically tuned throughU,
the ground state of the system changes from one with no
dipoles sU@Ed to one with maximum possible number of
dipolessE@Ud. At an intermediate critical electric field

Ec = U + 1.310wÎn0sn0 + 1d, s3d

the system undergoes a quantum phase transition in the Ising
universality class.

As discussed in Sec. I, we study the dynamics of the
ultracold atoms when the potential gradient is changed sud-
denly. Such a situation can be very easily achieved experi-
mentally in these systems by rapidly shifting the center of
the confining magnetic trap. We shall specifically consider
the situation where the change in the potential gradient is fast
enough for the sudden perturbation assumption to be valid
but slow enough to restrict the dynamics within the resonant
subspaces so that the Hamiltonian(1) [and Eq.(26) in Sec.
IV ] is still valid.

We assume that the atoms in the 1D lattice are initially in
the ground stateuCGl of the dipole Hamiltonian(1) with E
=Ei !Ec. This ground state corresponds to dipole vacuum.
Consider shifting the center of the magnetic trap so that the
new potential gradient isEf. If this change is done suddenly,
the system initially remains in the old ground state. The state
of the system at timet is therefore given by

uCstdl = o
n

cn exps− ient/"dunl, s4d

where unl denotes the complete set of energy eigenstates of
the HamiltonianH1DfEfg in Eq. s1d, en=knuH1DfEfgunl is the
energy eigenvalue corresponding to stateunl, and cn
=knuCst=0dl=knuCGl denotes the overlap of the old ground
state with the stateunl. Notice that the stateuCstdl is no
longer the ground state of the new Hamiltonian. Further-
more, in the absence of any dissipative mechanism, which is
the case for ultracold atoms in optical lattices,uCstdl will
never reach the ground state of the new Hamiltonian. Rather,
in general, we expect the system to thermalize at long
enough times, so that the correlations are similar to those of
H1DfEfg at some finite temperature.

We are now in a position to study the dynamics of the
Ising density wave order parameter

O =
1

N
kCuo

,

s− 1d,d,
†d,uCl, s5d

whereN is the number of sites. The time evolution ofO is
given by

Ostd =
1

N
o
m,n

cmcn cosfsEm − Endt/"gkmuo
,

s− 1d,d,
†d,unl.

s6d

Equations6d is solved numerically using exact diagonaliza-
tion to obtain the eigenstates and eigenvalues of the Hamil-
tonian H1DfEfg. Before resorting to numerics, it is however
useful to discuss the behavior ofOstd qualitatively. We note
that if Ef is close toEi, the old ground state will have a large
overlap with new one, i.e.,cm,dm1. Hence in this case we
expectOstd to have small oscillations aboutOst=0d. On the
other hand, ifEf @Ec, the two ground states will have very
little overlap, and we again expectOstd to have a small os-
cillation amplitude. This situation is in stark contrast with the
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adiabatic turning on of the potential gradient, where the sys-
tems always remain in the ground state of the new Hamil-
tonianH1DfEfg, and therefore has a maximal value ofkOl for
Ef @Ec. In between, forEf ,Ec, the ground stateuCl has a
finite overlap with many statesuml, and hence we expect
Ostd to display significant oscillations. Furthermore, if the
symmetry between the two Ising ordered states is broken
slightly sas is the case in our studies belowd, the time-
average value ofOstd will be nonzero.

This qualitative discussion is supported by numerical cal-
culations on finite-size systems for system sizeN=9,11,13.
For numerical computations with finite systems, we choose
systems with an odd number of sites and open boundary
conditions, so that dipole formation on odd sites is favored,
thus breaking theZ2 symmetry. The results are shown in
Figs. 1–4. Figure 1 shows the oscillation of the order param-
eterOstd for different values ofEf for N=13. In agreement
with our qualitative expectations, the oscillations have maxi-
mum amplitude whenEf <40 is near the critical valueEc
=41.85. For eitherEf !Ec or Ef @Ec, the oscillations have a
small amplitude aroundOst=0d. Furthermore, it is only for
Ef <Ec that the time-average value ofOstd is appreciable.
Figure 2 shows the system size dependence of the time evo-
lution for Ef =U=40. We find that the oscillations remain

visible as we go to higher system sizes, although they do
weaken somewhat. More significantly, the time-average
value of Ostd remains nonzero, and has a weaker decrease
with system size. In Fig. 3, we plot the long-time limit of the
Ising order parameter,kOlt, as a function ofEf, and compare
it with the Oad, the value of the order parameter whenE
reachesEf adiabatically and the wave function is that of the
ground state atE=Ef. We find thatkOlt stays close toOad as
long as there is a large overlap between the old and the new
ground states. However, as we approach the adiabatic phase

FIG. 1. Evolution of the Ising order parameter in Eq.(5) under
the HamiltonianH1DfEfg for n0=1. The initial state is the ground
state ofH1DfEig. All the plots in this section haveU=40,w=1, and
Ei =32, and consequently the equilibrium quantum critical point is
at Ec=41.85.

FIG. 2. System sizesNd dependence of the results of Fig. 1 for
Ef =40. The curves are labeled by the value ofN.

FIG. 3. The curve labeled “dynamic” is the long-time limitkOlt

of the Ising order in Eq.(6) as a function ofEf (for N=11), with
other parameters as in Fig. 1. This long-time limit can be obtained
simply by settingm=n in Eq. (6). For comparison, in the curve
labeled “adiabatic,” we show the expectation value of the Ising
order O in the ground state ofH1DfEfg; such an order would be
observed if the value ofE was changed adiabatically. Note that the
dynamic curve has its maximal value near(but not exactly at) the
equilibrium quantum critical pointEc=41.85, where the system is
able to respond most easily to the change in value ofE; this dy-
namic curve is our theory of the “resonant” response in the experi-
ments of Ref.[1] discussed in Sec. I. In contrast the adiabatic result
increases monotonicallywith Ef into the E.Ec phase where the
Ising symmetry is spontaneously broken.

FIG. 4. Size dependence of the “dynamic” results in Fig. 3. The
sizes range fromN=7 to N=15 (as labeled), with the intermediate
valuesN=9,11,13:kOlt decreases monotonically withN.

QUENCH DYNAMICS ACROSS QUANTUM CRITICAL POINTS PHYSICAL REVIEW A69, 053616(2004)

053616-3



transition point, this overlap decreases andkOlt cannot fol-
low Oad anymore. The deviation ofkOlt is therefore a signa-
ture that the system is now in a different phase for the new
value of the electric field.

The “dynamic” curve in Fig. 3 should be compared with
Figs. 5(e) and 5(f) in Ref. [1]. The latter show that the Mott
insulator has a resonantly strong response to an applied po-
tential gradientE,U. Here, we have found a similar reso-
nant enhancement in a simple model system in one dimen-
sion, induced by the proximity of a quantum critical point.

We comment briefly on the nature of the thermodynamic
limit N→` for the results in Figs. 2 and 3. ForOad it is clear
that there is a nonzero limit only forE.Ec, when it equals
the order parameter of the spontaneously broken Ising sym-
metry. If we assume that the system thermalizes at long times
for the dynamic case, thenkOlt corresponds to the expecta-
tion value of the equilibrium order parameter inH1DfEfg at
some finite temperature. In one dimension, it is not possible
to break a discrete symmetry at finite temperatures, and so
the thermodynamic limit of the order parameter must always
vanish. By this reasoning, we expectkOlt to also vanish in
the thermodynamic limit. This is consistent with the results
in Fig. 4, where we show theN dependence of the long-time
limit kOlt. Our data are at present not extensive enough to
definitely characterize the dependence ofkOlt on N.

III. DYNAMICS OF THE QUANTUM ISING CHAIN

As a complement to the physically relevant, but numeri-
cal, computations in Sec. II, this section will describe similar
results in a simpler, analytically tractable model. We will
consider the integrable Ising chain in a transverse field,
which also has a zero-temperature, quantum phase transition
between a phase with a brokenZ2 symmetry and a symmetric
phase. We will address questions on the evolution of the
wave function under a time-dependent change in the trans-
verse field. Different aspects of the nonequilibrium dynamics
of the Ising chain were studied earlier by Iglói and Rieger[7]
using similar methods.

The model of interest in this section is

HI = − Jo
j

fs j
zs j+1

z + gstds j
xg, s7d

wheres j
x,z are Pauli matrices acting on a “spin” on the sites

j of an infinite chain. We have allowed the transverse field to
acquire an arbitrary time dependencegstd. We will mainly
consider here the case of a sudden change at timet=0 from
an initial valuegs0−d=gi to a final valuegs0+d=gf, but our
methods easily generalize to the arbitrary time dependence in
gstd.

For time independentgstd, HI has a quantum critical point
at g=gc=1, with two equivalent ground states forg,gc re-
lated by a globalZ2 spin flip. However, unlike Sec. II we will
not introduce any external perturbation which introduces a
preference between these two states: all such perturbations
destroy the integrability ofHI. Consequently, we do not ob-
tain any useful information from the analog of the time de-
pendence of the order parameter in Eqs.(5) and(6), as these

quantities will be identically zero at all times. Rather, we will
compute here the two-point correlation function of the order
parameter in an infinite chain, which is

Gnstd = kcstdus j
zs j+n

z ucstdl. s8d

Hereucstdl is the state of the system at timet, evolving under
the Schrödinger equation specified by the time-dependent
HamiltonianHI. In equilibrium, the information contained in
a correlation function like Eq.s8d is related to an observable
like that in Eq.s6d swhich is the response in the Ising order
parameter to perturbations in the boundary conditiond by the
fluctuation-dissipation theorem. However, we are not aware
of any analog of such a theorem for the nonequilibrium case
under consideration here, and so are not able to directly re-
late the results of the present section to those of Sec. II.

Our analysis ofHI proceeds with the standard Jordan-
Wigner transformation, and we follow the notation and meth-
ods of Chap. 4 of Ref.[4]. We express theS=1/2 states in
terms of those of the spinless Jordan-Wigner fermioncj, and
after transforming to momentum space fermionsck, the
Hamiltonian becomes

HI = Jo
k

f2sg − coskdck
†ck− i sin ksc−k

† ck
† + c−kckd − gg.

s9d

Now, transforming to the Heisenberg picture, we can follow
the evolution of the system by solving the equations of mo-
tion

dck

dt
= ifHI,ckg. s10d

These equations are easily solved by a Bogoliubov transfor-
mation. Finally, the correlator ins8d is computed by a simple
generalization of the methods appropriate for the equilibrium
case. A few details of such a computation appear in the Ap-
pendix.

Here, we discuss the results forGnstd for the case of a
sudden change fromgs0−d=gi to gs0+d=gf. For t,0, we
assume the system is in the ground state appropriate forg
=gi, and consequentlyGnst,0d is independent oft and equal
to the well-known equilibrium result atg=gi. For t.0, there
is a nontrivial time dependence, and it is possible to obtain
the general expression forGnstd as described in the Appen-
dix. We will restrict our attention here to the simpler expres-
sion of the long-time limitGnst→`d, which is the primary
quantity of physical interest. For this, we obtain the Toeplitz
determinant

Gns`d = *
a0 a−1 ¯ a−n+1

a1 a0 ¯ a−n+2

A A � A
an−1 an−2 ¯ a0

* , s11d

where
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ar =
1

2p
E

−p

p

e−ikrãskd, s12d

with

ãskd =
2sgfgi + 1dz− sgf + gidsz2 + 1d

2sz− gfd
Î z

sz− gids1 − zgid
,

s13d

wherez=eik.
We now need to evaluate then3n Toeplitz determinant in

Eq. (11), especially for the case of largen. In the equilibrium
situation, this is aided by Szegö’s lemma, and its generaliza-
tion in the Fisher-Hartwig formula[9]. For the present situ-
ation, the expression in Eq.(13) does not obey the winding
number constraint required for application of the Fisher-
Hartwig formula, and so we are unable to take advantage of
this result. However, we shall show that an exact evaluation
of Eq. (11) is possible for two important special cases(gi
=` and gi =0), and supplement these by numerical evalua-
tion of Eq. (11) for other values ofgi.

In the casegi =0, we have

ãskd =
2z− gfsz2 + 1d

2sz− gfd
s14d

and it is straightforward to evaluatear by contour integra-
tion. This gives

s15d

For the casegi = +`, we have

ãskd =
2gfz− sz2 + 1d

2sz− gfd
s16d

andar is given by

s17d

In both of these two cases, the following conditions are
met.

Condition 1.For gf .1, ar =0 for r ø−1.
Condition 2.For gf ,1, ar =0 for r ù2.
Condition 3.For gf ,1, ar =gar+1 for r ø−2.
Using condition 1, we can immediately writeGns`d=a0

n

for gf .1. Forgf ,1, define

Dn
r = *

a−r a−r−1 ¯ a−r−n+1

a1 a0 ¯ a−n+2

A A � A
an−1 an−2 ¯ a0

* , s18d

so thatGns`d=Dn
0. Condition 2 givesDn

r =a−rDn−1
0 −a1Dn−1

r+1

and condition 3 givesDn
r =gfDn

r−1 for r ù2. Also, D1
r =a−r.

We can therefore write

SDn
0

Dn
1D = S a0 − a1

a−1 − a1gf
DSDn−1

0

Dn−1
1 D s19d

=S a0 − a1

a−1 − a1gf
Dn−1SD1

0

D1
1D s20d

=S a0 − a1

a−1 − a1gf
DnS1

0
D . s21d

This can be evaluated by diagonalizing the matrix.
Collecting all the analytic results above, we have for the

casegi =0

Gns`d =5
gf

n+1

2n
coshFsn + 1dlnS1 +Î1 − gf

2

gf

DG for gf ø 1

S1

2
Dn

for gf ù 1.

s22d

In the limit thatn→`, the result forgf ,1 becomes

Gns`d → S1 +Î1 − gf
2

2
Dn+1

. s23d

In the casegi = +`, the corresponding results are
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Gns`d =5S
1

2
Dn

cosfn arccossgfdg for gf ø 1

S 1

2gf
Dn

for gf ù 1.

s24d

Note that there are spatial oscillations in the correlator for the
case where the field is reduced from a large positive value
sgi = +`d to a value below the critical pointsgf ,1d.

Of these exact results, the casegi =` is the one that cor-
responds most closely to the physical situation discussed in
Sec. II. Here we start from a fully “disordered” initial state,
and then suddenly change parameters to values with increas-
ing order(this is the analog of increasingE in Sec. II). For
final parameter valuesgf .gc=1, we find here a result quite
similar to that found in Sec. II: from Eq.(24) we see that the
order-parameter correlations decay with the correlation
lengthj f given by

j f =
1

lns2gfd
. s25d

This increases monotonically with decreasinggf, and is thus
similar to the increase in the value ofkOlt with increasingEf

for Ef ,Ec in Fig. 3. By the analogy with Fig. 3, we would
expect here that there is a maximum inj f at g=gc. However,
we find a somewhat different behavior forgf ,gc in Eq.
s24d: the correlations do not decay in a simple exponential,
but now oscillate, with the period of oscillation becoming
smaller with decreasinggf. So the correlations of the Ising
ordered state are indeed best formed atgf =gc, but we find an
unusual oscillatory decay of correlations forgf ,gc. The os-
cillations are a clear indication of the absence of thermaliza-
tion in the present model, and we expect they are special
consequence of its integrability.

We extended these analytic results by numerical evalua-
tion of Eq. (11) for other values ofgi, and found closely
related behavior. Our results forgi =2 are shown in Fig. 5,
and these are the analog here of the results in Figs. 3 and 4.
As gf is decreased, the correlations become longer ranged,
until they reach a maximum range atgf =gc=1. At smaller
values ofgf, the correlations acquire an oscillatory behavior,
but are also clearly shorter ranged. So the Ising order is best
developed forgf near the quantum critical point.

IV. DYNAMICS IN THREE DIMENSIONS

We now return to the “tilted” Mott insulator problem ad-
dressed in Sec. II and in I. Here we will address questions of
quench dynamics for the three-dimensional case. As dis-
cussed at length in I, the resonant subspace in 3D is de-
scribed by quasiparticles and quasiholes which are free to
move in the directions transverse to the applied electric field.
Consequently, the dipoles of Sec. II, which are bound
quasihole-quasiparticle pairs in adjacent sites, constitute only
a small part of the resonant subspace, and an effective
Hamiltonian for unbound quasiparticle and quasihole states
is necessary. A mean-field theory of this effective Hamil-
tonian was examined in I, and a fairly complex phase dia-

gram was found. In addition to the Ising density wave order
that appeared in one dimension, states with atransverse su-
perfluid order were present. The latter states correspond to
delocalization of the quasiholes and quasiparticles in the di-
rection transverse to the applied electric field.

In this section, we will address the quench dynamics
across the transition associated with the onset of transverse
superfluid order. This was found to be a second-order transi-
tion in the mean-field theory of I, and here we will extend the
mean-field theory to an analysis of the nonequilibrium dy-
namics across the superfluid-insulator transition. We will not
examine here the onset of Ising order, already studied in Sec.
II; the present mean-field theory found a strong first-order
transition for the onset of Ising order. Our analysis will be
restricted to the regime where both the superfluid and insu-
lating states have no Ising density wave order.

The effective mean-field Hamiltonian describing the dy-
namics of these quasiparticles and quasiholes can be written
as in I:

H3Dfkp,l,kh,l;Eg

= o
,
F− wZfn0h,kh,l* + sn0 + 1dp,kp,l* + H.c.g

− wÎn0sn0 + 1dsp,h,−1 + H.c.d +
sU − Ed

2
sp,

†p, + h,
†h,d

− m,sp,+1
† p,+1 − h,

†h,dG . s26d

Here , is a one-dimensional site index labeling sites along
the longitudinal direction of the applied potential gradient
sthe transverse degrees of freedom are treated in a mean-field
approximation and so there is no dependence on the trans-
verse site labeld, p and h are quasiparticle and quasihole
annihilation operators,Z is the number of nearest neighbors

FIG. 5. Ising order correlations defined in Eq.(8). The system is
in the ground state ofHI for t,0 with g=gi =2. At t=0+, the value
of g is changed suddenly tog=gf, and remains at this value for all
t.0. Note that at long times, the order is best developed forgf

=1, which is the location of the equilibrium quantum critical point.
This result is the analog of Figs. 3 and 4 for the dipole model of
Sec. II.
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in the transverse directions, andm, denotes chemical poten-
tial which enforces the constraints

kp,+1
† p,+1l = kh,

†h,l. s27d

Although the Hamiltonians26d has no nonlinear terms, its
diagonalization is nontrivial because of the hard-core con-
straint on all sites,

p,
†p, ø 1, h,

†h, ø 1, p,
†p,h,

†h, = 0. s28d

The mean fieldskp,l and kh,l correspond to transverse
particle/hole superfluid order and were self-consistently de-
termined by diagonalizing the 3D Hamiltonians26d while
maintaining Eq.s28d.

We now consider the evolution of the ground state under
a sudden shift in the value ofE from E=Ei to E=Ef at t
=0+. We placeEi in a regime where the ground state pre-
serves all symmetry, and there is neither Ising nor transverse
superfluid order. The initial ground stateuC3Dl will evolve
according to the new HamiltonianH3Dfkpl ,khl ;Efg. How-
ever, in contrast to the 1D case, here the evolutions of the
mean fieldskpl and khl have to be self-consistently deter-
mined. Within time-dependent Hartree approximation, we
obtain

uC3Dstdl = o
m

cmstduml,

i"
dcmstd

dt
= o

n

cnstdknuH3Dfkp,stdl,kh,stdl;Efguml,

s29d
kp,stdl = o

m,n
cm

* stdcnstdkmupunl,

kh,stdl = o
m,n

cm
* stdcnstdkmuhunl.

We used a basis of statesunl (the final results are, of course,
independent of the choice of this basis) which are the com-
plete set of eigenkets of the HamiltonianH3Dfkp,

f l ,kh,
f l ;Efg,

where kp,
f l and kh,

f l are the ground-state values of the par-
ticle and hole order condensates forE=Ef. All the statesunl
maintain Eq.(28) exactly, and so these hard-core constraints
are fully respected by our calculation: this is what makes
diagonalization of the Hamiltonian time consuming and nu-
merically intensive. We note that these equations also main-
tain the constraints(27) at all , and t.

We examined the above equations for the transverse su-
perfluid order using the same protocol used in Sec. II for the
Ising order. The set of Eqs.(29) were solved self-consistently
for longitudinal system sizeN=4. We consider the starting
potential gradientEi to be in the insulator phase with neither
superfluid nor Ising order, and ramp up the potential gradient
to enter the superfluid phase. The gauge symmetry of the
superfluid order parameter is broken by adding a small sym-
metry breaking termHsym=−o, hfsp,+h,d+H.c.g, whereh
is an infinitesimal positive constant. In the absence of such a
symmetry-breaking term we would havekp,l andkh,l vanish

identically for all t by gauge invariance. However, even an
infinitesimal symmetry breaking is sufficient, in the suitable
parameter regime, to induce appreciable values of the super-
fluid order. In practice, this symmetry breaking is provided
by the coupling of the system to its environment.

With the symmetry-breaking term present, the superfluid
order parameterskp,l and kh,l are initially real. As seen in
Fig. 6, khstdl=o, kh,stdl develop coherent oscillations once
the potential gradient takes the valueEf. (These results are
the analog of Figs. 1 and 2.) The oscillations inkpstdl are
similar, but occur with a different period due to the inherent
particle-hole asymmetry in Eq.(26). The long-time average
of the oscillations is purely real, and this is of course deter-
mined by the symmetry-breaking term. Such oscillations of
the superfluid order parameter were also obtained recently in
a different context in Refs.[10,11] and by Levitov[12].

We also examined theEf dependence of the long-time
average of the superfluid order, and the analog of Fig. 3
appears in Fig. 7. Again the superfluid order is most strongly
enhanced in the vicinity of the quantum critical point. How-
ever, unlike Fig. 3, we do not observe a precursor to the
superfluid order in the insulating phase: this is surely an
artifact of the mean-field treatment of the transverse degrees
of freedom.

V. CONCLUSIONS

With advent of the study of quantum phase transitions in
trapped atomic systems, there is a clear need for theoretical
studies in the highly nonequilibrium situations that experi-
ments are often in. In particular, experiments can easily ex-
plore the change in the state of the system upon a sudden
change in a parameter in the Hamiltonian. There are few
general principles in such cases(e.g., there is no fluctuation-
dissipation theorem which controls correlations of the final
state), and theory is clearly still in its infancy. Two recent
studies in this class[10,11] examined the evolution of super-

FIG. 6. Oscillations of the hole superfluid order parameter. The
plot is shown forU=40,w=1, n0=1, Z=4, Ei =20, andEf =30. For
these parameters, the quantum critical point is atEc=26.4.
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fluid order under a sudden change in the optical lattice po-
tential exerted on trapped bosons.

It is clear that exact results on simple solvable models in
nonequilibrium situations would be valuable. We have pro-
vided such an example here in Sec. III, where we examined
the Ising chain in a transverse field,g. This model has a
quantum critical point atg=gc, with spontaneous ferromag-
netic order in the ground state forg,gc. We started the Ising
model in the paramagnetic statesgi @gcd, suddenly att=0
changedg to a final valuegf, and examined the long-time
development of correlations of the ferromagnetic order.(Our
formalism also provided results for allt.0, but we have not
examined the detailed time evolution here.) The results are
summarized in Fig. 5. True long-range order does not de-
velop at any value ofgf; however, significant order-
parameter correlations do appear, and these are best formed
for gf <gc. In a general nonintegrable system we may expect
thermalization at long times, at a temperature such that the
average energy equals that of the state att=0+. Such ther-
malization does not occur for the present integrable system,
and the results have certain artifacts associated with this: the
long-time correlations have an oscillatory spatial dependence
for gf ,gc.

In the remainder of the paper we studied the nonequilib-
rium dynamics of models introduced in a previous paper[5]
which addressed the response of a bosonic Mott insulator to
a change in a strong potential gradient[1]. These models
exhibit a number of quantum critical points associated with
the onset of Ising density wave and superfluid order. Our
numerical studies here found a feature similar to that also
obtained for the solvable Ising model: the order was best
formed when the final parameter value was in the vicinity of
the associated quantum critical point, as illustrated in Fig. 3.
Here, and in Ref.[5], we have proposed this feature as the
explanation for the resonant response observed by Greineret
al. [1] upon “tilting” a Mott insulator of bosons in an optical
lattice.
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APPENDIX: COMPUTATIONS FOR THE ISING CHAIN

The Jordan-Wigner transformation allows the Hamil-
tonian of an Ising chain in a transverse fieldg to be written
as

HI = o
k

ekgk
†gk, sA1d

wheregk is a fermionic annihilation operatorssee Chap. 4 of
Ref. f4gd. These are related to the Jordan-Wigner fermionsck
by a Bogoliubov transformation, parametrized by angleuk,
where

tan uk =
sin k

g − cosk
. sA2d

In the present case, we define theg fermions as those that
diagonalize the Hamiltonian fort.0, with field gf.

Since the Hamiltonian is throughout translationally sym-
metric, only fermionic states with opposite pseudomomen-
tum k and −k are mixed. We may therefore write the two-
component column vector

Gk = S gk

g−k
† D sA3d

and similarly Ck for the Jordan-Wigner fermionsCk. The
Bogoliubov transformation relatingCk andGk is expressed as
Ck=RxsukdGk, where

Rxsad = cos
a

2
+ isx sin

a

2
sA4d

and heresx is a 232 Pauli matrix. sThese are used for
conciseness of notation and should not be confused with the
operators representing the “spins” of the Ising chain.d

For t,0, the field isgi and the system is taken to be in its
ground state. We define theg8 fermions as those which di-
agonalize the Hamiltonian in the form(A1) with this field.
[Similarly, uk8 and Gk8 are given by analogy with Eqs.(A2)
and (A3).]

The stateucl is therefore the vacuum ofg8 fermions: in
matrix notation,

kcuGk8Gk8
†ucl = S1 0

0 0
D =

1

2
ssz + 1d. sA5d

Applying the Bogoliubov transformation toCk and thenGk
gives

kcuGkGk
†ucl = Rx†suk − uk8d

1
2ssz + 1dRxsuk − uk8d. sA6d

Using Rx†sadszRxsad=sz cosa−sy sin a with fk=uk−uk8
gives

FIG. 7. Analog of Fig. 3, but for the transverse superfluid order,
using the same parameters(apart fromEf) as Fig. 3. The “static”
curve is the equilibrium superfluid order parameter determined in I.
The “dynamic” curve is the long-time average of the real part of
khstdl.
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kcuGkGk
†ucl = 1

2s1 + sz cosfk − sy sin fkd, sA7d

as the set of matrix elements for the initial state.
The time evolution of the operators now proceeds(using

the Heisenberg picture) according to the Hamiltonian(A1) so
that Gkstd=UkstdGks0d, where

Ukstd = Se−iekt 0

0 eiekt
D = Rz†s2ektd. sA8d

The expectation values at any time can therefore be evalu-
ated using the algebra of SUs2d matrices.

The n-site correlator can be written askGnl
=kB0A1B1¯Bn−1Anl, whereAi =ci

†+ci andBi =ci
†−ci. Wick’s

theorem can then be used to write this expression in terms of
the expectation values of expressions bilinear inAi and Bi.
We therefore let

Vkstd = SAkstd
Bkstd

D = Î2RySp

2
DCkstd, sA9d

whereAk sBkd is the Fourier transform ofAi sBid so that

kcuVkVk
†ucl = kcuSAkA−k − AkB−k

BkA−k − BkB−k
Ducl = 2RySp

2
DkcuCkCk

†uclRy†Sp

2
D , sA10d

=1 −sxscosuk cosfk − sin fk sin uk cos 2ektd+ syssin uk cosfk

+ sin fk cosuk cos 2ektd + szssin fk sin 2ektd, sA11d

=S 1 − sinfk sin 2ekt − eiukscosfk + i sin fk cos 2ektd
− e−iukscosfk − i sin fk cos 2ektd 1 + sinfk sin 2ekt

D . sA12d

Transforming to real space and using the conservation of pseudomomentum gives

kAlAjl =
1

M
o
k

eiksl−jds1 − sinfk sin 2ektd, kBlBjl =
1

M
o
k

eiksl−jds− 1 − sinfk sin 2ektd,

sA13d

kBlAjl =
1

M
o
k

eiksl−jde−iuks− cosfk + i sin fk cos 2ektd.

The long-time averages of these expressions are

kAlAjl = dl j , kBlBjl = − dl j , kBlAjl = al−j+1, sA14d

where

ar =
1

M o e−ikrãskd sA15d

=
1

2p
E

−p

p

e−ikrãskd, sA16d

in the limit where the number of sitesM becomes infinite. Here,ãskd=−eisuk+kd cossuk−uk8d. Wick’s theorem then allows the
expression forkGnl to be written as Eq.s11d.
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