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We present semianalytical many-body results for energies and excitation frequencies for an inhomogeneous
Bose-Einstein condensate over a wide range of atom numbersN for both smalls-wave scattering lengths,
typical of most laboratory experiments, and large scattering lengths, achieved by tuning through a Feshbach
resonance. Our dimensional perturbation treatment includes two-body correlations at all orders and yields
analytical results through first order by taking advantage of the high degree of symmetry of the condensate at
the zeroth-order limit. BecauseN remains a parameter in our analytical results, the challenge of calculating
energies and excitation frequencies does not rise with the number of condensate atoms. In this proof-of-concept
paper the atoms are confined in a spherical trap and are treated as hard spheres. Our many-body calculations
compare well to Gross-Pitaevskii results in the weakly interacting regime and depart from the mean-field
approximation as the density approaches the strongly interacting regime. The excitation frequencies provide a
particularly sensitive test of beyond-mean-field corrections. For example, forN=2000 atoms and an experi-
mentally realized large scattering length ofa=0.433aho saho=Î" /mvhod we predict a 75% shift from the
mean-field breathing mode frequency.
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I. INTRODUCTION

The achievement of Bose-Einstein condensates(BEC) in
magnetically trapped alkali-metal atoms has generated a con-
siderable amount of experimental and theoretical activity in
recent years. In typical BEC experiments, the average dis-
tance between the Bose atoms is much larger than the range
of the atomic interactions, which is characterized by the
s-wave scattering lengtha. The mean-field Gross-Pitaevskii
(GP) equation has been instrumental in describing the prop-
erties of these weakly interacting condensates(see Ref.[1]
for an extended review). A fundamental assumption underly-
ing the derivation of the GP equation is that the precise in-
teratomic potential can be replaced by the shape-independent
approximation, also called the pseudopotential approxima-
tion, which uses a zero-range potential, as opposed to an
extended potential with a well-defined shape:

Vpseudosr d =
4p"2a

m
dsr d. s1d

Despite its success in the weakly interacting regime, the GP
equation does not include many-body effects, such as corre-
lation, and its assumed shape-independent approximation
breaks down in the strongly interacting regimef2g. More-
over, in recent experiments the presence of Feshbach reso-
nances has enabled the creation of condensates in a regime in
which the predictions of the mean-field theory are measur-
ably lackingf3g, allowing the condensate to act as a test bed
for fundamental many-body physics beyond the mean-field
approach. Recent theoretical studies, performed to quantify
the breakdown of the mean-field theory and the shape-

independent approximation, have been based on a number of
theoretical methods including analytical corrections to the
GP equation due to quantum fluctuations about the mean
field f4,5g and a related approach from density-functional
theory f6g, while others are based on numerical calculations
such as the diffusion Monte CarlosDMCd methodf7,8g or
the correlated basis function approachf9,10g. In this paper,
we further explore beyond-mean-field effects using many-
body dimensional perturbation theorysDPTd, a many-body
approach that includes correlation beyond mean field at all
perturbation orders. We use a shape-dependent interatomic
potential, and the number of condensate atoms,N, appears as
a parameter in our results which are analytical, thus making
our many-body calculations for anyN much less involved
than even solving the mean-field GP equation. We also cal-
culate excitation frequencies, which naturally arise out of our
first-order, harmonic energy correction.

Even though this investigation of beyond-mean-field ef-
fects is concerned with inhomogeneous(trapped) atomic
BEC’s, it proves useful to mention a few properties of the
homogeneous(uniform) Bose gas theory, since the two sys-
tems will share many features, at least qualitatively, when the
density of the inhomogeneous gas is slowly varying. The
low-density expansion of a homogeneous Bose gas of hard
spheres of massm is well known [11–13]. The expansion
relies on an improved, though still shape-independent, poten-
tial over the pseudopotential of Eq.(1), called the regularized
Fermi pseudopotential:

Vreg-pseudosr d =
4p"2a

m
dsr d

]

] r
r . s2d

The ground-state energy per particle, expanded in terms of
the gas parameterÎna3, is*Email address: dwatson@ou.edu
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E

N
=

2p"2na

m
F1 +

128

15Îp
sna3d1/2 +

8s4p − 3Î3d
3

sna3dlnsna3d

+ Osna3dG , s3d

wheren is the uniform number density. In this approxima-
tion, it is assumed that the gas is dilute, that is, the average
interatomic spacing is much larger than thes-wave scattering
length, stated mathematically asna3!1. For larger densities,
higher-order terms in the expansion beyond those in Eq.s3d
are needed, and these terms depend on the detailed shape of
the potentialf14g. The leading-order term of Eq.s3d was first
derived by Bogoliubovf11g and is equivalent to the mean-
field term in the Gross-Pitavskii equationssee belowd. The
term in Eq.s3d of ordersna3d3/2 was derived by Lee, Huang,
and Yangf12g, and the logarithmic term was first obtained
by Wu f13g. Lieb and Yngvasonf15g showed that for a re-
pulsive, non-negative, finite range, spherical, two-body po-
tential, the Bogoliuobov mean-field termE/N=2p"2na/m is
the lower bound for the exact ground-state energy of a ho-
mogeneous Bose gas. Giorginiet al. [7] found that Eq.(3)
continues to be a good approximation for higher densities
provided the logarithmic term is dropped. At intermediate
densitiessna3.1.385310−3d the logarithmic term causes
the overall correction[second and third terms in brackets in
Eq. (3)] to the Bogoliuobov mean-field energy to become
negative, thus, violating the lower bound. For a narrow range
of na3 the logarithmic term does actually improve the energy
over the mean-field term.

The validity condition for a homogeneous gas to be de-
scribed by the shape-independent approximation of Eq.(3) is
given by the diluteness conditionna3!1. This condition is
often invoked for the inhomogeneous system as well, except,
since the density is not uniform, one uses some other char-
acteristic density of the gas, usually the peak density at the
center of the trapns0d [8,10,16]. However, it is possible for
the condensate to be in a strongly interacting regime where
the shape-independent approximation fails, and to still be
dilute (i.e., na3!1). In this paper, we use DPT to study both
weakly and strongly interacting systems. In the latter case,
we examine systems with both large atom number and large
scattering length.

We consider three scattering lengths for a system ofN
trapped atoms: the natural87Rb scattering length, and mul-
tiples 10 and 100 times87Rb’s value. Condensates at this
largest value of the scattering length have been created in the
lab [3]. As mentioned earlier, the shape-independent approxi-
mation is one of the underlying weaknesses of the GP equa-
tion. In this paper, “a proof-of-concept” study, we use a po-
tential with a simple shape, namely, that of a hard sphere, for
the interatomic interactions. This is a potential of choice for
many-body theoretical studies since it is purely repulsive and
has ans-wave scattering length equal to its radius. In a pre-
vious paper, we introduced the methods of many-body DPT
for a general system of identical, interacting particles under
spherically symmetric quantum confinement[17]. In the
present study, we use this many-body formalism to calculate

the ground-state energy for spherical condensates in both the
strongly and weakly interacting regimes.

We compare our many-body results with two nonlinear
field equations that describe inhomogeneous condensates:
the mean-field Gross-Pitaevskii equation and a modified GP
equation that contains beyond-mean-field quantum correc-
tions. The GP energy for an isotropically trapped BEC is
calculated from the following energy functional:

EGPfcg =E drF "2

2m
u=cu2 +

1

2
mvho

2 r2ucu2

+
2p"2sN − 1da

m
ucu4G , s4d

wherevho is the harmonic frequency of the isotropic trap and
c is the ground-state field, which is given by the solution of
the GP equation:

S−
"2

2m
,2 +

1

2
mvho

2 r2 +
4p"2sN − 1da

m
ucu2Dc = mc. s5d

In Eq. s5d, m is interpreted as the chemical potential in the
Bogoliubov approach and as the ground-state orbital energy
in the Hartree-Fock approachf18g. The presence of the quan-
tity sN−1d in the nonlinear term, rather thanN, follows from
number-conserving Schrödinger quantum mechanics with a
product of orbitals as the initial statef18g.

The so-called modified GP(MGP) equation includes an
analytical quantum correction to the mean-field contribution
from the GP equation[4,5]. This correction takes the form of
an additional nonlinear term to the GP energy functional,
which arises from the ground-state depletion of the conden-
sate due to excitations. The MGP energy is calculated from
the following energy functional:

EMGPfcg =E drF "2

2m
u=cu2 +

1

2
mvho

2 r2ucu2

+
2p"2sN − 1da

m
ucu4S1 +

128

15Îp
a3/2sN − 1d1/2cDG ,

s6d

where the field is given by the following nonlinear
Schrödinger equation:

F−
"2

2m
,2 +

1

2
mvho

2 r2 +
4p"2sN − 1da

m
ucu2

3S1 +
32

3Îp
a3/2sN − 1d1/2cDGc = mc. s7d

The MGP energy was derived by Braaten and Nietof4g by
carrying out a self-consistent one-loop calculation through
second order in the gradient expansion. In Eqs.s6d and s7d
we have dropped the additional nonlocal term in Eq.s2d of
Ref. f4g that accounts for edge effects since it is found to be
small f4,8g. The stationary MGP solution of Eq.s7d mini-
mizes the MPG energy functional, Eq.s6d. Although it in-
cludes some effects due to correlation, the MGP equation
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like the GP equation, is still independent of the shape of the
interatomic potential.

The nonlinear term in the GP energy functional, Eq.(4),
reproduces the leading-order term of the homogeneous en-
ergy density expansion, Eq.(3), in the uniform limit. Like-
wise, the nonlinear terms in the MGP energy functional, Eq.
(6), reproduce the homogeneous-gas energy per particle of
Eq. (3) with the logarithmic term neglected(see Appendix
A). Equation(6) is the inhomogeneous generalization of the
first two terms in Eq.(3).

We compare our results with the GP and MGP equations
(5) and (7), respectively, and discuss the relevance of the
logarithmic term in Eq.(3) to the range of validity of our
DPT results. In addition to predicting ground-state properties
of the condensate, we also calculate excitation properties,
such as frequencies, which arise naturally from our first-
order calculation. Excitations involving compression such as
the breathing mode will emphasize the breakdown of the
shape-independent mean-field approximation. An advantage
of many-body DPT over purely numerical methods is the
analytical nature of its results which offer insight into the
many-body physics of BEC.

In Sec. II we discuss the formalism of many-body DPT
and give analytical expressions for the ground-state energy
and normal-mode frequencies. We also introduce our dimen-
sionally continued parametrization of the hard-sphere poten-
tial and in Sec. IV we describe how the many-body interac-
tion parameters are optimized to give the best energies.
Results and interpretation of the ground state are given in
Sec. V where we discuss the range of validity of our results
in terms of the low-density expansion, Eq.(3). In Sec. VI we
give beyond-mean-field breathing mode frequencies and in
Sec. VII we summarize and discuss how to improve and
extend our results.

II. FORMALISM

A. The dimensionally scaled Schrödinger equation

The N-body Schrödinger equation for a system of identi-
cal, trapped, interacting particles inD-dimensional Cartesian
coordinates is

HC = Fo
i=1

N

hi + o
i=1

N−1

o
j=i+1

N

gijGC = EC, s8d

hi = −
"2

2m
o
n=1

D
]2

] xin
2 + VconfSFo

n=1

D

xin
2G1/2D , s9d

gij = VintSFo
n=1

D

sxin − xjnd2G1/2D , s10d

whereVconf is the trapping potential,Vint is the two-body
interatomic potential,H is the D-dimensional Hamil-
tonian, andxin is the nth Cartesian component of theith
particle. We have also assumed equal massesm for the
condensate atoms atT=0 K, which are confined by an
isotropic, harmonic trap with frequencyvho:

Vconfsr id = 1
2mvho

2 r i
2. s11d

We take the interatomic potential to be a hard sphere of
radiusa:

Vintsr ijd = H`, r ij , a

0, r ij ù a,
s12d

where a is the s-wave scattering length of the condensate
atoms. We dimensionally continue the hard-sphere potential
so that it is differentiable away fromD=3, allowing us to
perform the dimensional perturbation analysisssee Ref.f17g
as well as a later discussion in this paperd. Thus, we take the
interaction to be

Vintsr ijd =
Vo

1 − 3/DH1 − tanhF co

1 − 3/D
Sr ij − a −

3

D
sa − adD

3S1 + s1 − 3/Ddo
n=1

s−3

cnrij
2nDGJ , s13d

whereD is the Cartesian dimensionality of space. This inter-
action becomes a hard sphere of radiusa in the physical,
D=3, limit. The others constantssVo, a, and hcn; ∀n:0
ønøs−3jd are parameters that allow us to fine-tune the
large-D shape of the potential and optimize our results
through Langmuirsfirstd order ssee Sec. IVd. The simplest
possibility could have as few as two parametersVo and co,
with a=a and the remainingcn=0; however, we can have
any number of parameters for the most general and flexible
potential. The form of the potential atDÞ3 is not unique.
Other forms could be chosen with equal success as long as
the form is differentiable and reduces to a hard-sphere po-
tential at D=3. We simply choose a form that allows a
gradual softening of the hard wall.

In this paper, we restrict our attention to spherically sym-
metric states(i.e., s-wave states), and we now transform the
Schrödinger equation to a form more suitable for dimen-
sional perturbation-theory analysis. The transformation, dis-
cussed fully in Ref.[17], takes place in three steps. The first
step is to transform the variables of allN particles, each with
D Cartesian componentsxi =sxi1,xi2, . . . ,xiDd s1ø i øNd, to
internal coordinates, defined as theD-dimensional scalar ra-
dii r i of the N particles and the angle cosinesgi j of the
NsN−1d /2 angles between the radial vectors:

r i =Îo
n=1

D

xin
2 s1 ø i ø Nd and s14d

gi j = cossui jd = So
n=1

D

xinxjnDY r ir j s1 ø i , j ø Nd.

The second step is to carry out a similarity transformation
of the Schrödinger equation resulting from the first step. The
transforming function
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x = sr1r2 ¯ rNd−sD−1d/2G−sD−1d/4 s15d

results in a Schrödinger equation in terms ofFs=x−1Cd, in
which the first derivative terms of the Laplacian are re-
moved.

The third step is to regularize the large-D limit of the
similarity-transformed Hamiltoniansx−1Hxd. We do this by
converting the variables to dimensionally scaled harmonic-
oscillator units(bars):

r̄ i =
r i

D2āho

, Ē =
D2

"v̄ho

E, H̄ =
D2

"v̄ho

H, ā =
a

Î2D2āho

,

V̄o =
D2

"v̄ho

Vo, ā =
a

Î2D2āho

, c̄o = Î2D2āhoco, s16d

c̄n = sÎ2D2āhod2ncn,

where

āho =Î "

mv̄ho

and v̄ho = D3vho s17d

are the dimensionally scaled harmonic-oscillator length and
dimensionally scaled trap frequency, respectively. The di-
mensionally scaled harmonic-oscillator units of energy,
length, and time are"v̄ho, āho, and 1/v̄ho, respectively. All

barred constantssā, āho, v̄ho, V̄o, ā, c̄o, andc̄nd are held fixed
as D varies. For example, asD varies ā is held fixed at a
value by requiring that it give the physical unscaled scatter-
ing length atD=3. Finally, we arrive at

H̄F = sT + U + VdF = ĒF, s18d

where

T = −
1

2
d2o

i=1

N F ]2

] r̄ i
2 + o

jÞi
o
kÞi

g jk − gi jgik

r̄ i
2

]2

] gi j ] gik
G ,

s19d

U = o
i=1

N
sd − 1dfs2N + 1dd − 1g

8r̄ i
2

Gsid

G
, s20d

V = o
i=1

N
1

2
r̄ i

2 +
V̄o

1 − 3d
o
i=1

N

o
j=i+1

N H1 − tanhF c̄o

1 − 3d
S r̄ i j

Î2
− ā

− 3dsā − ādDS1 + s1 − 3ddo
n=1

s−3
c̄nr̄ i j

2n

2n DGJ , s21d

where the perturbation parameter is

d = 1/D s22d

and r̄ i j =Îr̄ i
2+ r̄ j

2−2r̄ i r̄ jgi j is the interatomic separation. The
quantity T is the derivative portion of the kinetic energy
T=T+U. As D becomes infinitely large, andd→0, the
entire differential part of the kinetic energy as well as a
portion of the interatomic and centrifugal-like potentials

will drop out of the Hamiltonian. In the infinite-dimension
limit, the particles behave as though they become infi-
nitely heavy and rest at the bottom of the infinite-D effec-
tive potential, a potential that includes the trap potential
and contributions from the centrifugal-like and hard-
sphere potentials. The infinite-D energy becomes the
minimum value of the effective potentialssee Appendix A
of Ref. f19gd.

As noted above, for a given set of trap parameters atD
=3, the energy of theD=3 Bose-Einstein condensate de-
pends only on the scattering length of the interatomic poten-
tial and not the detailed shape of the potential. This is due to
the long-wavelength nature of BEC’s: for small to moderate
scattering lengths, the atomic wavelengths are not short
enough to “resolve” the short-range detail of the potential.
However, for largeD the atomic wavelengths become very
short, since according to Eqs.(18), (19), and(22) the scaled,
similarity-transformed Hamiltonian displays an effective
mass term equal toD2. Thus, unlike atD=3, the energy of
the large-D system is sensitive to the details of the potential.

One may think,prima facie, that this is an indication that
the large-dimension limit is a poor starting point for a series
expansion in terms of a perturbation parameter, in this case
d, since it appears not to reflect the long-wavelength nature
of the condensate and displays a sensitivity to the details of
the interatomic potential. These concerns are particularly
acute since a large-order calculation for a large-N system
seems infeasible. These concerns, though, are resolved upon
closer inspection of the issues involved. Suppose one had
actually found a perturbation scheme in some parameter
which at low orders displays an insensitivity to the precise
shape of the interatomic potential, as long as the perturbation
parameter and scattering length are unchanged. Now what is
most important in a low-order perturbation calculation is that
the energy be as close as possible to the actualD=3 result.
One could not, however, reasonably expect the energy at low
orders to be both insensitive to the precise shape of the in-
teratomic potential for fixed scattering length and, at the
same time, to differ only a small amount from the actualD
=3 condensate energy. The energy at low orders would al-
most certainly be different from the actualD=3 condensate.

In fact, instead of being a liability, this large-D sensitivity
to the details of the interatomic potential is actually to our
advantage, enabling us to optimize our dimensional continu-
ation of the hard-sphere potential so that the low-order DPT
energy is as close as possible to the actualD=3 result. We
discuss this in detail in Sec. V.

Actually the issue of long wavelengths atd=1/3 and
short wavelengths for extremely smalld is a spurious con-
cern. At D=3 the zeroth-order wave function does have a
large-wavelength character, but further discussion of this is-
sue is put off until Sec. II C.

B. Leading-order energy term

The infinite-D sd→0d effective potential in dimensionally
scaled harmonic-oscillator units of Eqs.(16) and (17) is
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Veff = o
i=1

N S 1

8r̄ i
2

Gsid

G
+

1

2
r̄ i

2D + V̄oo
i=1

N

o
j=i+1

N H1

− tanhFc̄oS r̄ i j

Î2
− āDS1 + o

n=1

s−3
c̄nr̄ i j

2n

2n DGJ . s23d

One can see from the double-sum term inVeff that the large-
D interatomic potential has become a soft sphere of radius

approximatelyā and height 2V̄o. The slope of the soft wall
is determined byc̄o, while the remainingss−3d parameters
act to further refine the shape of the interatomic potential.
The development of DPT using the basic three-parameter
potentialss=3d is discussed at length in Ref.f17g.

The s parameters are chosen with the goal of optimizing
the energy perturbation series through first order ind. In Sec.
V we optimize the potential by fitting the energies through
first order to DMC energies[8] at low atom numbersN
ø100d, and since in our DPT analysis the number of atoms
N is a parameter, we can readily extrapolate to largerN with-
out large amounts of calculation. Further discussion on the
optimization procedure and the range of validity of the ex-
trapolation to largerN will follow in Secs. IV and V, respec-
tively.

In scaled units, the zeroth-ordersD→`d approximation to
the energy becomes

Ē` = Veffsr̄`,g`d, s24d

wherer̄` andg` are the radius and angle cosine at the mini-
mum of Veff. Assuming a totally symmetric configuration

r̄ i = r̄` s1 ø i ø Nd and gi j = g` s1 ø i , j ø Nd,

s25d

we find that the large-D radii and energy per atom are

r̄` = h2f1 + sN − 1dg`gj−1/2, s26d

Ē`
sDPTd

N
=

1 + sN − 2dg`

s1 − g`df1 + sN − 1dg`g
1

8r̄ `
2 +

1

2
r̄ `

2

+
N − 1

2
V̄of1 − tanhsQdg, s27d

where for simplicity of presentation we have defined the fol-
lowing:

Q = c̄osr̄`
Î1 − g` − ādS1 + o

n=1

s−3

c̄nr̄ `
2ns1 − g`dnD . s28d

The derivation of the above equations is an extension of the
derivation of Eqs.s26d–s28d for the basics=3 potential. This
later case is discussed in detail in Ref.f17g.

The above quantitiesr̄`, Ē`
sDPTd /N, andQ are determined

by the large-D direction cosineg` of the angle between the
particle radius vectors whenD→`, which is given by the
negative solution of smallest magnitude of

V̄oc̄oYsech2 Q +
2g`f2 + sN − 2dg`g

s1 − g`d3/2Î2f1 + sN − 1dg`g
= 0,

s29d

with Y = F1 + o
n=1

s−3

fs2n + 1dc̄nr̄ `
2ns1 − g`dn

− 2nāc̄nr̄ `
2n−1s1 − g`dn−1/2gG . s30d

C. Normal modes and first quantum energy correction

To obtain the 1/D quantum correction to the energy for
large but finite values ofD, we expand about the minimum
of the D→` effective potential, Eq.(23), and use the FG
matrix method[20] to obtain the normal-mode frequencies
of the condensate. We first define a configuration vector con-
sisting of allNsN+1d /2 internal coordinates

ȳT = sr̄1, r̄2, . . . ,r̄N,g12,g13, . . . ,gN−1,Nd, s31d

whereT is the transpose operator. We make the following
substitutions for all radii and angle cosines:

r̄ i = r̄` + d1/2r̄ i8, s32d

gi j = g` + d1/2gi j8 , s33d

whered=1/D is the expansion parameter, and we define a
displacement vector consisting of the internal displacement
coordinatesfprimed in Eqs.s32d and s33dg

ȳ8T = sr̄ 18, r̄ 28, . . . ,r̄ N8 ,g128 ,g138 , . . . ,gN−1,N8 d. s34d

The first-order term in the Hamiltoniansin d=1/Dd becomes

Ĥ1 = −
1

2o
m=1

P

o
n=1

P

]ȳ
m8
fGm,ng`]ȳ

n8
+

1

2o
m=1

P

o
n=1

P

ȳm8 fFm,ng`ȳn8 + vo,

s35d

where

P ; NsN + 1d/2 s36d

is the number of internal coordinates. The elements ofG are
found by comparing withT of Eq. s19d, and the elements of
F are found by evaluating the Hessian matrix of the effective
potential at the infinite-D symmetric minimumf17g:

fFmng` = F ]2Veff

] ȳm8 ] ȳn8
G

`

. s37d

The quantityvo is a constant first-order energy shiftfsee Eq.
s60d belowg, and the subscriptsm andn refer to the compo-
nents of the displacement vectorȳ8, whose elements are the
internal displacement coordinates defined in Eqs.s32d–s34d.

To make the connection with internal coordinates more
explicit we adopt the following subscripts to identify the
elements ofF, G, and the productGF, which we will need
shortly: si , jd refers to elements associated withsr i ,r jd; si , jkd
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refers tosr i ,g jkd and si j ,kld refers tosgi j ,gkld, etc. See Sec.
4.1 of Ref.[17] for more details on the indical structure of
the FG matrices.

The first-order HamiltonianĤ1 of Eq. (35) gives the first-

order energy correctionĒ0 and zeroth-order similarity-
transformed wave functionF0 through the Schrödinger
equation

Ĥ1F0 = Ē0F0. s38d

The Wilson FG method shows that under a linear transfor-
mation

q̄8 = T ȳ8, s39d

the large-D similarity-transformed Schrödinger equation of
Eq. s38d takes on the separable form

F− 1
2 ]

T

q̄8
]q̄8 + 1

2q̄8TLq̄8 + v0GF0 = Ē0F0, s40d

whereL is a positive-definite diagonal matrixssee Appendix
A of Ref. f17g with the identificationT =UAd. Thus the
large-dimension similarity-transformed Schrödinger equa-
tion is separable into one-dimensional harmonic-oscillator
wave functions in each of theNsN+1d /2 normal modesq̄p8,
where 1øpøNsN+1d /2. If v̄p is the corresponding
normal-mode frequency, then the wave function is a prod-
uct of NsN+1d /2 harmonic-oscillator wave functions

F0sȳ8d = p
p=1

NsN+1d/2

hnp
sv̄p

1/2q̄p8d, s41d

where hnp
sv̄p

1/2qp8d is a one-dimensional harmonic-oscillator
wave function of frequencyv̄p, andnp is the oscillator quan-
tum number, 0ønp,`, which counts the number of quanta
in each normal mode.

Having obtained Eq.(41) we are now in a position to
address the above noted concern(in Sec. II A) that low-order
DPT might not contain the right physics for the macroscopic,
long-wavelengthD=3 condensate since DPT is a perturba-
tion expansion based on solutions to the semiclassical short-
wavelength problem in a large number of spatial dimensions.
In the notation of Eqs.(31) and(34), Eqs.(32) and(33) can
be written as

ȳT = ȳ`
T + d1/2ȳ8T, s42d

where

uȳ`
T = ȳTu r̄ i=r̄`

g jk=g`

∀ 1 ø i ø N and 1ø j , k ø N.

s43d

Inserting Eq.s42d into Eq. s39d one obtains

q̄T = q̄`
T + d1/2q̄8T, s44d

where

q̄` = T ȳ`. s45d

Then using Eq.s44d in Eq. s41d one obtains

F0sȳd = p
p=1

NsN+1d/2

hnp
SH v̄p

d
J1/2

sq̄p − fq̄`gpdD . s46d

Equations46d represents oscillations about the Lewis struc-
ture configurationq̄` with frequencieshv̄p/d j. When d is
small slarge dimensionsd the frequencieshv̄p/d /d j are very
large and so according to Eq.s46d the zeroth-order wave
function is strongly localized aboutq̄= q̄` si.e., it features
short wavelengthsd. However asd takes on increasing posi-
tive values,hv̄p/d /d j becomes less and less large, and so the
zeroth-order wave function becomes increasingly extensive.
That is, the wavelengths of the zeroth-order wave function at
d=1/3 have become macroscopic. Thus, the zeroth-order
DPT wave function for the Bose-Einstein condensate atD
=3 appropriately has a macroscopic, long-wavelength char-
acter.

The Wilson FG method shows that the normal-mode co-
ordinates are the solutions of the eigenvalue equation

GFq̄p8 = lpq̄p8, s47d

where the eigenvalueslp are the diagonal entries of the di-
agonal force-constant matrixL in Eq. s40d. Thus the normal-
mode frequencies are related tolp in Eq. s47d by

lp = v̄p
2. s48d

Equations47d leads to the secular equation

detslpI − GFd = 0 s49d

for lp.
Equation(49) provides a general formula for calculating

the normal-mode frequencies in terms of the elements of the
productGF. In Ref.[17] we derive analytical expressions for
the normal-mode frequencies in terms of the highly symmet-
ric GF matrix elements. To simplify the analytical normal-
mode frequencies given below, we define the scalar quanti-
ties a throughi:

a = sGFdi,i=GaFa

b = sGFdi,j=GaFb si , jd,

c = sGFdi j ,i=GgFe + sN − 2dGhsFe + Ffd si , jd,

d = sGFd jk,i=GgFf + 2GhfFe + sN − 3dFfg si Þ j , k Þ id,

e= sGFdi,i j=GaFe si , jd,

f = sGFdi,jk=GaFf si Þ j , k Þ id,

g = sGFdi j ,i j=GgFg + 2sN − 2dGhFh si , jd,

h = sGFdi j ,jk=GgFh + GhFg + sN − 2dGhFh

+ sN − 3dGhFi si , j , kd,
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i = sGFdi j ,kl=GgFi + 4GhFh + 2sN − 4dGhFi si , j ,k , ld,

s50d

where the expressions in Eq.(50) for theGF matrix elements
of the Schrödinger equation(18) in terms of theF and G
matrix elements were derived in Ref.[17]. The nonzeroF
andG matrix elements are given in Appendix B.

Although there areNsN+1d /2 different normal modes,
there are only five distinct normal-mode frequencies. The
five distinct eigenfrequencies ofGF belong to three different
irreducible representations of the symmetric groupSN
[17,21]. One distinct frequency is given by

v̄2 = Îg − 2h + i, s51d

and we designate the set of normal modes with this fre-
quency by the label2 f17,21g. This set of normal modes has
a multiplicity d2=NsN−3d /2 fi.e., there areNsN−3d /2 nor-
mal modes with the same frequencyv̄2d. Two other frequen-
cies are given by

v̄1± = Îh1 ± sh1
2 − D1d1/2, s52d

where

h1 = 1
2fa − b + g + sN − 4dh − sN − 3dig, s53d

D1 = − sN − 2dsc − ddse− fd + sa − bdfg + sN − 4dh

− sN − 3dig. s54d

The two sets of normal modes with the frequenciesv̄1± are a
mixture of asymmetric stretching and bending motions, and
we designate them by the labels1− and 1+ f17,21g. Their
multiplicities ared1−=d1+=N−1. The last two frequencies
are determined from the equations

v̄0± = Îh0 ± sh0
2 − D0d1/2, s55d

where

h0 =
1

2
Fa − sN + 1db + g + 2sN − 2dh −

sN − 2dsN − 3d
2

iG ,

s56d

D0 = fa − sN + 1dbgFg + 2sN − 2dh +
sN − 2dsN − 3d

2
iG

−
N − 1

2
f2c + sN − 2ddgf2e+ sN − 2dfg. s57d

The two sets of normal modes with the frequenciesv̄0+ and
v̄0− are a mixture of symmetric stretching and bending mo-
tions, and correspond to the breathing mode and center of
mass of the condensate, respectively. Designating these two
sets of normal modes by the labels0− and 0+, they have
multiplicities d0+=d0−=1 si.e., they are singletsd f17,21g.

To first order ind the energy is

ĒsDPTd = Ē` + dĒo + Osd2d

= Veffsr̄`,g`d + dX o
m=h0±,1±,2j

o
nm=0

` Snm +
1

2
Ddm,nm

v̄m

+ voC + Osd2d, s58d

wherenm are the vibrational quantum numbers of the normal
modes of the same frequencyv̄m sas such,nm counts the
number of nodes in a given normal moded. The quantity
dm,nm

is the occupancy of the manifold of normal modes with
vibrational quantum numbernm and normal-mode frequency
v̄m, i.e., it is the number of normal modes with the same
frequencyv̄m and the same number of quantanm. The total
occupancy of the normal modes with frequencyv̄m is equal
to the multiplicity of the rootlm, i.e.,

dm = o
nm=0

`

dm,nm
, s59d

wheredm is the multiplicity of themth root. Because of the
factors ofd in the centrifugal-like and hard-sphere potentials
fU andV of Eq. s18dg, there is also a constant shiftvo in the
first-order term of Eq.s58d given by

vo = −
NsN + 1df1 + sN − 2dg`g

4r̄ `
2f1 + sN − 1dg`gs1 − g`d

+ 3V̄o
NsN − 1d

2

3H1 − tanhQ + c̄oFsā − ādSo
n=1

s−3

c̄nr̄`
2ns1 − g`dD

− sr̄`
Î1 − g` − ādGsech2QJ , s60d

whereQ is given by Eq.s28d.
Using the definitions of the dimensionally scaled

harmonic-oscillator units in Eqs.(16) and(17), we can undo
the scalings to write the through-first-order DPT energy of
Eq. (58) in regular oscillator unitss"vhod as

EsDPTd = DVeffsr̄`,g`d

+F o
m=h0±,1±,2j

o
nm=0

` Snm +
1

2
Ddm,nm

v̄m + voG + Osdd.

s61d

Since the normal-mode frequenciesv̄m do not depend onD,
Eq. s61d shows that their values are equal to the physical
sD=3d excitation frequencies of the condensate. It is also
noteworthy that in the noninteracting limit the DPT energy
series truncates at first order and gives the exact isotropic
D-dimensionalN-particle harmonic-oscillator energy. At its
minimum the effective potential in regular oscillator units

s"vhod in the noninteracting limit becomesE`=DĒ`

=DVeffsr̄`=1/Î2,g`=0d=DN/2, the ideal-gas energy. In
the infinite-D limit, r`=ÎD /2 is the infinite-D radius in
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regular oscillator units, also the expectation valuekr2l for
the ground-stateD-dimensional spherical harmonic oscil-
lator. In addition, the excitation frequencies become the
N-atom harmonic-oscillator frequencies:v̄m=2 for all m.
As the interatomic interaction increases, the strength of
the interaction is reflected in the deviation from the above
noninteracting values of the infinite-D radius and direc-
tion cosine as well as the excitation frequencies of the
leading-order energy correction.

III. MOTIVATION FOR LOW-ORDER METHOD

Recall that the dimensionally continued interatomic po-
tential becomes a hard sphere atD=3 with radius equal to
the scattering length, but takes on the shape of a soft-sphere
for largerD. The reason for choosing this dimensional con-
tinuation of the hard sphere is to facilitate the DPT analysis,
which requires a differentiable effective potential. The exact
shape of the soft sphere for dimensions departing fromD
=3 is determined bys built-in parameters. In this paper we
consider three scattering lengths: the87Rb scattering length
aRb=0.004 33aho, and two larger multiplesa=10aRb and a
=100aRb. For these three scattering lengths, we optimize the
s interatomic potential parameters by fitting our ground-state
analytical energy through first order[Eq. (58) with d0±,0
=d0± ;1, d1±,0=d1± ;N−1, and d2,0=d2;NsN−3d /2, with
the rest of thedm,nm

=0∀nmù1 and m=0± ,1± ,2] at the
physicalsD=3d dimension to accurate, low-N, hard-sphere,
ground-state DMC energies[8].

The fitted interatomic parameters for each scattering
length are given in Sec. V where we extrapolate our fitted
energies to large values ofN. Note that our extrapolating
function is not an arbitrary fitting function to the data.
Rather, it is based on the dynamical approximation to the real
system that is intrinsic to DPT, which includes contributions
from all components of the Hamiltonian, including the ki-
netic, trap, and interaction terms, as well as correlation ef-
fects beyond the mean-field approximation. Furthermore,
this low-order approximation is well defined and, in prin-
ciple, can be systematically refined by using higher-order
DPT [19,22].

IV. OPTIMIZATION OF THE INTERATOMIC
PARAMETERS

A x-square statistic is used to optimize the parameters of
the dimensionally continued interatomic potential. We fit it to
six accurate low-N DMC energies[8] for each scattering
length(see column 1 of Tables I–III) by minimizing the fol-
lowing quantity [23] with respect to the set of parameters
hVo,ajø hcn; ∀n:0ønøs−3j:

x2 = o
i=1

6 SEi
sDMCd − EsDPTdsNi ;Vo,a,hcnjd

si
D2

, s62d

where Ei
sDMCd is the DMC energy andsi is the statistical

uncertainty for a condensate with atom numberNi f24g. The
quantityEsDPTdsNi ;Vo,a ,hcnjd is the DPT energy approxima-
tion through first order given by Eq.s58d with interatomic
potential parametershVo,ajø hcn; ∀n:0ønøs−3j. The Q
probability is used to constrain the number of parameterss in
the fitting functionEsDPTdsNi ;Vo,a ,hcnjd, where

TABLE I. Ground-state energies in units"vho for small scatter-
ing length and low N. Column 2 contains DMC energies from Ref.
[8] (statistical uncertainty in parentheses). Column 3 contains our
many-body DPT energies. Columns 4 and 5 contain the GP[Eq.
(5)] and MGP energies[Eq. (7)], respectively. We use87Rb mass
and leta=100 a.u. andvho=2p377.87 Hz, which corresponds to
a=0.00433aho, in oscillator units.

N DMC DPT GP MGP

3 4.51036(2) 4.51035 4.51032 4.51032

5 7.53443(4) 7.53441 7.53432 7.53434

10 15.1537(2) 15.1537 15.1534 15.1535

20 30.640(1) 30.6396 30.638 30.639

50 78.96(1) 78.964 78.953 78.962

100 165.07(5) 165.089 165.06 165.11

TABLE III. Ground-state energies in units"vho for intermediate
scattering length and lowN. Column 2 contains DMC energies
from Ref.[8] (statistical uncertainty in parentheses). Column 3 con-
tains our many-body DPT energies. Columns 4 and 5 contain the
GP[Eq. (5)] and MGP energies[Eq. (7)], respectively. We use87Rb
mass and leta=1 000 a.u. andvho=2p377.87 Hz, which corre-
sponds toa=0.0433aho, in oscillator units.

N DMC DPT GP MGP

3 4.6033(5) 4.6032 4.6007 4.6024

5 7.8356(15) 7.8356 7.8265 7.8340

10 16.426(6) 16.426 16.383 16.426

20 35.475(15) 35.474 35.297 35.497

50 103.99(3) 103.991 102.96 104.21

100 245.4(1) 245.402 241.85 246.24

TABLE II. Ground-state energies in units"vho for large scatter-
ing length and low N. Column 2 contains DMC energies from Ref.
[8] (statistical uncertainty in parentheses). Column 3 contains our
many-body DPT energies. Columns 4 and 5 contain the GP[Eq.
(5)] and MGP energies[Eq. (7)], respectively. We use87Rb mass
and let a=10 000 a.u. andvho=2p377.87 Hz, which corre-
sponds toa=0.433aho, in oscillator units.

N DMC DPT GP MGP

2 3.3831(7) 3.38319 3.3040 3.3950

3 5.553(3) 5.5519 5.329 5.611

5 10.577(2) 10.5771 9.901 10.772

10 26.22(8) 26.2151 23.61 26.84

20 66.9(4) 67.01538 57.9 68.5

50 239.2(3) 239.18 196.12 243.45
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is the probability thatx2 should exceed a particular value by
chance, and in our casef25g the quantityn=6−s is the num-
ber of degrees of freedom in the fitting functionf26g. We
want to use the minimum number of parameters that extracts
all of the relevant physical information from the DMC ener-
gies, and yet does not overfit the DMC energies. Thus, the
number of parameters,s, is constrained to be the minimum
number of parameters whosex2 gives aQ probability greater
than 0.5. The value ofQ=0.5 is chosen as the cutoff in
order to avoid overfitting the DMC energies. Overfitting
is a serious concern as we are extrapolating our energies
to largeN, and we wish to capture the essential informa-
tion without fitting it to statistical fluctuations in the DMC
energies. We founds=4 to be the optimal number of pa-
rameters in theEsDPTd fitting function that gives aQ prob-
ability of at least 0.5 from the weighted least-squares fit to
the six low-N sN,100d DMC energies for all three scat-
tering lengths considered in this studyf27g.

V. GROUND-STATE ENERGY

In this section we report calculations for a spherical con-
densate with trap frequencyvho=2p377.87 Hz. We con-
sider three scattering lengths:a=100 a.u. or 0.004 33aho in
oscillator unitssaho=Î" /mvhod approximately equal to the
natural87Rb value and multiples 10 and 100 times this value,
i.e., a=1000 a.u. or 0.0433aho and a=10 000 a.u. or
0.433aho. The scattering lengtha=0.433aho is especially rel-
evant to experiments observing beyond-mean-field effects,
because condensates with a scattering length of 10 000 a.u.
have been achieved in nonspherical traps[3].

A. Small scattering length

For a=0.004 33aho, we determine thes=4 interatomic po-
tential parameters, in the dimensionally scaled harmonic-
oscillator units defined in Eqs.(16) and (17), to be Vo
=0.0257, a=−0.464, co=1.402, and c1=0.109, with x2

=0.20 andQ=0.90. Table I shows a low-N comparison of
energies fora=0.004 33aho. Column 2 contains accurate
DMC energies for a hard-sphere potential calculated previ-
ously in Ref.[8], where the statistical uncertainty is given in
parentheses. Column 3 contains our many-body DPT ener-
gies, while columns 4 and 5 contain GP and MGP energies,
which are calculated by using the wave functions from Eqs.
(5) and (7), respectively, in the corresponding energy func-
tionals[1]. In Fig. 1, we plot the energy shift per atom due to
the interatomic interactions(i.e., we subtract the ideal-gas
energy 3N/2, in units of"vho) for the GP, MGP, and DPT
extrapolation for largerN. There is very little difference be-
tween any of these interaction energies because, for such a
small scattering length and moderate atom number, the con-
densate is very dilute and weakly interacting. Consistent with
low-N DMC calculations by Blume and Greene[8], the

many-body DPT energy is slightly above the MGP and GP
energies for low and moderateN, with the MGP energy be-
ing slightly above the GP energy. Going to higherN (beyond
that shown in the plot), near 104 atoms the DPT energy falls
below the GP energy.

B. Large and intermediate scattering length

The s=4 interatomic potential parameters for the large
scattering lengtha=0.433aho are found to beVo=4.617
3107, a=−4.211, co=1.555, andc1=5.00310−3, with x2

=0.23 andQ=0.89. In Table II and Fig. 2 fora=0.433aho, it
can again be seen that the MGP interaction energy lies above
GP, but the DPT interaction energy is now sandwiched be-
tween MGP and GP. These results are also consistent with
accurate low-N DMC calculations in Ref.[8], which show
MGP overestimating the ground-state energy fora
=0.433aho for small N. However, as one increases the num-
ber of atoms beyond that displayed in Fig. 2, one finds that
the low-order many-body DPT interaction energy eventually
falls below GP above 104 atoms.

The intermediate-a sa=0.0433ahod interaction parameters
are found to beVo=0.645, a=−0.837,co=1.3875, andc1
=0.0889, wherex2=0.0047 andQ=0.998. Figure 3 shows
the DPT interatomic energy falling below GP at a few hun-
dred atoms, as opposed to approximately 104 atoms for large
and smalla.

C. Discussion

The validity of our extrapolated DPT approach is demon-
strated by the results for smalla. For such a small scattering

FIG. 1. Interatomic energy per atom vs number of condensate
atoms for small scattering length. We use87Rb mass and leta
=100 a.u. andvho=2p377.87 Hz, which corresponds toa
=0.004 33aho, in oscillator units. Circles refer to the MGP energy
from the solution of Eq.(7), plus signs, slightly below the circles,
refer to the GP energy from the solution of Eq.(5), and the dashed
line refers to the many-body DPT energy. Interaction energies are
obtained by subtracting the ideal-gas energy 3N/2 from the total
energy. Energies are given in oscillator unitss"vhod.
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length the mean-field GP energy is expected to be very close
to the exact energy since we are in a dilute gas regime where
many-body effects should be minimal. Indeed we see in Fig.
1 that there is little difference between the mean field and
DPT energies fora=0.004 33aho validating our approach.

The low-N DMC energies are a shade higher than the
mean-field result and our extrapolated DPT energies remain
a little higher than the mean-field result ofN=10 000 atoms.
We attribute this to the inclusion in the DPT approach of
correlation effects beyond mean field, and in this regard, as
noted in the Introduction, the exact, fully correlated result for
the homogeneous unconfined system also lies above the
mean-field result[15]. However, we take the fact that the
DPT result drops below the mean-field result beyondN
=10 000 to be an indication that the first-order DPT extrapo-
lation has been extended beyond its range of validity. Pre-
sumably higher orders in the DPT expansion are needed be-
yond N=10 000.

For large scattering lengths such asa=0.433aho, the con-
densate has entered a density regime where the mean-field
approximation is no longer accurate and from Fig. 2 the GP
approximation is clearly seen to fail. The DPT extrapolation
agrees with the MGP approximation out to a few hundred
atoms. As N increases, the DPT result drops below the
shape-independent MGP result, and the difference gets larger
asN becomes larger. The MGP energy functional, Eq.(6), is
expected to yield energies that are too high asN becomes
larger since, as discussed following Eq.(7), it is the inhomo-
geneousanalog of the first two terms of thehomogeneous
gas expansion and neglects the logarithmic term which is
negative in this regime. In fact, a simple estimate shows that
the correction to the mean-field in Eq.(3), the sum of the last
two terms, is already negative fora=0.433aho for only a
single atom[28]. This would seem to indicate that higher-
order terms which are shape dependent are needed in the
local-density approximation corresponding to Eq.(3). That
is, the energies depend on the detailed shape of the potential,
in this case the hard-sphere potential. Although the accurate
DMC result indicates that the shape-independent mean field
differs by only 2% from the accurate hard-sphere result at
N=50 (see Table II), our DPT extrapolation(see Fig. 2) in-
dicates that this difference, and also the difference from the
MGP result, grows and becomes quite large byN=2000.

The DPT result drops below the mean-field result beyond
N=10 000 and, as for the small scattering length situation,
this is an indication that the Langmuir-order DPT extrapola-
tion has been extended beyond its range of validity and that
higher orders in the DPT expansion are needed at very large
N.

At intermediatea (i.e., a=0.0433aho) the DPT energies
are likewise sandwiched between the GP and MGP results.
Nonetheless, while the DPT energy for large and smalla
does not fall below GP energy until aroundN=104 atoms,
Fig. 3 shows that for intermediate-a the DPT result falls
below the GP result at a few hundred atoms. For this inter-
mediatea, the interaction parameters are determined from
exact DMC energies, but in a nearly shape-independentden-
sity regime[i.e., nTFs0da3,10−4], and then extrapolated into
a shape-dependent regime[i.e., nTFs0da3.10−3]. The ex-
trapolated energies appear qualitatively to follow the three-
term local-density approximation of Eq.(3), which includes
the logarithmic term but not higher-order, shape-dependent
corrections, and falls below the mean-field first term for large
enoughna3. This is to be expected since the intermediate-a
potential parameters were calculated in a nearly shape-

FIG. 2. Interatomic energy per atom vs number of condensate
atoms for large scattering length. We use87Rb mass and leta
=10 000 a.u. andvho=2p377.87 Hz, which corresponds toa
=0.433aho, in oscillator units. Circles refer to the MGP energy from
the solution of Eq.(7), plus signs refer to the GP energy from the
solution of Eq.(5), and the dashed line refers to the many-body
DPT energy. Interaction energies are obtained by subtracting the
ideal-gas energy 3N/2 from the total energy. Energies are given in
oscillator unitss"vhod.

FIG. 3. Interatomic energy per atom vs number of condensate
atoms for intermediate scattering length. We use87Rb mass and let
a=1 000 a.u. andvho=2p377.87 Hz, which corresponds toa
=0.0433aho, in oscillator units. Circles refer to the MGP energy
from the solution of Eq.(7), plus signs refer to the GP energy from
the solution of Eq.(5), and the dashed line refers to the many-body
DPT energy. Interaction energies are obtained by subtracting the
ideal-gas energy 3N/2 from the total energy. Energies are given in
oscillator unitss"vhod.
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independent density regime and so the low-order DPT terms
do not uniquely relate to the hard-sphere potential. Other
potentials, with the sameD=3 scattering length, when di-
mensionally continued away fromD=3 will have the same
Lewis and Langmuir terms as the hard-sphere potential when
fitted to similarly accurate low-N shape-independent DMC
data. Thus the intermediate-a DPT extrapolation seen in Fig.
3 follows the shape-independent terms in the expansion of
Eq. (3) with the DPT energy falling below the GP result at a
few hundred atoms. To accurately extrapolate the DPT en-
ergy into the shape-dependent regime at intermediatea will
require us to include the next term in the series which will
manifest shape dependence. It should be noted that the re-
duced extrapolation range for intermediatea is not due to
overfitting, the largeQ-probability for four-parameters not-
withstanding. The dramatic increase inQ from s=3 to s=4
parameters indicates underfitting for anys,4. Moreover,
varying the fourth parameter above and below the optimal fit
to lower theQ probability to 0.5 produces results with the
same limited range of validity noted above.

The situation, though, is different for the smalla and large
a DPT results through Langmuir order where they have a
significantly larger range of validity. We note that the fitted
large-a (e.g.,a=0.433aho) DPT potential parameters contain
shape-dependent information since they are determined in a
shape-dependent density regime. On the other hand, such as
for the intermediate-a extrapolation, the low-a (e.g., a
=0.004 33aho) potential parameters were also determined in
a shape-independent regime, but the extrapolated energies
have yet to reach the shape-dependent regime. The local-
density approximation of Eq.(3) and Ref.[28] suggests that
the condensate does not enter the small-a shape-dependent
regime until there are more than 109 atoms. The fact that the
DPT energy falls below the GP energy at aroundN=104

atoms rather than 109 atoms indicates that higher-order terms
are needed in the DPT expansion to obtain an accurate en-
ergy at lowa before the shape-dependent regime is reached.

VI. EXCITATIONS

As we have noted in the Introduction, the additional com-
pression found in excitations will accentuate the breakdown
of the mean-field approximation. We can easily calculate ex-
citation properties of the condensate, such as frequencies,
from the normal-mode structure of many-body DPT. The
analytical frequencies in Eq.(55), v̄0− andv̄0+, correspond to
the center of mass and breathing modes of the condensate,
respectively. In units of the trap frequencyvho, the center-
of-mass frequency equals 2. We also calculate the frequen-
cies of small oscillation about the ground-state wave func-
tion within the mean-field approximation by solving the
linearized GP equation[1].

Using the hydrodynamic theory of superfluids[29] based
on the GP equation, Stringari found the following large-N
approximation to the mean-field dispersion relation[30]:

vsnr,ld = vhos2nr
2 + 2nrl + 3nr + ld1/2, s64d

wherenr is the number of radial nodes andl is the angular
momentum of the excitation. Despite the significant depar-

ture from the noninteracting casefv=vhos2nr + ldg, the mean-
field frequency does not depend on the scattering length or
the number of atoms in the Thomas-Fermi limit. This curious
lack of dependence on the mean-field interaction strength
Na/aho in the strongly interacting limit can be seen as a
consequence of the relationship between the spatial extent of
the condensate and the speed of sound at the center of the
condensatef1g. The excitation frequency in the phonon re-
gime is given byv,csr =0;Na/ahod /lsNa/ahod, where the
wavelengthlsNa/ahod associated with the excitation and the
speed of sound at the center of the gascsr =0;Na/ahod are
both functions ofNa/aho. In the phonon regime, the excita-
tion wavelength for an inhomogeneous gas is on the order of
the size of the gas, which increases with increasingNa/aho.
As the mean-field interaction strength increases, the speed of
sound increases in the same ratio as the increase in the wave-
length of the phononlike excitation. This lack of dependence
on the number of atoms and the scattering length clearly
becomes a problem in the strongly interacting regime, as can
be seen in Fig. 4. For intermediate scattering lengths and
moderate number of atoms, the excitation frequency is accu-
rately described by the hydrodynamic approximation of Eq.
s64d, which is independent ofN. However, just like the TF
approximation for the ground-state energy of the GP equa-
tion, Eq. s64d is a good approximation of the mean-field
theory in the strongly interacting limit but the mean-field
theory itself breaks down.

In Ref. [31], Pitaevskii and Stringari consider beyond-
mean-field corrections to the collective excitation frequen-
cies in Eq.(64). Defining vM as the mean-field monopole
frequency in the hydrodynamic limit[nr =1, l =0 in Eq.(64)],
v as the hydrodynamic-limit beyond-mean-field frequency,
and writingv=vM +dvM (d is not to be confused with 1/D

FIG. 4. Breathing mode frequency in units ofvho vs N for large
scattering length. We use87Rb mass and leta=10 000 a.u. and
vho=2p377.87 Hz, which corresponds toa=0.433aho, in oscilla-
tor units. The solid line corresponds to Eq.(65), the first correction
to the monopole frequency calculated by Pitaevskii and Stringari
[27]. The dashed line is the numerical solution of the linearized GP
equation. The dash-dotted line refers to the DPT normal-mode fre-
quencyv0+ from Eq. (55).
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as dvM is the shift from the mean-field monopole fre-
quency), Stringari and Pitaevskii use the homogeneous gas
first-order correction[i.e., the second term in Eq.(3)] to the
Bogoliubov equation to find the following beyond-mean-
field, but still shape-independent, fractional shift of the
monopole(breathing mode) frequency in the hydrodynamic
limit [27]:

dvM

vM
=

63

256Î2
f15Nsa/ahod6g1/5. s65d

In Fig. 4 we compare the DPT breathing mode frequency
v0+ in Eq. (55) with the mean-field(i.e., the solution of the
linearized GP equation[1]) and the beyond-mean-field cor-
rection, Eq.(65), to the monopole(breathing) mode of fre-
quency in the strongly interacting regime,a=0.433aho. The
lack of dependence on the interaction strength for the mean-
field excitation frequency in Eq.(64) is clearly a detriment in
this regime, in which a large beyond-mean-field shift of the
breathing mode frequency is predicted by both DPT and the
beyond-mean-field calculation by Stringari and Pitaevksii.
For N=2000 atoms we predict a fractional shift of 75%
above the mean-field prediction while Eq.(65) gives a 50%
shift.

VII. SUMMARY

Analytical and numerical results beyond the mean-field
approximation have been obtained for the ground-state en-
ergy and breathing mode frequency of spherical atomic
Bose-Einstein condensates with scattering lengths ranging
from weakly to strongly interacting. We perform a low-order
dimensional perturbation calculation in whichN enters as a
simple parameter in the energy expansion yielding results for
all N from a single calculation. In this “proof-of-concept”
paper we use a hard-sphere interaction, which we dimension-
ally continue so that it is differentiable in the infinite-D limit.
This dimensional continuation results in a shape-dependent
soft-sphere potential at largeD and a hard sphere with radius
equal to the scattering length in the physicalD=3 limit. The
large-D soft-sphere parameters are optimized for the ground-
state energy.

We compare our semianalytical ground-state energy re-
sults with numerical solutions of the GP and modified GP
equations for Bose-Einstein condensates with three different
experimentally realizable scattering lengths[3], in the
weakly, intermediately, and strongly interacting regimes. As
expected, there is practically no deviation from the mean-
field ground-state energy for small scattering length up to
very largeN validating our approach. For intermediate and
large scattering lengths, though, the breakdown of the mean-
field becomes quite noticeable even for a low number of
atoms. At large scattering lengths our many-body DPT re-
sults seem to be accurate up to a fairly large atom number
sN<104d. This is quite remarkable, given the complexity of
the problem which involves approximatelyN2/2 interac-
tions. We also calculate collective excitation frequencies
from our first-order normal-mode frequencies. In Eq.(55),
the analytical frequencyv0+ corresponds to the breathing

mode of the condensate. The additional compression in-
volved in excitations heightens the deviation from the mean-
field result, and for the large scattering length, we predict a
very large beyond-mean-field correction to the condensate
breathing mode frequency. Fora=0.433aho, for example, we
predict a 75% fractional shift above the mean-field breathing
mode frequency forN=2000 atoms.

For largerN, higher-order DPT terms, which are small for
low and moderateN, will become significant and will need to
be included in the calculation. Our studies suggest that the
regime of validity through Langmuir order is more limited
for intermediate scattering lengths since the transition from
near shape independence to shape dependence occurs beyond
the region of the reference data, but yet at moderate values of
N. Incorporating higher-order terms in the perturbation series
will extend the range of validity to largerN.

The results summarized above were obtained using a
shape-dependent hard-sphere potential atD=3, a spherical
trap, and perturbation terms through Langmuir order(first
order). An obvious extension to this “proof-of-concept”
study is the determination of higher-order terms in the per-
turbation series. As discussed in Sec. II C, the leading-order
DPT wave function is a product of one-dimensional
harmonic-oscillator wave functions with frequencies given
by the first-order term of the energy series. From this wave
function, one can then use ordinary perturbation theory to
extend our results to include corrections beyond first order.
For low N and low densities[ns0da3ø2310−3] our ground-
state energies and excitation frequencies will depend only on
the s-wave scattering length and not on any other details of
the interatomic potential as demonstrated by Blume and
Greene[8]. However as the condensate density becomes
larger, the condensate energy and frequencies will become
dependent upon the details of the particular potential. A com-
parison of results using other shape-dependent interatomic
potentials such as a realisticRb-Rb interatomic potential
should provide further insight into this regime. In addition to
including higher-order perturbation theory and testing other
shape-dependent potentials, the generalization of the DPT
formalism from spherical to cylindrical coordinates would
enable a study of systems with axial symmetry, the predomi-
nant symmetry in current BEC experiments.
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APPENDIX A: HOMOGENEOUS LIMIT OF THE GP
AND MGP EQUATIONS

Provided the density of the nonuniform gas is slowly
varying, the uniform low-density expansion of Eq.(3) can be
a useful tool for understanding the qualitative features of the
inhomogeneous gas theory. We now show that one recovers
the first two terms of the uniform Bose gas expansion of Eq.
(3) from the GP and MGP energy functionals[Eqs. (4) and
(6)] in the homogeneous limit. We first rewrite the GP energy
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functional, Eq.(4), in terms of the ground-state densityn
=Nc2:

EGPfng =E drF "2

2m
u=Înu2 +

1

2
mvho

2 r2n +
2p"2a

m
n2G ,

sA1d

where we have assumed a large number of atoms so thatN
−1<N. In the limit of a homogeneous gas in a box of vol-
umeV, the quantum pressure and the harmonic trapfthe first
and second terms in Eq.sA1dg become zero and the nodeless
GP wave function becomesc=Î1/V. The inhomogeneous
energy functional, Eq.sA1d, then reduces to the leading-
order term of the homogeneous energy density expansion,
Eq. s3d, wheren=N/V,

EGP

N
→ 2p"2na

m
. sA2d

In the homogeneous limit, the mean-field term of the GP
equation is equivalent to the leading-ordersBogoliubovd
term of the low-density expansion, Eq.s3d.

Similarly, rewriting the MGP energy functional in terms
of the ground-state density,

EMGPfng =E drF "2

2m
u=Înu2 +

1

2
mvho

2 r2n +
2p"2a

m
n2

3S1 +
128

15Îp
a3/2ÎnDG , sA3d

and, as above, taking the homogeneous limit, one finds that
the nonlinear terms in the MGP energy functional, Eq.s6d,
are equivalent to the energy per particle for a homogeneous
gas in Eq.s3d with the logarithmic term neglected:

EMGP

N
→ 2p"2na

m F1 +
128

15Îp
sna3d1/2G . sA4d

APPENDIX B: G AND F MATRICES

One of the advantages of dimensional perturbation theory
is the simplifications that occur in the large-dimension limit,
a limit in which one is able to find analytical expressions for
the normal-mode frequencies of oscillation about the sym-
metric configuration. In particular, since we are dealing with
identical particles in a totally symmetric configuration(the
Lewis structure) in which all the particles are equivalent, the
matricesF, G, andGF, collectively denoted byQ, display a
high degree of symmetry with many identical elements. Spe-
cifically, their symmetry can be summarized by the follow-
ing:

Qi,i = Qi8,i8 ; Qa,

Qi,j = Qi8,j8 ; Qb si Þ jd and si8 Þ j8d,

Qij ,i = Qi8 j8,i8 ; Qc si Þ jd and si8 Þ j8d,

Qjk,i = Qj8k8,i8 ; Qd si Þ j Þ kd and si8 Þ j8 Þ k8d,

Qi,i j = Qi8,i8 j8 ; Qe si Þ jd and si8 Þ j8d, Qi,jk

= Qi8,j8k8 ; Qf si Þ j Þ kd and si8 Þ j8 Þ k8d,

Qij ,i j = Qi8 j8,i8 j8 ; Qg si Þ jd and si8 Þ j8d,

Qij ,jk = Qi8 j8,j8k8 ; Qh si Þ j Þ kd and si8 Þ j8 Þ k8d,

Qij ,kl = Qi8 j8,k8l8 ; Qi si Þ j Þ k Þ ld

and si8 Þ j8 Þ k8 Þ l8d.

sB1d

Note the indices in the relationships above run over all par-
ticles s1,2, . . . ,Nd with the exceptions noted in the far right
column. For example,Qi,j =Qi8,j8;Qb, where si Þ jd and
si8Þ j8d, means that all off-diagonal elements of the pure
radial quadrant ofQ are equal to the same constantQb. Simi-
larly, Qij ,kl=Qi8 j8,k8l8;Qi, where si Þ j ÞkÞ ld and si8Þ j8
Þk8Þ l8d mean that any elements ofQ in the pure angular
quadrant that do not have a repeated index are all equal to
the same constantQi. We remark here thatG andF are also
symmetric matrices(GT=G andFT=F); however, while the
productGF does display the high degree of symmetry of Eq.
(B1), it is not a symmetric matrix.

We now give the nonzero elements of theG andF matri-
ces needed for the matrix productGF of Eq. (50). TheG and
F matrices are defined by the first-order 1/D Hamiltonian of
Eq. (35). We can determine the elements ofG by comparing
the differential term in Eq.(35) with T of Eq. (19) expanded
to first order in 1/D. Using the notation in Eq.(B1), the
nonzero elements of theG matrix are found to be

Ga = 1,

Gg = 2
s1 − g`

2d
r̄`

2 = 4s1 − g`ds1 + g`df1 + sN − 1dg`g,

Gh =
g`s1 − g`d

r̄`
2 = 2g`s1 − g`df1 + sN − 1dg`g, sB2d

where the matrix elements have been evaluated at the
infinite-D symmetric minimum. Likewise, using Eq.(37), the
nonzeroF matrix elements are

Fa = 1 +
3

4r̄`
4

1 + sN − 2dg`

s1 − g`df1 + sN − 1dg`g
+

V̄oc̄0

2
sN − 1d

3sech2 QFc̄os1 − g`dY2tanhQ −
1 + g`

2r̄`
Î1 − g`

+ o
n=1

s−3 S2n + 1

2
r̄`

2n−1s1 − g`dn−1/2fs2n − 1dg` − s2n + 1dg
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+ 2nār̄`
2n−2s1 − g`dn−1fsn − 1dg` − ngDc̄nG ,

Fb =
V̄oc̄o

2
sech2 QFc̄os1 − g`dY2tanhQ +

1 + g`

2r̄`
Î1 − g`

+ o
n=1

s−3 S2n + 1

2
r̄`

2n−1s1 − g`dn−1/2fs2n + 1dg` − s2n − 1dg

− 2nār̄`
2n−2s1 − g`dn−1fng` − sn − 1dgDc̄nG ,

Fe = −
g`

2r̄`
3

1 + sN − 2dg`

s1 − g`d2s1 + sN − 1dg`d2 +
V̄oc̄o

2
sech2 Q

3F− c̄or̄`Y2tanhQ +
1

2Î1 − g`

+ o
n=1

s−3
1

2
ss2n + 1d2

3r̄`
2ns1 − g`dn−1/2 − s2nd2ār̄`

2n−1s1 − g`dn−1dc̄nG ,

Ff =
g`

2

2r̄`
3s1 − g`d2f1 + sN − 1dg`g2 ,

Fg =
1

2r̄`
2s1 − g`d3s1 + sN − 1dg`d3f1 + 3sN − 2dg` + s13

− 12N + 3N2dg`
2 + sN − 2ds4 − 3N + N2dg`

3g

+
V̄oc̄o

2
sech2 QF c̄or̄`

2

1 − g`

Y2tanhQ +
r̄`

2s1 − g`d3/2

− o
n=1

s−3 S s2n − 1ds2n + 1d
2

r̄`
2n+1s1 − g`dn−3/2

− 2nsn − 1dār̄`
2ns1 − g`dn−2Dc̄nG ,

Fh =
− g`

4r̄`
2s1 − g`d3s1 + sN − 1dg`d3f3 + s5N − 14dg`

+ s11 − 9N + 2N2dg`
2g,

Fi =
g`

2s2 + sN − 2dg`d
r̄`

2s1 − g`d3s1 + sN − 1dg`d3 . sB3d

For more detail see Ref.[17].
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