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Beyond-mean-field results for atomic Bose-Einstein condensates at interaction strengths near
Feshbach resonances: A many-body dimensional perturbation-theory calculation
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We present semianalytical many-body results for energies and excitation frequencies for an inhomogeneous
Bose-Einstein condensate over a wide range of atom nunmibdos both smalls-wave scattering lengths,
typical of most laboratory experiments, and large scattering lengths, achieved by tuning through a Feshbach
resonance. Our dimensional perturbation treatment includes two-body correlations at all orders and yields
analytical results through first order by taking advantage of the high degree of symmetry of the condensate at
the zeroth-order limit. Becaude remains a parameter in our analytical results, the challenge of calculating
energies and excitation frequencies does not rise with the number of condensate atoms. In this proof-of-concept
paper the atoms are confined in a spherical trap and are treated as hard spheres. Our many-body calculations
compare well to Gross-Pitaevskii results in the weakly interacting regime and depart from the mean-field
approximation as the density approaches the strongly interacting regime. The excitation frequencies provide a
particularly sensitive test of beyond-mean-field corrections. For exampl&J$@000 atoms and an experi-
mentally realized large scattering length @ 0.433x,, (a,,=V#%/Mmwy,,) We predict a 75% shift from the
mean-field breathing mode frequency.
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[. INTRODUCTION independent approximation, have been based on a number of
theoretical methods including analytical corrections to the

. g GP equation due to quantum fluctuations about the mean
magnetlcally trapped alkalljmetal atoms has ggnerateq a colgaly [4,5] and a related approach from density-functional
siderable amount of experimental and theoretical activity i ;

. ) .r}heory[ﬁ], while others are based on numerical calculations
recent years. In typical BEC experiments, the average d'ss'uch as the diffusion Monte Car®MC) method[7,8] or
S . R, : %% correlated basis function appro €n10]. In this paper,
of the atomic interactions, which is characterized by the, . ¢ ther explore beyond-mezFr)]-fiZ{Id e;fects usiﬁgpmany-
s-wave scattering length. The mean-field Gross-PitaevskKii body dimensional perturbation theofPPT), a many-body
(GP) equation has been instrumental in describing the prOpélpproach that includes correlation beyond mean field at all

;ernes of tthedse dwea'kly An;er%ctmg tiolndensa(m? Ref.([jl]l perturbation orders. We use a shape-dependent interatomic
oran extended reviewA fundamental assumption underly- potential, and the number of condensate atdWigppears as

ing the derivation of the GP equation is that the precise N3 parameter in our results which are analytical, thus making

e naeg, many-body calculations for anyf much less involved
approximation, aiso called the pseudopotential approXimag, oy even solving the mean-field GP equation. We also cal-

tion, which USes a zero-range pqtenUaI, as opposed to llate excitation frequencies, which naturally arise out of our
extended potential with a well-defined shape: first-order, harmonic energy correction

Even though this investigation of beyond-mean-field ef-
a(r). (1) fects is concerned with inhomogeneo(sapped atomic
BEC's, it proves useful to mention a few properties of the
IQomogeneouguniform) Bose gas theory, since the two sys-
é@ms will share many features, at least qualitatively, when the
q]ensity of the inhomogeneous gas is slowly varying. The
qow—density expansion of a homogeneous Bose gas of hard

The achievement of Bose-Einstein condenséB#sC) in

wh%a

4
Vpseud((r )=

Despite its success in the weakly interacting regime, the G
equation does not include many-body effects, such as corr
lation, and its assumed shape-independent approximati

breaks down in the strongly interacting regif®. More- ; :
over, in recent experiments the presence of Feshbach res%p_heres of Mase 1S well knowr_l [11_13'. The expansion
erﬁ,pes on an improved, though still shape-independent, poten-

nances has enabled the creation of condensates in a regim il over the pseudopotential of B, called the regularized
which the predictions of the mean-field theory are measur- P P ), 9

ably lacking[3], allowing the condensate to act as a test becJ:erm' pseudopotential:
for fundamental many-body physics beyond the mean-field )
approach. Recent theoretical studies, performed to quantify Vv )= Anhia
the breakdown of the mean-field theory and the shape- reg-pseud

5(r)%r. (2

The ground-state energy per particle, expanded in terms of
*Email address: dwatson@ou.edu the gas parametema®, is
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8(4m - 313) the ground-state energy for spherical condensates in both the
(na®)In(na®) strongly and weakly interacting regimes.
We compare our many-body results with two nonlinear
field equations that describe inhomogeneous condensates:
+ O(nas)], (3)  the mean-field Gross-Pitaevskii equation and a modified GP
equation that contains beyond-mean-field quantum correc-
tions. The GP energy for an isotropically trapped BEC is
wheren is the uniform number density. In this approxima- calculated from the following energy functional:
tion, it is assumed that the gas is dilute, that is, the average

27h? 12
mh nal1+ /B_(na3)1/2+
m /

E
N 5V

interatomic spacing is much larger than the/ave scattering Ecdly] = f dr {h_zw Y2+ }mwz r2|yf?

length, stated mathematically aa®< 1. For larger densities, P 2m 2 ho

higher-order terms in the expansion beyond those in(8q. 20h4(N - 1)a

are needed, and these terms depend on the detailed shape of + | |4] (4)
the potentia[14]. The leading-order term of EqR) was first m

derived by Bogoliuboyf11] and is equivalent to the mean-
field term in the Gross-Pitavskii equatideee below. The
term in Eq.(3) of order(na®)®? was derived by Lee, Huang,
and Yang[12], and the logarithmic term was first obtained
by Wu [13]. Lieb and Yngvasomh15] showed that for a re- P N 47h*(N- 1)a )
pulsive, non-negative, finite range, spherical, two-body po- - ?nv + > M@hdl L
tential, the Bogoliuobov mean-field terBY N=2##2na/mis
the lower bound for the exact ground-state energy of a ho1n Eq. (5), u is interpreted as the chemical potential in the
mogeneous Bose gas. Giorgiti al. [7] found that Eq(3)  Bogoliubov approach and as the ground-state orbital energy
continues to be a good approximation for higher densitiesn the Hartree-Fock approagh8]. The presence of the quan-
provided the logarithmic term is dropped. At intermediatetity (N-1) in the nonlinear term, rather thad follows from
densities(na®*>1.385x 10°°) the logarithmic term causes number-conserving Schrédinger quantum mechanics with a
the overall correctiorisecond and third terms in brackets in product of orbitals as the initial staf¢8].
Eg. (3)] to the Bogoliuobov mean-field energy to become The so-called modified GRMGP) equation includes an
negative, thus, violating the lower bound. For a narrow rangeanalytical quantum correction to the mean-field contribution
of na® the logarithmic term does actually improve the energyfrom the GP equatiofd,5]. This correction takes the form of
over the mean-field term. an additional nonlinear term to the GP energy functional,
The validity condition for a homogeneous gas to be dewhich arises from the ground-state depletion of the conden-
scribed by the shape-independent approximation ofBds  sate due to excitations. The MGP energy is calculated from
given by the diluteness conditiame®< 1. This condition is  the following energy functional:
often invoked for the inhomogeneous system as well, except, ) .
since the density is not uniform, one uses some other chat- _ h 2
acteristic density of the gas, usually the peak density at th merL Y] _f dr[EnW‘MZ-Ir Emwh°r2|¢|2
center of the tram(0) [8,10,14. However, it is possible for

wherewy, is the harmonic frequency of the isotropic trap and
¢ is the ground-state field, which is given by the solution of
the GP equation:

=i (5

the condensate to be in a strongly interacting regime where + 2mh?*(N - 1)a|¢|4 1+ 128 a®2(N - 1)M2y
the shape-independent approximation fails, and to still be m 57 '
dilute (i.e.,na®<1). In this paper, we use DPT to study both 6)

weakly and strongly interacting systems. In the latter case,
we examine systems with both large atom number and largghere the field is given by the following nonlinear

scattering length. Schrédinger equation:

We consider three scattering lengths for a systeniNof
trapped atoms: the natur&Rb scattering length, and mul- A2 _, 1, , 4wk (N-Da .,
tiples 10 and 100 time§’Rb’s value. Condensates at this _gnv o Mpe!™ m [

largest value of the scattering length have been created in the

lab [3]. As mentioned earlier, the shape-independent approxi- % (1 +
mation is one of the underlying weaknesses of the GP equa-

tion. In this paper, “a proof-of-concept” study, we use a po-

tential with a simple shape, namely, that of a hard sphere, fofhe MGP energy was derived by Braaten and Nietpby

the interatomic interactions. This is a potential of choice forcarrying out a self-consistent one-loop calculation through
many-body theoretical studies since it is purely repulsive anégecond order in the gradient expansion. In Es.and (7)

has ans-wave scattering length equal to its radius. In a pre-we have dropped the additional nonlocal term in E.of
vious paper, we introduced the methods of many-body DPRef.[4] that accounts for edge effects since it is found to be
for a general system of identical, interacting particles undesmall [4,8]. The stationary MGP solution of Eq7) mini-
spherically symmetric quantum confinemefit7]. In the  mizes the MPG energy functional, E(5). Although it in-
present study, we use this many-body formalism to calculateludes some effects due to correlation, the MGP equation

:Tiaf"z(l\l - 1)%) } y=pp. ()

A
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like the GP equation, is still independent of the shape of the Veontri) = %mwﬁori% (11)
interatomic potential.

The nonlinear term in the GP energy functional, B, e take the interatomic potential to be a hard sphere of
reproduces the leading-order term of the homogeneous epsgiysa:
ergy density expansion, E3), in the uniform limit. Like-
wise, the nonlinear terms in the MGP energy functional, Eq. - ro<a
(6), reproduce the homogeneous-gas energy per particle of Vine(rij) = ’ 4
Eq. (3) with the logarithmic term neglecte@ee Appendix
A). Equation(6) is the inhomogeneous generalization of the
first two terms in Eq(3). where a is the sswave scattering length of the condensate

We compare our results with the GP and MGP equationgtoms. We dimensionally continue the hard-sphere potential
(5) and (7), respectively, and discuss the relevance of theso that it is differentiable away fro»=3, allowing us to
logarithmic term in Eq.3) to the range of validity of our perform the dimensional perturbation analy&iee Ref[17]
DPT results. In addition to predicting ground-state propertiess well as a later discussion in this pgpdhus, we take the
of the condensate, we also calculate excitation propertiegnteraction to be
such as frequencies, which arise naturally from our first-
order calculation. Excitations involving compression such as V. C 3
the breathing mode will emphasize the breakdown of theth(rij):ﬁ 1 -tanh ﬁ(r” —a—B(a—a)>
shape-independent mean-field approximation. An advantage
of many-body DPT over purely numerical methods is the ( s-3 )]

X ,

12
0, rij = a, (12

analytical nature of its results which offer insight into the 1+(1-3D)2 cyrf" (13)
many-body physics of BEC. n=1
In Sec. Il we discuss the formalism of many-body DPT
and give analytical expressions for the ground-state energwhereD is the Cartesian dimensionality of space. This inter-
and normal-mode frequencies. We also introduce our dimeraction becomes a hard sphere of radius the physical,
sionally continued parametrization of the hard-sphere poter®=3, limit. The others constants(V,, «, and{c,;n:0
tial and in Sec. IV we describe how the many-body interac<n<s-3}) are parameters that allow us to fine-tune the
tion parameters are optimized to give the best energiesargeD shape of the potential and optimize our results
Results and interpretation of the ground state are given ithrough Langmuir(first) order (see Sec. IY. The simplest
Sec. V where we discuss the range of validity of our resultsossibility could have as few as two parametégsand c,,
in terms of the Iow-density expansion, Eg). In Sec. VI we with a¢=a and the remaining:nzo; however, we can have
give beyond-mean-field breathing mode frequencies and iny number of parameters for the most general and flexible
Sec. VIl we summarize and discuss how to improve anthotential. The form of the potential & # 3 is not unique.
extend our results. Other forms could be chosen with equal success as long as
the form is differentiable and reduces to a hard-sphere po-
tential at D=3. We simply choose a form that allows a
gradual softening of the hard wall.
A. The dimensionally scaled Schrédinger equation In this paper, we restrict our attention to spherically sym-
metric stategi.e., sswave states and we now transform the
Schrédinger equation to a form more suitable for dimen-
sional perturbation-theory analysis. The transformation, dis-
cussed fully in Ref[17], takes place in three steps. The first
N N1 N step is to transform the variables of Mllparticles, each with
HWY = [2 hi+> > gij]‘lf =EV, (8) D Cartesian components=(X;,Xiz, ... Xp) (1<i<N), to
=1 =1 j=i+1 internal coordinates, defined as thedimensional scalar ra-

II. FORMALISM

The N-body Schrédinger equation for a system of identi-
cal, trapped, interacting particles irdimensional Cartesian
coordinates is

dii r; of the N particles and the angle cosineg of the

W P 0 2 vz N(N-1)/2 angles between the radial vectors:
hi = - 2_ >+ Veont E Xy , (9)
m.,_q (9XiV =1
D
D 12 n=1/2%, (1<i=<N) and (14)
v=1
gij =Vim<[2 (XiV‘XjV)Zl ) (10
v=1

interatomic potential,H is the D-dimensional Hamil- i

. . . . D
where V. is the trapping potentialy,, is the two-bod
o e P Vi Y y; = cog ;) = (E xiVxJ-,,) / nr, (I<i<j<N).
tonian, andx;, is the vth Cartesian component of thén =t

particle. We have also assumed equal masad®sr the The second step is to carry out a similarity transformation
condensate atoms &t=0 K, which are confined by an of the Schrédinger equation resulting from the first step. The
isotropic, harmonic trap with frequenay,: transforming function
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X = (rqrpe -1y~ @-D2p-(D-1r4 (15)  will drop out of the Hamiltonian. In the infinite-dimension
limit, the particles behave as though they become infi-
nitely heavy and rest at the bottom of the infinleeffec-
tive potential, a potential that includes the trap potential
and contributions from the centrifugal-like and hard-
sphere potentials. The infinitB- energy becomes the
minimum value of the effective potentiédee Appendix A
of Ref.[19]).

As noted above, for a given set of trap parameterB® at
T — D? — D? —_ a =3, the energy of théd=3 Bose-Einstein condensate de-
M= DZ%ay,’ E= ﬁahoE, H= hEhOH’ a= \J’EDZEh ' pends only on the scattering length of the interatomic poten-

° tial and not the detailed shape of the potential. This is due to
o _ the long-wavelength nature of BEC's: for small to moderate
=—Vo, a==———, C,=V2D%c,, (16)  scattering lengths, the atomic wavelengths are not short
fiwng V2D %8y, enough to “resolve” the short-range detail of the potential.
_ However, for largeD the atomic wavelengths become very
= (V2D%a,,)?"c,,, short, since according to Eq4.8), (19), and(22) the scaled,
similarity-transformed Hamiltonian displays an effective
mass term equal t®2. Thus, unlike aD=3, the energy of

_ h _ 5 the largeb system is sensitive to the details of the potential.
8ho= "\ | — and  wpo= D wne (17 One may thinkprima facig that this is an indication that
ho the large-dimension limit is a poor starting point for a series

are the dimensionally scaled harmonic-oscillator length anéxpansion in terms of a perturbation parameter, in this case
dimensionally scaled trap frequency, respectively. The dis, since it appears not to reflect the long-wavelength nature
mensionally scaled harmonic-oscillator units of energy,of the condensate and displays a sensitivity to the details of
length, and time aréwno, ano, and Livy, respectively. All - he interatomic potential. These concerns are particularly
barred constant®, an,, wno, Vo, @, C,, @andc,) are held fixed acute since a large-order calculation for a lakyesystem
as D varies. For example, @ variesa is held fixed at a seems infeasible. These concerns, though, are resolved upon
value by requiring that it give the physical unscaled scattercloser inspection of the issues involved. Suppose one had

results in a Schrédinger equation in termsdef=y"1¥), in
which the first derivative terms of the Laplacian are re-
moved.

The third step is to regularize the lar@edimit of the
similarity-transformed Hamiltoniaty *Hy). We do this by
converting the variables to dimensionally scaled harmonic-
oscillator units(bars:

<
|

where

ing length atD=3. Finally, we arrive at actually found a perturbation scheme in some parameter
— — which at low orders displays an insensitivity to the precise
HO = (T+U+V)d=ED, (18) shape of the interatomic potential, as long as the perturbation

where parameter and scattering length are unchanged. Now what is

most important in a low-order perturbation calculation is that
P ] the energy be as close as possible to the ad@ueB result.

&2 I I
:__522 ﬁ EE Yik ~ YJYk

One could not, however, reasonably expect the energy at low
j#i ki T2 Ay 0y

orders to be both insensitive to the precise shape of the in-
(19 teratomic potential for fixed scattering length and, at the
same time, to differ only a small amount from the actDal

0] =3 condensate energy. The energy at low orders would al-
2 (o= DIN+1o- 11T , (200  most certainly be different from the actuak3 condensate.
i=1 8r T In fact, instead of being a liability, this large-sensitivity
to the details of the interatomic potential is actually to our
N v - (T advantage, enabling us to optimize our dimensional continu-
V=2, r ro+ 1-tanh ° (—i -a ation of the hard-sphere potential so that the low-order DPT
=12 1- 351 =1 =i+l 1-35\Y energy is as close as possible to the aciial3 result. We
3 o discuss this in detail in Sec. V.
—35(5—5))(1+(1 35)2 ﬁl—)] , (21) Actually the issue of long wavelengths a=1/3 and
1 2 short wavelengths for extremely smadllis a spurious con-

cern. At D=3 the zeroth-order wave function does have a
large-wavelength character, but further discussion of this is-
5=1/D (22)  sueis put off until Sec. Il C.

where the perturbation parameter is

andr;; = \r§+r 2r,rJyIl is the interatomic separation. The

quantity 7 is the derivative portion of the kinetic energy B. Leading-order energy term

T=7+U. As D becomes infinitely large, and— 0, the

entire differential part of the kinetic energy as well as a The infiniteD (56— 0) effective potential in dimensionally
portion of the interatomic and centrifugal-like potentials scaled harmonic-oscillator units of Eq46) and(17) is
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N ; N N
110 _ - 2y[2+(N-2)y..]  _
Vet = 2, (TZ_ + }le) Vo2 21 VoCoYsech © + 32 -
i=1 8ri r 2 i=1 j=i+l (1 - 700) \2[1 + (N - 1)700]
r— s-3 Wgn (29)
- o [ (L |
tan c0< % a) (1 + El o ) . (23 s
with Y=|1+2 [(2n+1cr2(1-.)"
One can see from the double-sum ternVig that the large- n=1
D interatomic potential has become a soft sphere of radius
approximatelya and height ¥,. The slope of the soft wall - 2nac,r 2" 1 - y,)" 2] | (30)

is determined by,, while the remainings—23) parameters
act to further refine the shape of the interatomic potential.
The development of DPT using the basic three-parameter ) )
potential(s=3) is discussed at length in RefL7]. C. Normal modes and first quantum energy correction

The s parameters are chosen with the goal of optimizing To obtain the 1D quantum correction to the energy for
the energy perturbation series through first ordef.im Sec.  large but finite values oD, we expand about the minimum
V we optimize the potential by fitting the energies throughof the D —« effective potential, Eq(23), and use the FG
first order to DMC energieg8] at low atom numberN  matrix method[20] to obtain the normal-mode frequencies
=<100), and since in our DPT analysis the number of atomsof the condensate. We first define a configuration vector con-
N is a parameter, we can readily extrapolate to laMjeiith-  sisting of allN(N+1)/2 internal coordinates
out large amounts of calculation. Further discussion on the

optimization procedure and the range of validity of the ex- Yy =0l o Y12 N - IN-1N) 5 (31
trapolation to largeN will follow in Secs. IV and V, respec-  whereT is the transpose operator. We make the following
tively. . o substitutions for all radii and angle cosines:
In scaled units, the zeroth-ord@ — «) approximation to
the energy becomes T=TL+ 8T, (32
E.. = V() ), (24) Vi = ¥t 02, (33

wherer., and v, are the radius and angle cosine at the mini-where =1/D is the expansion parameter, and we define a

mum of V. Assuming a totally symmetric configuration displacement vector consisting of the internal displacement
coordinategprimed in Eqs.(32) and(33)]

ri=r,(I<i=N) and 5=y (1<i<j=N),

(25) y'= (T3l oo T Vi Vg - :7r'\1—1,N)- (34

The first-order term in the Hamiltoniain §=1/D) becomes
we find that the largd radii and energy per atom are

P P P P
. 1 1 — —
= {21+ (N- D)2, (26 Hi=m52 2 (G, Ly 5 2 2 VUFLLY, v
u=1r=1 pu=1r=1

_ (35)

E(PT _ 1+(N-2)y, i+—r h
N  (1-y)1+(N-1)yl82 2~ where
P=N(N+1)/2 (36)

+

Vo[1-tanh(©)], (27 is the number of internal coordinates. The elementS @fre

found by comparing with7 of Eq. (19), and the elements of
where for simplicity of presentation we have defined the fol-F are found by evaluating the Hessian matrix of the effective

lowing: potential at the infinited symmetric minimun{17]:
s-3 _ azveff
0 =Gyl =%~ E)(l - Elﬁfc”(l - m”) . (29 [Funle= [ .0y, L- (37)
n=

The quantityv, is a constant first-order energy sHifiee Eq.
The derivation of the above equations is an extension of th@GO) below], and the subscripta and v refer to the compo-
derivation of Eqs(26)—(28) for the basics=3 potential. This  nents of the displacement vecigh, whose elements are the
later case is discussed in detail in Ref7]. internal displacement coordinates defined in H§8)—(34).
The above quantities,, ECDPDIN, and® are determined To make the connection with internal coordinates more
by the largeb direction cosiney., of the angle between the explicit we adopt the following subscripts to identify the
particle radius vectors wheD — o, which is given by the elements ofF, G, and the producGF, which we will need

negative solution of smallest magnitude of shortly: (i, ]) refers to elements associated withr;); (i, jk)
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refers to(r;, yj) and(ij ki) refers to(y;, »), etc. See Sec. N(N+1)/2 o |12
4.1 of Ref.[17] for more details on the indical structure of by = 11 hnp( _59 (- @]p)>- (46)
the FG matrices. p=1

The first-order Hamiltoniai; of Eq. (35) gives the first-  £quation(46) represents oscillations about the Lewis struc-
order energy correctiorE, and zeroth-order similarity- ture configurationq., with frequencies{w,/5}. When & is
transformed wave function®, through the Schrodinger small (large dimensionsthe frequencie$5p/5/5} are very
equation large and so according to E¢46) the zeroth-order wave

- — function is strongly localized abowg=q., (i.e., it features
H1Po = Eq®o. (38) short wavelengths However ass takes on increasing posi-
The Wilson FG method shows that under a linear transforlive values{wy/ 6/ 5} becomes less and less large, and so the
mation zeroth-order wave function becomes increasingly extensive.
o That is, the wavelengths of the zeroth-order wave function at
q =Ty, (39 6=1/3 have become macroscopic. Thus, the zeroth-order
DPT wave function for the Bose-Einstein condensat® at

the largeb similarity-transformed Schrddinger equation of —3 appropriately has a macroscopic, long-wavelength char-

Eq. (38) takes on the separable form

acter.
1 T A =7 — The Wilson FG method shows that the normal-mode co-
~32 ‘95‘76' +30 AQ" +vg | Po=Ee®o,  (40)  ordinates are the solutions of the eigenvalue equation
whereA is a positive-definite diagonal matrisee Appendix GFap, = NGy, (47)

A of Ref. [17] with the identificationT=UA). Thus the ] ] ) )
large-dimension similarity-transformed Schrédinger equavhere the eigenvalues, are the diagonal entries of the di-
tion is separable into one-dimensional harmonic-oscillato@gonal force-constant matrix in Eq. (40). Thus the normal-

wave functions in each of thé(N+1)/2 normal modesj;, mode frequencies are relatedXgin Eq. (47) by

where I=p<N(N+1)/2. If w, is the corresponding N 48)
normal-mode frequency, then the wave function is a prod- p= “pr
uct of N(N+1)/2 harmonic-oscillator wave functions Equation(47) leads to the secular equation
M det\ | —-GF)=0 49
7\ — e - =
ooy)= T by (@27, (41 ol =GP (49
p=1
for \p.

where hnp(E;’zq,’J) is a one-dimensional harmonic-oscillator  Equation(49) provides a general formula for calculating

wave function of frequency,, andnj, is the oscillator quan- the normal-mode frequencies in terms of the elements of the

tum number, G<n, <%, which counts the number of quanta productGF. In Ref.[17] we derive analytical expressions for

in each normal mode. the normal-mode frequencies in terms of the highly symmet-
Having obtained Eq(41) we are now in a position to ric GF matrix elements. To simplify the analytical normal-

address the above noted concémSec. Il A) that low-order ~mode frequencies given below, we define the scalar quanti-

DPT might not contain the right physics for the macroscopicies a through.:

long-wavelengthD=3 condensate since DPT is a perturba-

tion expansion based on solutions to the semiclassical short- a=(GF);=G4Fa
wavelength problem in a large number of spatial dimensions.
In the notation of Eqs(31) and(34), Egs.(32) and(33) can b=(GF);;=G4F, (i<})),

be written as
yT =yl + sy, (42 c=(GF);ji=GgFe+ (N-2)Gp(Fe+Fy) (i <}),
where

— - ] ) d:(GF)jk’ingFf‘F ZGh[Fe+(N_3)Ff] (I # J <k# |),
yo=Y'l7=, O1<i<N and 1<j<k<N.

VY e=(GF);j=GFe (i <j),
(43

Inserting Eq.(42) into Eq. (39) one obtains f=(GF); 4x=GsF; (i #j<k#i),

q'=q+ 84T (44) o

g=(GF);jj=GgFg+2(N-2)GFy, (i <}J),
where
EozTEc. (45) h:(GF)ij’jk:Gth‘l'Gth"'(N_Z)GhFh

Then using Eq(44) in Eq. (41) one obtains +(N-3)GF, (i<j<Kk),
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1= (GF)jj i=GgF , + 4GpFp + 2IN- 4G F, (i <j k<), ECPI=E_+ 5E0+ o(&)
(50)

where the expressions in E&O) for the GF matrix elements
of the Schrodinger equatiofi8) in terms of theF and G
matrix elements were derived in Rgfl7]. The nonzerd-
and G matrix elements are given in Appendix B. + Uo) +0(5, (58)
Although there areN(N+1)/2 different normal modes,
t.here.afe on!y five d'Stm‘T\t normal-mode frequenqes. Thewheren are the vibrational quantum numbers of the normal
five distinct eigenfrequencies &F belong to three different modes ’f)f the same frequenay, (as such,n, counts the
irreducible representations of the symmetric gro&g ; ) “ e :
[17,21]. One distinct frequency is given by numper of nodes in a given no_rmal moddhe quant|ty_
d,n isthe occupancy of the manifold of normal modes with
@ = \m (51) ﬂbrétional quantum number, and normal-mode frequency
' w,, .., it is the number of normal modes with the same
and we designate the set of normal modes with this frefrequencyw, and the same number of quamta. The total
quency by the labe [17,21]. This set of normal modes has occupancy of the normal modes with frequenagy is equal
a multiplicity d,=N(N-3)/2 [i.e., there areN(N-3)/2 nor-  to the multiplicity of the root , i.e.,
mal modes with the same frequeney). Two other frequen-

- 1 _
= Ver(Foe, ¥2e) + 5( 2 2 <n,u + E)d,u,n#w#

u={0*,1¢,2} N,=0

cies are given by d,= EO dﬂ,n#, (59)
— 2 . \1/2 n =
wiz =\ £ (7f =A™, (52) _ o
whered,, is the multiplicity of theuth root. Because of the
where factors ofé in the centrifugal-like and hard-sphere potentials
[U andV of Eq. (18)], there is also a constant shiff in the
m= %[a— b+g+(N-4)h-(N-23), (59 first-order term of Eq(58) given by
A N -2 g . b N=2)h NN+ D[1+(N-2)y.] +3VN(N—l)
=—(N- - -f)+(a- +(N- =-
1==(N=2)(c-d)(e-f)+(a-b)g+(N-4) Y= T 21+ (N- 1)yl —7.) S
- (N=3)]. (54) s-3
~ ~r2n
The two sets of normal modes with the frequencigsare a X]1-tanh® + CO[(E_E(EW% - 7°°)>

mixture of asymmetric stretching and bending motions, and
we designate them by the labels and 1* [17,21]. Their —_—
multiplicities ared;-=d;+=N-1. The last two frequencies - (roV1-7.-2a) [sechO [, (60)
are determined from the equations
_ ———5 where® is given by Eq.(28).
wo =\ ot (75— Ag) ™%, (55) Using the definitions of the dimensionally scaled
harmonic-oscillator units in Eq¢16) and(17), we can undo
where the scalings to write the through-first-order DPT energy of
Eq. (58) in regular oscillator unit$%wy,) as
(N—2)(N—3)} g.(58) in reg $hwno)
-
2

1
770—5{«’:1—(N+1)b+g+2(N—2)h— , ECPD = DV, (T2, 7..)

(56) * 1 -
+ > 20 Nt 5 dun, @+ Vo +0(5).
={0%,1%,2} Nu=
(N-2)(N-3) .
AO:[a—(N+1)b]|:g+2(N—2)h+fL (61)
N-1 Since the normal-mode frequencieg do not depend o,
- T[2C+ (N-2)d][2e+ (N - 2)f]. (57)  Eq. (61) shows that their values are equal to the physical
(D=3) excitation frequencies of the condensate. It is also
The two sets of normal modes with the frequendcigs and noteworthy that in the noninteracting limit the DPT energy
wo- are a mixture of symmetric stretching and bending mo-Series truncates at first order and gives the exact isotropic
tions, and correspond to the breathing mode and center &f-dimensionalN-particle harmonic-oscillator energy. At its
mass of the condensate, respectively. Designating these t4BNMUM the effective potential in regular oscillator units
sets of normal modes by the labé)s and 0%, they have (fiwy,) in the noninteracting limit become<.=DE.,

multiplicities dy+=dy-=1 (i.e., they are single}§17,21]. =DVex(r»,=1/12,7.=0)=DN/2, the ideal-gas energy. In
To first order ind the energy is the infiniteD limit, r,=VD/2 is the infiniteD radius in
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TABLE |. Ground-state energies in unitso,, for small scatter- TABLE II. Ground-state energies in unitsoy,, for large scatter-
ing length and low N. Column 2 contains DMC energies from Ref.ing length and low N. Column 2 contains DMC energies from Ref.
[8] (statistical uncertainty in parenthege€olumn 3 contains our [8] (statistical uncertainty in parenthege€olumn 3 contains our
many-body DPT energies. Columns 4 and 5 contain the[BP ~ many-body DPT energies. Columns 4 and 5 contain the[BP
(5)] and MGP energie$Eq. (7)], respectively. We usé’Rb mass  (5)] and MGP energie$Eq. (7)], respectively. We us&’Rb mass
and leta=100 a.u. andv, =27 X 77.87 Hz, which corresponds to and let a=10000 a.u. andw,,=27 X 77.87 Hz, which corre-

a=0.0043%y,,, in oscillator units. sponds taa=0.433,,, in oscillator units.
N DMC DPT GP MGP N DMC DPT GP MGP
3 4.510362) 4.51035 4.51032 4.51032 2 3.38317) 3.38319 3.3040 3.3950
5 7.534484) 7.53441 7.53432 7.53434 3 5.5533) 5.5519 5.329 5.611
10 15.15372) 15.1537 15.1534 15.1535 5 10.5712) 10.5771 9.901 10.772
20 30.6401) 30.6396 30.638 30.639 10 26.228) 26.2151 23.61 26.84
50 78.961) 78.964 78.953 78.962 20 66.94) 67.01538 57.9 68.5
100 165.075) 165.089 165.06 165.11 50 239.23) 239.18 196.12 243.45

regular oscillator units, also the expectation va{t@ for IV. OPTIMIZATION OF THE INTERATOMIC

the ground-stat®-dimensional spherical harmonic oscil- PARAMETERS

lator. In addition, the excitation frequencies become the

N-atom harmonic-oscillator frequencies;, =2 for all . A y-square statistic is used to optimize the parameters of

As the interatomic interaction increases, the strength ofhe dimensionally continued interatomic potential. We fit it to
the interaction is reflected in the deviation from the abovesix accurate lowN DMC energies[8] for each scattering
noninteracting values of the infinitB- radius and direc- length(see column 1 of Tables I-)by minimizing the fol-
tion cosine as well as the excitation frequencies of thdowing quantity [23] with respect to the set of parameters
leading-order energy correction. {Vo,a}U{c,; 0n:0=sn=<s-3}:

Ill. MOTIVATION FOR LOW-ORDER METHOD

Recall that the dimensionally continued interatomic po- X°=
tential becomes a hard spherelat3 with radius equal to i=1
the scattering length, but takes on the shape of a soft-sphere
for largerD. The reason for choosing this dimensional con-
tinuation of the hard sphere is to facilitate the DPT analysiswhere E°M© is the DMC energy ands; is the statistical
which requires a differentiable effective potential. The exaCTuncertailnty for a condensate with atom numbief24]. The
shape of the soft sphere for dimensions departing f@m quantityE®PP(N;;V,, a,{c,}) is the DPT energy approxima-
=3 is determined by built-in parameters. In this paper we tion through first order given by Eq58) with interatomic
consider three scattering lengths: tH&b scattering length potential parameterfV,, a} U{c,; On:0<n<s-3}. The Q

ag,=0.004 33y, and two larger multiples=10ag, anda  probability is used to constrain the number of parameténs
=100ag;, For these three scattering lengths, we optimize thgne fitting functionE®PD(N;;V,, @,{c,}), where

s interatomic potential parameters by fitting our ground-state
2r&aj£|(ialde+ne:r?jy+ ;h'r\lo_u :? " z;‘:]rgtd Or(:ngi'N((?\?)_ :\;3/ |/t£1 (\jlgftﬁ TABLE Ill. Ground-state energies in unitaw,, for intermediate

0= =1 F1507H1E ' 2072 A ' scattering length and lowN. Column 2 contains DMC energies
the rest of thedﬂ'n#:ODnMB 1 and ©=0%,1%,2] at the from Ref.[8] (statistical uncertainty in parenthegeSolumn 3 con-
physical(D=3) dimension to accurate, loh; hard-sphere, tains our many-body DPT energies. Columns 4 and 5 contain the
ground-state DMC energi€g8]. GP[Eq. (5)] and MGP energiefEq. (7)], respectively. We us&Rb

The fitted interatomic parameters for each scatteringnass and lea=1 000 a.u. andvp,=27 X 77.87 Hz, which corre-
length are given in Sec. V where we extrapolate our fittecsponds taa=0.0433,,, in oscillator units.
energies to large values ™. Note that our extrapolating
function is not an arbitrary fitting function to the data. N DMC DPT GP MGP
Rather, it is based on the dynamical approximation to the real

: ( E{PMO ~ ECPI(N;; Vo, arfea)

O

2
) , (62

system that is intrinsic to DPT, which includes contributions 4.603%5) 4.6032 4.6007 4.6024
from all components of the Hamiltonian, including the ki- 5 7.835615) 7.8356 7.8265 7.8340
netic, trap, and interaction terms, as well as correlation ef- 10 16.4266) 16.426 16.383 16.426
fects beyond the mean-field approximation. Furthermore, 20 35.47515) 35.474 35.297 35.497
this low-order approximation is well defined and, in prin- 5g 103.993) 103.991 102.96 104.21
ciple, can be systematically refined by using higher-order 1, 245 41) 245 402 241.85 246.24

DPT[19,22.
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v )(2

% j(az) !
B

is the probability thag® should exceed a particular value by
chance, and in our ca$@5] the quantityy=6-sis the num-
ber of degrees of freedom in the fitting functi¢pa6]. We

N =

14

2

14

f e't"2 dt  (63)
) X2/2
2

want to use the minimum number of parameters that extract:

all of the relevant physical information from the DMC ener-

gies, and yet does not overfit the DMC energies. Thus, the

number of parameters, is constrained to be the minimum
number of parameters whoge gives aQ probability greater

than 0.5. The value 0Q=0.5 is chosen as the cutoff in
order to avoid overfitting the DMC energies. Overfitting
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is a serious concern as we are extrapolating our energie

to largeN, and we wish to capture the essential informa-
tion without fitting it to statistical fluctuations in the DMC
energies. We found=4 to be the optimal number of pa-
rameters in th& PP fitting function that gives & prob-

FIG. 1. Interatomic energy per atom vs number of condensate
atoms for small scattering length. We u8®b mass and lea
=100 a.u. andw,,=27X77.87 Hz, which corresponds ta

ability of at least 0.5 from the weighted least-squares fit to~ 0.004 33, in oscillator units. Circles refer to the MGP energy

the six lowN (N<100 DMC energies for all three scat-
tering lengths considered in this stuf37].

V. GROUND-STATE ENERGY

from the solution of Eq(7), plus signs, slightly below the circles,
refer to the GP energy from the solution of E§), and the dashed
line refers to the many-body DPT energy. Interaction energies are
obtained by subtracting the ideal-gas enerdy/3 from the total
energy. Energies are given in oscillator uriitsoy,o).

In this section we report calculations for a spherical con-

densate with trap frequencyy,,=27 X 77.87 Hz. We con-
sider three scattering lengtha=100 a.u. or 0.004 38, in
oscillator units(a,,=Vi/mwy,,) approximately equal to the

natural®’Rb value and multiples 10 and 100 times this value,

i.e., a=1000 a.u. or 0.0438, and a=10000 a.u. or
0.433,,. The scattering length=0.433,, is especially rel-

evant to experiments observing beyond-mean-field effects,
because condensates with a scattering length of 10 000 a.

have been achieved in nonspherical trigis

A. Small scattering length

Fora=0.004 33y, we determine the=4 interatomic po-

many-body DPT energy is slightly above the MGP and GP
energies for low and moderab¢ with the MGP energy be-
ing slightly above the GP energy. Going to higintbeyond
that shown in the plot near 18 atoms the DPT energy falls
below the GP energy.

B. Large and intermediate scattering length
u. . . .
The s=4 interatomic potential parameters for the large

scattering lengtha=0.433,, are found to beV,=4.617
X 10°, @=-4.211,¢,=1.555, andc,;=5.00x 1073, with ?
=0.23 andQ=0.89. In Table Il and Fig. 2 foa=0.433,,, it
can again be seen that the MGP interaction energy lies above

tential parameters, in the dimensionally scaled harmonicGP, but the DPT interaction energy is now sandwiched be-

oscillator units defined in Eqe16) and (17), to be V,
=0.0257, a=-0.464, ¢,=1.402, andc,;=0.109, with y?
=0.20 andQ=0.90. Table | shows a low comparison of
energies fora=0.004 33, Column 2 contains accurate

tween MGP and GP. These results are also consistent with
accurate lowN DMC calculations in Ref[8], which show
MGP overestimating the ground-state energy far
=0.433,, for smallN. However, as one increases the num-

DMC energies for a hard-sphere potential calculated previber of atoms beyond that displayed in Fig. 2, one finds that
ously in Ref.[8], where the statistical uncertainty is given in the low-order many-body DPT interaction energy eventually
parentheses. Column 3 contains our many-body DPT enefalls below GP above f0atoms.

gies, while columns 4 and 5 contain GP and MGP energies, The intermediate: (a=0.0433,,) interaction parameters
which are calculated by using the wave functions from Eqsare found to beV,=0.645, «=-0.837,c,=1.3875, andc,

(5) and (7), respectively, in the corresponding energy func-=0.0889, wherey?=0.0047 andQ=0.998. Figure 3 shows
tionals[1]. In Fig. 1, we plot the energy shift per atom due to the DPT interatomic energy falling below GP at a few hun-
the interatomic interactioné.e., we subtract the ideal-gas dred atoms, as opposed to approximatel§ dt@ms for large
energy 3/2, in units ofiwy,,) for the GP, MGP, and DPT and smalla.
extrapolation for largeN. There is very little difference be-

tween any of these interaction energies because, for such a

small scattering length and moderate atom number, the con-

densate is very dilute and weakly interacting. Consistent with The validity of our extrapolated DPT approach is demon-
low-N DMC calculations by Blume and Greeri@], the strated by the results for small For such a small scattering

C. Discussion
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The lowN DMC energies are a shade higher than the
mean-field result and our extrapolated DPT energies remain
a little higher than the mean-field result 10 000 atoms.

We attribute this to the inclusion in the DPT approach of
correlation effects beyond mean field, and in this regard, as
noted in the Introduction, the exact, fully correlated result for
the homogeneous unconfined system also lies above the
mean-field resul{15]. However, we take the fact that the
DPT result drops below the mean-field result beyadsd
=10 000 to be an indication that the first-order DPT extrapo-
lation has been extended beyond its range of validity. Pre-
sumably higher orders in the DPT expansion are needed be-
yond N=10 000.

For large scattering lengths suchas0.433%,, the con-
densate has entered a density regime where the mean-field
approximation is no longer accurate and from Fig. 2 the GP
approximation is clearly seen to fail. The DPT extrapolation
agrees with the MGP approximation out to a few hundred

FIG. 2. Interatomic energy per atom vs number of condensat@toms. AsN increases, the DPT result drops below the

atoms for large scattering length. We u%®b mass and let
=10 000 a.u. andwp,=27Xx77.87 Hz, which corresponds ta

shape-independent MGP result, and the difference gets larger
asN becomes larger. The MGP energy functional, &), is

=0.433,,, in oscillator units. Circles refer to the MGP energy from €xpected to yield energies that are too highNabecomes
the solution of Eq(7), plus signs refer to the GP energy from the larger since, as discussed following Ed), it is theinhomo-
solution of Eq.(5), and the dashed line refers to the many-bodygeneousanalog of the first two terms of theomogeneous
DPT energy. Interaction energies are obtained by subtracting thgas expansion and neglects the logarithmic term which is
ideal-gas energy /2 from the total energy. Energies are given in negative in this regime. In fact, a simple estimate shows that

oscillator units(fwy).

the correction to the mean-field in E@), the sum of the last
two terms, is already negative f@=0.433,, for only a

length the mean-field GP energy is expected to be very clossingle atom[28]. This would seem to indicate that higher-
to the exact energy since we areina dilute gas regime Wh?@rder terms which are shape dependent are needed in the
many-body effects should be minimal. Indeed we see in Figlocal-density approximation corresponding to E8). That

1 that there is little difference between the mean field ands, the energies depend on the detailed shape of the potential,
DPT energies foa=0.004 33, validating our approach.

6

L
0 200 400 600 800 1000 1200 1400

FIG. 3. Interatomic energy per atom vs number of condensatéa

1600

1800

2000

in this case the hard-sphere potential. Although the accurate
DMC result indicates that the shape-independent mean field
differs by only 2% from the accurate hard-sphere result at
N=50 (see Table IJ, our DPT extrapolatiorisee Fig. 2 in-
dicates that this difference, and also the difference from the
MGP result, grows and becomes quite largeNoy2000.

The DPT result drops below the mean-field result beyond
N=10 000 and, as for the small scattering length situation,
this is an indication that the Langmuir-order DPT extrapola-
tion has been extended beyond its range of validity and that
higher orders in the DPT expansion are needed at very large
N.

At intermediatea (i.e., a=0.043%,,) the DPT energies
are likewise sandwiched between the GP and MGP results.
Nonetheless, while the DPT energy for large and sraall
does not fall below GP energy until aroumt=10* atoms,

Fig. 3 shows that for intermediatethe DPT result falls
below the GP result at a few hundred atoms. For this inter-
mediatea, the interaction parameters are determined from
xact DMC energies, but in a nearly shapdependenten-

Sity regime[i.e., ne(0)a®< 1074, and then extrapolated into

atoms for intermediate scattering length. We #%b mass and let o 3 3
a=1000 a.u. andwn,=27X77.87 Hz, which corresponds ta a shape-dependent reginfee., nre(0)a®>10"]. The ex-

=0.0433y,,, in oscillator units. Circles refer to the MGP energy trapolated energies appear qualitatively to follow the three-
from the solution of Eq(7), plus signs refer to the GP energy from term local-density approximation of E¢B), which includes

the solution of Eq(5), and the dashed line refers to the many-bodythe logarithmic term but not higher-order, shape-dependent
DPT energy. Interaction energies are obtained by subtracting theorrections, and falls below the mean-field first term for large
ideal-gas energy®/2 from the total energy. Energies are given in enoughna’. This is to be expected since the intermediate-
oscillator units(fiwp). potential parameters were calculated in a nearly shape-
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independent density regime and so the low-order DPT terms  *

do not uniquely relate to the hard-sphere potential. Other ;| e
potentials, with the sam®=3 scattering length, when di- T
mensionally continued away from=3 will have the same ser LT
Lewis and Langmuir terms as the hard-sphere potential wher .|
fitted to similarly accurate lovN shape-independent DMC
data. Thus the intermediateDPT extrapolation seen in Fig. |
3 follows the shape-independent terms in the expansion og ,
Eq. (3) with the DPT energy falling below the GP result at a '
few hundred atoms. To accurately extrapolate the DPT en- ?®
ergy into the shape-dependent regime at intermediatd| 26
require us to include the next term in the series which will

manifest shape dependence. It should be noted that the re [

32r

ncy

freque

duced extrapolation range for intermediatés not due to O

overfitting, the largeQ-probability for four-parameters not-

Withstanding. The dramatic increase anrom s=3 tos=4 % 200 400 600 800 1000 1200 1400 1600 1800 2000
N

parameters indicates underfitting for asy.4. Moreover,

varying the fourth parameter above and below the optimal fit 5 4 Breathing mode frequency in units@f, vs N for large

to lower theQ probability to 0.5 produces results with the gcattering length. We us#Rb mass and lea=10 000 a.u. and
same limited range of validity noted above. who=27X 77.87 Hz, which corresponds #=0.433,,, in oscilla-

The situation, though, is different for the smalénd large  tor units. The solid line corresponds to E@5), the first correction
a DPT results through Langmuir order where they have ao the monopole frequency calculated by Pitaevskii and Stringari
significantly larger range of validity. We note that the fitted [27]. The dashed line is the numerical solution of the linearized GP
largea (e.g.,a=0.433,,) DPT potential parameters contain equation. The dash-dotted line refers to the DPT normal-mode fre-
shape-dependent information since they are determined in @uencywy+ from Eq. (55).
shape-dependent density regime. On the other hand, such as
for the intermediatex extrapolation, the lova (e.g., a  ture from the noninteracting cap®=w;,4(2n,+1)], the mean-
=0.004 33y,,) potential parameters were also determined infield frequency does not depend on the scattering length or
a shape-independent regime, but the extrapolated energigise number of atoms in the Thomas-Fermi limit. This curious
have yet to reach the shape-dependent regime. The locdhck of dependence on the mean-field interaction strength
density approximation of Eq3) and Ref.[28] suggests that Na/a,,, in the strongly interacting limit can be seen as a
the condensate does not enter the smahape-dependent consequence of the relationship between the spatial extent of
regime until there are more than®1atoms. The fact that the the condensate and the speed of sound at the center of the
DPT energy falls below the GP energy at aroudd10*  condensatél]. The excitation frequency in the phonon re-
atoms rather than 2@toms indicates that higher-order terms gime is given byw~ c(r=0;Na/ap,)/\(Na/ay,,), where the
are needed in the DPT expansion to obtain an accurate evavelengthi(Na/ay,) associated with the excitation and the
ergy at lowa before the shape-dependent regime is reachedpeed of sound at the center of the gas=0;Na/a;,) are

both functions ofNa/a,. In the phonon regime, the excita-
VI. EXCITATIONS tion wavelength for an inhomogeneous gas is on the order of
i ) » the size of the gas, which increases with increadiiagay,,.

As we have noted in the Introduction, the additional com-sg the mean-field interaction strength increases, the speed of
pression found in excitations will accentuate the breakdownyng increases in the same ratio as the increase in the wave-
of the mean-field approximation. We can easily calculate eXjength of the phononlike excitation. This lack of dependence
citation properties of the condensate, such as frequencieg, the number of atoms and the scattering length clearly
from the normal-mode structure of many-body DPT. Thepecomes a problem in the strongly interacting regime, as can
analytical frequencies in E¢55), wo- andwy+, correspond t0  pe seen in Fig. 4. For intermediate scattering lengths and
the center of mass and breathing modes of the condensaj@oderate number of atoms, the excitation frequency is accu-
respectively. In units of the trap frequenay,, the center-  51ely described by the hydrodynamic approximation of Eq.
of-mass frequency equals 2. We also calculate the frequer@64), which is independent di. However, just like the TF
cies of small oscillation about the ground-state wave fU”C'approximation for the ground-state energy of the GP equa-
tion within the mean-field approximation by solving the g Eq. (64) is a good approximation of the mean-field

linearized GP equatioftl]. . theory in the strongly interacting limit but the mean-field
Using the hydrodynamic theory of superflui9] based  heoryitself breaks down.
on the GP equation, Stringari found the following laf§e- | Ref. [31], Pitaevskii and Stringari consider beyond-
approximation to the mean-field dispersion relatjg0]: mean-field corrections to the collective excitation frequen-
w(n,l) = who(2nr2+ 2n,l +3n, + )2, (64) cies in Eq.(64). Defining wy, as the mean-field monopole

frequency in the hydrodynamic limjih,=1,1=0 in Eq.(64)],
wheren, is the number of radial nodes ahds the angular  as the hydrodynamic-limit beyond-mean-field frequency,
momentum of the excitation. Despite the significant deparand writing w=wy+ dwy (8 is not to be confused with I
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as dwy, is the shift from the mean-field monopole fre- mode of the condensate. The additional compression in-
quency, Stringari and Pitaevskii use the homogeneous gasolved in excitations heightens the deviation from the mean-
first-order correctionji.e., the second term in E¢3)] to the field result, and for the large scattering length, we predict a
Bogoliubov equation to find the following beyond-mean- very large beyond-mean-field correction to the condensate
field, but still shape-independent, fractional shift of thebreathing mode frequency. Fa=0.433%y,, for example, we

monopole(breathing modefrequency in the hydrodynamic predict a 75% fractional shift above the mean-field breathing

limit [27]: mode frequency foN=2000 atoms.
For largerN, higher-order DPT terms, which are small for
oy — 63_[15N(a/ah )65, (65) low and moderat&l, will become significant and will need to
oy 256\2 ° be included in the calculation. Our studies suggest that the

regime of validity through Langmuir order is more limited

¥or intermediate scattering lengths since the transition from
near shape independence to shape dependence occurs beyond
the region of the reference data, but yet at moderate values of

rection, .Eq.(65), to the _monopqle{brea.thing mode of fre- N. Incorporating higher-order terms in the perturbation series
quency in the strongly interacting regimes=0.433%y,,. The will extend the range of validity to largeX.

lack of dependence on the interaction strength for the mean- 1o 1asults summarized above were obtained using a

fie_ld eX(_:itatio_n frequency in Eq64) is clearly a_detrim_ent in shape-dependent hard-sphere potentidDa3, a spherical
this regime, in which a large beyond-mean-field shift of thetrap, and perturbation terms through Langmuir ordfest

breathing mode frequency is predicted by both DPT and t.h%rdet). An obvious extension to this “proof-of-concept”

beyond-mean-field calculation by Stringari and Pltaevksu.Study is the determination of higher-order terms in the per-
_ . . . N

For N=2000 ato”."s we F’Te‘?"Ct a fract|onal .Sh'ﬂ of 25/" turbation series. As discussed in Sec. Il C, the leading-order

above the mean-field prediction while H§5) gives a 50% DPT wave function is a product of one-dimensional

shift. harmonic-oscillator wave functions with frequencies given
by the first-order term of the energy series. From this wave
function, one can then use ordinary perturbation theory to
extend our results to include corrections beyond first order.

Analytical and numerical results beyond the mean-fieldFor low N and low densitiegn(0)a®<2X 107% our ground-
approximation have been obtained for the ground-state erptate energies and excitation frequencies will depend only on
ergy and breathing mode frequency of spherical atomi¢he s-wave scattering length and not on any other details of
Bose-Einstein condensates with scattering lengths rangingie interatomic potential as demonstrated by Blume and
from weakly to strongly interacting. We perform a low-order Greene[8]. However as the condensate density becomes
dimensional perturbation calculation in whidhenters as a larger, the condensate energy and frequencies will become
simple parameter in the energy expansion yielding results fodependent upon the details of the particular potential. A com-
all N from a single calculation. In this “proof-of-concept” parison of results using other shape-dependent interatomic
paper we use a hard-sphere interaction, which we dimensiootentials such as a realistRb-Rb interatomic potential
ally continue so that it is differentiable in the infinizdimit. ~ should provide further insight into this regime. In addition to
This dimensional continuation results in a shape-dependetitcluding higher-order perturbation theory and testing other
soft-sphere potential at larg2 and a hard sphere with radius shape-dependent potentials, the generalization of the DPT
equal to the scattering length in the physiBet 3 limit. The ~ formalism from spherical to cylindrical coordinates would
largeD soft-sphere parameters are optimized for the groundenable a study of systems with axial symmetry, the predomi-
state energy. nant symmetry in current BEC experiments.

We compare our semianalytical ground-state energy re-
sults yvith numerical 'solut?ons of the GP and modifie'd GP ACKNOWLEDGMENTS
equations for Bose-Einstein condensates with three different
experimentally realizable scattering lengtii8], in the This research was supported by the Office of Naval Re-
weakly, intermediately, and strongly interacting regimes. Assearch. We thank Doerte Blume for providing numerical
expected, there is practically no deviation from the meanDMC energies and for many helpful discussions.
field ground-state energy for small scattering length up to
very largeN validating our approach. For intermediate and
large scattering lengths, though, the breakdown of the mean-
field becomes quite noticeable even for a low number of
atoms. At large scattering lengths our many-body DPT re- Provided the density of the nonuniform gas is slowly
sults seem to be accurate up to a fairly large atom numberarying, the uniform low-density expansion of Eg) can be
(N=10%. This is quite remarkable, given the complexity of a useful tool for understanding the qualitative features of the
the problem which involves approximately?/2 interac- inhomogeneous gas theory. We now show that one recovers
tions. We also calculate collective excitation frequencieghe first two terms of the uniform Bose gas expansion of Eq.
from our first-order normal-mode frequencies. In E§5), (3) from the GP and MGP energy functiondksgs. (4) and
the analytical frequencywy+ corresponds to the breathing (6)] in the homogeneous limit. We first rewrite the GP energy

In Fig. 4 we compare the DPT breathing mode frequenc
wg+ In Eg. (55) with the mean-fieldi.e., the solution of the
linearized GP equatiofil]) and the beyond-mean-field cor-

VIl. SUMMARY

APPENDIX A: HOMOGENEOUS LIMIT OF THE GP
AND MGP EQUATIONS
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functional, Eq.(4), in terms of the ground-state density Qi=Qir=Qq (i#j#k and (i'#j #k'),
S | 2mhla Qij=Qriy=Qe (i#])) and (i"#]'), Qi
EGp[n]:fdr[—|V\n|2+—mwﬁ0r2n+ n2|, R c o
2m 2 :Qi’,j’k’EQf (|¢J #k) and (|,7£],:/ék,),
(A1)
where we have assumed a large number of atoms sd\that Qijjj = Qi =Q (1#]) and (" #Jj7),
—1=N. In the limit of a homogeneous gas in a box of vol-
umeV, the quantum pressure and the harmonic ftae first Qjk=Qijjw=Qn (#j#k and (i"#] #k),
and second terms in EGAL)] become zero and the nodeless
GP wave function becomeg=+y1/V. The inhomogeneous S
op= Y g Qju=Qijr=Q, (i#j#k#I)

energy functional, Eq(Al), then reduces to the leading-
order term of the homogeneous energy density expansion,

Eq. (3), wheren=N/V, and (i'#j #k #1I).

Egp 2wh?na (B1)
—_— —>
N m

. (A2)

Note the indices in the relationships above run over all par-

he h imit. th fiel £ th ticles (1,2, ... N) with the exceptions noted in the far right
In the homogeneous limit, the mean-field term of the GP. | \mn. For exampleQ;;=Q; ; =Q,, where (i #]) and

equation is equivale_nt to the_ leading-ord@ogoliuboy (i"#j'), means that all off-diagonal elements of the pure
term of the low-density expansion, E). dial drant of) are equal to the same const&yt Simi-

Similarly, rewriting the MGP energy functional in terms Ira a qua_ - q S Qﬂ;_, -
of the ground-state density, arly, Qijja=Qujr 1 =Q, where (i #k=1) and (i # ]

#k’ #1’) mean that any elements &f in the pure angular
2h%a ) gquadrant that do not have a repeated index are all equal to
n the same constai,. We remark here thas andF are also
symmetric matrice$G'=G andF'=F); however, while the
productGF does display the high degree of symmetry of Eq.
(B1), it is not a symmetric matrix.

We now give the nonzero elements of tBeand F matri-
and, as above, taking the homogeneous limit, one finds thaes needed for the matrix produ8F of Eq.(50). TheG and
the nonlinear terms in the MGP energy functional, B&), F matrices are defined by the first-ordeiDl Hamiltonian of
are equivalent to the energy per particle for a homogeneousd. (35). We can determine the elements@fby comparing
gas in Eq.(3) with the logarithmic term neglected: the differential term in Eq¢35) with 7 of Eq. (19) expanded
to first order in 1D. Using the notation in Eq(B1), the

|
EMGP[n]:fdr{En|V\'n|2+Emwﬁor2n+

X(1+
1

(A3)

128 —
ra3’2\n)} ,
5\

E 27hi’na 128 i
'\|<|GP e [1 + ; ’F(na3)1/2:|. (Ad) nonzero elements of th® matrix are found to be
N G.=1,
APPENDIX B: G AND F MATRICES (1- yi)
Gy=2——= =4(1-y )1+ )[1+(N-1D)v.],
One of the advantages of dimensional perturbation theory Fee

is the simplifications that occur in the large-dimension limit,
a limit in which one is able to find analytical expressions for Yoo 1 = Vs0)
the normal-mode frequencies of oscillation about the sym- h= T2 =27.(1-y)[1+(N- D], (B2

metric configuration. In particular, since we are dealing with
identical particles in a totally symmetric configurati¢the

©

where the matrix elements have been evaluated at the

Lewis structurgin which all the particles are equivalent, the infinite-D symmetric minimum. Likewise, using E(37), the

matricesF, G, andGF, collectively denoted by, display a

cifically, their symmetry can be summarized by the follow-
ing:

Qii=Qir i =Qq,
Q;=Qjy=Q (i#j and (i'#]j),

Qi=Qpi=Q (#j and ('#j",

Fa=1+

nonzeroF matrix elements are
high degree of symmetry with many identical elements. Spe-

i 1+(N_2)’)/w VOEO
4t (l-y)[1+(N-1Dy.] 2

(N-1)

_ 1+,
xseck 0 (1 - y.)Y2tanh® — — L
2r N1 =,
s-3 on+ ]_2
+ (Trw"'l(l - )" (2n - 1)y~ (2n+ 1)]
n=1
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+2nar 41 - y)" Y (n- 1)y, - n])a] .

Voo — 1+,
; °sech @[co(l -v.,)Y?*tanh® + =

2r N1 =y,
s-3
+ > (

n=1

Fb:

ZHT‘F:LFin_l(l _ ,ym)n—l/Z[(zn + 1) Voo — (2n - 1)]

- 2nar? 41 - y,)" Iny. - (n- 1)])51] :

Ve 1+(N-2)y,
2r2 (1= 1.)%(1 + (N = 1) y.,)?

s-3
LS
21 =%, =1

V.Ce
‘; °sech

Fo=
s 1 )
X| = Cof.Ytanh® + 5((2n+1)

X?in(l _ ,yw)n—llz_ (Zn)zain—l(l _ ,yw)n—l)a]] ,

2

TR -y)1+(N- Dy,

Fs

PHYSICAL REVIEW A 69, 053611(2004

1
Fo= 2r5(1-y.)%1 +(N- 1)%0)3[1 raN-2
—12N+3N?) 2+ (N-2)(4 - 3N+ N?) 3]

) Y= + (13

V;C"secﬁ ®[

S

n=1

Col % I

+

Y?tanh® +
2

1- Yoo (1 _ ,yw)3/2

(2n- 1)2(2n + l)?inﬂ(1 _ ym)”'m

-2n(n-1)ar?(1- %o)”‘z)?n] :

_ ~ Y=
41— 9%+ (N- D) y)?

+(11 - N+ 2N?) 2],

Fn [3+(5N-14)y,

__ %@2+(N-2y.)
C - (L (N D)y)*

For more detail see Refl7].
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