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The dynamics of a metastable attractive Bose-Einstein condensate trapped by a system of laser beams is
analyzed in the presence of small fluctuations of the laser intensity. It is shown that the condensate will
eventually collapse. The expected collapse time is inversely proportional to the integrated covariance of the
time autocorrelation function of the laser intensity and it decays logarithmically with the number of atoms.
Numerical simulations of the stochastic three-dimensional Gross-Pitaevskii equation confirm analytical predic-
tions for small and moderate values of mean-field interaction.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion (BEC) in dilute atomic gases[1–3] founded a rapidly
progressing new field of research[4]. The physical properties
of BECs, which to date comprise eight elements Rb, Na, Li,
H, He, K, Cs, Yb, and their isotopes, are predominantly de-
termined by interatomic forces. Some of the atomic species
(7Li, 85Rb, 133Cs) possess a negatives-wave scattering length
in the ground state and display attractive interactions. The
attractive interaction between the atoms causes the collapse
of the BEC so that a stable BEC was not believed to exist
[5]. However, when an external spatial confinement is im-
posed for instance by a system of laser beams, a trapping
potential shows up which can counterbalance the attractive
interaction and allows the formation of a metastable BEC.
When the number of atoms increases, the attractive interac-
tion becomes stronger and the energy barrier that prevents
the three-dimensional(3D) BEC from collapsing becomes
weaker. To a given trapping potential, there corresponds a
critical number of atoms above which the energy barrier van-
ishes. The case of a quadratic potential has been studied, the
critical number of atoms has been computed by a variational
approach and by extensive numerical simulations of the
Gross-Pitaevskii(GP) equation, and the results have been
checked experimentally[4,6,7].

One of the most important aspects of BECs in the regime
of attractive interactions is that they are unstable against col-
lapse. The collapse shows up as a rapid and strong shrinking
of the condensate at some critical number of atoms, and is
accompanied by significant atomic losses due to many-body
processes[8]. The collapse is initiated when the balance of
forces governing the size and shape of the condensate is

altered either by internal or external factors. With respect to
spatial and energetic stabilities the magnetic traps appear to
be better controllable compared to optical traps[9]. On the
other hand, due to increasing interest in far-off resonant laser
traps for Bose condensation of atoms which are insensitive to
magnetic fields[10], the investigation of different aspects of
BEC dynamics in optical traps is becoming a very relevant
subject. Of particular interest is the effect of temporal fluc-
tuations of the laser intensity which in turn involves temporal
fluctuations of the parabolic trapping potential[11]. In the
present paper we shall consider the BEC dynamics under
random fluctuations of the strength of the parabolic trap po-
tential and we shall show that small fluctuations can lead to
the eventual collapse of the 3D BEC due to a cumulative
effect of stochastic perturbations. The random fluctuations
have all harmonics in their spectrum, and some of them par-
ticipate in the parametric resonance leading to collapse. This
stochastic parametric resonance in the BEC width oscilla-
tions has a rough equivalent particle picture: the Kramers’
exit problem which is concerned with noise activated escape
from a potential well[12].

Quantum tunneling(QT) is considered as playing a key
role in the condensate collapse when the number of atoms is
close to the critical number[13]. We shall see that the BEC
instability driven by random fluctuations of the strength of
the parabolic trap potential is all the more dramatic as the
number of atoms is closer to the critical number. Our con-
sideration thus shows that even weak noise can play a com-
petitive role in this limit with QT and should be taken into
account. The effect of optical trap noise was previously con-
sidered in the context of stochastic heating of trapped atoms
[11,14]. In a far-off resonant optical trap created by a system
of red detuned lasers, the variable trapping potential can be
represented asVst ,rd=−auEst ,rdu2/4, wherea is the atomic
polarizability andEst ,rd is the electric-field amplitude. The
dynamics of trapped atoms can be described by the corre-
sponding Hamiltonian H=p2/ s2md+s1/2dmv0
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where v0
2=k0

2/m is the mean-square trap oscillation fre-
quency, andk0 is proportional to the time-averaged laser in-
tensityI0,uEu2. The time dependent spring constant is deter-
mined by fractional fluctuations of the laser intensityhstd
=fIstd− I0g / I0 [11]. The influence of the fluctuations of the
trap potential on the dynamics of 1D GP type equation has
been considered in Ref.[15] and the trap and nonlinearity
fluctuations in two-dimensional BEC in Refs.[16,17].

The paper is organized as follows. In Sec. II we give a
description of the model and apply a variational approach. In
Sec. III we derive the effective dynamics of the action-angle
variables of the system driven by random perturbations. Sec-
tion IV (Sec. V) is devoted to the asymptotic analysis of the
system for small(resp. near critical) number of atoms. Fi-
nally we check the variational approach and our asymptotic
analysis in Sec. VI by performing direct numerical simula-
tions of the GP equation.

II. THE MODEL AND THE VARIATIONAL APPROACH

We consider the mean-field GP equation for the single-
particle wave function[18]

i"ct = −
"2

2m
Dc + Vst,r dc + gucu2c. s1d

The nonlinear coefficient isg=4p"2as/m, whereas and m
are, respectively, the atomic scattering length and mass. The
number of atoms isN=eucu2dx. V is the external trapping
potential imposed by a system of laser beams. We consider a
harmonic model, but we take into account temporal fluctua-
tions of the laser intensity which in turn induces temporal
fluctuations of the quadratic potential

Vst,r d =
mv0

2

2
ur u2f1 + hstdg. s2d

For the optical trapv2=aI / s2ml0
2d, wherel0 is the size of the

laser beam,I is the intensity,a is a constant proportional to
the laser frequency detuning. The random functionhstd de-
scribes the laser intensity fluctuationshstd=fIstd− I0g / I0. The
stationary random processh has zero mean and standard
deviationsh. We shall see in the following that the standard
deviation is not sufficient to predict the collapse of the BEC,
but the coherence time and more generally the power spec-
tral density ofh will play a role.

We now cast Eq.(1) in a dimensionless form by introduc-
ing the variablest8=v0t, r 8=r / r0, r0

−1=Îmv0/", and u
=Î4puasur0

2c. This yields the following partial differential
equation(PDE)

iut8 = −
1

2
D8u +

1

2
ur 8u2f1 + h8st8dgu + ssuuu2u, s3d

wheress=sgnsasd= ±1 andh8st8d=hst8 /v0d. From now on
we drop the primes. The next step consists in applying the
variational approach. This approximation was first intro-
duced by Andersonf19g and developed in nonlinear optics
f20g. A similar technique was elaborated for the BEC dy-
namics based on the GP equationf21g. The variational

ansatz for the wave function of the BEC is chosen as the
Gaussianf4g,

ust,r d = AstdexpS−
ur u2

2astd2 +
ibstdur u2

2
+ iustdD . s4d

as0dr0 is the initial BEC rms width in physical variables

as0d =
Î2

Î3ÎNr0

SE ur u2ucst = 0,r du2d3rD1/2

.

The number of atoms is

N =
Îpr0

4uasu
As0d2as0d3 =

Îpr0

4uasu
Astd2astd3.

Following the standard proceduref20g, we substitute the an-
satz into the Lagrangian density generating Eq.s3d and cal-
culate the effective Lagrangian density in terms ofA, a, b, u,
and their time derivatives. The evolution equations for the
parameters of the ansatz are then derived from the effective
Lagrangian by using the corresponding Euler-Lagrange
equations. In particular this approach yields a closed-form
ordinary differential equationsODEd for the BEC widtha

att + af1 + hstdg =
1

a3 +
ssP

a4 , s5d

whereP=Î2/pNuasu / r0. We study in this paper the attrac-
tive casesas,0,ss=−1d. The evolution equation finally
reads

att + af1 + hstdg =
1

a3 −
P

a4 . s6d

III. ACTION-ANGLE VARIABLES

A. Unperturbed dynamics

The energyE of the unperturbed BEC is given by

Estd =
1

2
at

2std + U„astd…, Usad =
1

2
Sa2 +

1

a2D −
P

3a3 .

s7d

In the absence of random fluctuationsh;0, the energyE is
an integral of motion. The BEC width obeys a simple dy-
namics with Hamiltonian structure

Hsp,qd =
1

2
p2 + Usqd s8d

with q=a andp=at. A straightforward analysisf4,22g shows
that if P, Pc=4/55/4.0.535, then the potentialU pos-
sesses a local minimum that we shall denote bya0 ssee
Fig. 1d. The corresponding ground state has energyE0
=Usa0d. Below a0 there is the local maximuma1 with
energy E1=Usa1d, and belowa1 the potential decays to
−`. Above a0 the potential increases to +̀. It crosses the
energy levelE1 at a2.

If the initial conditionsfas0d ,ats0dg correspond to an en-
ergy aboveE1, or belowE1 but as0d,a1, then the conden-
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sate width goes to zero in finite time which means that the
BEC collapses. On the contrary, if the initial conditions
fas0d ,ats0dg correspond to an energy betweenE0 andE1, and
as0d.a1, then the orbits of the motion are closed, corre-
sponding to periodic oscillations. In order to explicit the pe-
riodic structure of the variablesa and at, we introduce the
action-angle variables. The orbits are determined by the en-
ergy imposed by the initial conditions,

E =
1

2
at

2s0d + U„as0d….

For EP sE0,E1d, we introducee1sEd,e2sEd the extremities
of the orbit ofa for the energyE

U„e1sEd… = U„e2sEd… = E.

The actionI is defined as a function of the energyE by

IsEd =
1

2p
rp dq=

1

p
E

e1sEd

e2sEd
Î2E − 2Usbddb. s9d

The motion described by Eq.s8d is periodic, with period

TsEd = r
dq

p
= 2E

e1sEd

e2sEd db
Î2E − 2Usbd

s10d

or else TsEd=2pdI/dEsEd. The anglef is defined as a
function of I anda by

fsE,ad = −Ea ] p

] I
dq= −

2p

TsEd
Ea db

Î2E − 2Usbd
.

The transformationsE,ad→ sI ,fd can be inverted to give the
functions EsId and AsI ,fd. The BEC width oscillates be-
tween the minimum valuee1sEd and the maximum value
e2sEd. The energyE as well as the actionI are constant and
fixed by the initial conditions, so the evolution of the BEC
width is governed by

astd = A„IsEd,fstd…,

fstd = fs0d −
2p

TsEd
t.

B. Perturbed dynamics

From now on we assumehò0 and we denote bysh the
standard deviation ofh. We investigate the stability of the
BEC when the unperturbed motion is oscillatory. In particu-
lar, we aim at studying the collapse timeTc defined as the
first time t such thatastd=0. While the energy of the BEC is
below E1, the orbit is closed. As soon as the energy reaches
the energy levelE1, the BEC collapses in a time of order 1
(w.r.t. sh). We shall show that the hitting time for the energy
level E1 is of ordersh

−2, so the collapse timeTc is imposed by
the hitting timeTh defined as the first timet such thatEstd
=E1 or equivalentlyIstd= I1: = IsE1d.

In presence of perturbations, the motion ofa is not purely
oscillatory, because the energy and the action are slowly
varying in time. We adopt the action-angle formalism, be-
cause it allows us to separate the fast scale of the locally
periodic motion and the slow scale of the evolution of the
action. Thus, after rescalingt=sh

2t the action-angle variables
satisfy the differential equations

5
dI

dt
=

1

sh

hS t

sh
2DhfsI,fd,

df

dt
= −

1

sh
2 vsId −

1

sh

hS t

sh
2DhIsI,fd,

s11d

wherehsI ,fd= 1
2A2sI ,fd andvsId= 2p/T(EsId) are smooth

functions andh is periodic with respect tof with period 2p.
The normalizationt=sh

2t has been chosen so that the ran-
dom processh appears with the scales of a white noise in the
differential equationss11d. Applying a standard diffusion-
approximation theoremf23g, we get thatfIstdgtù0 behaves
like a diffusion Markov process with the infinitesimal gen-
erator,

LI =
1

2
AsId

]2

] I2 + BsId
]

] I
,

where

AsId =
1

p
E

0

2p E
0

`

hfsI,fdhf„I,f − vsIdt…Efhs0dhstdgdtdf,

BsId =
1

p
E

0

2p E
0

`

hfsI,fdhfI„I,f − vsIdt…Efhs0dhstdgdtdf.

This means in particular that the probability density function
of Istd satisfies the Fokker-Planck equation]tp=LI

*p, pst
=0,Id=dsI − I0d, whereI0 is the initial action at time 0 andLI

*

is the adjoint operator ofLI, i.e., LI
*p=s1/2d]I

2fAsIdpg
−]IfBsIdpg. Moreover, standard results of stochastic analysis
allow us to compute recursively the moments ofTh f24g.
Denoting I1=IsE1d, the first moment ms1dsId=EIfThg
sthe mean value ofTh starting from actionI at time 0d satis-
fies

FIG. 1. Potential Usad for P=0.2. The important points
sa1,a0,a2d are also represented.
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LIm
s1d = − 1, ms1dsI1d = 0. s12d

The nth momentmsndsId=EIfTh
ng satisfies

LIm
snd = − nmsn−1d, msndsI1d = 0. s13d

In the following sections we shall apply and discuss these
general results in two different frameworks: small and criti-
cal nonlinearity.

IV. SMALL NONLINEARITY

A. Expansions of the action-angle variables for small
nonlinearity

In this section we assume thatP!1 which will allow us
to derive simple expressions for the physically relevant
quantities. The pointsaj and Ej can be expanded for small
nonlinearityP as

a0 = 1 +OsPd, a1 = P + OsP2d, a2 =
1

Î3P
+ Os1d,

E0 = 1 +OsPd, E1 =
1

6P2 + OS 1

P
D .

Note that, asP becomes small, the potential barrier grows
like P−2, which shows that the trap looks like a deep qua-
dratic external potential. The functionshsI ,fd andvsId can
also be expanded for anyf and I ø I1=IsE1d=1/s12P2d
+Os1/Pd:

hsI,fd = 1
2 + I + ÎI + I2 cossfd + OsPd,

vsId = 2 +OsPd.

Accordingly the unperturbed dynamics of the BEC width for
small P is approximately

astd = Î1 + 2I0 + 2ÎI0 + I0
2 coss2td. s14d

Figure 2 shows that this approximation is indeed very good
for the orbit astd whatever the initial conditions lying in a
closed orbit with energy,E1.

B. Effective equations in presence of perturbations

In case of small nonlinearityP!1, the above expansions
allow us to derive simple effective equations for the BEC
action in presence of perturbations. Applying the general re-
sults obtained in Sec. III B, we get that the actionIstd be-
haves like a diffusion process with the infinitesimal generator

LI =
1

2
ac

]

] I
FsI + I2d

]

] I
G ,

where

ac =E
0

`

coss2tdEfhs0dhstdgdt.

The expression ofLI holds true only forI , I1. We can com-
pute the growths of the first moment of the action starting
from the ground stateI =0 while eact! P−2:

E0fIstdg = 1
2eact − 1

2 , s15d

E0fIstd2g = 1
6e3act − 1

2eact + 1
3 . s16d

An empirical way to estimate the mean disintegration time is
to look for the time t1 such thatE0fIst1dg= I1, where I1

=1/s12P2d. From Eq. s15d we get t1=s1/acdlnf1
+1/s6P2dg. This argument is rough because the expecta-
tions are ill-placed. The exact results provided by the rig-
orous stochastic analysis confirm that this prediction is
not correct. Integrating Eqs.s12d and s13d we get that the
expectation of the disintegration time starting from the
ground stateI =0 is

E0fThg =
2

ac
lnS1 +

1

12P2D .
P!1 2

ac
f− 2 lnsPd − lns12dg,

s17d

while its variance is

Var0sThd =
8

ac
2FlnS1 +

1

12P2D + dilogS1 +
1

12P2D
+

1

2
lnS1 +

1

12P2D2G
.

P!1 8

ac
2F− 2 lnsPd − lns12d −

p2

6
G , s18d

FIG. 2. Unperturbed dynamics of the BEC width. We assume
P=0.1,ats0d=0, as0d=2 (a), as0d=5.7 (b). The second case corre-
sponds to an energy very close toE1. The results from the resolu-
tion of the ODE are compared with the asymptotic formula(14).
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where the dilogarithm function is the tabulated function de-
fined as follows:

dilogsxd =E
1

x lnsyd
1 − y

dy.

Equationss17d ands18d are the most important results of this
paper. They show that the collapse time varies as,lnsP−2d,
while the energy barrier is,P−2. In physical variables, the
expected collapse time is

E0fTcg =
2

v0a
lnS1 +

"p

24mv0as
2N2D ,

a = v0E
0

`

coss2v0tdEfhs0dhstdgdt.

Taking the experimental datav0=10 kHz, N.53103, as
=−5 nm, anda=10−4–10−5, we obtain the expected col-
lapse time<s1–10d s.

C. Numerical simulations

We compare the theoretical predictions with numerical
simulations of the ODE(6). We use a fourth-order Runge-
Kutta method for the resolution of the ODE. The random
fluctuations are modeled by a stepwise constant random pro-
cess,

hstd = so
j

Xj1f jtc,s j+1dtcdstd,

where theXj are independent and identically distributed ran-
dom variables with uniform distribution overs−1/2,1/2d
andtc is the coherence time of the laser. The coefficientac is
then given by

ac = s21 − coss2tcd
48tc

.

The first series of simulations were performed with the pa-
rameterss=0.3 andtc=0.5. Weinvestigate different con-
figurations corresponding to different values of the param-
eter P starting fromas0d=1, ats0d=0, which is very close
to the ground state. We have carried1000 simulations for
each configuration. The theoretical values for the ex-
pected value and standard deviation according to formulas
fEqs.s17d and s18dg are reported in Table I and compared
with the values obtained from averaging of the results of
the numerical simulations.

Note that the statistical formulas are theoretically valid in
the asymptotic frameworkP!1. The numerical simulations
show that they are actually valid forPø0.2. More exactly,
the comparisons between the theoretical predictions and the
numerical simulations show excellent agreement for the
mean values, and very good agreement also for the standard
deviations. We also plot in Fig. 3 the histograms of the col-
lapse times for two series of simulations.

Finally, in Table II, we report results with a high level of
fluctuations(namely,s=2). The theoretical predictions are
still in agreement with the numerical simulations forP

ø0.3 with an accuracy of 10% although the considered con-
figurations are at the boundary of the validity of the
asymptotic theory.

V. CRITICAL NONLINEARITY

A. Expansions of the action-angle variables for critical
nonlinearity

In this section we address the case where the nonlinear
parameterP is close to the critical valuePc=4/55/4. We do
so by settingP=Pc−d and assumingd!1. Once again, all
quantities can be expanded in powers ofd. After some alge-
bra, we get

aj = ag + 2−1/25−1/8ãjd
1/2 + Osdd with ag = 5−1/4,

TABLE I. Comparisons between the averages and rms of the
collapse time obtained from numerical simulations and from theo-
retical formulas. Heres=0.3 andtc=0.5.

P

ktl rmsstd

Num Theor Error % Num Theor Error %

0.05 4112 4103 0.2 2241 2335 4

0.1 2585 2591 0.2 1718 1601 7

0.2 1257 1306 3.5 833 865 4

0.3 586 760 23 407 518 21

0.4 205 486 58 165 336 51

FIG. 3. Histograms of the collapse time obtained from series of
1000 simulations.(a) P=0.1; (b) P=0.05.
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ã0 = 1, ã1 = − 1, ã2 = 2,

Ej = Eg + 21/23−157/8Ẽjd
3/2 + Osd2d

with Eg = 3−151/2 + 3−153/4d, Ẽ0 = − 1, Ẽ1 = 1.

More generally, ifaP fa1,a2g, then it can be parametrized as
a=ag+2−1/25−1/8d1/2ã and the potential ata can be expanded
as

Usad = Eg + 21/23−157/8d3/2Ũsãd + Osd2d,

where

Ũsãd =
1

2
sã3 − 3ãd.

Note that locallysi.e., aroundagd the potential presents a
local minimum ata0 fsee Fig. 4sadg, but the shape of the
potential well is very different from the one observed in the
framework P!1 scompare with Fig. 1d. The width of the
well a2−a1 is of the orderÎd and its depthE1−E0 is of
orderd3/2. The local shape of the potential is given by the

cubic functionŨ.
We now consider the action-angle variables. IfE

P fE1,E2d, then it can be parametrized asE=Eg

+21/23−157/8Ẽd3/2 with ẼP fẼ0,Ẽ1d. There exist three solu-

tions e3sẼdø ã1øe1sẼdøe2sẼdø ã2 of the cubic equation

Ũsãd=Ẽ. e1sẼd and e2sẼd determine the extremities of the

orbit of the normalized widthã for the normalized energyẼ
in case of unperturbed dynamics. The cubic equation can be
solved

ejsẼd = 2 cosSarccossẼd + 2ps j − 2d
3

D .

In particular, if E=E0 si.e., Ẽ=Ẽ0d, then e1sẼ0d=e2sẼ0d=1

fand e3sẼ0d=−2g, which corresponds to the ground state
astd;a0, or ãstd;1.

The periodTsEd of the closed orbit at energy levelE, as
defined by Eq.(10), can be expanded as well. Introducing

T̃sẼd = d1/42−1/459/16TsEg + 21/23−157/8Ẽd3/2d,

we get thatT̃ is at leading order with respect tod an Os1d
function that can be expressed in terms of tabulated functions

T̃sẼd =
2Î3

Îe2sẼd − e3sẼd
K„rsẼd…,

where

rsẼd =
e2sẼd − e1sẼd

e2sẼd − e3sẼd

andK is the complete elliptic integralsp. 590, Ref.f25gd. We

then define a normalized actionĨsẼd for ẼP fẼ0,Ẽ1g
=f−1,1g by

ĨsẼd =
1

2p
E

−1

Ẽ T̃ssdds.

The functionĨ : fẼ0,Ẽ1g→ f0,Ĩ1g is invertible. Its inverse is

denoted byẼ : f0,Ĩ1g→ fẼ0,Ẽ1g, where Ĩ1=18/s5pd. It is

plotted in Fig. 5sad. We can see thatẼ is roughly linear.

Similarly we can define the anglefsẼ,ãd and its inverse

ÃsĨ ,fd. The functionÃ : f0,Ĩ1g3 f0,2pd→ fã1,ã2g can be
expressed in terms of Jacobian elliptic functions

TABLE II. Comparisons between the averages and rms of the
collapse time obtained from numerical simulations and from theo-
retical formulas. Heres=2 andtc=0.5.

P

ktl rmsstd

Num Theor Error % Num Theor Error %

0.05 98.6 92.3 6.4 55.5 52.5 5.4

0.1 63.7 58 8.5 39.1 36.0 7.9

0.2 31.9 29.4 7.8 21.2 19.5 8.2

0.3 16.1 17.1 6.5 11.4 11.7 2.6

0.4 6.6 10.9 65 4.9 7.6 55

FIG. 4. (a) PotentialUsad for P=Pc−0.01.0.525sd=0.01d. (b)
Unperturbed dynamics of the BEC width. We assumeats0d=0,
as0d=0.66,d=0.01. The results from the resolution of the ODE are
compared with the asymptotic formula(20).
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ÃsĨ,fd = e1„ẼsĨd… + fe2„ẼsĨd… − e1„ẼsĨd…g

3sn2SKsr„ẼsĨd…d
p

f,r„ẼsĨd…D , s19d

where sn is the Jacobian sinussp. 589, Ref.f25gd. In absence
of perturbation the action is preserved and the closed orbit of

ãstd for a normalized actionĨ P f0,Ĩ1d is given by

ãstd = Ã„Ĩ,fstd… with fstd = − d1/42−1/43−1/259/16 2p

T̃„ẼsĨd…
.

s20d

The true orbit is astd=ag+2−1/25−1/8d1/2ãstd. Figure 4sbd
shows that this approximationsderived in the asymptotic
frameworkd!1d is indeed reasonably good.

B. Effective equations in presence of perturbations

Following the strategy presented in Sec. III B, we intro-

duce the normalized action-angle variables so thatẼstd
= Ẽ(Ĩstd) and ãstd=Ã(Ĩstd ,fstd). While the energy of the
BEC is belowE1, the orbit is closed. As soon as the energy
reaches the energy levelE1, the BEC collapses in a time of
order 1(w.r.t. sh). We shall show that the hitting time for the
energy levelE1 is of order sh

−2, so the collapse timeTc is
imposed by the hitting timeTh defined as the first timet such

that Ĩstd= Ĩ1. Here we rescalet=sh
2d−3/2t. This normalization

is chosen so that the random processh appears with the
scales of a white noise in the differential equations

dĨ

dt
=

1

«
hS t

«2Dh̃fsĨ,fd,

df

dt
= −

d1/4

«2 2−1/459/16ṽsId −
1

«
hS t

«2Dh̃ĨsĨ,fd,

where «=shd−3/4, h̃sĨ ,fd=2−5/43 5−11/16ÃsĨ ,fd, and ṽsĨd
=2p / T̃(ẼsĨd). Note once again thath̃ and ṽ are smooth

functions, andh̃ is periodic with respect tof with period
2p. By applying a diffusion approximation theoremf23g,
we get thatfĨstdgtù0 behaves like a diffusion Markov pro-
cess with the infinitesimal generator

LĨ = ad−3/2 ]

] Ĩ
ÃsĨd

]

] Ĩ
,

where

ÃsĨd = 2−1/2325−11/8fẽ2„ẼsĨd… − ẽ1„ẼsĨd…g2
Ksr„ẼsĨd…d

p2

3E
0

Ksr„ẼsĨd…d
cn2dn2sn2ss,r„ẼsĨd…dds,

a =E
0

`

Efhs0dhstdgdt,

and dn and cn are two tabulated elliptic functionssp. 589,
Ref. f25gd. The conditions ensuring the diffusion approxima-

tion are d!1, sh
2 !d3/2. The diffusion coefficientÃsĨd is

plotted in Fig. 5sbd.
Using the results reported in Sec. III B we get the follow-

ing recursive relationsnù1d for the moments of the hitting
time Th

EĨfTh
ng =

nd3/2

a
E

Ĩ

Ĩ1
E

0

x

EyfTh
n−1gdy

Ãsxd
dx, s21d

where Ĩ1=18/s5pd. In dimensional variables, the result
reads as follows. Starting from the ground statea0, the
expected value of the collapse time is

E0fTcg =
sPc − Pd3/2

v0
2a

C1, s22d

whereC1 is the constant

C1 =E
0

Ĩ1 x

Ãsxd
dx.

By a numerical integration usingMATLAB we have found
C1.8.5. More generally, we have

FIG. 5. FunctionsĨ ° ẼsĨd (a) and Ĩ ° ÃsĨd (b).
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E0fTc
ng =

sPc − Pd3n/2

v0
2nan Cn, s23d

whereCn are constants obtained recursively from Eq.s21d.
By a numerical integration we have foundC2.110.

C. Numerical simulations

We compare the theoretical predictions with numerical
simulations of the ODE(6). We use the same model as in
Sec. IV C with the parameterss=0.025 andtc=0.5. We re-
port in Table III the theoretical values for the expected value
and standard deviation according to formulas Eqs.(22) and
(23) as well as the values obtained from averaging of the
results of the numerical simulations. The statistical formulas
are theoretically valid in the asymptotic frameworkds=Pc

−Pd!1. The numerical simulations show that they are actu-
ally valid for dø0.03.

VI. VALIDATION OF THE VARIATIONAL APPROACH

The analysis carried out in this paper is based on the
variational approach using a Gaussian ansatz. The Gaussian
ansatz for the study of static and dynamic properties of
trapped gases has been widely used(see for instance Refs.
[21,26–29]). The variational principle is shown in these pa-
pers to be a simple Lagrangian-based method that gives rea-
sonable accurate ordinary differential equations approxima-
tions to the true dynamics for the solution of the GP
equation. This method merely assumes Gaussian pulse
shapes containing a fixed number of free parameters and the
Lagrangian form of the partial differential equation is used to
obtain the parameter evolution equations. However, it is a
questionable approach because it is based on thea priori
assumption that the solution of the PDE has a form which
remains very close to the chosen ansatz. Accordingly it has
to be checked carefully by full numerical simulations of the
PDE.

Numerical simulations of the stochastic GP equation with
spherically symmetric trap is performed by Crank-Nicholson
scheme. The absorbing boundary condition is employed to
imitate the infinite domain size. This technique allows to
prevent reentering of linear waves emitted by the condensate
under perturbation into the integration domain. We have first
checked the variational approach for the unperturbed system.

We have done so by inserting the Gaussian wave form with
the amplitude and width corresponding to a stationary point
(as predicted by the variational approach) as an initial con-
dition into the PDE(3). We have let the solution evolve in
time and we have plotted the results in Fig. 6(a). As can be
seen the Gaussian ansatz is a good approximation whenP is
not close to the critical valuePc. Actually we have found
numerically that the critical value for the existence of the
BEC is not Pc=0.535, as predicted by variational approxi-
mation, butPc=0.459. ForP very close to the real value of
Pc, the Gaussian ansatz substantially deviates from the exact
solution of the 3D GP equation, as shown in Fig. 6(b).

In a second step we have performed numerical simula-
tions of the GP equation(3) driven by a random Gaussian
white noiseh with zero-mean and autocorrelation function
Efhstdhst8dg=s2dst− t8d. We do so by choosing randomly
and independently the value ofh at each time step. The
mean collapse time is calculated as an average over 100 re-
alizations of random paths along which the width of the con-
densate evolves from the value corresponding to the mini-
mum of the effective potentiala0 until the value
corresponding to its local maximuma1 (see Fig. 1). The
initial wave form is selected as a Gaussian with parameters
predicted by the variational approximation corresponding to

TABLE III. Comparisons between the averages and rms of the
collapse time obtained from numerical simulations and from theo-
retical formulas.

P d

ktl rmsstd

Num Theor Error % Num Theor Error %

0.525 0.01 651 653 0.3 447 472 5

0.515 0.02 1754 1846 5 1240 1334 7.5

0.505 0.03 3175 3392 7 2217 2451 10.5

0.495 0.04 4673 5222 11.5 3107 3775 21.5

FIG. 6. (a) Width of the BEC for an initial Gaussian wave form
with parameters corresponding to a stationary point of the potential
Usad. The oscillations are insignificant for small values ofP, and
become important whenP approaches the critical valuePc=0.459.
At overcritical P the wave form rapidly shrinks(a→0), i.e., the
BEC undergoes collapse.(b) Exact solution of the 3D GP equation
(solid line) compared with the Gaussian approximation with the
same number of atoms andP=0.44.
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the stationary state of the condensate. Figure 7(a) represents
the collapse time for different values of the parameterP
which are not too close to the critical valuePc. Comparison
with the results from numerical simulations of the ODE(5)
shows a very good agreement. This demonstrates that the
variational approach provides accurate predictions for the be-
havior of the BEC for small nonlinearity, and that the
asymptotic analysis carried out in Sec. IV holds true for the
randomly driven GP equation.

Finally, we have performed numerical simulations of the
GP equation(3) driven by a white noiseh with a nonlinear
parameterP very close to the critical valuePc=0.459. For
near-critical values of the parameterP, the Gaussian wave
form was found to be not enough accurate. In this case we
employed the exact solution of the GP equation to initiate
random simulations. The exact solution(ground state) of the
GP equation is found by imaginary time-evolution method as
described in Ref.[30]. It is plotted in Fig. 6(b). The results

are plotted in Fig. 7(b). We can see that collapse in the per-
turbed PDE occurs much earlier than in the ODE model.
This shows that the BEC in full GP equation is unstable
against collapse at near critical nonlinear parameter. A small
perturbation can drive the BEC to collapse through fluctua-
tions that are not captured by the variational approach. Ac-
cordingly, we can state that the variational approach provides
poor predictions for the behavior of the BEC for critical non-
linearity. Several reasons can explain the departure.(1) The
Gaussian ansatz is not correct[see Fig. 6(b)]. (2) The study
of the ODE model shows that the important parameter in the
near-critical case is not the value ofP, but the value of the
difference betweenP andPc. But the ODE does not capture
the correct value ofPc, so the error committed in the evalu-
ation of the differenceP−Pc becomes very large whenP
becomes close toPc. (3) Radiation effects become very im-
portant, in the sense that the wave form is strongly affected,
even when the simulations are performed starting from the
exact numerical wave form plotted in Fig. 6(b), so that we
feel that it is useless to try to find a more suitable ansatz. In
this respect, one should add that this result is not surprising
because it is well known in nonlinear optics that the time-
dependent variational approach fails to describe the regime
near the collapse[31,32]. Finally, it is necessary to mention
that the behavior of the gas close to collapse can be affected
by mechanisms that are not included in the GP equation,
such as inelastic two- and three-body collisions[33,34].

VII. CONCLUSION

We have considered in this paper a condensate trapped by
an external potential generated by a system of laser beams in
the case of a negative scattering length. We have studied the
stability of the metastable BEC against small fluctuations of
the laser intensity. We have shown that collapse of the BEC
occurs whatever the amplitude of the fluctuations after a time
which is inversely proportional to the integrated covariance
of the autocorrelation function of the fluctuations of the laser
intensity. The statistical distribution of the collapse time has
been computed. The dependence of the mean collapse time
with respect to the number atomsN has been thoroughly
analyzed. We have shown that, forN below the critical num-
ber of atomsNc, the mean collapse time decreases logarith-
mically with increasingN. As a byproduct of the analysis we
have shown that the variational approach is very efficient for
the analysis of the BEC for a number of atomsN which is
not too close toNc, but we have seen that it completely fails
for N close toNc.
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FIG. 7. Mean collapse time is calculated from stochastic PDE
simulations(solid squares) and compared with the corresponding
stochastic ODE simulations(open circles). Each mean is computed
by averaging over a series of 100 simulations.(a) Mean collapse
time as a function ofP for a white noise strengths=0.3. (b) Mean
collapse time as a function ofs for a nonlinear parameterP
=0.44 close to the critical valuePc=0.459.
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