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Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity
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The dynamics of a metastable attractive Bose-Einstein condensate trapped by a system of laser beams is
analyzed in the presence of small fluctuations of the laser intensity. It is shown that the condensate will
eventually collapse. The expected collapse time is inversely proportional to the integrated covariance of the
time autocorrelation function of the laser intensity and it decays logarithmically with the number of atoms.
Numerical simulations of the stochastic three-dimensional Gross-Pitaevskii equation confirm analytical predic-
tions for small and moderate values of mean-field interaction.
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[. INTRODUCTION altered either by internal or external factors. With respect to
spatial and energetic stabilities the magnetic traps appear to
The experimental realization of Bose-Einstein condensabe better controllable compared to optical trg@s On the
tion (BEC) in dilute atomic gase$l-3] founded a rapidly other hand, due to increasing interest in far-off resonant laser
progressing new field of researpt]. The physical properties traps for Bose condensation of atoms which are insensitive to
of BECs, which to date comprise eight elements Rb, Na, Limagnetic field410], the investigation of different aspects of
H, He, K, Cs, Yb, and their isotopes, are predominantly deBEC dynamics in optical traps is becoming a very relevant
termined by interatomic forces. Some of the atomic speciesubject. Of particular interest is the effect of temporal fluc-
("Li, 8Rb, 133Cs) possess a negatigewave scattering length  tuations of the laser intensity which in turn involves temporal
in the ground state and display attractive interactions. Thductuations of the parabolic trapping potentfal]. In the
attractive interaction between the atoms causes the collap§esent paper we shall consider the BEC dynamics under
of the BEC so that a stable BEC was not believed to exisfandom fluctuations of the strength of the parabolic trap po-
[5]. However, when an external spatial confinement is im-tential and we shall show that small fluctuations can Ieaq to
posed for instance by a system of laser beams, a trappirg(e eventual collapse of the 3D BEC due to a cumulative

potential shows up which can counterbalance the attractivinect Of stochastic perturbations. The random fluctuations
ave all harmonics in their spectrum, and some of them par-

interaction and allows the formation of a metastable BEC,. . . . . :
When the number of atoms increases, the attractive intera%mpate in the parametric resonance leading to collapse. This

: ) tochastic parametric resonance in the BEC width oscilla-
tion becomes stronger and the energy barrier that prevenfs, s hag a rough equivalent particle picture: the Kramers’
the three-dimensional3D) BEC from collapsing becomes

. . . exit problem which is concerned with noise activated escape
weaker. To a given trapping potential, there corresponds gom a potential wel[12].

pritical number of atoms aboye which .the energy barriervan- Quantum tunnelingQT) is considered as playing a key
ishes. The case of a quadratic potential has been studied, th§e in the condensate collapse when the number of atoms is
critical number of atoms has been computed by a variationgl|se to the critical numbeil3]. We shall see that the BEC
approach and by extensive numerical simulations of thenstapility driven by random fluctuations of the strength of
Gross-Pitaevski(GP) equation, and the results have beenie paraholic trap potential is all the more dramatic as the

checked experimentallf,6,7. _ ~ number of atoms is closer to the critical number. Our con-
One of th_e most [mportant aspects of BECs in the_reglmesideration thus shows that even weak noise can play a com-
of attractive interactions is that they are unstable against Cobetitive role in this limit with QT and should be taken into
lapse. The collapse shows up as a rapid and strong shrinking.count. The effect of optical trap noise was previously con-
of the condensate at some critical number of atoms, and i§ijered in the context of stochastic heating of trapped atoms

accompanied by significant.at_or_n_ic losses due to many—bodmllm_ In a far-off resonant optical trap created by a system
processe$8]. The collapse is initiated when the balance of of req detuned lasers, the variable trapping potential can be

forces governing the size and shape of the condensate liépresented a¥(t,r)=—alE(t,r)|?/4, wherea is the atomic
polarizability andE(t,r) is the electric-field amplitude. The

dynamics of trapped atoms can be described by the corre-
*FAX: (33) 5 61 55 60 89. Email address: garnier@cict.fr sponding Hamiltonian H=p?/(2m)+(1/2)mw3[1+7(t)]r?,
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where w3=k3/m is the mean-square trap oscillation fre- ansatz for the wave function of the BEC is chosen as the
guency, and, is proportional to the time-averaged laser in- Gaussiar{4],
tensityl,~ |E|2. The time dependent spring constant is deter- P 2
mined by fractional fluctuations of the laser intensiit) u(t,r) =A(t)exp<— r® ¥ ib®Irf* +i0(t)>. (4)
=[1(t)=1o]/1o [11]. The influence of the fluctuations of the 2a(t)? 2
trap potential on the dynamics of 1D GP type equation ha: ; - P ; ;
been considered in Ref15] and the trap and nonlinearity A(0)r, is the initial BEC rms width in physical variables
fluctuations in two-dimensional BEC in Refd6,17. \E 12
The paper is organized as follows. In Sec. Il we give a a(0) =~——(f |r|2|¢(t:0,r)|2d3r) -
description of the model and apply a variational approach. In V3vNro
Sec. Il we derive the effective dynamics of the action-angleThe number of atoms is
variables of the system driven by random perturbations. Sec-

i i i i [ [
tion IV (Sec. V) is devoted to th_e_\ asymptotic analysis of _the N= N OA(0)2a(0)3 _\m OA(t)za(t)3.
system for smallresp. near criticalnumber of atoms. Fi- 4lag 4lay

nally we check the variational approach and our asymptotic . .
analysis in Sec. VI by performing direct numerical simula- Following the standard procedui20], we substitute the an-
tions of the GP equation. satz into the Lagrangian density generating 8).and cal-
culate the effective Lagrangian density in termsh\o#, b, 6,
and their time derivatives. The evolution equations for the
Il. THE MODEL AND THE VARIATIONAL APPROACH parameters of the ansatz are then derived from the effective
. i , ) Lagrangian by using the corresponding Euler-Lagrange
We consider the mean-field GP equation for the singlezqations. In particular this approach yields a closed-form

particle wave functiorj18] ordinary differential equatiofODE) for the BEC widtha
. _ ﬁz 2 1 o P
iy == oMY+ VL) g+ glgf2y. &y ay+al+90]= 5+ o, (5

The nonlinear coefficient ig=4n#%a/m, whereas and m WhereP:\f'mN|as|/r0. We study in this paper the attrac-

are, respectively, the atomic scattering length and mass. Thg,e case(a,<0,0,=—1). The evolution equation finally
number of atoms iN=[]{?dx. V is the external trapping reads

potential imposed by a system of laser beams. We consider a

harmonic model, but we take into account temporal fluctua-

tions of the laser intensity which in turn induces temporal ag+all+nt)]= 8 at (6)
fluctuations of the quadratic potential

2
Mo, - ARIA
V(tr) = > O|r|2[1 ®)]. ) Ill. ACTION-ANGLE VARIABLES

A. Unperturbed dynamics
For the optical trap?=al/(2ml3), wherel, is the size of the
laser beam| is the intensity,« is a constant proportional to
the laser frequency detuning. The random functigt) de- 1, 1 1 P
scribes the laser intensity fluctuationg) =[1(t)—1,]/1,. The Et) = Eq(t) +U(at)), U(a)= E(aZ + ;) 2
stationary random process has zero mean and standard 7)
deviationg,. We shall see in the following that the standard
deviation is not sufficient to predict the collapse of the BEC,In the absence of random fluctuations=0, the energyE is
but the coherence time and more generally the power spean integral of motion. The BEC width obeys a simple dy-

The energyE of the unperturbed BEC is given by

tral density of» will play a role. namics with Hamiltonian structure
We now cast Eq(1) in a dimensionless form by introduc-
ing the variablest’ =wgt, r'=r/ry, r51=\s’mw0/ﬁ, and u H(p,q):}p2+ U(q) (8)
=\4mladray. This yields the following partial differential 2
equation(PDE)

with g=a andp=a;. A straightforward analysig4,22] shows

1 1 that if P<P.=4/5"4=0.535, then the potentiallu pos-

iuy =-SA'u+ §|f'|2[1 +7'(t)Ju+oduu,  (3)  sesses a local minimum that we shall denoteagy(see

Fig. 1. The corresponding ground state has enekgy

whereo,=sgriag)=+1 and ' (t')=5(t'/ wg). From now on =U(ay). Below a, there is the local maximuna; with
we drop the primes. The next step consists in applying thenergy E;=U(a;), and belowa; the potential decays to
variational approach. This approximation was first intro-—o. Above a, the potential increases toet It crosses the

duced by Andersofil9] and developed in nonlinear optics energy levelg; at a,.

[20]. A similar technique was elaborated for the BEC dy- If the initial conditions[a(0),a,(0)] correspond to an en-
namics based on the GP equatipi?il]. The variational ergy aboveE,, or belowE; but a(0) <a,, then the conden-
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81 2
t) = $(0) — ——t.
A =40 - 7o
6_
5r B. Perturbed dynamics
= 4 From now on we assumg#0 and we denote by, the
5 standard deviation of;. We investigate the stability of the
BEC when the unperturbed motion is oscillatory. In particu-
2r lar, we aim at studying the collapse tinfg defined as the
Al first timet such that(t)=0. While the energy of the BEC is
below E;, the orbit is closed. As soon as the energy reaches
of the energy leveE,;, the BEC collapses in a time of order 1
» (w.r.t. o,). We shall show that the hitting time for the energy
0 level E, is of ordero”?, so the collapse tim&, is imposed by

the hitting timeT}, defined as the first time such thatE(t)

FIG. 1. PotentialU(a) for P=0.2. The important points = E1 OF equivalentlyl(t)=I;: =1(Ey). o
(ay<ag<ay) are also represented. In presence of perturbations, the motionads not purely
oscillatory, because the energy and the action are slowly

sate width goes to zero in finite time which means that the/arying in time. We adopt the action-angle formalism, be-
BEC collapses. On the contrary, if the initial conditions cause it allows us to separate the fast scale of the locally

[a(0),a,(0)] correspond to an energy betweEgiandE;, and periodic motion and the slow scale of the evolution of the
a(0)>’a1, then the orbits of the motion are closed, corre-aCtion' Thus, after rescaling:of]t the action-angle variables

sponding to periodic oscillations. In order to explicit the pe-SatISfy the differential equations

riodic structure of the variablea and a;, we introduce the d 1 T
action-angle variables. The orbits are determined by the en- d_r: o 7 ; hy(l, ),
ergy imposed by the initial conditions, do ”1 7 . (11
r
1 d—:——zw(l)——n<—2)hu(l,¢),
E= Eaf(O) +U(a(0)). T 0y Tp \Oy

whereh(l, ¢)=3A4%1, ¢) andw(l)= 27/ T(£(1)) are smooth
For E e (Ep,E;), we introducee,(E) <e,(E) the extremities functions anch is periodic with respect tep with period 2.

of the orbit ofa for the energye The normalizationr= ot has been chosen so that the ran-
dom process; appears with the scales of a white noise in the
U(ey(E)) =U(ex(E)) =E. differential equations(11). Applying a standard diffusion-

approximation theorenj23], we get that[I(t)]~, behaves

The actionl s defined as a function of the energyby like a diffusion Markov process with the infinitesimal gen-

1 1(e=® — erator,
Z(E) = ——¢$p dg= — V2E-2U(b)db.  (9)

2m e 1 F 9
Li=-Al)—5+B()—,
The motion described by E@8) is periodic, with period 2 Il Il

d ©E  db
p e6) V2E-2U(b)

where

1 2T o
Al) = ;f f hy(l, d)hy(l, é — (DY E[ 7(0) 7(t) ]dtde,
or else 7(E)=2wdZ /dE(E). The angle¢ is defined as a o -0
function of | anda by

1 2 o
e w 8=~ " | a6 - w0ELO 01t

a

#(E,a) = —J PPag=- ’, .

71 7€) 2E-2U(b) This means in particular that the probability densi}y function
The transformatiofiE, a) — (1, ¢) can be inverted to give the ©f I() satisfies the Fokker-Planck equatiap=L,p, p(t
functions £(1) and A(l,¢). The BEC width oscillates be- =0:1)=4I~lo), wherelo s the initial action at time 0 and,
tween the minimum value,(E) and the maximum value S the adjoint operator off,, i.e., £|p=(1/2)&|2[A(I)p] _
e,(E). The energyE as well as the actioh are constant and -a[B(I)p]. Moreover, standa'rd results of stochastic analysis
fixed by the initial conditions, so the evolution of the BEC &llow us to compute recursively the moments Tof [24].
width is governed by Denoting 1,=Z(E;), the first moment uM(1)=F[T,]

(the mean value of}, starting from actiorl at time 0 satis-
a(t) = A(Z(E), ¢(1)), fies
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LpP=-1, uP(y=0. (12
The nth momentu™(1)=K,[Th] satisfies
L™ ==np™, w1 =0. (13

In the following sections we shall apply and discuss these
general results in two different frameworks: small and criti-
cal nonlinearity.

IV. SMALL NONLINEARITY

A. Expansions of the action-angle variables for small t
nonlinearity

In this section we assume thBi< 1 which will allow us
to derive simple expressions for the physically relevant
quantities. The points; and E; can be expanded for small
nonlinearityP as

1
a0:1+O(P)I al:P+O(P2)1 a2: ,§P+O(1)!
\J

Eo=1+0(P), E —i+0<1>

0" ¢ P2 P/

Note t_f;at, a_sP becomes small, the potenti_al barrier grows FIG. 2. Unperturbed dynamics of the BEC width. We assume
like P, which shows that the trap looks like a deep qua-p=q 1, 4(0)=0, a(0)=2 (a), a(0)=5.7 (b). The second case corre-
dratic external potential. The functiogl, ¢) andw(l) can  gponds to an energy very closeEg. The results from the resolu-

also be expanded for any and I<1;=Z(E;)=1/(12P?)  tjon of the ODE are compared with the asymptotic formld).
+O(1/P):

h(l,) =2 +1+ 1 +12 cog¢h) + O(P), E[1(t)] = 3% - 3, (15
w(l)=2+0(P). E[1(1)?] = 2€%ct — 2ect + 2. (16)
Accordingly the unperturbed dynamics of the BEC width for B ) o ) ) )
small P is approximately An empirical way to estimate the mean disintegration time is
to look for the timet; such thatEyI(t;)]=1,, wherel;
a(t) = \/1 + 20+ 2\/|0+ |g cog2t). (14) =1/(12P%. From Eq. (15 we get t;=(1/ay)In[1

+1/(6P?)]. This argument is rough because the expecta-
c{ions are ill-placed. The exact results provided by the rig-
orous stochastic analysis confirm that this prediction is
not correct. Integrating Eq$12) and (13) we get that the

expectation of the disintegration time starting from the

. _ ) ground statd =0 is
In case of small nonlineariti?<1, the above expansions

Figure 2 shows that this approximation is indeed very goo
for the orbita(t) whatever the initial conditions lying in a
closed orbit with energy<E;.

B. Effective equations in presence of perturbations

allow us to derive simple effective equations for the BEC 2 P<1
action in presence of perturbations. Applying the general re-  Eq[T] = —In(l + 12P2) = —[-2In(P)-1In(12)],
sults obtained in Sec. Ill B, we get that the actit) be- e %e
haves like a diffusion process with the infinitesimal generator (17)
1 9 J hile its variance is
=Za,—| (1+1)—|, w
bi=sey) [( )&I]
where Var, (T)‘E{In<1+ L )+di|o <1+ ! )
T 2 12P? N " 1op2
ac= f cos(2t) E[ 7(0) 5(t)]dt. .\ }ln(l L1 )2

0 2 12pP?
The expression of, holds true only foll <I,. We can com- P<1 7
pute the growths of the first moment of the action starting = —2{— 2 In(P) - In(12) - —] (18)
from the ground state=0 while e*!< P2 o 6

053607-4



COLLAPSE OF A BOSE-EINSTEIN CONDENSATE PHYSICAL REVIEW A 69, 053607(2004)

where the dilogarithm function is the tabulated function de- TABLE I. Comparisons between the averages and rms of the
fined as follows: collapse time obtained from numerical simulations and from theo-
retical formulas. Herer=0.3 andt.=0.5.

*In(y)
dilog(x) = f ——dy.
9 11-y Y (7 rms(7)
Equationg17) and(18) are the most important results EJZf this p Num  Theor Error % Num Theor  Error %
paper. They show that the collapse time varies-&s(P~),
while the energy barrier is'P~2. In physical variables, the 0.05 4112 4103 0.2 2241 2335 4
expected collapse time is 0.1 2585 2591 02 1718 1601 7
2 4 0.2 1257 1306 35 833 865 4
o
Eo[Te]= —ln(l to— 2) , 0.3 586 760 23 407 518 21
wo 24mweaiN
0.4 205 486 58 165 336 51

a=w, cog2wqt) K[ 7(0) 5(t) |dt.
Ofo 2w EL7(0) (V)] =< 0.3 with an accuracy of 10% although the considered con-

figurations are at the boundary of the validity of the

Taking the experimental data,=10 kHz, N=5X10°, ag asymptotic theory

=-5 nm, anda=10%-10"°, we obtain the expected col-
lapse time=(1-10 s.
V. CRITICAL NONLINEARITY

C. Numerical simulations
A. Expansions of the action-angle variables for critical

We compare the theoretical predictions with numerical nonlinearity

simulations of the ODKEG6). We use a fourth-order Runge-
Kutta method for the resolution of the ODE. The random In this section we address the case where the nonlinear

fluctuations are modeled by a stepwise constant random pr@arameterP is close to the critical valu®.=4/5"*. We do
cess, so by settingP=P.— § and assumingg<1. Once again, all

guantities can be expanded in powerssoAfter some alge-
7](t) = O'E XJ 1[jtc,(j+1)tc)(t)’ bra, we get
_ ’ o . aj=ay+ 2 1%571%,512+ O(8) with ag=5"",
where theX; are independent and identically distributed ran-
dom variables with uniform distribution over1/2,1/2 “
andt, is the coherence time of the laser. The coefficients 4x 10
then given by

w
]

1-cog2t,)

ae=
48t

The first series of simulations were performed with the pa-

rametersoc=0.3 andt;=0.5. Weinvestigate different con-

figurations corresponding to different values of the param-

eter P starting froma(0)=1, a,(0)=0, which is very close Hﬂﬂﬂﬂﬂmﬂmﬁm o

to the ground state. We have carri#@d00 simulations for 0 5000 10000 15000

each configuration. The theoretical values for the ex- @ N

pected value and standard deviation according to formulas <107

[Egs.(17) and(18)] are reported in Table | and compared

with the values obtained from averaging of the results of

the numerical simulations. mh
Note that the statistical formulas are theoretically valid in

the asymptotic frameworlP<1. The numerical simulations

show that they are actually valid fé&?<0.2. More exactly,

the comparisons between the theoretical predictions and the

numerical simulations show excellent agreement for the

mean values, and very good agreement also for the standard HHH

deviations. We also plot in Fig. 3 the histograms of the col- 0 Hﬂﬂﬂﬂmﬂmm . .

lapse times for two series of simulations. ®"0 5000 10000 15000
Finally, in Table II, we report results with a high level of N

fluctuations(namely, 0=2). The theoretical predictions are  FIG. 3. Histograms of the collapse time obtained from series of

still in agreement with the numerical simulations f& 1000 simulations(a) P=0.1;(b) P=0.05.

simulated density
N

-

n

—_

simulated density
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TABLE Il. Comparisons between the averages and rms of the
collapse time obtained from numerical simulations and from theo-
retical formulas. Herer=2 andt.=0.5 0.76}
(a.E) (ayE,)
() rms(7) 0.758
=
P Num  Theor Error% Num  Theor Error % >
0.756
0.05 98.6 92.3 6.4 55.5 525 54
0.1 63.7 58 8.5 39.1  36.0 7.9 0.754] @y Ey
0.2 31.9 29.4 7.8 21.2 19.5 8.2
0.3 161 171 6.5 114 117 2.6 07 s o5 07 o075 o8
0.4 6.6  10.9 65 4.9 7.6 55 @ a
0.78
R
Bo=1, F=-1, B=2, 0.76r )
074t |
Ej — Eg + 21/23—157/8Ej 53/2 + 0(52) 0.72+ ’,' \\
© | !
07 |
with E,=3715Y2+ 3715945, Ej=-1, E,=1. 068l |/ \
More generally, ifa € [a;,a,], then it can be parametrized as 0.661" M — I(?d? -
a=ay+2 Y%571/85Y24 and the potential a4 can be expanded ‘ ~ it
0.64
as (b 0 5 . 10 15

FIG. 4. (a) PotentialU(a) for P=P.—0.01=0.5256=0.01). (b)
Unperturbed dynamics of the BEC width. We assue®)=0,
a(0)=0.66,6=0.01. The results from the resolution of the ODE are
compared with the asymptotic formu20).

U(a) = E4 + 2123715786320 @) + O(8?),

where

0@ =@ - %),

?(NE) — 51/42—1/459/167—(Eg + 2l/23-157/8¢ 5%?),

we get that7 is at leading order with respect #®an O(1)
function that can be expressed in terms of tabulated functions

Note that locally(i.e., arounda,) the potential presents a
local minimum ata, [see Fig. 4a)], but the shape of the
potential well is very different from the one observed in the
framework P<1 (compare with Fig. L The width of the .
well a,—a; is of the orderys and its depthE;-E, is of
order 5%2 The local shape of the potential is given by the
cubic functionU.

We now consider the action-angle variables. Hf
€[E;,Ep), then it can be parametrized a&=E,

+21/23-157/8E 5812 \yjth E e [Eo,~E1) There exist three solu-
tions e3(E)<al el(E)<e2(E)<a2 of the cubic equation
U(’é) E. el(E) and ez(E) determine the extremities of the andKis the complete elliptic mtegrdb 590, Ref[25]) We
orbit of the normalized widtf for the normalized energg ~ then define a normalized actio(E) for Ee[Eg,E,]
in case of unperturbed dynamics. The cubic equation can pel-1.1] by
solved

28y o),
————K(p
Veo(E) - ex(®)

where
e(E) - ey(®)

p(E) = 22 -
e(E) - e3(E)

I(E) = —f 7’(s)ds

e,-(E) _ cos( arccosk) ; 27(j - 2) ) .

The functionZ: [EO,~E1]—>[O ,Tl] is invertible. Its inverse is

In partlcular if E=E, (ie., E= Eo) thenel(Eo) ez(Eo) 1 denoted byé&: [0,1{]—[Eq, Eql, wherel1:18/(57-r) It is

[and ey(Ep)=—2], which corresponds to the ground statePlotted in Fig. §a). We can see thaf is roughly linear.
a(t)=ap, ora(t)=1 S|m|IarIy we can define the anglé(E,3) and its inverse

The period7(E) of the closed orbit at energy level as AQ ). The functionA: [0,I1]><[0,27-r)—>[él,a2] can be
defined by Eq(10), can be expanded as well. Introducing expressed in terms of Jacobian elliptic functions
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that1(t)=I,. Here we rescale= o@b“wzt. This normalization
is chosen so that the random processappears with the
05l scales of a white noise in the differential equations
dl 1 [7)\ ~
= ) h I L 1
w0 dr 87](82> ¢( ¢)
do _ i ~1/4£9/16> 1 ( T)” T
05 * | 4, - 22 ) - Za L e),
where e=g, 5%, h(l, p)=27543 511641, ¢), and (1)
()—10 02 04 06 0.8 1 =2m/7(£(1)). Note once again thah and @ are smooth

' functions, andh is periodic with respect t@ with period
2. By applying a diffusion approximation theoref23],

we get that[T(t)]tzO behaves like a diffusion Markov pro-

0257 1 cess with the infinitesimal generator
L d~~ 0
0.2 £I~: a5_3/2—~A(|)—~,
al al
< 0.5
where
0.1} -
~~ ; ~~ L~ K(p(E()))
0.05/ ] A(l) = 271232578, (E(1)) - el(g(l))]zT
‘ . . ‘ . K(p(&(1))) ~~
® % o2 04 06 08 1 12 X f P ertdrisi(s, p(£(1)))ds,
0

FIG. 5. Functiond —£(1) (a) and1—A(l) (b). .
a= f E[7(0) 5(t)]dt,

0

AT, ¢) = ey (E(1)) + [e,(E(1) — ey (E(1))]

K(p(E( -
><sr\2<@¢,p(su»>, (19

and dn and cn are two tabulated elliptic functigips 589,
Ref.[25]). The conditions ensuring the diffusion approxima-

tion are <1, 0'3]< 832 The diffusion coefficientA(l) is

where sn is the Jacobian sin(s 589, Ref[25]). In absence plotted in Fig. §b).

. o . Using the results reported in Sec. Il B we get the follow-
of perturbation the action is preserved and the closed orbit o|1;1g recursive relatiorin= 1) for the moments of the hitting

a(t) for a normalized actiot e [0 ,Tl) is given by time T,

30 = A0, 4(0) with (1) = - oz 14z gs 2T j T
TE() a2 (i, Jo Y
g = 2 [
(20) a J A(X)
The true orbit isa(t)=ay+271%5"85Y24(t). Figure 4b)
shows that this approximatiofderived in the asymptotic
framework < 1) is indeed reasonably good.

dx, (22)

where71:18/(57-r). In dimensional variables, the result
reads as follows. Starting from the ground statg the
expected value of the collapse time is

B. Effective equations in presence of perturbations (P.— p)3/2

. . . [Tl = ———C;4, 22
Following the strategy presented in Sec. lll B, we intro- oL Tel wier ! (22)
duce the normalized action-angle variables so tRé&
=£(1(t)) and a(t)=A(I(t), #(t)). While the energy of the
BEC is belowE;,, the orbit is closed. As soon as the energy C. = I X dx

reaches the energy level, the BEC collapses in a time of 1= o ;\(X) :

order 1(w.r.t. o). We shall show that the hitting time for the

energy levelE, is of ordero’? so the collapse tim&, is By a numerical integration usingATLAB we have found

imposed by the hitting tim&}, defined as the first timesuch ~ C;=28.5. More generally, we have

whereC; is the constant
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TABLE Ill. Comparisons between the averages and rms of the

0.4
collapse time obtained from numerical simulations and from theo- 0.2 7
retical formulas. 03 4
04 ]
(7) rmg(7) 1
P 6 Num Theor Error% Num Theor Error %
0.525 0.01 651 653 0.3 447 472 5
0.515 0.02 1754 1846 5 1240 1334 7.5 e
01 2 3 45 6 7 8 9 10 11 12

0.505 0.03 3175 3392 7 2217 2451 105
0.495 0.04 4673 5222 115 3107 3775 215

t

2.0 . : :
3n/2 Exact solution
—(P kit N e Gaussian
n — [ Y
EO[T(;] - a)gnan Cn, (23) 151 3
where C,, are constants obtained recursively from E2f). lu()]
By a numerical integration we have fou@j=110. 10k

C. Numerical simulations osl

We compare the theoretical predictions with numerical
simulations of the ODE6). We use the same model as in

Sec. IV C with the parameteks=0.025 and;=0.5. We re- 0.0, ] 5 5 y
port in Table IIl the theoretical values for the expected value (b)
and standard deviation according to formulas Eg8g) and r

(23) as well as the values obtained from averaging of the FIG. 6. (a) Width of the BEC for an initial Gaussian wave form

results of the numerical simulations. The statistical formulasvith parameters corresponding to a stationary point of the potential

are theoretically valid in the asymptotic framewosk=P, U(a). The oscillations are insignificant for small valuesRfand

—-P)<1. The numerical simulations show that they are actubecome important wheR approaches the critical valu=0.459.

ally valid for 5<0.03. At overcritical P the wave form rapidly shrinkgéa— 0), i.e., the
BEC undergoes collapsé) Exact solution of the 3D GP equation
(solid line) compared with the Gaussian approximation with the

VI. VALIDATION OF THE VARIATIONAL APPROACH same number of atoms a=0.44.

The analysis carried out in this paper is based on th&Ve have done so by inserting the Gaussian wave form with
variational approach using a Gaussian ansatz. The Gaussithie amplitude and width corresponding to a stationary point
ansatz for the study of static and dynamic properties ofas predicted by the variational approaets an initial con-
trapped gases has been widely ugsele for instance Refs. dition into the PDE(3). We have let the solution evolve in
[21,26-29). The variational principle is shown in these pa- time and we have plotted the results in Figa)6 As can be
pers to be a simple Lagrangian-based method that gives reaeen the Gaussian ansatz is a good approximation Whsn
sonable accurate ordinary differential equations approximanot close to the critical valu®.. Actually we have found
tions to the true dynamics for the solution of the GPnumerically that the critical value for the existence of the
equation. This method merely assumes Gaussian pul®EC is notP.=0.535, as predicted by variational approxi-
shapes containing a fixed number of free parameters and thmeation, butP.=0.459. ForP very close to the real value of
Lagrangian form of the partial differential equation is used toP,, the Gaussian ansatz substantially deviates from the exact
obtain the parameter evolution equations. However, it is &olution of the 3D GP equation, as shown in Figh)6
guestionable approach because it is based omatipeiori In a second step we have performed numerical simula-
assumption that the solution of the PDE has a form whichtions of the GP equatio3) driven by a random Gaussian
remains very close to the chosen ansatz. Accordingly it hawhite noise» with zero-mean and autocorrelation function
to be checked carefully by full numerical simulations of the E[ #(t) 7(t")]=c?8(t—t’). We do so by choosing randomly
PDE. and independently the value of at each time step. The

Numerical simulations of the stochastic GP equation withmean collapse time is calculated as an average over 100 re-
spherically symmetric trap is performed by Crank-Nicholsonalizations of random paths along which the width of the con-
scheme. The absorbing boundary condition is employed tdensate evolves from the value corresponding to the mini-
imitate the infinite domain size. This technique allows tomum of the effective potentiala, until the value
prevent reentering of linear waves emitted by the condensaigorresponding to its local maximuma, (see Fig. 1. The
under perturbation into the integration domain. We have firsinitial wave form is selected as a Gaussian with parameters
checked the variational approach for the unperturbed systemredicted by the variational approximation corresponding to
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are plotted in Fig. ). We can see that collapse in the per-
turbed PDE occurs much earlier than in the ODE model.
This shows that the BEC in full GP equation is unstable
against collapse at near critical nonlinear parameter. A small
perturbation can drive the BEC to collapse through fluctua-
tions that are not captured by the variational approach. Ac-
cordingly, we can state that the variational approach provides
poor predictions for the behavior of the BEC for critical non-
linearity. Several reasons can explain the depariiyeThe
Gaussian ansatz is not corrgsee Fig. @)]. (2) The study

of the ODE model shows that the important parameter in the
near-critical case is not the value Bf but the value of the
difference betwee® andP.. But the ODE does not capture
the correct value oP,, so the error committed in the evalu-
ation of the difference®-P, becomes very large wheR
becomes close t®.. (3) Radiation effects become very im-
portant, in the sense that the wave form is strongly affected,
even when the simulations are performed starting from the
exact numerical wave form plotted in Fig(l9, so that we
feel that it is useless to try to find a more suitable ansatz. In
this respect, one should add that this result is not surprising
because it is well known in nonlinear optics that the time-
dependent variational approach fails to describe the regime
near the collaps€31,32. Finally, it is necessary to mention
that the behavior of the gas close to collapse can be affected
by mechanisms that are not included in the GP equation,
such as inelastic two- and three-body collisig88,34.

VII. CONCLUSION

FIG. 7. Mean collapse time is calculated from stochastic PDE We have considered in this paper a condensate trapped by
simulations(solid squaresand compared with the corresponding an external potential generated by a system of laser beams in

stochastic ODE simulation®pen circleg Each mean is computed

the case of a negative scattering length. We have studied the

by averaging over a series of 100 simulatio(®. Mean collapse
time as a function oP for a white noise strengthr=0.3.(b) Mean
collapse time as a function of for a nonlinear parameteP
=0.44 close to the critical valuB.=0.459.

stability of the metastable BEC against small fluctuations of
the laser intensity. We have shown that collapse of the BEC
occurs whatever the amplitude of the fluctuations after a time
which is inversely proportional to the integrated covariance
of the autocorrelation function of the fluctuations of the laser
intensity. The statistical distribution of the collapse time has
been computed. The dependence of the mean collapse time
with respect to the number atond$ has been thoroughly
alyzed. We have shown that, fdrbelow the critical num-

the stationary state of the condensate. Figues represents
the collapse time for different values of the parame®er
which are not too close to the critical vali®. Comparison
with the results from numerical simulations of the OEB

shows a very good agreement. This demonstrates that t £ atomsNL. th I time d | ith
variational approach provides accurate predictions for the b Jer of atomsiy, the mean collapse ime decreases logaritn-
mically with increasing\. As a byproduct of the analysis we

havior of the BEC for small nonlinearity, and that theh h that th ational hi fficient f
asymptotic analysis carried out in Sec. IV holds true for the ave shown that the variational approach Is very etficient for

randomly driven GP equation, the analysis of the BEC for a number of.atomswhich is '
Finally, we have performed numerical simulations of thenot too close td\., but we have seen that it completely fails

GP equation(3) driven by a white noise; with a nonlinear for N close toN_.

parameterP very close to the critical valu®.=0.459. For

near-critical values of the parameter the Gaussian wave

form was found to be not enough accurate. In this case we F.Kh.A. and B.B.B. are grateful to the Fund of fundamen-

employed the exact solution of the GP equation to initiatetal researches of the Uzbekistan Academy of Sciences for the

random simulations. The exact soluticground statgof the  partial financial support. B.B.B. also thanks the Physics De-

GP equation is found by imaginary time-evolution method agpartment of the University of Salerno, Italy, for a research

described in Ref[30]. It is plotted in Fig. §b). The results grant.
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