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Creation and mobility of discrete solitons in Bose-Einstein condensates
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We analyze the generation and mobility of discrete solitons in Bose-Einstein condensates confined in an
optical lattice under realistic experimental conditions. We discuss first the creation of one-dimensional discrete
solitons, for both attractive and repulsive interatomic interactions. We then address the issue of their mobility,
focusing our attention on the conditions for the experimental observability of the Peierls-Nabarro barrier.
Finally we report on the generation of self-trapped structures in two and three dimensions. Discrete solitons
may open alternative routes for the manipulation and transport of Bose-Einstein condensates.
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[. INTRODUCTION analyzed in the NLO context, such as the restriction of the

The experimental achievement of the Bose-Einstein conMobility of the DSs due to the so-called Peierls-Nabarro
densate(BEC) [1] has outbursted an extraordinary interest(PN) barrier [24], or the possibility to generate two-
within the last years in the physics of ultracold atomic gasesdimensional DS$25].
This interest can be partially explained by the inherently ~Although several properties related with DSs in BEC have
nonlinear character of the BEC physics induced by the interbeen already reporteld 9-21, the realization of DSs under
atomic interactions. At sufficiently low temperatures, therealistic experimental conditions has so far not been ana-
physics of the condensates is governed by a nonlinedyzed in detail. Therefore, one of the aims of the present
Schrédinger equation with cubic nonlinearity, also calledpaper is to discuss the creation of these structures in the
Gross-Pitaevskii equatiof@PB), similar as that encountered frame of the recent experiments on BEC in optical lattices. In
in other physical systems, as e.g., nonlinear ogtisO) in ~ particular, we shall discuss the generation of 1D DS for both
Kerr media. The analysis of the resemblances between BE@ttractive and repulsive interacting condensates. Once cre-
physics and NLO has lead to the rapidly developing field ofated, the effects of the discrete nature of the DSs in BEC
nonlinear atom opticeNLAO) [2]. Recently, several experi- should be analyzed by means of the observation of the PN
ments have highlighted various NLAO phenomena, as darkarrier for its mobility. A second aim of the present paper is
solitons in BEC with repulsive interatomic interactidids4],  to discuss the conditions for the experimental observability
bright solitons in one-dimensionélD) BECs with attractive  of this barrier. Interestingly, the PN barrier is largely overes-
interactions[5,6], and condensate collap§g). timated within the usual tight-binding approximation even

During the last few years, the possibility of loading a under conditions for which this approximation is typically
BEC in an optical lattice formed by a laser standing waveassumed. Finally, in the last part of our paper, we discuss the
has attracted considerable attention, mostly motivated by thgossibility of achieving 2D and even 3D self-trapped struc-
close resemblance between these systems and solid-state t&es, which could offer alternative routes for the control-
vices. In this sense, several remarkable experiments havable manipulation of BECs.
been recently reported, as the observation of Bloch oscilla- The scheme of the paper is as follows. In Sec. Il we
tions of BECs[8,9], the realization of Josephson-junction discuss the physical system under consideration as well as
arrays of BECs placed in different lattice sifg€)], or even  the basic equations to describe it. Section Ill presents a varia-
the achievement of the superfluid to Mott-Insulator transitiontional approach which allows for an analysis of discrete
[11]. Recently, several nonlinear BEC phenomena have beestructures in arbitrary dimensions. Section 1V is devoted to
analyzed in the presence of optical lattices, as the dynamic#he analysis of the generation of 1D DSs, for both attractive
superfluid to insulator transitiofil2], the BEC transport in and repulsive interatomic interactions. We address also in
the presence of dispersion managjfg], and the generation Sec. IV the issue of their mobility and provide the conditions
of gap solitons, i.e., bright solitons with condensates withfor the observability of the Peierls-Nabarro barrier. In Sec. V
repulsive interaction§l4,15. we analyze the creation of 2D and 3D self-trapped structures.

Particular interest has been recently devoted to those ph&Ve finalize in Sec. VI with our conclusions.
nomena occurring when the condensate dimensions become
comparable to the lattice wavelength. In that case, the dis-
crete structure introduced by the lattice potential may lead to
similar phenomena as those observed in NLO in periodic In the following we consider a trapped BEC in the pres-
structures. In particular the analysis of discrete solit@S)  ence of an optical lattice. The periodic structure leads to an
[16—18 in the BEC context has recently attracted a growingenergy-band structuf@6-29, and strongly modifies the dy-
attention [19-23. Specially interesting phenomena exclu- namics of the condensaf@—10,12—-15,3D In the mean-field
sively induced by the discreteness of the system have beapproximation, the full BEC dynamicét a temperature
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much smaller than the critical one for the condensatien
governed by the time-dependent GPE:

(b)

. 2
i AR _ (_ Zh—mA +V(F) + g|¢(F,t)|2) Wiy, (1)

dt
whereg=4m#%a/m, with a as thes-wave scattering length oo\ M b
and m the atomic mass. The condensate wave function is ~—— X : »
normalized to the total number of particlés The external
potential is given by FIG. 1. Density profile of a discrete solitgrolid line) with (a)

the center of mass centered in one minimum of the optical lattice
V(F) = g(wxzxz N wy2y2 + wzzzz) N Vo{sinz(%x) and(b) the center of mass displaced by half lattice period.
In order to calculate the value of the nonlinear energy Eq.

+ sin2<77—y) + sir12<lz)], (2) (6), we use a Gaussian ansatz for the wave function on site,
d d where the width is obtained by minimization of the energy
31]. In the pure one-dimensional case, we use the interac-
ion constant obtained by averaging the 3D coupling constant
dver the radial density profilg82]. To calculate the tunneling
rate, the same Gaussian ansatz can be employed (B,

in the limit Vo> E,, it can be obtained from the exact result
for the width of the lowest band in the 1D Mathieu equation

[33].

which describes both the magnetic trap potential and the o
tical lattice (created by two counter propagating laser beam
of wavelength\ along each axjs The angular frequencies of
the magnetic trap in each direction are denotedwhyThe
optical lattice is characterized by its depth and by its
lattice periodd=\/2, which defines the so-called recoil mo-
mentumk,=/d. In the following, and following the stan-
dard notation, we refer the depth of the optical potential in
units of the so-called recoil enerdgs;=%2k?/2m.

When the optical depth of the lattice is much larger than  pjscrete solitons are characterized by being stable solu-
the chemical potentialVo> ), and the system can be con- tions of the Hamiltonian which propagate without distortion.
sidered as confined within the lowest energy band, one camhey correspond to minima of the energy of the system

employ the tight-binding approximation and rewrite the con-which in the tight-binding approximation acquires the form
densate order parameter as a sum of wave functions localized

in each well of the periodic potential:

I1l. VARIATIONAL CALCULATION

N U
E= 2> {‘ In( b1+ bnet) + €l ol + E|¢n|4}- (8)
Y7 = AN (D (), 3) “‘°°

n Let us consider first the 1D case. To find the minima of the
energy, an exponential ansatz for the soliton envelope given
by ¢,=C exp(-8|n|) can be employed, wher€ is a nor-
malization constant and is a variational parameter which
Bccounts for the inverse width of the soliton. Introducing

where ,() = ¢(f—r,) denotes the on-site wave function. By
inserting the ansat®) into Eq.(1), one obtains that the GPE
reduces to a discrete nonlinear Schrodinger equatio

(DNLSE): this ansatz in Eq(8) the expression for the energy, in the
PP negative scattering length case, becomes
2% _ 2
it ot J(¢n—1+ ¢n+1) + (En + U|¢n| )d’n (4) E 4] €° }(eZB_ 1)(e4ﬁ+ 1)

iR e (9)
B B 3
The dynamics of the system depends mostly on the interplay vl U+l 2 @)
between the tunneling ratd) and the two-body interactions By minimizing E with respect to the inverse widt one
(nonlinear energyl)). The tunneling rate can be expressed asbtains the energy of the discrete structure centered in one
, minimum of the optical latticdFig. 1(a)]. Notice that in
: J At - order to ensure that the discrete structure corresponding to
‘]_—Jdr[%V‘P”V‘P“’f“%V(ﬂ‘P”H] ) this minimum is indeed a soliton, one has to address the
issue of its mobility. In contrast with the case of continuous
The nonlinear term acquires the form solitons where applying an external momentum results in a
linear response of the soliton, in discrete systems a similar
U= ng dfg? 6) effect occurs only fpr broad soIiton' distributio(isg., those
n that occupy many sitesConversely if the dimensions of the
soliton are of the order of the lattice wavelengththe dis-
and the on-site energies are given by creteness of the system begins to play a fundamental role. In
42 particular, the discreteness generates an effective periodic
En:f dF[—(V<pn)2+V(F)<pﬁ} 7) pot_entlal energy, whose amplitude is the minimum barrier
2m which must be overcome to translate the center of mass of
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the system half a lattice period, i.e., from one minimum of [ o S e B S T AL
the lattice[Fig. 1(a)] to a neighboring lattice maximuftrig. ’ 3486_' : '
1(b)]. This is the previously mentioned PN barrj@4]. The ' | :
energy of the state depicted in Figlbl can be also calcu- W™ 1.3485 :
lated within a variational approach using w 1 E
1.3484 - :
¢n:Cexp(—,8 n—z ) 11(.)3411?— S — e —
UX =1 H
as an ansatz: 5.0510° - :
E__2[ssinip) L= o0 S 00K G
U~ U & 4P+ 5.0x10° ¢ linear y
i : region
Again by minimization one obtains the energy of the dis-  -1.0x10°{(b) : .
L L L

placed discrete structure. The difference between both enel
gies [minima of Egs.(9) and (10)] corresponds to the PN
barrier. k/k,

Notice that the barrier becomes relevant when the soliton
structure occupies few sites of the lattice. By increasing the FIG. 2. (a) Energy of the first band in units of the recoil energy
number of occupied states the above two modes approach #d(b) velocity profile in units ofv,=f7r/md as a function of the
energy and the barrier decreases approaching zero as tAgasimomentum in the first Brillouin zone for an optical potential
number of sites grows. In this sense, the PN barrier is &€Pth of &

distinctive discrete phenomenon. _ 7 between consecutive wells gives rise to the so-called stag-
The above analysis can be straightforwardly generalizeégered discrete soliton-typi@4]. Such a phase structure can
to higher dimensions. Assuming the most general case, ije achieved using the well established method of phase im-
which the width of the exponential ansatz along the d'reCt'Orbrinting [35] which allows to modify the phase of a conden-
of the movement is different from the other directions, it cangate without modifying its density profile. To this aim we
be shown t_hat Iog:ahzed structures are also p_ossmle In WBropose to use a second optical lattice with double spatial
and three dimensions under an appropriate ratio between tUferiod than the first one acting for a time much shorter than
neling and nonlinear energgee Sec. Y. A variational cal-  the characteristic times of the system, i.e., the correlation
culation using a Gaussian ansatz instead of the exponent@c:ﬁ/m and the tunnelingr,=#%/J) time. The phase im-
one has also been performed obtaining equivalent results. printed in this way depends solely on the amplitude of this

second standing wave and on the time in which it acts. In the
IV. GENERATION AND MOVEMENT foIIowing we describe in Qetail how the phase imprinting
OF ONE-DIMENSIONAL DISCRETE SOLITONS method is implemented. First we calculate the ground state
of the system in the presence of an optical lattice. This can
In this section we analyze the issue of the generation ange done either by calculating directiysing GPE in imagi-
mobility of DSs in 1D BEC under realistic experimental con- nary time the ground state of the system in the presence of
ditions. Let us first discuss the generation of DSs in condenboth the magnetic trap and the optical lattice or by calculat-
sates with positive scattering length. In particular, we coning the ground state of the system in the presence of the
sider a®’Rb condensate held in a magnetic trap and in thenagnetic trap only and afterwards growing adiabatically the
presence of an optical lattice. As discussed in Réf8,2Q it  optical lattice and letting the system evolve to the new
is possible to generate DSs in pure 1D repulsive condensatgsound state. As expected both methods yield the same
when the tunneling rate balances the nonlinear energy of thground state. Once the ground state is found, a second opti-
system. For positive scattering lengths, the compensation afal lattice with an amplitude of 72.5, acting fort=0.4 ms
these two effects is not possible unless the system has gerforms the phase imprinting while the magnetic trap is
negative effective mass’ [1/m*=(1/%%)(°E/ k?), where  suddenly switched off. Our results are summarized in Fig. 3.
E is the energy of the first band andits quasimomentum Figure 3a) shows the density profile of the ground state of
(see Fig. 3. At least two possible mechanisms can easilythe combined tragmagnetic and latticewhile Fig. 3b) dis-
place the system in such a region, inverting thus the sign gplays the density profile of the localized structure 100 ms
the tunneling. One possibilityl 3] consists on providing the after turning off the magnetic trap. The system evolves from
condensate with an external momentum to place it at thénhe ground state shown in Fig(a3 to the localized structure
edge of the first Brillouin zone where the effective mass isshown in Fig. 8b) which remains unaltered for times much
negative(see Fig. 2a))]. This can be done for instance, by longer than the tunneling time of the system. This structure
introducing—in the absence of the magnetic trap—a tilt incontains 40% of the initial number of atoms. In Figc)3 we
the optical lattice. A second mechanism to reach the negativelisplay the phase profile corresponding to Fign)3n where
effective mass region relies on the variation of the relativeclear phase jumps af between consecutive sites of the op-
phase of the condensate in the lattice. Concretely, a repulsivitcal lattice in the spatial region occupied by the localized
condensate in a periodic potential with a phase difference dftructure are present. Finally by applying an external mo-
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FIG. 4. Momentum associated with the PN barrier calculated
with the variational methodopen doty with the imaginary time
evolution of the GPHsquarey and with the DNLSHKstarg. The
necessary momentum to move the solitoalculated with the real
time evolution of the GPEis displayed by the dotted line.

case of a condensate @fi confined in a magnetic trap with
oy=0,=20X27 kHz, and ®,=75X2mHz. We fix
aN=-14 nm[36]. Again, to analyze the generation and the
propagation of discrete structures we start by calculating the
: ; ground state of the system in the combingkttice
S AL A AL S B S AL B A +magnetic trap potential. We proceed as in the case of Ru-
x(um) bidium, either growing adiabatically the optical lattice after
the ground state of the condensate in the trap has been found
FIG. 3. (a) Density profile of the ground state ofRb conden-  or by finding directly the ground state in the presence of both
sate in the combinedmagnetic and opticaltrap for N=2000, potentials. After the magnetic trap is switched off we observe
wy=50X27 Hz, wy=w0,=92X27 Hz, a=5.8 nm, Vp=1E,, and that the localized structure remains without dispersion for
d=0.8 um. (b) Density profile of the staggered soliton 100 ms after times much larger than the tunneling time of the system. To
the imprinting of a phase difference efbetween consecutive wells study the effect of the discreteness we vary the values of the
and after the magnetic trgp is switched @ff) Phase profile of the depth of the optical potential between<6/,/E, <10 for a
staggered soliton shown ). fixed lattice spacing ofl=0.8 um. The number of sites sig-

mentum to the localized structure we observe that it movegificantly occupied by the discrete structure then vary be-
without distortion, evidencing thus that such structures corfWeen 11 and 3. _
respond indeed to discrete bright solitons. Notice that the \We calculate for these sets of parameters the PN barrier,
applied momentum must keep the structure in the negativee., the difference in energy between the localized structure
effective mass region of the barfiflig. 2a)] in order not to ~ centered in a minimum of the periodic potentj&ig. 1(a)]
destroy the soliton. and the structure corresponding to a lattice displaced by half
We turn now to the case of negative scattering length. Irattice period[Fig. 1(b)]. To test the validity of the varia-
continuous systems, the attractive nature of the interactiongonal method and the validity of the tight-binding approxi-
compensates the effect of the kinetic energy and, thereforenation, we calculate the PN barrier using the expressions
the ground state of a one-dimensional homogeneous condedleveloped in Sec. Il and solving numerically in imaginary
sate with negative scattering length is already a bright solitime the DNLSE(using a Runge-Kutta methadThen, we
ton. The presence of an optical lattice in such systems pecompare these results with the barrier obtained by solving
mits the creation of a discrete bright soliton. Thus, for a fixeddirectly the full GPE in imaginary time. The results of those
number of atomd), one can straightforwardly vary the num- calculations are summarized in Fig. 4, where we display the
ber of occupied sites by varying only the depth of the opticalmomentum associated with the PN barfier units ofk;) as
potential V. Since the interactions are now attractive thea function of the depttv, of the optical lattice.
number of sites occupied by the discrete solitons is typically We observe that for large optical potential depths
much smaller than in the case of positive scattering length(Vo=8E,) the results obtained with the DNLSE and the
Bearing all this features in mind, it becomes clear that suclvariational method using the exponential ansatz match each
systems are unique to study how the movement of a discretether perfectly and agree well with those obtained by solving
soliton depends on the degree of discreteness of the structuidirectly the GPE. For low optical potential depth4 < 8E,)
i.e., to observe the PN barri¢24]. We have analyzed the the DNLSE and the variational start to disagree because the

phase (rad)
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exponential ansatz becomes less appropriate as the number o] TP T T

of sites increases. Moreover, in this region a clear disagree- 1 t=21ms t=0 (@)
ment between the GPE and the methods that assume tight 1.0 ]
binding appears, evidencing thus the inapplicability of the ‘“5 0.8 -
tight-binding approximation. Note that, surprisingly, the % 56, ]
tight-binding results for the PN barrier fail to match with the o ]
GPE solution even for values of the lattice potential that are 0.4 4 .
typically assumed as being well into the tight-binding re- 024 ]
gime. In this sense our calculations reveal that the PN barrier .
is certainly very sensitive to slight deviations from the tight- 0.0 10 35 30 25 20 15 10 5 O 5 10
binding conditions. The latter can be explained taking into o e x(;-Lm) e
account that if the on-site dynamics inside each potential
well is not completely frozen, as assumed in E8), the 3.0 ———————————————————
energy associated to the on-site movement can smear out the T t=0 (b) ]
PN barrier. 2'5'_ i ]
Let us recall that physically the presence of the PN poten- 2.04 i
tial implies that the soliton will only move if a momentum o 1 t=10ms
above the critical one, determined by the PN barrier, is pro- % 1'5'_ ]
vided. Therefore, we perform a dynamical study by solving ~ 194 i
the GPE in real time after providing an instantaneous transfer 1
of momentum to the structure. The latter can be achieved 0-5‘_ 7
either via phase imprinting or by applying a linear potential 0.0 4—— N
during a time shorter than any other time scale. We monitor 6 5 - 1 2 3 4
for every value ofV, the minimum applied momentum to X(um)

move the localized structure. The results are displayed in . . . . )
Fig. 4 as a dotted line. We observe that the barrier calculated 7'C: 5- (8 Density profile of a discrete soliton created in the
with the static GPE and the dynamical results only agree fopresence of an optical potential of depth, before and 21 ms after

. . a transfer of momentum of klis applied to the structurgb)
low optical potential depth§Vy<7E,). For such cases the Density profile of the localized structure generated with a lattice of

soliton is spread considerably in real space being, therefor%mp”tude &, (dotted ling and the corresponding density profile
well localized in momentum space. This is the necessaryo ms after a kick of 0 is given (solid line).. Seventy-seven
condition to move the structure as a whole in the linear repercent of the atoms remain in the reconfigured structure.

gion of the velocity profilgFig. 2a)], where the velocity is

proportional to the given momentum. The movement for the v cREATION OF TWO- AND THREE-DIMENSIONAL

case ofVy=6E, after a transfer of momentum of Okl is SELF-TRAPPED STRUCTURES

depicted in Fig. Ba). Conversely, a clear deviation from all ) ) ) ) )
the previous calculations of the PN barrier appears as the, !N this section, we briefly address the experimental possi-
lattice potential depth increases. Our results show that then%!“t'es f_or th? generation of discrete solitons in higher s.pat|al
exist regions in which it is not possible to reach dynamically imensions in attractive condensag2s,23. From the varia-

the configuration corresponding to Figbl This is what tional ansatz dlsc_ussed_ln Sec. Ill, it is possible to obtain that
happens for large optical potentials/,>8E,) where the two- and th_ree-dlmen5|onal ;elf-trapped structures may be
0 ' stable provided that the rati@)/U| is low enough. The

soliton is highly localized in space and, therefore, §pr§ad "fhreshold value for the 2D case is 0.10%) and for the 3D
momentum. We observe that f¢¥o=10E,), no motion is 556 0.1@.15 using an exponentiaGaussianansatz. The
found no matter how large is the initial momentum given tojimjtation to such low tunneling rates imposes a restriction in
the soliton. In this case, the width in momentum space of thghe maximal number of sites occupied by the localized struc-
localized structure is of the order of the momentum of thetyre.

lattice, i.e., the first Brillouin zone is saturated and the move- We consider the full 3D case with an spherical magnetic
ment is prevented. For intermediate optical potenti@s trap and we address the creation of 3D localized structures in
-9E,), we observe that movement of these structures is nahe presence of a 2D or 3D optical lattice. Notice that due to
possible in the linear part of the velocity profileig. 2) even the attractive interactions, the possibility of collapse imposes
if one overcomes the PN barrier. Nevertheless, if the giversome restrictions in the number of atoms and in the features
momentum is large enough, we observe in our simulations af the optical lattice. In some situations, even if the collapse
reorganization of the structure which allows it to move byin the magnetic trap is prevented, the adiabatic growing of
losing first a fraction of the atoms and spreading afterwardshe lattice leads to the on-site collapse. This effect must be
in space, being later on enough localized in momentuniaken into account if the 3D localized structures are to be
space to move as a whol€ig. 5b)]. The rearranged struc- created. A condensate dLi with aN=-70 nm and ini-
ture exhibits a complex dynamics as a result of the interplayially in a spherical magnetic trap of frequencies
between nonlinearity and band structure. o,=wy=w,=375X 27 Hz has been considered. This situa-

053604-5



AHUFINGER et al. PHYSICAL REVIEW A 69, 053604(2004)

negative scattering length. In particular, in repulsive interact-
1.4 ing condensates, the phase imprinting method has been pro-
posed to controllably create bright staggered type solitons.
Once generated, we have addressed the mobility of these
structures. This mobility is characterized by two different
effects: (i) the presence of the PN barrier, a purely discrete
effect which sets a minimal kinetic energy to move half a
lattice period, andii) the spreading of the atomic wave func-
tion in momentum space due to the spatial localization in
few lattice sites. The mobility is only possible if the PN
barrier is overcome, but even if this is the case a clear soliton
motion is only possible if the system is placed in a region of
linear dispersion. Our analysis shows that the estimation of
the PN barrier is crucially sensitive to slight deviations from
the tight-binding conditions. In particular, the tight-binding
approximation has been shown to fail significantly for large
lattice potentials which are typically assumed to guarantee
the validity of such an approximation.

The mobility of discrete solitons generated in this way
FIG. 6. Spatial structure of a matter discrete localized structureffer interesting possibilities in the context of BEC guiding.
created in the presence of a 3D optical lattice with a depthin this sense similar ideas as those analyzed in the case of

Vo=6E;, and a periocd=1.6 um, as a function of two spatial co- optical DS[37] could be employed to generate DS networks,

e (x.y.0)

ordenates(x,y), for a fixed value of the third coordinate=0. which could consitute arinondispersive approach to the
issue of integrated atom optics.
tion corresponds for instance fd=500 “Li atoms and a Finally, we have shown that the discreteness of the lattice

modified s-wave scattering lengtta=-0.14 nm available also allows for self-trapped structures in 2D and 3D. Due to
with Feshbach resonancgs6]. Figure 6 displays the spatial the strong localization required, their mobility is prevented to
structure of a matter discrete localized structure created ia large extent. These higher-dimensional structures could
the presence of a 3D optical lattice with peridg1.6 um,  open alternative routes to optical tweezf38] and magnetic
andV,=6E,. Therefore, the discreteness of the lattice poten<onveyor belt§39], for the storing, manipulation, and trans-
tial allows for the interesting possibility of a controllable port of atomic condensates.

generation of a self-trapped regular 3D BEC structure. Un-
fortunately, the restriction in the number of sites occupied in
the localized structures created in the two- and three-

dimensional cases, imposes a severe limitation for their mo- e acknowledge support from Deutsche Forschungsge-
bility. As already discussed for the 1D case, the spread ifneinschaft(SFB 407, the RTN Cold Quantum Gases, ESF
momentum space of these structures prevents their motion, pESC BEC200¢, and the Ministero dell'lstruzione,
least in the linear region of the band structure. dell'Universita e della RicercéMIUR). V.A. acknowledges
support from the European CommunitiHPMF-CT-2002-
01847%. L.S. and P.P. wish to thank the Alexander von Hum-
We have analyzed the conditions to generate discrete solboldt Foundation, the Federal Ministry of Education and Re-
tons in 1D Bose-Einstein condensates, either with positive ogearch, and the ZIP Programme of the German Government.
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