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We analyze the generation and mobility of discrete solitons in Bose-Einstein condensates confined in an
optical lattice under realistic experimental conditions. We discuss first the creation of one-dimensional discrete
solitons, for both attractive and repulsive interatomic interactions. We then address the issue of their mobility,
focusing our attention on the conditions for the experimental observability of the Peierls-Nabarro barrier.
Finally we report on the generation of self-trapped structures in two and three dimensions. Discrete solitons
may open alternative routes for the manipulation and transport of Bose-Einstein condensates.
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I. INTRODUCTION

The experimental achievement of the Bose-Einstein con-
densate(BEC) [1] has outbursted an extraordinary interest
within the last years in the physics of ultracold atomic gases.
This interest can be partially explained by the inherently
nonlinear character of the BEC physics induced by the inter-
atomic interactions. At sufficiently low temperatures, the
physics of the condensates is governed by a nonlinear
Schrödinger equation with cubic nonlinearity, also called
Gross-Pitaevskii equation(GPE), similar as that encountered
in other physical systems, as e.g., nonlinear optics(NLO) in
Kerr media. The analysis of the resemblances between BEC
physics and NLO has lead to the rapidly developing field of
nonlinear atom optics(NLAO) [2]. Recently, several experi-
ments have highlighted various NLAO phenomena, as dark
solitons in BEC with repulsive interatomic interactions[3,4],
bright solitons in one-dimensional(1D) BECs with attractive
interactions[5,6], and condensate collapse[7].

During the last few years, the possibility of loading a
BEC in an optical lattice formed by a laser standing wave
has attracted considerable attention, mostly motivated by the
close resemblance between these systems and solid-state de-
vices. In this sense, several remarkable experiments have
been recently reported, as the observation of Bloch oscilla-
tions of BECs[8,9], the realization of Josephson-junction
arrays of BECs placed in different lattice sites[10], or even
the achievement of the superfluid to Mott-Insulator transition
[11]. Recently, several nonlinear BEC phenomena have been
analyzed in the presence of optical lattices, as the dynamical
superfluid to insulator transition[12], the BEC transport in
the presence of dispersion managing[13], and the generation
of gap solitons, i.e., bright solitons with condensates with
repulsive interactions[14,15].

Particular interest has been recently devoted to those phe-
nomena occurring when the condensate dimensions become
comparable to the lattice wavelength. In that case, the dis-
crete structure introduced by the lattice potential may lead to
similar phenomena as those observed in NLO in periodic
structures. In particular the analysis of discrete solitons(DS)
[16–18] in the BEC context has recently attracted a growing
attention [19–23]. Specially interesting phenomena exclu-
sively induced by the discreteness of the system have been

analyzed in the NLO context, such as the restriction of the
mobility of the DSs due to the so-called Peierls-Nabarro
(PN) barrier [24], or the possibility to generate two-
dimensional DSs[25].

Although several properties related with DSs in BEC have
been already reported[19–21], the realization of DSs under
realistic experimental conditions has so far not been ana-
lyzed in detail. Therefore, one of the aims of the present
paper is to discuss the creation of these structures in the
frame of the recent experiments on BEC in optical lattices. In
particular, we shall discuss the generation of 1D DS for both
attractive and repulsive interacting condensates. Once cre-
ated, the effects of the discrete nature of the DSs in BEC
should be analyzed by means of the observation of the PN
barrier for its mobility. A second aim of the present paper is
to discuss the conditions for the experimental observability
of this barrier. Interestingly, the PN barrier is largely overes-
timated within the usual tight-binding approximation even
under conditions for which this approximation is typically
assumed. Finally, in the last part of our paper, we discuss the
possibility of achieving 2D and even 3D self-trapped struc-
tures, which could offer alternative routes for the control-
lable manipulation of BECs.

The scheme of the paper is as follows. In Sec. II we
discuss the physical system under consideration as well as
the basic equations to describe it. Section III presents a varia-
tional approach which allows for an analysis of discrete
structures in arbitrary dimensions. Section IV is devoted to
the analysis of the generation of 1D DSs, for both attractive
and repulsive interatomic interactions. We address also in
Sec. IV the issue of their mobility and provide the conditions
for the observability of the Peierls-Nabarro barrier. In Sec. V
we analyze the creation of 2D and 3D self-trapped structures.
We finalize in Sec. VI with our conclusions.

II. PHYSICAL SYSTEM

In the following we consider a trapped BEC in the pres-
ence of an optical lattice. The periodic structure leads to an
energy-band structure[26–29], and strongly modifies the dy-
namics of the condensate[8–10,12–15,30]. In the mean-field
approximation, the full BEC dynamics(at a temperature
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much smaller than the critical one for the condensation) is
governed by the time-dependent GPE:
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dt
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D + VsrWd + gucsrW,tdu2DcsrW,td, s1d

whereg=4p"2a/m, with a as thes-wave scattering length
and m the atomic mass. The condensate wave function is
normalized to the total number of particlesN. The external
potential is given by
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which describes both the magnetic trap potential and the op-
tical latticescreated by two counter propagating laser beams
of wavelengthl along each axisd. The angular frequencies of
the magnetic trap in each direction are denoted byvi. The
optical lattice is characterized by its depthV0 and by its
lattice periodd=l /2, which defines the so-called recoil mo-
mentumkr =p /d. In the following, and following the stan-
dard notation, we refer the depth of the optical potential in
units of the so-called recoil energyEr ="2kr

2/2m.
When the optical depth of the lattice is much larger than

the chemical potentialsV0@md, and the system can be con-
sidered as confined within the lowest energy band, one can
employ the tight-binding approximation and rewrite the con-
densate order parameter as a sum of wave functions localized
in each well of the periodic potential:

csrW,td = ÎNo
n

fnstdwnsrWd, s3d

wherewnsrWd=wsrW−rWnd denotes the on-site wave function. By
inserting the ansatzs3d into Eq.s1d, one obtains that the GPE
reduces to a discrete nonlinear Schrödinger equation
sDNLSEd:

i"
] fn

] t
= − Jsfn−1 + fn+1d + sen + Uufnu2dfn. s4d

The dynamics of the system depends mostly on the interplay
between the tunneling ratesJd and the two-body interactions
snonlinear energy,Ud. The tunneling rate can be expressed as

J = −E drWF "2

2m
=¢ wn=¢ wn+1 + wnVsrWdwn+1G . s5d

The nonlinear term acquires the form

U = gNE drWwn
4 s6d

and the on-site energies are given by

en =E drWF "2

2m
s=¢ wnd2 + VsrWdwn

2G . s7d

In order to calculate the value of the nonlinear energy Eq.
(6), we use a Gaussian ansatz for the wave function on site,
where the width is obtained by minimization of the energy
[31]. In the pure one-dimensional case, we use the interac-
tion constant obtained by averaging the 3D coupling constant
over the radial density profile[32]. To calculate the tunneling
rate, the same Gaussian ansatz can be employed in Eq.(5) or,
in the limit V0@Er, it can be obtained from the exact result
for the width of the lowest band in the 1D Mathieu equation
[33].

III. VARIATIONAL CALCULATION

Discrete solitons are characterized by being stable solu-
tions of the Hamiltonian which propagate without distortion.
They correspond to minima of the energy of the system
which in the tight-binding approximation acquires the form

E = o
n=−`

` H− Jfn
*sfn−1 + fn+1d + enufnu2 +

U

2
ufnu4J . s8d

Let us consider first the 1D case. To find the minima of the
energy, an exponential ansatz for the soliton envelope given
by fn=C exps−bunud can be employed, whereC is a nor-
malization constant andb is a variational parameter which
accounts for the inverse width of the soliton. Introducing
this ansatz in Eq.s8d the expression for the energy, in the
negative scattering length case, becomes

E

uUu
= −

4J

uUu
eb

e2b + 1
−

1

2

se2b − 1dse4b + 1d
se2b + 1d3 . s9d

By minimizing E with respect to the inverse widthb one
obtains the energy of the discrete structure centered in one
minimum of the optical latticefFig. 1sadg. Notice that in
order to ensure that the discrete structure corresponding to
this minimum is indeed a soliton, one has to address the
issue of its mobility. In contrast with the case of continuous
solitons where applying an external momentum results in a
linear response of the soliton, in discrete systems a similar
effect occurs only for broad soliton distributionssi.e., those
that occupy many sitesd. Conversely if the dimensions of the
soliton are of the order of the lattice wavelengthl the dis-
creteness of the system begins to play a fundamental role. In
particular, the discreteness generates an effective periodic
potential energy, whose amplitude is the minimum barrier
which must be overcome to translate the center of mass of

FIG. 1. Density profile of a discrete soliton(solid line) with (a)
the center of mass centered in one minimum of the optical lattice
and (b) the center of mass displaced by half lattice period.
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the system half a lattice period, i.e., from one minimum of
the latticefFig. 1sadg to a neighboring lattice maximumfFig.
1sbdg. This is the previously mentioned PN barrierf24g. The
energy of the state depicted in Fig. 1sbd can be also calcu-
lated within a variational approach using

fn = C expS− bUn −
1

2
UD

as an ansatz:

E

uUu
= −

2J

uUu
f1 + sinhsbdg

eb −
1

4

se2b − 1d
se2b + 1d

. s10d

Again by minimization one obtains the energy of the dis-
placed discrete structure. The difference between both ener-
gies fminima of Eqs.s9d and s10dg corresponds to the PN
barrier.

Notice that the barrier becomes relevant when the soliton
structure occupies few sites of the lattice. By increasing the
number of occupied states the above two modes approach in
energy and the barrier decreases approaching zero as the
number of sites grows. In this sense, the PN barrier is a
distinctive discrete phenomenon.

The above analysis can be straightforwardly generalized
to higher dimensions. Assuming the most general case, in
which the width of the exponential ansatz along the direction
of the movement is different from the other directions, it can
be shown that localized structures are also possible in two
and three dimensions under an appropriate ratio between tun-
neling and nonlinear energy(see Sec. V). A variational cal-
culation using a Gaussian ansatz instead of the exponential
one has also been performed obtaining equivalent results.

IV. GENERATION AND MOVEMENT
OF ONE-DIMENSIONAL DISCRETE SOLITONS

In this section we analyze the issue of the generation and
mobility of DSs in 1D BEC under realistic experimental con-
ditions. Let us first discuss the generation of DSs in conden-
sates with positive scattering length. In particular, we con-
sider a87Rb condensate held in a magnetic trap and in the
presence of an optical lattice. As discussed in Refs.[19,20] it
is possible to generate DSs in pure 1D repulsive condensates
when the tunneling rate balances the nonlinear energy of the
system. For positive scattering lengths, the compensation of
these two effects is not possible unless the system has a
negative effective massm* [1/m*= s1/"2ds]2E/]k2d, where
E is the energy of the first band andk its quasimomentum
(see Fig. 2)]. At least two possible mechanisms can easily
place the system in such a region, inverting thus the sign of
the tunneling. One possibility[13] consists on providing the
condensate with an external momentum to place it at the
edge of the first Brillouin zone where the effective mass is
negative(see Fig. 2(a))]. This can be done for instance, by
introducing—in the absence of the magnetic trap—a tilt in
the optical lattice. A second mechanism to reach the negative
effective mass region relies on the variation of the relative
phase of the condensate in the lattice. Concretely, a repulsive
condensate in a periodic potential with a phase difference of

p between consecutive wells gives rise to the so-called stag-
gered discrete soliton-type[34]. Such a phase structure can
be achieved using the well established method of phase im-
printing [35] which allows to modify the phase of a conden-
sate without modifying its density profile. To this aim we
propose to use a second optical lattice with double spatial
period than the first one acting for a time much shorter than
the characteristic times of the system, i.e., the correlation
stc=" /md and the tunnelingstt=" /Jd time. The phase im-
printed in this way depends solely on the amplitude of this
second standing wave and on the time in which it acts. In the
following we describe in detail how the phase imprinting
method is implemented. First we calculate the ground state
of the system in the presence of an optical lattice. This can
be done either by calculating directly(using GPE in imagi-
nary time) the ground state of the system in the presence of
both the magnetic trap and the optical lattice or by calculat-
ing the ground state of the system in the presence of the
magnetic trap only and afterwards growing adiabatically the
optical lattice and letting the system evolve to the new
ground state. As expected both methods yield the same
ground state. Once the ground state is found, a second opti-
cal lattice with an amplitude of 72.5Er acting for t=0.4 ms
performs the phase imprinting while the magnetic trap is
suddenly switched off. Our results are summarized in Fig. 3.
Figure 3(a) shows the density profile of the ground state of
the combined trap(magnetic and lattice) while Fig. 3(b) dis-
plays the density profile of the localized structure 100 ms
after turning off the magnetic trap. The system evolves from
the ground state shown in Fig. 3(a) to the localized structure
shown in Fig. 3(b) which remains unaltered for times much
longer than the tunneling time of the system. This structure
contains 40% of the initial number of atoms. In Fig. 3(c), we
display the phase profile corresponding to Fig. 3(b) in where
clear phase jumps ofp between consecutive sites of the op-
tical lattice in the spatial region occupied by the localized
structure are present. Finally by applying an external mo-

FIG. 2. (a) Energy of the first band in units of the recoil energy
and (b) velocity profile in units ofvr ="p /md as a function of the
quasimomentum in the first Brillouin zone for an optical potential
depth of 8Er.
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mentum to the localized structure we observe that it moves
without distortion, evidencing thus that such structures cor-
respond indeed to discrete bright solitons. Notice that the
applied momentum must keep the structure in the negative
effective mass region of the band[Fig. 2(a)] in order not to
destroy the soliton.

We turn now to the case of negative scattering length. In
continuous systems, the attractive nature of the interactions
compensates the effect of the kinetic energy and, therefore,
the ground state of a one-dimensional homogeneous conden-
sate with negative scattering length is already a bright soli-
ton. The presence of an optical lattice in such systems per-
mits the creation of a discrete bright soliton. Thus, for a fixed
number of atoms,N, one can straightforwardly vary the num-
ber of occupied sites by varying only the depth of the optical
potential V0. Since the interactions are now attractive the
number of sites occupied by the discrete solitons is typically
much smaller than in the case of positive scattering length.
Bearing all this features in mind, it becomes clear that such
systems are unique to study how the movement of a discrete
soliton depends on the degree of discreteness of the structure,
i.e., to observe the PN barrier[24]. We have analyzed the

case of a condensate of7Li confined in a magnetic trap with
vy=vz=2032p kHz, and vx=7532p Hz. We fix
aN=−14 nm [36]. Again, to analyze the generation and the
propagation of discrete structures we start by calculating the
ground state of the system in the combinedslattice
+magnetic trapd potential. We proceed as in the case of Ru-
bidium, either growing adiabatically the optical lattice after
the ground state of the condensate in the trap has been found
or by finding directly the ground state in the presence of both
potentials. After the magnetic trap is switched off we observe
that the localized structure remains without dispersion for
times much larger than the tunneling time of the system. To
study the effect of the discreteness we vary the values of the
depth of the optical potential between 6øV0/Er ø10 for a
fixed lattice spacing ofd=0.8 mm. The number of sites sig-
nificantly occupied by the discrete structure then vary be-
tween 11 and 3.

We calculate for these sets of parameters the PN barrier,
i.e., the difference in energy between the localized structure
centered in a minimum of the periodic potential[Fig. 1(a)]
and the structure corresponding to a lattice displaced by half
lattice period[Fig. 1(b)]. To test the validity of the varia-
tional method and the validity of the tight-binding approxi-
mation, we calculate the PN barrier using the expressions
developed in Sec. III and solving numerically in imaginary
time the DNLSE(using a Runge-Kutta method). Then, we
compare these results with the barrier obtained by solving
directly the full GPE in imaginary time. The results of those
calculations are summarized in Fig. 4, where we display the
momentum associated with the PN barrier(in units of kr) as
a function of the depthV0 of the optical lattice.

We observe that for large optical potential depths
(V0ù8Er) the results obtained with the DNLSE and the
variational method using the exponential ansatz match each
other perfectly and agree well with those obtained by solving
directly the GPE. For low optical potential depthssV0,8Erd
the DNLSE and the variational start to disagree because the

FIG. 3. (a) Density profile of the ground state of a87Rb conden-
sate in the combined(magnetic and optical) trap for N=2000,
vx=5032p Hz, vy=vz=9232p Hz, a=5.8 nm, V0=1Er, and
d=0.8 mm. (b) Density profile of the staggered soliton 100 ms after
the imprinting of a phase difference ofp between consecutive wells
and after the magnetic trap is switched off.(c) Phase profile of the
staggered soliton shown in(b).

FIG. 4. Momentum associated with the PN barrier calculated
with the variational method(open dots), with the imaginary time
evolution of the GPE(squares), and with the DNLSE(stars). The
necessary momentum to move the soliton(calculated with the real
time evolution of the GPE) is displayed by the dotted line.
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exponential ansatz becomes less appropriate as the number
of sites increases. Moreover, in this region a clear disagree-
ment between the GPE and the methods that assume tight
binding appears, evidencing thus the inapplicability of the
tight-binding approximation. Note that, surprisingly, the
tight-binding results for the PN barrier fail to match with the
GPE solution even for values of the lattice potential that are
typically assumed as being well into the tight-binding re-
gime. In this sense our calculations reveal that the PN barrier
is certainly very sensitive to slight deviations from the tight-
binding conditions. The latter can be explained taking into
account that if the on-site dynamics inside each potential
well is not completely frozen, as assumed in Eq.(3), the
energy associated to the on-site movement can smear out the
PN barrier.

Let us recall that physically the presence of the PN poten-
tial implies that the soliton will only move if a momentum
above the critical one, determined by the PN barrier, is pro-
vided. Therefore, we perform a dynamical study by solving
the GPE in real time after providing an instantaneous transfer
of momentum to the structure. The latter can be achieved
either via phase imprinting or by applying a linear potential
during a time shorter than any other time scale. We monitor
for every value ofV0 the minimum applied momentum to
move the localized structure. The results are displayed in
Fig. 4 as a dotted line. We observe that the barrier calculated
with the static GPE and the dynamical results only agree for
low optical potential depthssV0,7Erd. For such cases the
soliton is spread considerably in real space being, therefore,
well localized in momentum space. This is the necessary
condition to move the structure as a whole in the linear re-
gion of the velocity profile[Fig. 2(a)], where the velocity is
proportional to the given momentum. The movement for the
case ofV0=6Er after a transfer of momentum of 0.1kr is
depicted in Fig. 5(a). Conversely, a clear deviation from all
the previous calculations of the PN barrier appears as the
lattice potential depth increases. Our results show that there
exist regions in which it is not possible to reach dynamically
the configuration corresponding to Fig. 1(b). This is what
happens for large optical potentialssV0.8Erd where the
soliton is highly localized in space and, therefore, spread in
momentum. We observe that forsV0ù10Erd, no motion is
found no matter how large is the initial momentum given to
the soliton. In this case, the width in momentum space of the
localized structure is of the order of the momentum of the
lattice, i.e., the first Brillouin zone is saturated and the move-
ment is prevented. For intermediate optical potentialss8
−9Erd, we observe that movement of these structures is not
possible in the linear part of the velocity profile(Fig. 2) even
if one overcomes the PN barrier. Nevertheless, if the given
momentum is large enough, we observe in our simulations a
reorganization of the structure which allows it to move by
losing first a fraction of the atoms and spreading afterwards
in space, being later on enough localized in momentum
space to move as a whole[Fig. 5(b)]. The rearranged struc-
ture exhibits a complex dynamics as a result of the interplay
between nonlinearity and band structure.

V. CREATION OF TWO- AND THREE-DIMENSIONAL
SELF-TRAPPED STRUCTURES

In this section, we briefly address the experimental possi-
bilities for the generation of discrete solitons in higher spatial
dimensions in attractive condensates[22,23]. From the varia-
tional ansatz discussed in Sec. III, it is possible to obtain that
two- and three-dimensional self-trapped structures may be
stable provided that the ratiouJ/Uu is low enough. The
threshold value for the 2D case is 0.175(0.2) and for the 3D
case 0.13(0.15) using an exponential(Gaussian) ansatz. The
limitation to such low tunneling rates imposes a restriction in
the maximal number of sites occupied by the localized struc-
ture.

We consider the full 3D case with an spherical magnetic
trap and we address the creation of 3D localized structures in
the presence of a 2D or 3D optical lattice. Notice that due to
the attractive interactions, the possibility of collapse imposes
some restrictions in the number of atoms and in the features
of the optical lattice. In some situations, even if the collapse
in the magnetic trap is prevented, the adiabatic growing of
the lattice leads to the on-site collapse. This effect must be
taken into account if the 3D localized structures are to be
created. A condensate of7Li with aN=−70 nm and ini-
tially in a spherical magnetic trap of frequencies
vx=vy=vz=37532p Hz has been considered. This situa-

FIG. 5. (a) Density profile of a discrete soliton created in the
presence of an optical potential of depth 6Er before and 21 ms after
a transfer of momentum of 0.1kr is applied to the structure.(b)
Density profile of the localized structure generated with a lattice of
amplitude 8Er (dotted line) and the corresponding density profile
10 ms after a kick of 0.3kr is given (solid line). Seventy-seven
percent of the atoms remain in the reconfigured structure.
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tion corresponds for instance toN=500 7Li atoms and a
modified s-wave scattering lengtha=−0.14 nm available
with Feshbach resonances[5,6]. Figure 6 displays the spatial
structure of a matter discrete localized structure created in
the presence of a 3D optical lattice with periodd=1.6 mm,
andV0=6Er. Therefore, the discreteness of the lattice poten-
tial allows for the interesting possibility of a controllable
generation of a self-trapped regular 3D BEC structure. Un-
fortunately, the restriction in the number of sites occupied in
the localized structures created in the two- and three-
dimensional cases, imposes a severe limitation for their mo-
bility. As already discussed for the 1D case, the spread in
momentum space of these structures prevents their motion, at
least in the linear region of the band structure.

VI. CONCLUSIONS

We have analyzed the conditions to generate discrete soli-
tons in 1D Bose-Einstein condensates, either with positive or

negative scattering length. In particular, in repulsive interact-
ing condensates, the phase imprinting method has been pro-
posed to controllably create bright staggered type solitons.
Once generated, we have addressed the mobility of these
structures. This mobility is characterized by two different
effects:(i) the presence of the PN barrier, a purely discrete
effect which sets a minimal kinetic energy to move half a
lattice period, and(ii ) the spreading of the atomic wave func-
tion in momentum space due to the spatial localization in
few lattice sites. The mobility is only possible if the PN
barrier is overcome, but even if this is the case a clear soliton
motion is only possible if the system is placed in a region of
linear dispersion. Our analysis shows that the estimation of
the PN barrier is crucially sensitive to slight deviations from
the tight-binding conditions. In particular, the tight-binding
approximation has been shown to fail significantly for large
lattice potentials which are typically assumed to guarantee
the validity of such an approximation.

The mobility of discrete solitons generated in this way
offer interesting possibilities in the context of BEC guiding.
In this sense similar ideas as those analyzed in the case of
optical DS[37] could be employed to generate DS networks,
which could consitute an(nondispersive) approach to the
issue of integrated atom optics.

Finally, we have shown that the discreteness of the lattice
also allows for self-trapped structures in 2D and 3D. Due to
the strong localization required, their mobility is prevented to
a large extent. These higher-dimensional structures could
open alternative routes to optical tweezers[38] and magnetic
conveyor belts[39], for the storing, manipulation, and trans-
port of atomic condensates.
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