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There are several ways to create the vorticity-free solitary waves — rarefaction pulses — in condensates: by
the process of strongly nonequilibrium condensate formation in a weakly interacting Bose gas, by creating
local depletion of the condensate density by a laser beam, and by moving a small object with supercritical
velocities. Perturbations created by such waves colliding with vortices are studied in the context of the
Gross-Pitaevskii model. We find that the effect of the interactions consists of two competing mechanisms: the
creation of vortex line as rarefaction waves acquire circulation in a vicinity of a vortex core and the loss of the
vortex line to sound due to Kelvin waves that are generated on vortex lines by rarefaction pulses. When a
vortex ring collides with a rarefaction wave, the ring either stabilizes to a smaller ring after emitting sound
through Kelvin-wave radiation or the entire energy of the vortex ring is lost to sound if the radius of the ring
is of the order of the healing length. We show that during the time evolution of a tangle of vortices, the
interactions with rarefaction pulses provide an important dissipation mechanism enhancing the decay of su-
perfluid turbulence.
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I. INTRODUCTION =1/y2, and the density at infinity i..=|¢.[>=1. The nu-

. , _merical integration was performed using a finite differ-
Low-temperature superfluids and recently discovered dignce scheme. The faces of the computational box were

lute Bose-Einstein condensates are often modeled by thgyen to allow sound waves to escape; this is achieved
Gross-Pitaevskii (GP) - equation, which is a nonlinear nymerically by applying the Raymond-Kuo technidi7a.
Schrodinger equation on the one-particle wave functian, | the turbulence simulations the periodic boundary con-

This equation provides a simple framework to study manygitions were used to conserve the total number of particles
fundamental hydrodynamical properties of condensates. If the system.

particular, vortex-sound interactions in condensates are re- | g seminal paper, Jones and Robd8k numerically

ceiving increasing attention over last couple of yefdrs6].  jntegrated the GP equatigft) and determined the entire se-
It has been suggested that the emission of sound by vortey,ence of solitary wave solutions of the GP equation, such as
reconnections and vortex motion is the only active dissipaygrtex rings, vortex pairs, and finite amplitude sound waves
tion mechanism responsible for the decay of superfluid turyamed rarefaction pulses. They showed the location of the
bulence. The decay of superfluid turbulence via Kelvin-wavesequence on the momentym energyé plane. In three di-
radiation and vortex reconnections was studied in the framey,ensions they found two branches meeting at a cusp where
work of the GP equatioif6]. In this study the collision of 544 assume their minimum valugs, and&,. As p— e on
two small vortex rings was analyzed and the loss of the VOrgach branche— . On the lower branch the solutions are
tex line due to reconnections and Kelvin-wave radiation wWagsymptotic to large vortex rings.
numerically evaluated. _ _ As £ andp decrease from infinity along the lower branch,
The goal of this paper is to consider the effect of theihe solutions begin to lose their similarity to large vortex
vorticity-free solitary waves that together with vortices arérings. Eventually, for a momenturp, slightly greater than
create_d in Bose-Einstein condensates either du.r!ng_ the' s_eIE,—m, they lose their vorticity(y loses its zerpy and thereafter
evolution of a Bose gas from a strongly nonequilibrium ini- the sgjitary solutions may better be described as “rarefaction
tial state or evolved from Ioca!-densny deple_t|ons of a conyaves.” The upper branch consists entirely of these and, as
d(_ensate. We show that the interactions with such Waveg % on this branch, the solutions asymptotically approach
trigger the loss of the vortex line via Kelvin-wave radiation the rational soliton solution of the Kadomtsev-Petviashvili
and that these interactions enhance the dissipation of the VO§pe | equation.
tex tangle. o _ The Jones-RobergR) solitons are the only known dis-
We write the GP equation in dimensionless form as  yyrpances that propagate with a constant velocity. Notice,
however, that there many other waves that change their ve-
0¥ _w _102 locity and shape during their motion. For instance, a strong
2i—=V+ (1 - [y, (1) ; :
at perturbation of a rarefaction pulse on the upper branch of the
dispersion curve causes it to collapse onto the lower branch
in dimensionless variables such that the unit of length correand become a vortex ring. During its transition the wave
sponds to the healing lengté the speed of sound is loses its energy and momentum, and the minimum of its
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density decreases gradually before it reaches zero. In the nestiart by describing three typical scenario in which a large
stage of the evolution the wave becomes a nonaxisymmetrigmount of rarefaction pulses is created, so that their colli-
ring whose radius increases until it reaches an axisymmetrisions with vortices do become significant. The process of
solitary state on the lower branch of JR dispersion curve. Allstrongly nonequilibrium Bose-Einstein Condensate forma-
these intermediate time snapshots of the wave function of théon in a macroscopically large uniform weakly interacting
condensate have higher energy than any solitary wave on tHgose gas was elucidated in R¢10] using numerical inte-
lower branch below the final axisymmetric vortex ring stategration of the GP equation. As the system evolves from
although they may have the same minima of the density inveakly turbulent state to state of strong turbulence, the
the transition. In what follows we reserve the term “rarefac-phases of the complex amplitudes of the wave figlthe-
tion pulse” or “rarefaction wave” to describe a finite ampli- comes strongly correlated and the period of their oscillations
tude sound wave which is a JR solitary wave. The scenaribecomes comparable with the evolution times of the occupa-
just described illustrates a typical mechanism in which thegion numbers. This signifies that the quasicondensate is
vortex line length may be created and increased as the resutirmed with the appearance of a well-defined tangle of quan-
of perturbations of rarefaction pulses. In RE9] we have tized vortices and localized vorticity-free solitary structures
also considered a creation of vortex rings as a result of ersuch as rarefaction pulses manifesting the start of the final
ergy and momentum transfer between two interacting rarstage in the Bose gas evolution: the decay of superfluid tur-
efaction pulses. But given a complex tangle of interactingbulence. The right panel of Fig. 5 presented in Ra0]
vortices we expect that the loss of the vortex line length willshows a single vortex ring surrounded by many rarefaction
dominate its creation to account for the experimentally obpulses as a result of the turbulent decay of the initial vortex
served decay of superfluid turbulence. tangle, which also implies that many more rarefaction pulses
In Ref. [9] we have developed an algorithm for finding were present at the beginning of the decay.
approximations to the JR solitary wave solutions with the Next we describe how the JR solitons and, in particular,
correct asymptotic behavior at infinity. An axisymmetric soli- rarefaction pulses can be created in Bose-Einstein conden-
tary wave moving with the velocity) along thex axis is  sates. It is generally believed that to create vortices it is
accurately approximated byi(x,s)=1+u(x,s)+i v(X,s) necessary to transmit angular momentum by rotationally stir-

where ring the condensate with a laser beam. In R&f] we dem-

) 214 ) onstrated that the collapse of a stationary spherically sym-

_ Ao+ &<’ + agss” + MGU(2x* ~ f(U)s?) metric bubble can lead to the vortex nucleation. After the

{1 +¢0@ + CyS° + Co X2 + F(U)S?]2 74 condensate fills the cavity, it begins to expand with growing

density oscillations. These “dips” of the density are them-
xb00+ byo® + bory? — mcoe[x2 + f(U)s?? @ tsel;/hes unst?ble afnfl thelz_ d%vzl_og:'[)mgnt of this ir;stab_ility Ieaciljs

v= , o the creation of localized disturbances: vortex rings an

{1+c0¢ + CoiS” + G X + f(U)s7]3 7

rarefaction pulses.

where a;;,bj,c;j, and the dipole moment can be deter- Similarly, the evolution of a depletion of the condensate
mined from the series expansion and are functiorld.aflso by laser beam after the laser was turned off may lead to
in Eq. (2), =y?+7%, x=x-Ut, and f(U)=1-2U2% Notice, creation of JR solitons. Notice that there is no need to add
that Eq.(2) represents a vortex ring as well as a vorticity-freeangular momentum or deplete the density of the condensate
rarefaction pulse depending &h If -2 <ag,<-1, then Eq. to zero. We demonstrate this by considering a depletion of
(2) represents a vortex ring as the power series expansiohie condensate, such that the wave function of the conden-
around zero shows; if < ay,<0, then Eq.(2) gives an sate just before the laser is switched off is given by
approximation of a rarefaction pulse, apgh=-1 is a bor-

derline case, such that the solitary wave has a single zero of ~ ¢(x) = 5 + 3tanH0.01x?+ 0.1y>+ ) - 100]}. ~ (3)

the wave function and, therefore, can be called a point de-

fect. These approximations can be used as initial condition¥his density depletion roughly corresponds to the experi-
in the numerical simulation that study interactions, when thements in the sodium condensates, see, for instance| F2f.
initial state is prepared by multiplying the wave functions of with the healing length¥=0.3 um and the Gaussian beam
the distant individual solitary waves. Without an accuratewaist of more than 18 The oblate spheroidal form of the
starting point in numerical calculations it would be impos- depletion(3) would be formed if such a laser beam was
sible to separate clearly the effect of interactions from theguided in the condensate in a short straight streak of the
evolution of each solitary wave by itself as it settled downlength of about 5.

from a poor initial guess. We integrated the GP equatigf) using Eg.(3) as our
initial field in the box of the volume/=12C. The faces of
Il. CREATION OF RAREFACTION PULSES IN the compu_tanonal box were open to allow sound waves to
CONDENSATES escape. Figure 1 shows the time snhapshots of the density

cross sections for=0. Twelve vortex rings of various radii
Here we study the excitations created by the collisionsand four rarefaction pulses moving outward from the center
between rarefaction pulses and vortices and the effect thesd# the depletion are clearly seentat73 snapshot. Figure 2
collisions have on the evolution of vortex line length in a gives the isoplots of the density &{>=0.3. Rarefaction
regime of superfluid turbulence with a tangle of vortices. Wepulses are seen as small oblate spheroids.
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FIG. 1. (Color onling The snapshots of the contour plots of the
density cross section of a condensate obtained by numerically inte- S
grating the GP modell) for the oblate spheroidal density depletion
(3). Black solid lines show zeros of real and imaginary partg/of
their intersection shows the position of topological zeros. Both low-
and high-density regions are shown in darker shades to emphasize
intermediate density regions.

(b)

The nucleation of vortices in a uniform condensate has
been linked to critical velocities of the flopd3-13. It has FIG. 3. Sequence of density isosurfaceser0.3 illustrating a
also been pointed oUtl6] that a moving object of a size ¢ollision of the rarefaction pulse moving with the velocity
comparable with the healing length generates rarefactioro.63 and the straight-line vortex. Two impact angles are shown:
pulses rather than vortex rings when the velocity on the surz/2 in (a) and /4 in (b). The collision excites a pair of Kelvin-
face of this object exceeds the local speed of sound. Thergvave packets propagating in the opposite directions along the vor-
fore, it is possible to generate the rarefaction pulses by guidex line.
ing small objects with supercritical velocities through the

condensate. wrl4) is shown in Fig. 3. Initially the center of the rarefaction
pulse is 20[Fig. 3@)] or 10[Fig. 3b)] healing lengths apart
from the axis of the vortex. During the collision the rarefac-
IIl. COLLISIONS WITH A STRAIGHT-LINE VORTEX tion pulse creates a distortion on the vortex line by exciting
In our first example we consider a collision between atWo Kelvin-wave packets. In the close vicinity of the vortex
rarefaction pulse and the straight-line vortex of unit winding!in€ the rarefaction pulse acquired the vorticity it previously
number. The rarefaction pulse is moving with a constant selfdid not have and became a vortex rifigg. 3a) att=25 and
induced velocityU=0.63 and belongs to the lower branch of t=30 and Fig. &) at t=20], so we would expect that the
the JR dispersion curve. The sequence of density isosurfaégSult of the collision is similar to what was found in RE8]

plots illustrating the collision for two impact angles/2 and ~ for collisions of large vortex rings with small rings.
The dispersion relationship for Kelvin wave in the GP

model in the limitk— 0 is [17]

1
w~ Ekz[ln(k) +0.003 187.], (4)
which gives a group velocity of the Kelvin-wave packet as
T N
ug:——(z In| — | - 1.006 3%, (5)
N 2

where \ is the dominating wavelength. Our calculations

FIG. 2. (Color onling Time snapshots of the density isoplots Show thatA~8 healing lengths andl;~0.2 (Ug~0.3),
p=0.3 of the evolution of the initial depletion of the condensatewherec is the speed of soundwhich fits Eq. (5) quite
amplitude given by Eq(3). well. This result also agredsvhen different scaling of the
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FIG. 4. (Color onling The snapshots of the contour plots of the i i ., LR Sl

density cross section of a condensate obtained by numerically inte-
grating the GP modell) illustrating the collision of the rarefaction
pulses and the straight-line vortex &35 that are initially a dis-
tance of 20 healing lengths apart. Left panel shows the collision of -0.2-0.15-0.1-0.05 0 0.05 0.1 0.15

the rarefaction pulse from the lower branch of the JR dispersion X

curve(U=0.63 £=52.3 p=72.2 m=8.37) and the right panel is for . . . .
the rarefaction pulse from the upper branch of the JR dispersiore UFIG'U 5. (Cfolrc:r onling The lrl)arargeglc p(letS Of. the_ trajelctorles
curve (U=0.68 £¢=53.7 p=74.1 m=8.8). Black solid and dashed x°(t),y°(t)) of the vortex initially at(0,0) and moving inxy plane

lines show zeros of real and imaginary partsjotorrespondingly under the influence of the rarefaction pulse initially(aﬂO,—ZO,_
therefore their intersection shows the position of topological zeros(_zo’_bl?v’v(_lot‘_Zoafind(_tlo',l(t)' The \./totr.tex traveled the dis-
Both low-and high-density regions are shown in darker shades t&ance etween two adjacent points in unit ime.

emphasize intermediate density regions. Only a portion of an actual

computational box is shown. by the vortex. The motion of the vortex and of the rarefaction

o . i pulse is, therefore, given by the following system of the
GP equation is taken into accolymtith the wavelength of coupled ordinary differential equations:

the excited Kelvin wave during the vortex reconnections
in Ref. [6] dx yr -y
The collision with a rarefaction pulse from the upper - =

- r v\ 2 r 0v\2'
branch of the JR dispersion curve excites a Kelvin-wave dt X =x)7+ (Y =y
packet of a similar central wavelength. Figure 4 shows the
contour plots of the density cross sections of two such colli- dy’ X =%
sions for two different rarefaction pulses that belong to lower dt (X -x)%+ (y —y")?’
(left pane) and upper(right pane) branches of the JR dis-
persion curve. The wavelength of the created excitation is
best seen by the intersections of zeros of real and imaginary ax =V, =Xy -y,
parts of the wave functior shown by solid and dashed lines dt
correspondingly. Similarly, a collision with an offset gener-
ates a Kelvin-wave packet of approximately the same domi- Yy o i
nating wavelength but a smaller amplitude. e y(X =X,y =y, (6)

We can estimate the amplitude of the Kelvin wave gener-
ated by adistantrarefaction wave by reducing the problem where (x'(t),y'(t)) and (x‘(t),y*(t)) are the positions of the
to two dimensions. We shall assume that initially thecenters of the rarefaction pulse and the vortex, correspond-
straight-line vortex is positioned &0,0,2) and the rarefac- ingly, at timet. V, and V, are the velocity components in-
tion wave is moving in the positivex direction alongy  duced by the rarefaction pulse on the vortex given\hy
=-d,<0 with {<d,. Under these assumptions, the wave-=4S/ox and V,=3S/dy, whereS is the phase of the wave
length of the perturbation along the vortex line is muchfunction =R expS, so that
larger than its amplitude), (the maximum displacement of
the vortex center from the origin ixy plane; therefore we ds= (1+u) dv-v du )
can assume that theandy components of the force exerted (1+u)’+v?
by a rarefaction wave on the vortex dominate theompo-
nent(in other words, the vortex may be considered as yigid where the real, 14, and imaginaryp, parts of¢s are ap-
Also, if the incident angle of the rarefaction pulse and theproximated by Eq(2). The initial conditions are given by
direction of the vortex axis is nonzero, the amplitude calcu{x"(0),y*(0))=(0,0) and(x'(0),y"(0))=-d=-(dy,d,). Figure
lated below would have to be multiplied by the cosine of this5 shows the trajectories of the vortex for=0.63 andd
angle. Inxy plane the vortex is advected by the rarefaction=(10,10,(10,20,(20,10, and (20,20. It is clear from
pulse, so that its instantaneous velocity coincides, to théhe figure that the maximal amplitude of the displacement,
leading order, with the velocity of the rarefaction pulse at then, does not depend strongly al, but ond,. Figure 6
vortex location. The center of the rarefaction pulse is movingplots » as a function ofd, for two rarefaction pulses that
with the self-induced velocity=(U,0,0) and is advected belong to the lower(U=0.63 and upper (U=0.69
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0.4 length. These results may seem to contradict the findings of
§ Ref. [6], where the length of the vortex line continues to
303 decay after the collision. The calculations in RE§] were
< done in computational box with periodic boundaries, so the
§ 0.2 sound waves generated during the reconnections of a large
E 0.1 ring with a small ring continue to excite Kelvin waves on the
s vortex line with a continuous loss of the vortex line to sound

0 radiation. The rate of the decay of the vortex line in this case
0 20 40 60 80

should depend on the size of the computational box. In our

calculations the faces of the computational box were open to
FIG. 6. The amplitude of the maximum displacement of theallow sound waves to escapg], which allowed us to com-

vortex from the origin as the result of the interactions with the pute the effect of a single collision with the finite amplitude

rarefaction pulse from the lowgiU=0.63 and upper(U=0.69 sound wave.

branches of the JR dispersion curve as functions of the initial dis- For very small vortex ringgR~ 1) the collision with a

tanced, between the vortex and the center of the rarefaction pulsgarefaction pulse causes all the energy and momentum to be

Distance

along they axis. converted into sound waves with a complete loss of the vor-
tex line.

branches of the JR dispersion curve. For large offsis,

(dy>30) the maximum amplitude; decays exponentially V. DECAY OF A VORTEX TANGLE

with dy, so thaty~d;** for U=0.63 andy~d;°®* for U , . , _

=0.69. Next, we estimate the effect that the interactions with rar-

efaction pulses have on a vortex tangle. This time we per-
form the simulations similar to those of Reff6,18], in
which the vortex tangle was created by four colliding rings

Next we consider the collision of a rarefaction pulse within @ periodic box. But in our simulations we regulate the
a vortex ring. As in the previous cases, such a collision exinitial amount of sound waves in our computational box by
cites Kelvin wave with the release of sound energy. Figure 7htroducing them as randomly oriented rarefaction waves in
illustrates the time snapshots of the collision between th&ddition to the vortex rings.
vortex ring of radiusR=5.1 moving along the axis and the For  simplicity ~we shall assume that all
rarefaction pulse moving along the liye-R. The total vor-  S0Und waves initially consist of three types of rarefaction
tex line is dramatically increased at tirhe 11 (from the line ~ PulS€s moving in random directions. The approximations to
length £~ 32 to £~50) due to the rarefaction pulse being hese solitary waves, which were developed in Hél,
transformed into a small vortex ring during a short time in-P&come very useful in the construction of our initial
terval 8t~ 5. After that the ring loses its energy to Kelvin- conditions. If the rarefapupn pulse given by K#@) is rotated
wave radiation and stabilizes to axisymmetric vortex ring of?y @nglea to the x axis in the(x,y) plane and by angle
slightly smaller radius at~ 100, so that the total loss of the B t0 they axis in the(y,2) plane, then its wave function
vortex line is about 3%. The length of the vortex line doesiS _given by #(x’,s’) where x'=xcosa-ysina, s
not change fott>>100. We repeated the calculations for the =\(y’ cos -z sin B)?+(zcosB+y’ sinB)?>, and 'y’
rarefaction pulse from the upper branch of the JR dispersiofYy cosa+X sin a. The angles of rotatiom and 3 as well as
curve and found that the ring stabilizes after losing 4% of itsthe center of the rarefaction pulse are chosen randomly.

Our calculations were performed in a periodic box with

IV. COLLISIONS WITH A VORTEX RING

=0 t=10 =133 t=920 volume V=80°, which is divided by 161 grid points with a
spacing 0.5. The numerical scheme is fourth order globally
0 O m 0 ¢ accurate with fourth-order Runge-Kutta time integration with

the time step 0.025. A grid spacing of 0.25 together with the
time step 0.006 25 was also used to test the accuracy of the

/‘\) ‘ numerical method. Initially there are four vortex rings of the
W’ v '-"' radius R=30.1 centered afR,1,0),(-R,-1,0,(1,-R,0),

and(-1,R,0) that are moving towards the center of the box.

FIG. 7. (Color onling The time snapshots of the density isosur- Nrare rarefaction pulses are dlstrlbuteq randomly in the inter-
faces of the condensate [a2=0.3 for the collision of the vortex nal half of the box away f.rom the vortices. The results for the
fing of radius 5.1 and the rarefaction pulse moving with the velocitydynamics of the vortex line length for three sets of compu-
U=0.63. The density contour plots at the cross sectiorzfd are  (ations WithN,=0,100, and 200 are plotted in Fig. 8. The
given below each isosurface. Black solid and dashed lines shof/€nsity isosurfaces plots f0¢.=100 are given in Fig. 9. In.
zeros of real and imaginary parts ¢fcorrespondingly; therefore the case of nonzero number of rarefaction pulses there is a
their intersection shows the position of topological zeros. Both low-rapid initial growth of the length of the vortex line due to the
and high-density regions are shown in darker shades to emphasigyolution of some of the rarefaction pulses into small vortex
intermediate density regions. Only a portion of an actual computaftings as the result of the energy transfer among tfigm
tional box is shown. Consequently, the length of the vortex line shows the balance
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FIG. 8. (Color online The vortex line length for the collision of FIG. 10. (Color online The vortex line length for the collision

four vortex rings of radiufRk=30.1. Initially the number of rarefac- of four vortex rings of radiu®R=30.1. Initially the number of rar-
tion pulses isN;;.=0 (black line), N,;=100 (red or dark gray efaction pulses idN,e=200 (green or light gray ling The black
line), andN,,,.=200 (green or light gray ling A decay character- solid line gives a decay of the vortex line given by Ef0) for
ized by x,=0.3 is plotted(thick line) to show the experimentally €,=760 andy,=0.000 35.

determined decay of the vortex line length.

) _ _ ) ground of high-frequency waves that limit their mobility and
between vortices being created and vortex line being dereduce the number of reconnections which slows down the
stroyed due to reconnections and Kelvin-wave radiation. Oufiecay of the vortex line length, with the total energy carried

Simulations ShOW that apart from the |n|t|a.| grOWth of the by these high_frequency waves being h|gher for the simula-
vortex line in the simulations witiNg,e=100 initially, the  tions with N,,,=200 initially.

dynamics forN;ae=100 andN,.=0 is very similar for that For even larger times the situation is reversed one more
in the time interva[400, 260Q. On the other hand, the case time as reconnections are now infrequent and the main decay
with Nyare=200 is quite different. During the time interval mechanism is through Kelvin-wave radiation. Therefore, the
[500,1300, the decay of the vortex tangle is much fasterrate of decay of vortex line is proportional to the amount of
than for two other runs, whereas after 1800 it is the run high-frequency wavegslowest decay foN,,,.=0, fastest de-
with Nyae=200 that shows a slower decay. We speculate thagay for Niare=200)

this can be best explained by the following. During the mod-  For Kelvin-wave cascade, where energy is transferred to a
erate times, the vortex line loss due to the excitations of thenuch shorter wavelengths with a cutoff below a critical

vortex line created by rarefaction pulses depends on howavelength, the vortex line density=¢/V can be described
many rarefaction pulses survived as their energy is graduallby the Vinen equatiofi19]

being converted to high-frequency waves. The more of rar-

efaction pulses were present in the initial state, the longer at % __ K L2 (8)
least some of them are present in the system; therefore, the dt 277X2 ’

state withN,,,.=200 shows a faster decay during the moder- . . . . . .

ate times. At larger times, all of the rarefaction pulses aréNhere":ZTr in our dimensionless units ang is a dimen-

destroyed by the collisions and vortices live on the back-Si(_)nless cpefficient. More accurategy is a weak(logarith-
mic) function of L and of other parameters such as the

25 Kelvin cutoff and temperature. The logarithmic dependence
onL can be easily obtained in the context of the local induc-
tion approximation. The presence of a large amount of rar-
efaction pulses changes this weak dependencke and the
decay of the vortex line approaches an exponential decay
instead:

t=0 t

] ©
dt 27TX2 '
In Fig. 10 we plotted the curvghe solution of Eq(9)]
€=4o exp(= xat) (10

for x,=0.000 35 andf,=760 to illustrate the exponential
decay of the vortex line length.
" ; P A\ Finally, we note that the presence of rarefaction waves in
i a condensate with regular vortex lattices has destabilizing
FIG. 9. Density isosurface$y{2=0.3) showing the snapshots of effect and facilitates reconnections. If vortices are antiparal-
the time evolution of the initial state consisting of four vortex rings lel, the Kelvin wave created on the filaments as the result of
of radiusR=30.1 and 100 rarefaction pulses. Many small vortexinteraction with rarefaction waves facilitates the growth of
rings are formed during the evolution. the Crow instability[3] that leads to vortex reconnections

v
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In summary, we established several mechanisms for cre-
ation of the rarefaction pulses in condensates. We have stud-
ied the effects of their interactions with straight-line vortices,
vortex rings, and tangles of vortices. We showed that there
are two competing mechanisms of these interactions. First
the interactions of waves at close distances lead to the in-
crease of the vortex line as the rarefaction pulses in the re-
gions of lower densityin the vicinity of the vortex core or
each othermay acquire circulation and become vortex rings.
Second, rarefaction waves excite Kelvin waves on the vortex
filaments causing a loss of the vortex line due to sound emis-
t =200 t =800 sion. At high vortex line densities our simulations suggest
that the Kelvin-wave radiation is enhanced by the presence
of rarefaction pulses and this accounts for a dramatic in-
crease in the rate of the decay of the vortex line length.

‘ VI. CONCLUSIONS

FIG. 11. Density isosurfaces fdy°=0.3 showing two snap-
shots of the time evolution of the array of ten initially straight
parallel vortices that interacted with ten rarefaction pulses.
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