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There are several ways to create the vorticity-free solitary waves — rarefaction pulses — in condensates: by
the process of strongly nonequilibrium condensate formation in a weakly interacting Bose gas, by creating
local depletion of the condensate density by a laser beam, and by moving a small object with supercritical
velocities. Perturbations created by such waves colliding with vortices are studied in the context of the
Gross-Pitaevskii model. We find that the effect of the interactions consists of two competing mechanisms: the
creation of vortex line as rarefaction waves acquire circulation in a vicinity of a vortex core and the loss of the
vortex line to sound due to Kelvin waves that are generated on vortex lines by rarefaction pulses. When a
vortex ring collides with a rarefaction wave, the ring either stabilizes to a smaller ring after emitting sound
through Kelvin-wave radiation or the entire energy of the vortex ring is lost to sound if the radius of the ring
is of the order of the healing length. We show that during the time evolution of a tangle of vortices, the
interactions with rarefaction pulses provide an important dissipation mechanism enhancing the decay of su-
perfluid turbulence.
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I. INTRODUCTION

Low-temperature superfluids and recently discovered di-
lute Bose-Einstein condensates are often modeled by the
Gross-Pitaevskii (GP) equation, which is a nonlinear
Schrödinger equation on the one-particle wave function,c.
This equation provides a simple framework to study many
fundamental hydrodynamical properties of condensates. In
particular, vortex-sound interactions in condensates are re-
ceiving increasing attention over last couple of years[1–6].
It has been suggested that the emission of sound by vortex
reconnections and vortex motion is the only active dissipa-
tion mechanism responsible for the decay of superfluid tur-
bulence. The decay of superfluid turbulence via Kelvin-wave
radiation and vortex reconnections was studied in the frame-
work of the GP equation[6]. In this study the collision of
two small vortex rings was analyzed and the loss of the vor-
tex line due to reconnections and Kelvin-wave radiation was
numerically evaluated.

The goal of this paper is to consider the effect of the
vorticity-free solitary waves that together with vortices are
created in Bose-Einstein condensates either during the self-
evolution of a Bose gas from a strongly nonequilibrium ini-
tial state or evolved from local-density depletions of a con-
densate. We show that the interactions with such waves
trigger the loss of the vortex line via Kelvin-wave radiation
and that these interactions enhance the dissipation of the vor-
tex tangle.

We write the GP equation in dimensionless form as

− 2i
] c

] t
= ¹2c + s1 − ucu2dc, s1d

in dimensionless variables such that the unit of length corre-
sponds to the healing lengthj, the speed of sound isc

=1/Î2, and the density at infinity isr`= uc`u2=1. The nu-
merical integration was performed using a finite differ-
ence scheme. The faces of the computational box were
open to allow sound waves to escape; this is achieved
numerically by applying the Raymond-Kuo techniquef7g.
In the turbulence simulations the periodic boundary con-
ditions were used to conserve the total number of particles
in the system.

In a seminal paper, Jones and Roberts[8] numerically
integrated the GP equation(1) and determined the entire se-
quence of solitary wave solutions of the GP equation, such as
vortex rings, vortex pairs, and finite amplitude sound waves
named rarefaction pulses. They showed the location of the
sequence on the momentump, energyE plane. In three di-
mensions they found two branches meeting at a cusp wherep
andE assume their minimum valuespm andEm. As p→` on
each branch,E→`. On the lower branch the solutions are
asymptotic to large vortex rings.

As E andp decrease from infinity along the lower branch,
the solutions begin to lose their similarity to large vortex
rings. Eventually, for a momentump0 slightly greater than
pm, they lose their vorticity(c loses its zero), and thereafter
the solitary solutions may better be described as “rarefaction
waves.” The upper branch consists entirely of these and, as
p→` on this branch, the solutions asymptotically approach
the rational soliton solution of the Kadomtsev-Petviashvili
type I equation.

The Jones-Roberts(JR) solitons are the only known dis-
turbances that propagate with a constant velocity. Notice,
however, that there many other waves that change their ve-
locity and shape during their motion. For instance, a strong
perturbation of a rarefaction pulse on the upper branch of the
dispersion curve causes it to collapse onto the lower branch
and become a vortex ring. During its transition the wave
loses its energy and momentum, and the minimum of its
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density decreases gradually before it reaches zero. In the next
stage of the evolution the wave becomes a nonaxisymmetric
ring whose radius increases until it reaches an axisymmetric
solitary state on the lower branch of JR dispersion curve. All
these intermediate time snapshots of the wave function of the
condensate have higher energy than any solitary wave on the
lower branch below the final axisymmetric vortex ring state
although they may have the same minima of the density in
the transition. In what follows we reserve the term “rarefac-
tion pulse” or “rarefaction wave” to describe a finite ampli-
tude sound wave which is a JR solitary wave. The scenario
just described illustrates a typical mechanism in which the
vortex line length may be created and increased as the result
of perturbations of rarefaction pulses. In Ref.[9] we have
also considered a creation of vortex rings as a result of en-
ergy and momentum transfer between two interacting rar-
efaction pulses. But given a complex tangle of interacting
vortices we expect that the loss of the vortex line length will
dominate its creation to account for the experimentally ob-
served decay of superfluid turbulence.

In Ref. [9] we have developed an algorithm for finding
approximations to the JR solitary wave solutions with the
correct asymptotic behavior at infinity. An axisymmetric soli-
tary wave moving with the velocityU along thex axis is
accurately approximated bycsx,sd=1+usx,sd+i vsx,sd
where

u =
a00 + a10x

2 + a01s
2 + mc20

7/4U„2x2 − fsUds2
…

h1 + c10x
2 + c01s

2 + c20fx2 + fsUds2g2j7/4 ,

v = x
b00 + b10x

2 + b01y
2 − mc20

7/4fx2 + fsUds2g2

h1 + c10x
2 + c01s

2 + c20fx2 + fsUds2g2j7/4 , s2d

where aij ,bij ,cij , and the dipole momentm can be deter-
mined from the series expansion and are functions ofU. Also
in Eq. (2), s2=y2+z2, x=x−Ut, and fsUd=1−2U2. Notice,
that Eq.(2) represents a vortex ring as well as a vorticity-free
rarefaction pulse depending onU. If −2,a00,−1, then Eq.
(2) represents a vortex ring as the power series expansion
around zero shows; if −1,a00,0, then Eq.(2) gives an
approximation of a rarefaction pulse, anda00=−1 is a bor-
derline case, such that the solitary wave has a single zero of
the wave function and, therefore, can be called a point de-
fect. These approximations can be used as initial conditions
in the numerical simulation that study interactions, when the
initial state is prepared by multiplying the wave functions of
the distant individual solitary waves. Without an accurate
starting point in numerical calculations it would be impos-
sible to separate clearly the effect of interactions from the
evolution of each solitary wave by itself as it settled down
from a poor initial guess.

II. CREATION OF RAREFACTION PULSES IN
CONDENSATES

Here we study the excitations created by the collisions
between rarefaction pulses and vortices and the effect these
collisions have on the evolution of vortex line length in a
regime of superfluid turbulence with a tangle of vortices. We

start by describing three typical scenario in which a large
amount of rarefaction pulses is created, so that their colli-
sions with vortices do become significant. The process of
strongly nonequilibrium Bose-Einstein Condensate forma-
tion in a macroscopically large uniform weakly interacting
Bose gas was elucidated in Ref.[10] using numerical inte-
gration of the GP equation. As the system evolves from
weakly turbulent state to state of strong turbulence, the
phases of the complex amplitudes of the wave fieldc be-
comes strongly correlated and the period of their oscillations
becomes comparable with the evolution times of the occupa-
tion numbers. This signifies that the quasicondensate is
formed with the appearance of a well-defined tangle of quan-
tized vortices and localized vorticity-free solitary structures
such as rarefaction pulses manifesting the start of the final
stage in the Bose gas evolution: the decay of superfluid tur-
bulence. The right panel of Fig. 5 presented in Ref.[10]
shows a single vortex ring surrounded by many rarefaction
pulses as a result of the turbulent decay of the initial vortex
tangle, which also implies that many more rarefaction pulses
were present at the beginning of the decay.

Next we describe how the JR solitons and, in particular,
rarefaction pulses can be created in Bose-Einstein conden-
sates. It is generally believed that to create vortices it is
necessary to transmit angular momentum by rotationally stir-
ring the condensate with a laser beam. In Ref.[11] we dem-
onstrated that the collapse of a stationary spherically sym-
metric bubble can lead to the vortex nucleation. After the
condensate fills the cavity, it begins to expand with growing
density oscillations. These “dips” of the density are them-
selves unstable and the development of this instability leads
to the creation of localized disturbances: vortex rings and
rarefaction pulses.

Similarly, the evolution of a depletion of the condensate
by laser beam after the laser was turned off may lead to
creation of JR solitons. Notice that there is no need to add
angular momentum or deplete the density of the condensate
to zero. We demonstrate this by considering a depletion of
the condensate, such that the wave function of the conden-
sate just before the laser is switched off is given by

csxd = 1
2 + 1

2tanhh0.01fx2 + 0.1fy2 + z2d − 100gj. s3d

This density depletion roughly corresponds to the experi-
ments in the sodium condensates, see, for instance, Ref.f12g,
with the healing lengthj=0.3 mm and the Gaussian beam
waist of more than 10j. The oblate spheroidal form of the
depletions3d would be formed if such a laser beam was
guided in the condensate in a short straight streak of the
length of about 50j.

We integrated the GP equation(1) using Eq.(3) as our
initial field in the box of the volumeV=1203. The faces of
the computational box were open to allow sound waves to
escape. Figure 1 shows the time snapshots of the density
cross sections forz=0. Twelve vortex rings of various radii
and four rarefaction pulses moving outward from the center
of the depletion are clearly seen att=73 snapshot. Figure 2
gives the isoplots of the density atucu2=0.3. Rarefaction
pulses are seen as small oblate spheroids.
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The nucleation of vortices in a uniform condensate has
been linked to critical velocities of the flow[13–15]. It has
also been pointed out[16] that a moving object of a size
comparable with the healing length generates rarefaction
pulses rather than vortex rings when the velocity on the sur-
face of this object exceeds the local speed of sound. There-
fore, it is possible to generate the rarefaction pulses by guid-
ing small objects with supercritical velocities through the
condensate.

III. COLLISIONS WITH A STRAIGHT-LINE VORTEX

In our first example we consider a collision between a
rarefaction pulse and the straight-line vortex of unit winding
number. The rarefaction pulse is moving with a constant self-
induced velocityU=0.63 and belongs to the lower branch of
the JR dispersion curve. The sequence of density isosurface
plots illustrating the collision for two impact angles(p /2 and

p /4) is shown in Fig. 3. Initially the center of the rarefaction
pulse is 20[Fig. 3(a)] or 10 [Fig. 3(b)] healing lengths apart
from the axis of the vortex. During the collision the rarefac-
tion pulse creates a distortion on the vortex line by exciting
two Kelvin-wave packets. In the close vicinity of the vortex
line, the rarefaction pulse acquired the vorticity it previously
did not have and became a vortex ring[Fig. 3(a) at t=25 and
t=30 and Fig. 3(b) at t=20], so we would expect that the
result of the collision is similar to what was found in Ref.[6]
for collisions of large vortex rings with small rings.

The dispersion relationship for Kelvin wave in the GP
model in the limitk→0 is [17]

v ,
1

2
k2flnskd + 0.003 187. . .g, s4d

which gives a group velocity of the Kelvin-wave packet as

Ug = −
p

l
S2 lnF l

2p
G − 1.006 37D , s5d

where l is the dominating wavelength. Our calculations
show thatl,8 healing lengths andUg,0.2 sUg,0.3cd,
where c is the speed of soundd which fits Eq. s5d quite
well. This result also agreesswhen different scaling of the

FIG. 1. (Color online) The snapshots of the contour plots of the
density cross section of a condensate obtained by numerically inte-
grating the GP model(1) for the oblate spheroidal density depletion
(3). Black solid lines show zeros of real and imaginary parts ofc;
their intersection shows the position of topological zeros. Both low-
and high-density regions are shown in darker shades to emphasize
intermediate density regions.

FIG. 2. (Color online) Time snapshots of the density isoplots
r=0.3 of the evolution of the initial depletion of the condensate
amplitude given by Eq.(3).

FIG. 3. Sequence of density isosurfaces forr=0.3 illustrating a
collision of the rarefaction pulse moving with the velocityU
=0.63 and the straight-line vortex. Two impact angles are shown:
p /2 in (a) and p /4 in (b). The collision excites a pair of Kelvin-
wave packets propagating in the opposite directions along the vor-
tex line.
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GP equation is taken into accountd with the wavelength of
the excited Kelvin wave during the vortex reconnections
in Ref. f6g.

The collision with a rarefaction pulse from the upper
branch of the JR dispersion curve excites a Kelvin-wave
packet of a similar central wavelength. Figure 4 shows the
contour plots of the density cross sections of two such colli-
sions for two different rarefaction pulses that belong to lower
(left panel) and upper(right panel) branches of the JR dis-
persion curve. The wavelength of the created excitation is
best seen by the intersections of zeros of real and imaginary
parts of the wave functionc shown by solid and dashed lines
correspondingly. Similarly, a collision with an offset gener-
ates a Kelvin-wave packet of approximately the same domi-
nating wavelength but a smaller amplitude.

We can estimate the amplitude of the Kelvin wave gener-
ated by adistant rarefaction wave by reducing the problem
to two dimensions. We shall assume that initially the
straight-line vortex is positioned ats0,0,zd and the rarefac-
tion wave is moving in the positivex direction alongy
=−dy,0 with j!dy. Under these assumptions, the wave-
length of the perturbation along the vortex line is much
larger than its amplitudeh, (the maximum displacement of
the vortex center from the origin inxy plane); therefore we
can assume that thex andy components of the force exerted
by a rarefaction wave on the vortex dominate thez compo-
nent(in other words, the vortex may be considered as rigid).
Also, if the incident angle of the rarefaction pulse and the
direction of the vortex axis is nonzero, the amplitude calcu-
lated below would have to be multiplied by the cosine of this
angle. Inxy plane the vortex is advected by the rarefaction
pulse, so that its instantaneous velocity coincides, to the
leading order, with the velocity of the rarefaction pulse at the
vortex location. The center of the rarefaction pulse is moving
with the self-induced velocityU=sU ,0 ,0d and is advected

by the vortex. The motion of the vortex and of the rarefaction
pulse is, therefore, given by the following system of the
coupled ordinary differential equations:

dxr

dt
= U −

yr − yv

sxr − xvd2 + syr − yvd2 ,

dyr

dt
=

xr − xv

sxr − xvd2 + syr − yvd2 ,

dxv

dt
= Vxsxv − xr,yv − yrd,

dyv

dt
= Vysxv − xr,yv − yrd, s6d

where (xrstd ,yrstd) and (xvstd ,yvstd) are the positions of the
centers of the rarefaction pulse and the vortex, correspond-
ingly, at time t. Vx and Vy are the velocity components in-
duced by the rarefaction pulse on the vortex given byVx
=]S/]x and Vy=]S/]y, whereS is the phase of the wave
function c=R expiS, so that

dS=
s1 + ud dv − v du

s1 + ud2 + v2 , s7d

where the real, 1+u, and imaginary,v, parts ofc are ap-
proximated by Eq.s2d. The initial conditions are given by
(xvs0d ,yvs0d)=s0,0d and(xrs0d ,yrs0d)=−d=−sdx,dyd. Figure
5 shows the trajectories of the vortex forU=0.63 andd
=s10,10d ,s10,20d ,s20,10d, and s20,20d. It is clear from
the figure that the maximal amplitude of the displacement,
h, does not depend strongly ondx, but on dy. Figure 6
plots h as a function ofdy for two rarefaction pulses that
belong to the lower sU=0.63d and upper sU=0.69d

FIG. 4. (Color online) The snapshots of the contour plots of the
density cross section of a condensate obtained by numerically inte-
grating the GP model(1) illustrating the collision of the rarefaction
pulses and the straight-line vortex att=35 that are initially a dis-
tance of 20 healing lengths apart. Left panel shows the collision of
the rarefaction pulse from the lower branch of the JR dispersion
curvesU=0.63,E=52.3,p=72.2,m=8.37d and the right panel is for
the rarefaction pulse from the upper branch of the JR dispersion
curve sU=0.68,«=53.7,p=74.1,m=8.8d. Black solid and dashed
lines show zeros of real and imaginary parts ofc correspondingly
therefore their intersection shows the position of topological zeros.
Both low-and high-density regions are shown in darker shades to
emphasize intermediate density regions. Only a portion of an actual
computational box is shown.

FIG. 5. (Color online) The parametric plots of the trajectories
(xvstd ,yvstd) of the vortex initially ats0,0d and moving inxy plane
under the influence of the rarefaction pulse initially ats−20,−20d,
s−20,−10d, s−10,−20d, ands−10,10d. The vortex traveled the dis-
tance between two adjacent points in unit time.
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branches of the JR dispersion curve. For large offsets,dy,
sdy.30d the maximum amplitudeh decays exponentially
with dy, so thath,dy

1.24 for U=0.63 andh,dy
1.62 for U

=0.69.

IV. COLLISIONS WITH A VORTEX RING

Next we consider the collision of a rarefaction pulse with
a vortex ring. As in the previous cases, such a collision ex-
cites Kelvin wave with the release of sound energy. Figure 7
illustrates the time snapshots of the collision between the
vortex ring of radiusR=5.1 moving along thex axis and the
rarefaction pulse moving along the liney=−R. The total vor-
tex line is dramatically increased at timet,11 (from the line
length ,,32 to ,,50) due to the rarefaction pulse being
transformed into a small vortex ring during a short time in-
terval dt,5. After that the ring loses its energy to Kelvin-
wave radiation and stabilizes to axisymmetric vortex ring of
slightly smaller radius att,100, so that the total loss of the
vortex line is about 3%. The length of the vortex line does
not change fort.100. We repeated the calculations for the
rarefaction pulse from the upper branch of the JR dispersion
curve and found that the ring stabilizes after losing 4% of its

length. These results may seem to contradict the findings of
Ref. [6], where the length of the vortex line continues to
decay after the collision. The calculations in Ref.[6] were
done in computational box with periodic boundaries, so the
sound waves generated during the reconnections of a large
ring with a small ring continue to excite Kelvin waves on the
vortex line with a continuous loss of the vortex line to sound
radiation. The rate of the decay of the vortex line in this case
should depend on the size of the computational box. In our
calculations the faces of the computational box were open to
allow sound waves to escape[7], which allowed us to com-
pute the effect of a single collision with the finite amplitude
sound wave.

For very small vortex ringssR,1d the collision with a
rarefaction pulse causes all the energy and momentum to be
converted into sound waves with a complete loss of the vor-
tex line.

V. DECAY OF A VORTEX TANGLE

Next, we estimate the effect that the interactions with rar-
efaction pulses have on a vortex tangle. This time we per-
form the simulations similar to those of Refs.[6,18], in
which the vortex tangle was created by four colliding rings
in a periodic box. But in our simulations we regulate the
initial amount of sound waves in our computational box by
introducing them as randomly oriented rarefaction waves in
addition to the vortex rings.

For simplicity we shall assume that all
sound waves initially consist of three types of rarefaction
pulses moving in random directions. The approximations to
these solitary waves, which were developed in Ref.[9],
become very useful in the construction of our initial
conditions. If the rarefaction pulse given by Eq.(2) is rotated
by anglea to the x axis in the sx,yd plane and by angle
b to the y axis in the sy,zd plane, then its wave function
is given by csx8 ,s8d where x8=x cosa−y sin a, s8
=Îsy8 cosb−z sin bd2+sz cosb+y8 sin bd2, and y8
=y cosa+x sin a. The angles of rotationa andb as well as
the center of the rarefaction pulse are chosen randomly.

Our calculations were performed in a periodic box with
volumeV=803, which is divided by 1613 grid points with a
spacing 0.5. The numerical scheme is fourth order globally
accurate with fourth-order Runge-Kutta time integration with
the time step 0.025. A grid spacing of 0.25 together with the
time step 0.006 25 was also used to test the accuracy of the
numerical method. Initially there are four vortex rings of the
radius R=30.1 centered atsR,1 ,0d ,s−R,−1,0d ,s1,−R,0d,
ands−1,R,0d that are moving towards the center of the box.
Nrare rarefaction pulses are distributed randomly in the inter-
nal half of the box away from the vortices. The results for the
dynamics of the vortex line length for three sets of compu-
tations withNrare=0,100, and 200 are plotted in Fig. 8. The
density isosurfaces plots forNrare=100 are given in Fig. 9. In
the case of nonzero number of rarefaction pulses there is a
rapid initial growth of the length of the vortex line due to the
evolution of some of the rarefaction pulses into small vortex
rings as the result of the energy transfer among them[9].
Consequently, the length of the vortex line shows the balance

FIG. 6. The amplitude of the maximum displacement of the
vortex from the origin as the result of the interactions with the
rarefaction pulse from the lowersU=0.63d and uppersU=0.69d
branches of the JR dispersion curve as functions of the initial dis-
tancedy between the vortex and the center of the rarefaction pulse
along they axis.

FIG. 7. (Color online) The time snapshots of the density isosur-
faces of the condensate atucu2=0.3 for the collision of the vortex
ring of radius 5.1 and the rarefaction pulse moving with the velocity
U=0.63. The density contour plots at the cross section forz=0 are
given below each isosurface. Black solid and dashed lines show
zeros of real and imaginary parts ofc correspondingly; therefore
their intersection shows the position of topological zeros. Both low-
and high-density regions are shown in darker shades to emphasize
intermediate density regions. Only a portion of an actual computa-
tional box is shown.
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between vortices being created and vortex line being de-
stroyed due to reconnections and Kelvin-wave radiation. Our
simulations show that apart from the initial growth of the
vortex line in the simulations withNrare=100 initially, the
dynamics forNrare=100 andNrare=0 is very similar for that
in the time interval[400, 2600]. On the other hand, the case
with Nrare=200 is quite different. During the time interval
f500,1300g, the decay of the vortex tangle is much faster
than for two other runs, whereas aftert,1800 it is the run
with Nrare=200 that shows a slower decay. We speculate that
this can be best explained by the following. During the mod-
erate times, the vortex line loss due to the excitations of the
vortex line created by rarefaction pulses depends on how
many rarefaction pulses survived as their energy is gradually
being converted to high-frequency waves. The more of rar-
efaction pulses were present in the initial state, the longer at
least some of them are present in the system; therefore, the
state withNrare=200 shows a faster decay during the moder-
ate times. At larger times, all of the rarefaction pulses are
destroyed by the collisions and vortices live on the back-

ground of high-frequency waves that limit their mobility and
reduce the number of reconnections which slows down the
decay of the vortex line length, with the total energy carried
by these high-frequency waves being higher for the simula-
tions with Nrare=200 initially.

For even larger times the situation is reversed one more
time as reconnections are now infrequent and the main decay
mechanism is through Kelvin-wave radiation. Therefore, the
rate of decay of vortex line is proportional to the amount of
high-frequency waves(slowest decay forNrare=0, fastest de-
cay for Nrare=200.)

For Kelvin-wave cascade, where energy is transferred to a
much shorter wavelengths with a cutoff below a critical
wavelength, the vortex line densityL=, /V can be described
by the Vinen equation[19]

dL

dt
= −

k

2p
x2L

2, s8d

wherek=2p in our dimensionless units andx2 is a dimen-
sionless coefficient. More accuratelyx2 is a weakslogarith-
micd function of L and of other parameters such as the
Kelvin cutoff and temperature. The logarithmic dependence
on L can be easily obtained in the context of the local induc-
tion approximation. The presence of a large amount of rar-
efaction pulses changes this weak dependence onL and the
decay of the vortex line approaches an exponential decay
instead:

dL

dt
= −

k

2p
x2L. s9d

In Fig. 10 we plotted the curvefthe solution of Eq.s9dg

, = ,0 exps− x2td s10d

for x2=0.000 35 and,0=760 to illustrate the exponential
decay of the vortex line length.

Finally, we note that the presence of rarefaction waves in
a condensate with regular vortex lattices has destabilizing
effect and facilitates reconnections. If vortices are antiparal-
lel, the Kelvin wave created on the filaments as the result of
interaction with rarefaction waves facilitates the growth of
the Crow instability[3] that leads to vortex reconnections

FIG. 8. (Color online) The vortex line length for the collision of
four vortex rings of radiusR=30.1. Initially the number of rarefac-
tion pulses isNrare=0 (black line), Nrare=100 (red or dark gray
line), andNrare=200 (green or light gray line). A decay character-
ized by x2=0.3 is plotted(thick line) to show the experimentally
determined decay of the vortex line length.

FIG. 9. Density isosurfacessucu2=0.3d showing the snapshots of
the time evolution of the initial state consisting of four vortex rings
of radius R=30.1 and 100 rarefaction pulses. Many small vortex
rings are formed during the evolution.

FIG. 10. (Color online) The vortex line length for the collision
of four vortex rings of radiusR=30.1. Initially the number of rar-
efaction pulses isNrare=200 (green or light gray line). The black
solid line gives a decay of the vortex line given by Eq.(10) for
,0=760 andx2=0.000 35.
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that destroy a significant amount of vortex line(as we esti-
mated in Ref.[3], the minimum fractional line loss of the
pair of antiparallel vortices that are initially the distanceh
apart and perturbed by a wave of the wave numberk!1 is
about 1−Îkh/2). The interactions of the rarefaction waves
with the lattice of parallel vortices(created, for instance, in
rotating condensates) also destabilizes the array and creates a
tangle as Fig. 11 illustrates.

VI. CONCLUSIONS

In summary, we established several mechanisms for cre-
ation of the rarefaction pulses in condensates. We have stud-
ied the effects of their interactions with straight-line vortices,
vortex rings, and tangles of vortices. We showed that there
are two competing mechanisms of these interactions. First
the interactions of waves at close distances lead to the in-
crease of the vortex line as the rarefaction pulses in the re-
gions of lower density(in the vicinity of the vortex core or
each other) may acquire circulation and become vortex rings.
Second, rarefaction waves excite Kelvin waves on the vortex
filaments causing a loss of the vortex line due to sound emis-
sion. At high vortex line densities our simulations suggest
that the Kelvin-wave radiation is enhanced by the presence
of rarefaction pulses and this accounts for a dramatic in-
crease in the rate of the decay of the vortex line length.
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