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We present a simple exact analytical solution, using the Weyl-Titchmarsh-Kodaira spectral theorem, for the
spectral function of the one-dimensional diatomic molecule model consisting of two attractived-function wells
in the presence of a static external electric field. For sufficiently deep and far apart wells, this molecule
supports both an even and an odd state, and the introduction of a static electric field turns these bound states
into quasibound states which are Stark-shifted and broadened. The continuum spectrum also inherits an intri-
cate pattern of resonances which reflect the competition between resonant scattering between the two atomic
wells and between the linear potential and one or both atomic well(s). All results are analytic and can be easily
plotted. The relation between the large orders of the divergent perturbative Stark-shift series and the nonper-
turbative widths of quasibound levels is studied.

DOI: 10.1103/PhysRevA.69.053409 PACS number(s): 42.50.Hz, 31.15.2p

I. INTRODUCTION

The electronic structure of atoms and molecules is use-
fully probed by external electric and magnetic fields. The
development of intense lasers has permitted such probing in
regimes where simple perturbative treatments are not valid
and one must use a nonperturbative semiclassical approxima-
tion or a numerical approach. Experiments with molecules
display a much richer range of phenomena than with atoms,
due to the additional molecular degrees of freedom[1–3].
These include above-threshold ionization[4,5], multiple ion-
ization [6,7], alignment effects[8], electron localization[9],
nonsequential double ionization[10], direct excitation[11],
stabilization[12], dissociative recombination[13], and sepa-
ration effects[14]. However, molecules(even the simplest
diatomic molecules) and their ionization are clearly more
difficult to treat theoretically. Many approximation tech-
niques have been developed and applied to atomic ionization
processes[15–19], but much less is known for molecular
systems. Realistic calculations are rather complicated and
one loses some of the physical intuition that can often be
gained from simple models. In this paper, we present the
exact analytical solution for a simple molecular ionization
model. The molecule is taken to be one-dimensional. This
approximation is remarkably good in the strong-field regime
where the ionization is predominantly along the field direc-
tion, so that the system is effectively one-dimensional[8].
The simplest such one-dimensional molecule consists of two
atomic wells1 represented by attractived-function wells of
strengthg, separated by a distance 2a. This is a well-known
soluble model[20]. This molecule always supports an even-
parity bound ground state and a continuum, and ifag.1 it
also supports an odd-parity bound excited state. There is a
long tradition of using model potentials such as zero-range
potentials in atomic and molecular physics[21]. The pres-
ence of an external electrostatic field, of field strengthF,

dramatically changes the basic character of the spectrum,
converting the bound states into quasibound states and modi-
fying the resonance structure of the continuum. These spec-
tral changes are seen directly in the spectral functionrsEd:
the quasibound states are poles ofrsEd at complex values of
the energyE, where the real part of the pole gives the energy
location of the quasibound level and the imaginary part gives
the width, and hence lifetime, of the level. Since this molecu-
lar ionization model is exactly soluble, we can easily inves-
tigate the dependence of these quasibound levels on the rel-
evant physical parameters—the field strengthF, the atomic
well depth g, and the atomic separation parametera. The
same applies for the “continuum,” where resonance struc-
tures appear due to the delicate interplay between tunneling,
binding, and scattering effects.

The solution presented here uses the Weyl-Titchmarsh-
Kodaira (WTK) spectral theorem[22–25]. This spectral
theorem expresses the completeness of the wave functions of
the Schrödinger equation in a general way that applies not
just to the familiar discrete spectrum models(such as the
infinite square well or the harmonic oscillator), but also to
systems with discrete and continuum spectra(such as the
finite square well or the hydrogen atom), and even to systems
with a purely continuous spectrum, such as for ionization
problems where there are no true bound states. The WTK
approach is well suited for numerical implementation and
has been applied long ago to the Stark effect in atomic hy-
drogen[26]. An interesting soluble one-dimensional atomic
model consisting of a single finite square well on the half-
line is solved using the WTK method in[27]. More recently,
the numerical WTK approach has been used for studying
strong-field ionization effects in effectively one-dimensional
diatomic molecules[28,14]. Various numerical and approxi-
mate methods for computing resonance locations and widths
are compared in[29]. This current paper is complementary to
[28], but the choice to represent the atomic wells by
d-function wells makes the entire molecular ionization prob-
lem analytically solvable, thereby bypassing the numerical
part of the computation. We also mention that this one-
dimensional molecular ionization model has been studied in

1It is straightforward to generalize the exact solution to the case of
unequal atomic well depths, but for simplicity here we consider the
atomic well depths to be equal.
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[30] using the solution of the associated Lippman-Schwinger
equation, and by Korsch and Mossmann[31] in terms of
Stark resonances and geometric phases.

This paper is organized as follows. Section II contains a
summary of the implementation of the WTK method for
computing the spectral function. This is applied in Sec. III to
the one-dimensional molecular model without an applied
electric field. In Sec. IV the electric field is applied and the
exact solution for the spectral function is derived. The de-
pendence of the spectral function on the various physical
parameters is explored through plots and also analytically.
Section V is devoted to the simpler case of atomic ionization,
obtained from the molecular solution by taking the atomic
separation parameter,a, to zero. The final section contains
some concluding comments.

II. WEYL-TITCHMARSH-KODAIRA METHOD

The Weyl-Titchmarsh-Kodaira(WTK) spectral theorem
[22–25] for quantum-mechanical Hamiltonians is very gen-
eral, covering not just simple Hamiltonians like the harmonic
oscillator which have only bound states, but also Hamilto-
nians with both bound and continuum states. It also extends
to ionization problems where the spectrum is purely con-
tinuum. Indeed, in his classic book[23], Titchmarsh solves
the half-line “atomic” problem of a bindingd-function po-
tential well plus a constant electric field. This approach can
be applied directly to any one-dimensional or radial
Schrödinger problem. The WTK method can be summarized
as follows.

Consider the Schrödinger equation(we work in units
where"2/2m=1),

− c9sxd + Vsxdc = Ecsxd s1d

on the real linexP s−` , +`d. Pick some point, chosen with-
out loss of generality to bex=0, and normalize the two in-
dependent solutions of Eq.s1d, usx,Ed and vsx,Ed, so that
their Wronskian is equal to 1 at that point by choosing

us0,Ed = 1, u8s0,Ed = 0,

vs0,Ed = 0, v8s0,Ed = − 1. s2d

Next, integrate(numerically or analytically) each of these
solutions out towardsx= +` and x=−`, producing four
functionsu±sx,Ed, andv±sx,Ed. The WTK method involves
constructing particular linear combinations of these functions
such that these combinations are normalizable on the inter-
vals s0, +`d and s−` ,0d, when the energyE has a small
positive imaginary part:E→E+ ie. Specifically, going to-
wards the right, we construct

c+sx,Ed = u+sx,Ed + m+sEdv+sx,Ed s3d

such that it is normalizable on the intervals0, +`d when the
energyE has a small positive imaginary part. This deter-
mines the coefficient functionm+sEd. Similarly, going to the
left, we construct the linear combination

c−sx,Ed = u−sx,Ed + m−sEdv−sx,Ed s4d

such that it is normalizable on the intervals−` ,0d when the
energyE has a small positive imaginary part. This deter-
mines the coefficient functionm−sEd. The spectral function,
and the completeness of the wave functions, can be ex-
pressed in terms of these coefficient functionsm±sEd
f22–25g. For example, the spectral function is

rsEd = lim
e→0

1

p
ImSm+sE + iedm−sE + ied + 1

m+sE + ied − m−sE + ied D . s5d

This WTK method is well suited to numerical implementa-
tion for arbitrary potential wellsf28g. In the models studied
in this paper, the situation is even simpler since the indepen-
dent solutionsusx,Ed andvsx,Ed are known in analytic form
for all x; the “integration” process simply involves applying
the correct continuity and discontinuity boundary conditions
at the locations of the twod-function potentials. This will be
shown in detail in Sec. IV.

III. ONE-DIMENSIONAL MOLECULAR MODEL

We first review the model without the electric field. We
choose the following simple double-d-function potential to
represent the diatomic molecule:

Vsxd = − gfdsx + ad + dsx − adg, s6d

whereg.0. This potential has two bindingd-function wells
located atx= 7a, and chosen for simplicity to have equal
strength −g. This problem, without an external electric field,
is a standard problem in quantum mechanics coursesf20g.
The potential s6d always supports a bound ground state
which has even parity, and ifga.1 it also supports a bound
excited state which has odd parity. In this section, we present
the WTK solution as an introductory illustration of the
method.

In the vicinity of x=0, the potential(6) vanishes. Thus,
the two independent solutions,usx,Ed and vsx,Ed, of the
Schrödinger equation(1), which satisfy the normalization
conditions(2), are

usx,Ed = cossÎE xd, vsx,Ed = −
sinsÎExd

ÎE
. s7d

Integrating to the right, these solutions remain valid until we
reach the right-handd function atx= +a, at which point we
impose the standard boundary conditionsf20g,

csa − ed = csa + ed, Udc

dx
U

a−e

a+e

= − g csad. s8d

These conditions determine the solutions forx.a to be

u+sx,Ed = A cossÎExd + B
sinsÎExd

ÎE
, s9d
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v+sx,Ed = C cossÎExd + D
sinsÎExd

ÎE
, s10d

where the coefficients are

A = 1 +
g sins2aÎEd

2ÎE
, B = − g cos2saÎEd, s11d

C = −
g

E
sin2saÎEd, D = − 1 +

g sins2aÎEd
2ÎE

. s12d

When the energyE has a small positive imaginary part,
the linear combinationc+=u++m+v+ in Eq. (3) will be nor-
malizable ons0, +`d if the exps−iÎExd part is eliminated.
This determines the functionm+sEd in Eq. (3) to be

m+sEd = −
ÎEA+ iB
ÎEC+ iD

=
− iE − gÎE cossaÎEd eiaÎE

ÎE − g sinsaÎEd eiaÎE
.

s13d

Since the potentials6d is symmetric, it follows thatm−sEd
=−m+sEd. Thus, the spectral functions5d is determined to be

rsEd = lim
e→0

1

2p
ImS− m+sE + ied +

1

m+sE + iedD . s14d

Bound states appear on the negative real energy axis as poles
of the spectral functions14d. The pole ofm+, satisfying the
transcendental equation

1 + e−2aÎ−E =
2Î− E

g
, s15d

corresponds to the even-parity bound state. From Eq.s14d,
the zero ofm+, satisfying the transcendental equation

1 − e−2aÎ−E =
2Î− E

g
, s16d

also gives a pole of the spectral function, and corresponds to
the odd-parity bound statesif it existsd. There is always an
even bound state, given by the pole ofm+sEd satisfying Eq.
s15d. If ga.1, there is also an odd bound state, given by the
zero of m+sEd satisfying s16d. Some plots of the spectral
function s14d are shown in Figs. 1 and 2. Note the appear-
ance of the single bound state whenga,1, but of two bound
states whenga.1. In Fig. 1, the width of the bound state
peaks in these plots is artificial, as we have kept the small
imaginary parte of the energy nonzero in order to show the
peaks. In the truee→0 limit, these bound state peaks have
zero width, and so would not show up on the plot. Figure 2

FIG. 1. Plots of the spectral
function for the free one-
dimensional molecular potential
(6). For ag,1 there is only one
bound state, but forag.1 there
are two bound states.

FIG. 2. Plots of the continuum
part of the spectral function for
the free one-dimensional molecu-
lar potential(6). Note the periodic
behavior due to resonant back-
scattering between the two wells.
The left-hand plot is forag=0.5,
while the right-hand plot hasag
=1.5.
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shows the continuum part of the spectrum—notice the peri-
odic behavior of the spectral function, due to resonant back-
scattering between the twod functions. This periodicity is
determined by the separation 2a between the wells and the
well strengthg.

IV. ONE-DIMENSIONAL MOLECULAR MODEL WITH AN
ELECTRIC FIELD

In this section, we solve the problem of the one-
dimensional molecular potential(6) studied in the previous
section, with an additional external static electric field of
magnitudeF. Thus, the potential is

Vsxd = − gfdsx + ad + dsx − adg − F x, s17d

where g.0 and F.0. The potentials17d has no bound
states whenFÞ0, but it does have quasibound states. The
corresponding Schrödinger equations1d is analytically
soluble since the linearly independent solutions are Airy
functions. In fact, the WTK solution proceeds exactly as in
the case without the electric field, except that the basic trigo-
nometric solutions in Eq.s7d are replaced by Airy functions.

A. WTK solution for the spectral function

In the vicinity of x=0, the independent solutions satisfy-
ing the Wronskian normalization condition(2) are

usx,Ed = Asud AiS−
sFx + Ed

F2/3 D + Bsud BiS−
sFx + Ed

F2/3 D ,

vsx,Ed = Asvd AiS−
sFx + Ed

F2/3 D + Bsvd BiS−
sFx + Ed

F2/3 D ,

s18d

where Ai and Bi are Airy functions[32], and the coefficients
needed to satisfy the normalization conditions(2) are

AsudsEd = pBi8S−
E

F2/3D ,

BsudsEd = − pAi 8S−
E

F2/3D ,

AsvdsEd = − pF−1/3BiS−
E

F2/3D ,

BsvdsEd = pF−1/3AiS−
E

F2/3D . s19d

Here we have made use of the fundamental Airy function
Wronskian identity[32],

Ai sxdBi8sxd − Ai8sxdBisxd =
1

p
, ∀ x P R. s20d

As before, integrating to the right, the solutions in Eqs.s18d
remain valid until we reach the right-handd-function well at
x= +a, at which point we apply thed-function boundary con-
ditions s8d. This determines the solutions in the regionx.a
to be

u+sx,Ed = A+
sud AiS−

sFx + Ed
F2/3 D + B+

sud BiS−
sFx + Ed

F2/3 D ,

v+sx,Ed = A+
svd AiS−

sFx + Ed
F2/3 D + B+

svd BiS−
sFx + Ed

F2/3 D ,

s21d

where the coefficients are

A+
sudsEd = − gp2F−1/3AiS−

sE + Fad
F2/3 DBiS−

sE + Fad
F2/3 DBi8S−

E

F2/3D + gp2F−1/3BiS−
sE + Fad

F2/3 D2

Ai 8S−
E

F2/3D + pBi8S−
E

F2/3D ,

B+
sudsEd = − gp2F−1/3AiS−

sE + Fad
F2/3 DBiS−

sE + Fad
F2/3 DAi 8S−

E

F2/3D + gp2F−1/3AiS−
sE + Fad

F2/3 D2

Bi8S−
E

F2/3D − pAi 8S−
E

F2/3D ,

A+
svdsEd = gp2F−2/3AiS−

sE + Fad
F2/3 DBiS−

sE + Fad
F2/3 DBiS−

E

F2/3D − gp2F−2/3BiS−
sE + Fad

F2/3 D2

AiS−
E

F2/3D − pF−1/3BiS−
E

F2/3D ,

B+
svdsEd = gp2F−2/3AiS−

sE + Fad
F2/3 DBiS−

sE + Fad
F2/3 DAiS−

E

F2/3D − gp2F−2/3AiS−
sE + Fad

F2/3 D2

BiS−
E

F2/3D + pF−1/3AiS−
E

F2/3D .

s22d

Similarly, integrating to the left, the solutions(18) remain valid until we reach the left-handd function well atx=−a, at which
point we apply the boundary conditions(8). This determines the solutions in the regionx,−a to be
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u−sx,Ed = A−
sud AiS−

sFx + Ed
F2/3 D + B−

sud BiS−
sFx + Ed

F2/3 D ,

v−sx,Ed = A−
svd AiS−

sFx + Ed
F2/3 D + B−

svd BiS−
sFx + Ed

F2/3 D , s23d

where the coefficients are

A−
sudsEd = gp2F−1/3BiS−

sE − Fad
F2/3 DAiS−

sE − Fad
F2/3 DBi8S−

E

F2/3D − gp2F−1/3BiS−
sE − Fad

F2/3 D2

Ai 8S−
E

F2/3D + pBi8S−
E

F2/3D ,

B−
sudsEd = gp2F−1/3BiS−

sE − Fad
F2/3 DAiS−

sE − Fad
F2/3 DAi 8S−

E

F2/3D − gp2F−1/3AiS−
sE − Fad

F2/3 D2

Bi8S−
E

F2/3D − pAi 8S−
E

F2/3D ,

A−
svdsEd = − gp2F−2/3BiS−

sE − Fad
F2/3 DAiS−

sE − Fad
F2/3 DBiS−

E

F2/3D + gp2F−2/3BiS−
sE − Fad

F2/3 D2

AiS−
E

F2/3D − pF−1/3BiS−
E

F2/3D ,

B−
svdsEd = − gp2F−2/3BiS−

sE − Fad
F2/3 DAiS−

sE − Fad
F2/3 DAiS−

E

F2/3D + gp2F−2/3AiS−
sE − Fad

F2/3 D2

BiS−
E

F2/3D + pF−1/3AiS−
E

F2/3D .

s24d

Thus, the independent solutions to the Schrödinger equation for the potential(17) are known analytically for allx. As described
in Sec. II, the WTK method involves finding the functionsm±sEd such that the linear combinationsc±=u±+m±v± are
normalizable asx→ ±`, when the energy has a small positive imaginary part.

In the regionx.a, the normalizable solution has the form

c+sx,Ed ~ AiS−
sFx + Ed

F2/3 D − i BiS−
sFx + Ed

F2/3 D . s25d

This determinesm+sEd to be

m+sEd = −
B+

sudsEd + i A+
sudsEd

B+
svdsEd + i A+

svdsEd
. s26d

In the regionx,−a, the normalizable solution has the form

c−sx,Ed ~ AiS−
sFx + Ed

F2/3 D . s27d

This determinesm−sEd to be

m−sEd = −
B−

sudsEd
B−

svdsEd
. s28d

Given these expressions form±sEd, the spectral function is given by Eq.s5d, which we can write in terms of the coefficients
s22d and s24d as

rsEd = lim
e→0

1

p
ImSB−

sudsE + iedfB+
sudsE + ied + iA+

sudsE + iedg + B−
svdsE + iedfB+

svdsE + ied + iA+
svdsE + iedg

B−
sudsE + iedfB+

svdsE + ied + iA+
svdsE + iedg − B−

svdsE + iedfB+
sudsE + ied + iA+

sudsE + iedg
D . s29d

This is an analytic expression for the exact spectral function for the potentials17d. In the remainder of this section, we discuss
the physical properties of this spectral function, using plots and analytical methods.

B. Plots of the spectral function

Before discussing the analytic properties of the spectral
function(29), we present some plots which illustrate how the
spectral function depends on the physical parameters, in or-
der to develop some intuition for the physical processes in-

volved. In addition, some animations showing how the spec-
tral function changes, both in the quasibound and in the
quasicontinuum region, as we vary the field strengthF, the
atomic separation parametera, or the atomic well depth pa-
rameterg, can be found in[33].
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1. Dependence on the electric field strength F

In the absence of the electric field, the molecule has one
or two bound states depending on the well separation param-
etera and well strengthg. And the continuum exhibits struc-
ture due to Ramsauer-Townsend resonances in the scattering
between the twod wells. These two features are illustrated
clearly in Figs. 1 and 2. When the field strengthF is nonzero,
the bound states become quasibound states with a nonzero
width, and their central values are Stark-shifted. These ef-
fects are illustrated in Fig. 3, which shows a molecule with
two bound states subjected to an external electric field of
strengthsF=0.05,0.1,0.5,1. Note that the quasibound states

broaden as the field increases, with the higher state being
broader since it is less deeply bound and so can tunnel more
easily. The quasibound states are Stark-shifted in opposite
directions: the lower state is Stark-shifted down in energy,
while the higher state is Stark-shifted up in energy. The ef-
fect of the external electrostatic field on the continuum states
is shown in Fig. 4. In these plots, the dashed line shows the
continuum spectral function whenF=0. The solid lines show
the spectral function for various values ofF :F
=5,10,15,20.Note that the free spectral function provides
an average for theF.0 spectral function. The scale of the
oscillations of this average function is clearly independent of

FIG. 3. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the quasibound states
change as the electric field
strengthF varies. The dashed line
shows the correspondingF=0
molecular spectrum(14). In these
plots, the atomic well strength is
g=1.5, and the separation param-
eter isa=1, so the free molecule
has two bound states. Notice that
asF increases, these two states are
Stark-shifted and broadened.

FIG. 4. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the continuum part of the
spectrum changes as the electric
field strengthF varies. The dashed
line shows the correspondingF
=0 molecular spectrum(14). In
these plots, the atomic well
strength isg=1.5, and the separa-
tion parameter isa=1. Notice the
two oscillation scales—the longer
one is set by the free case(dashed
line) while the rapid oscillation is
set by the field strengthF, with
the free spectral function provid-
ing an average. AsF decreases in
magnitude, the oscillations be-
come more rapid, eventually aver-
aging out to the free case.
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F, being determined by the combinationag, as illustrated in
Fig. 2. For F.0, there is an additional scale in the “con-
tinuum” spectrum, and asF decreases to zero the rapid os-
cillations become more and more rapid, and eventually aver-
age out to the free spectral function. AsF increases, the
period of this oscillation increases. These oscillations can be
correlated approximately with the zeros of the Airy function
Ai s−E/F2/3d, since these zeros give the energies of the half-
wedge potential well which hasV=−Fx for x,0, with an
infinite barrier atx=0. This is illustrated in Figs. 5 and 6, for
a=0 anda=1, respectively. Note that the peaks of the spec-
tral function (the solid line) coincide roughly with the zeros
of Ai s−E/F2/3d, the dashed line. The agreement is quite
good, even for the molecular model havinga=1. This is an
example of Ramsauer-Townsend resonance, with the electron
backscattering off the twod wells providing the large-period

oscillations, and the electron scattering off thed wells and
the linear electrostatic potential providing the shorter-period
oscillations.

2. Dependence on the atomic well separation parameter a

The dependence of the spectral function(29) on the
atomic well separation parametera is illustrated in Figs. 7
and 8 for the “bound” and “continuum” parts of the spec-
trum, respectively. In the zero-field case, the spectral func-
tion has two bound states ifga.1. These are shown as the
dashed curves in Fig. 7. As the separation increases, these
two bound states approach the same energy, becoming de-
generate in the limita→`. This is because in the large sepa-
ration limit the tunneling which mixes the two levels be-
comes suppressed and the two atoms become essentially
independent of one another. Thus the bound state spectrum

FIG. 5. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the continuum part of the
spectrum correlates with the zeros
of the Airy function Ais−E/F2/3d
(dashed line), which are the ener-
gies of the wedge potentialV
=−Fx with an infinite wall at
some point. This is an illustration
of the Ramsauer effect. These
plots are fora=0 and g=1, and
various values of the electric field
strengthF, as shown.

FIG. 6. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the continuum part of the
spectrum correlates with the zeros
of the Airy function Ais−E/F2/3d
(dashed line), which are the ener-
gies of the wedge potentialV
=−Fx with an infinite wall at
some point. This is an illustration
of the Ramsauer effect. These
plots are fora=1 andg=1.5, and
various values of the electric field
strengthF, as shown.

SIMPLE SOLUBLE MOLECULAR IONIZATION MODEL PHYSICAL REVIEW A 69, 053409(2004)

053409-7



approaches that of a single atomic well. On the other hand, if
the field strength is nonzero, the quasibound states do not
become degenerate in the limit of large separation. This is
shown by the solid curves in Fig. 7. Instead, the two states

move away from each other; the even state is Stark-shifted
further down in energy and the odd state is Stark-shifted
further up in energy. This is because for largea the tunneling
is essentially from each well independently, with one Stark-

FIG. 7. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the quasibound part of
the spectrum changes as the well
separation parametera varies. The
dashed line shows the correspond-
ing F=0 molecular spectrum(14).
For the solid lines, the field
strength is F=0.1, the well
strength isg=1.5, anda ranges
through 1.5, 2, 2.5, and 3. Notice
that asa increases, the quasibound
states become narrower in width
and they move apart. In contrast,
the free bound states move to-
gether, eventually becoming de-
generate asa→`.

FIG. 8. Plots of the spectral function(29) (solid lines) illustrating how the continuum part of the spectrum changes as the well separation
parametera varies. The dashed line shows the correspondingF=0 molecular spectrum(14). In these plots, the field strength isF=0.15 and
the well strength isg=1. Notice that asa increases, a second quasibound state peels off the positive energy continuum and forms a
Stark-shifted pair around the twoF=0 bound states which exist forag.1. Also note that in theF=0 case, asa increases the splitting
between the two bound states becomes vanishingly small, as the tunneling between the two wells is suppressed. In the continuum, the
average function varies witha due to resonances in the backscattering between the two wells. Even with nonzeroF, the spectral function
follows this average closely asa varies.
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shifted up and the other down, depending on the parity of the
original state. These quasibound levels also become narrower
in width as there is a larger barrier through which the elec-
tron must tunnel asa increases. The effect on the “con-
tinuum” part of the spectrum is shown in Fig. 8. HereF
=0.15 and the spectrum exhibits resonances which oscillate
about theF=0 case, which is shown by the dashed lines. As
the well separation changes, the average function changes,
due to the Ramsauer-Townsend resonance between the two
wells. Note that for nonzero field strength the spectral func-
tion oscillates rapidly with energy, but still follows the free
field average. Thus, theF.0 spectral function represents a

competition between the resonance between the two wells,
which depends strongly ona, and the resonance between a
given well and the linear potential, which is not sensitive to
a.

3. Dependence on the atomic well strength g

The dependence of the spectral function(29) on the
atomic well depthg is illustrated in Fig. 9 and 10 for the
“bound” and “continuum” parts of the spectrum, respec-
tively. In theF=0 case, the difference in energy between the
even and odd states gets smaller as the well strength in-
creases, which is similar to what happens when the well

FIG. 9. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the quasibound part of
the spectrum changes as the well
depth parameterg varies. The
dashed line shows the correspond-
ing F=0 molecular spectrum(14).
In these plots, the field strength is
F=0.1 and the well separation pa-
rameter isa=1.5.

FIG. 10. Plots of the spectral
function(29) (solid lines) illustrat-
ing how the continuum part of the
spectrum changes as the well
depth parameterg varies. The
dashed line shows the correspond-
ing F=0 molecular spectrum(14).
In these plots, the field strength is
F=0.5 and the well separation pa-
rameter isa=1. Notice that asg
increases, a second quasibound
state peels off the positive energy
continuum and forms a Stark-
shifted pair around the twoF=0
bound states which exist for
ag.1.
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separation increases. This is because the tunneling mixing is
more highly suppressed as the states become more deeply
bound. The difference between the limit of large well sepa-
ration and the limit of large well strength is that as the well
separation increases, the two bounded states approach the
same energy, whereas when the well strength is increased the
states become degenerate but their energies tend to −` as
g→`. However, if the electric field is applied, the two states
do not become degenerate in the large well strength limit but
instead keep a nonzero relative distance between each other.
The distance between the two states approaches 2Fa as well
strength increases, which is easily explained by the following
argument. If the well strength is very strong, we can think of
a particle being localized at a single well. If a uniform elec-
tric field of strengthF pointing in the positivex direction is
applied, a particle localized at the left well will increase in
energy byFa while the energy of a particle localized at the
right well will decrease byFa. Since the unperturbed states
have the same energy, the energy difference is just 2Fa. This
can be seen in the last panels of Fig. 9, for whichF=0.1 and
a=1.5, so 2Fa=0.3, which is roughly the separation between
the two quasibound levels. Also note that the quasibound
state peaks become narrower asg increases, as the levels are
more deeply bound.

Backscattering resonances in the continuum become more
prominent as the well strength increases, because the reso-
nances are sharper, since the scattering potentials are deeper.
If the field is weak, the WKB approximation for an infinite
well potential in an electric field can be used to find the
energies of the backscattering states in the strong-well-
strength limit. But these peaks also follow the free field av-
erage(the dashed lines in Fig. 10), which is due to the reso-
nance between the wells without the electric field. Thus, the
F.0 spectral function represents a competition between the
resonance between the two wells, which depends strongly on
g, and the resonance between a given well and the linear
potential, which is also sensitive to the well strengthg.

C. Analytic properties of spectral function: Stark shifts and
level widths

With the electric field present there are no true bound
states, but there are quasibound states. The location of these
quasibound states is given by the real parts of the poles of
the spectral function(29), and their widths are given by the
imaginary part of these poles. These poles are given by the
zeros of

F−1/3 + ig2p2F−1AiS−
sE − Fad

F2/3 DHFAiS−
sE + Fad

F2/3 D − iBiS−
sE + Fad

F2/3 DGFAiS−
sE + Fad

F2/3 DBiS−
sE − Fad

F2/3 D
− AiS−

sE − Fad
F2/3 DBiS−

sE + Fad
F2/3 DGJ − gpF−2/3FiAiS−

sE − Fad
F2/3 D2

+ AiS−
sE − Fad

F2/3 DBiS−
sE − Fad

F2/3 D + iAiS−
sE + Fad

F2/3 D2

+ AiS−
sE + Fad

F2/3 DBiS−
sE + Fad

F2/3 DG . s30d

In the weak-field limit, we can use the following asymptotic
expansionsf32g of the Airy functions to find perturbative
solutions for the zeros of Eq.s30d:

Ai szd ,
e−z

2Îpz1/4o
k=0

`
s− 1dkck

zk , s31d

Biszd ,
ez

Îpz1/4o
k=0

`
ck

zk , s32d

wherez= 2
3z3/2, and the expansion coefficientsck are

ck =
Gs3k + 1/2d

54kk ! Gsk + 1/2d
. s33d

Clearly, only even powers ofF will appear in the perturba-
tive expansion for the real parts of the quasienergies. So, we
define the expansion

E = − g2o
n=0

`

anS F

g3D2n

. s34d

To find the real parts of the quasienergies, we can ignore the
imaginary parts of Eq.s30d, which are anyway exponentially
suppressed in the weak-field limit. It is a straightforward
exercise to expand Eq.s30d in powers of the field strengthF,
using, for example,MATHEMATICA [37]. The leading-order
F0 term produces the equation

4a0 − 4Îa0 + s1 − e−4agÎa0d = 0 s35d

whose solutions are just the solutions of the transcendental
equationss15d and s16d derived in the previous section for
the bound states in the free field case. A solution to Eq.s35d
satisfying Eq.s15d is an even bound state of theF=0 poten-
tial s6d, while a solution to Eq.s35d satisfying Eq.s16d is an
odd bound state of Eq.s6d.

The first correction to these bound states comes from the
F2 term in the expansion of Eq.(30), which leads to the
following expression fora1 in terms ofa0:
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a1 =
15s1 − 2Îa0d − 15ags1 − 2Îa0d2 + 12sagd2a0s1 − 4Îa0d − 4sagd3a0s1 − 2Îa0d2

48a0
2s1 − 2Îa0df1 − ags1 − 2Îa0dg

. s36d

Thus, to first nontrivial order, the Stark-shifted energy is

E = − a0g
2 − a1

F2

g4 + . . . . s37d

To find the shift for the even bound state, we find the solu-
tion a0 of Eq. s52d which also satisfies Eq.s15d, and then
insert this value ofa0 into Eq.s36d to find the corresponding
a1. It is straightforward to continue this to higher orders. For
the odd bound state, we must first find if there is such a
solution fora0 to Eq. s52d satisfying Eq.s16d. This odd so-
lution will exist if ga.1. If it exists, then the corresponding
Stark shift is obtained by inserting this value ofa0 into the
expressions36d for a1.

The widths of the quasibound states can be derived from
the imaginary part of the poles of the spectral function. Be-
cause of the complicated dependence of the quasibound state
energies on the system parametersF, g, anda, it is difficult
to derive simple analytical expressions for the linewidths.
However, in the large atomic separation limit, asa→`, we
can use the WKB method to approximate the tunneling rate,
and hence the linewidth, as

G , gÎE0 − Fa expF−
4sE0 − Fad3/2

3F
G , s38d

whereE=−E0− iG, and −E0 is the full Stark-shifted energy
of the lower quasibound state.

In the limit of infinitely large well strength,g→`, theg2

term in Eq.(30) dominates and the zeros of Eq.(30) lie on
the positive real axis. If the field strengthF is small, the
first-order asymptotic expansion of the Airy functions[32],

Ai s− zd ,
1

Îpz1/4
sinSz +

p

4
D , s39d

Bis− zd ,
1

Îpz1/4
cosSz +

p

4
D, z = 2

3z3/2 s40d

for Reszd@0 can be used to estimate the location of the
zeros of Eq.s30d. These approximate zeros are determined
by the expressions

2

3

sE − Fad3/2

F
= Sn −

1

4
Dp, s41d

2

3

sE + Fad3/2 − sE − Fad3/2

F
= np. s42d

Note that expressions41d approximates the zeros of

AiS−
sE − Fad

F2/3 D ,

while Eq. s42d approximates the zeros of

AiS−
sE + Fad

F2/3 DBiS−
sE − Fad

F2/3 D
− AiS−

sE − Fad
F2/3 DBiS−

sE + Fad
F2/3 D .

Solutions for expressions41d are the energies obtained using
the WKB approximation for a half-wedge potential with an
infinitely high wall at x=−a. Therefore, we interpret the en-
ergies satisfying Eq.s41d as those of the backscattering states
between the left well and the electric field, which is the
Ramsauer effect illustrated in Figs. 5 and 6. Similarly, ex-
pressions42d yields the same set of energies obtained from
the WKB approximation for a potential well in an electric
field with infinitely high walls atx=−a andx=a, and there-
fore Eq.s42d determines the energies of backscattering states
between the two wells, also in the presence of the electric
field. In general, the exact resonances reflect a competition
of these scatterings among the linear potential and the atomic
wells.

V. SINGLE-WELL POTENTIAL WITH AN ELECTRIC
FIELD

A nice feature of our molecular analysis is that the
“atomic” analogue of the molecular model studied in Sec. IV
can be obtained simply by setting the separation parametera
of the two wells to zero. All the expressions carry over
smoothly in thisa→0 limit. The corresponding potential is
(note that thed-function strength becomes 2g in this limit)

Vsxd = − 2gdsxd − Fx. s43d

This atomic problem has also been discussed in terms of the
corresponding Green’s functions inf34,35g, and in terms of
Stark resonances inf36g.

WTK solution for the atomic spectral function

The spectral function is given, as before in Eq.(29), by

rsEd = lim
e→0

1

p
ImSB−

sudsE + iedfB+
sudsE + ied + iA+

sudsE + iedg + B−
svdsE + iedfB+

svdsE + ied + iA+
svdsE + iedg

B−
sudsE + iedfB+

svdsE + ied + iA+
svdsE + iedg − B−

svdsE + iedfB+
sudsE + ied + iA+

sudsE + iedg
D , s44d

where the coefficient functions in Eqs.s22d and s24d now simplify to
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A+
sudsEd = pFBi8S−

E

F2/3D − gF−1/3BiS−
E

F2/3DG ,

B+
sudsEd = − pFAi 8S−

E

F2/3D − gF−1/3AiS−
E

F2/3DG ,

A+
svdsEd = − pF−1/3BiS−

E

F2/3D ,

B+
svdsEd = pF−1/3AiS−

E

F2/3D ,

A−
sudsEd = pFBi8S−

E

F2/3D + gF−1/3BiS−
E

F2/3DG ,

B−
sudsEd = − pFAi 8S−

E

F2/3D + gF−1/3AiS−
E

F2/3DG ,

A−
svdsEd = − pF−1/3BiS−

E

F2/3D ,

B−
svdsEd = pF−1/3AiS−

E

F2/3D . s45d

Taylor expanding ine leads to a more explicit expression for the spectral function,

rsEd =
1

F2pgF−2/3AiS−
E

F2/3D2G2

+ F2pgF−2/3BiS−
E

F2/3DAiS−
E

F2/3D − F−1/3G2 XHFs1 − g2dpF−2/3AiS−
E

F2/3DBiS−
E

F2/3D

+ pAi 8S−
E

F2/3DBi8S−
E

F2/3D + g F−1/3G 3 F2gF−2/3AiS−
E

F2/3D2GJ − HF2pgF−2/3BiS−
E

F2/3DAiS−
E

F2/3D − F−1/3G
3 Fs1 − g2dF−2/3AiS−

E

F2/3D2

+ Ai8S−
E

F2/3D2GJC . s46d

The quasibound states correspond to poles of the spectral function, namely solutions to

F2pgF−2/3AiS−
E

F2/3D2G2

+ F2pgF−2/3BiS−
E

F2/3DAiS−
E

F2/3D − F−1/3G2

= 0. s47d

The real part of the quasienergy can be found by making a
perturbative expansion for the real part,Ereal, of the energy

Ereal= − g2o
n=0

`

anS F

g3D2n

s48d

as in Eq.s34d. When the field strengthF vanishes, there is a
single sevend bound state atE=−g2. Thus,a0=1, as is con-

sistent with Eq.s35d when a→0. The width of the quasi-
bound state can be estimated by writing

E = Ereal+ iEimag, s49d

where we expectEimag to be exponentially small. Indeed,
expanding the imaginary part of Eq.s47d immediately
leads to the leading behavior
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Eimag, − g2 expF−
4g3

3F
G s50d

in agreement with thea→0 limit of the molecular cases38d,
and with a simple WKB tunneling estimate.

The perturbative coefficientsan for the real part of the
energy can be generated straightforwardly as follows. First,
note that the Ai2 term in Eq.(47) is exponentially small in
the smallF limit, and so can be neglected. Thus the real part
is determined by

AiF g2

F2/3o
n=0

`

anS F

g3D2nG 3 BiF g2

F2/3o
n=0

`

anS F

g3D2nG =
F1/3

2pg
.

s51d

In the small-F limit we can use the asymptotic expansions
s31d ands32d of the Airy functions to make an expansion of
Eq. s51d in powers ofsF /g3d2, thereby successively deter-
mining the coefficientsan. The results for the first 21 expan-
sion coefficients are shown in Table I.

All the an have the same sign, and their magnitude grows
factorially fast,

an
sleadingd =

2

p
S3

4
D2n

Gs2nd. s52d

This is in agreement with the tunneling rate and imaginary
part s50d, using the standard relation between large-order
perturbation theory and nonperturbative effectsf38–45g.

VI. CONCLUSIONS

In this paper, we have presented the exact analytic solu-
tion for the spectral function for the simple one-dimensional
molecular ionization model of a diatomic molecule repre-
sented by two attractived-function wells in an external static
electric field. The Weyl-Titchmarsh-Kodaira spectral theo-
rem provides a simple construction for the spectral function
in terms of suitably normalized solutions to the Schrödinger
equation. In this case, these solutions are Airy functions, and
the spectral function can be expressed in closed form in
terms of Airy functions. Thus, the spectral function can eas-
ily be plotted using a program such asMathematica[37]. The
dependence of the spectral function on the relevant physical
parameters, the field strengthF, the well strengthg, and the
well separation parametera, is illustrated in Sec. IV by a
collection of plots. This helps develop a body of intuition for
the behavior of the quasibound states as they are Stark-
shifted and broadened, and also for the resonance structures
in the “continuum,” which reflect a competition between

TABLE I. This table lists the coefficientsan appearing in the perturbative expansion(48) for the quasienergy level of the atomic system
in an electric field. Note that these coefficients are nonalternating in sign, and that their magnitudeNfang grows very fast with the
perturbative ordern, as is shown in the third column. The fourth column shows the ratio of thean to the leading factorial growth rate in Eq.
(52), and the fifth column gives the fourth-order Richardson extrapolation[46] of this ratio, showing its rapid approach to unity.

n an Nfang Nfan/an
sleaddg Rfan/an

sleaddg

0 1 1

1 5
16 0.3125 0.872665 1.04760

2 55
64 0.859 0.71106 0.95104

3 10625
1024 10.376 0.763133 0.9533

4 1078125
4096 263.214 0.819423 0.98733

5 366940625
32768 11198.1 0.860776 1.006199

6 93784578125
131072 715520. 0.888895 1.008710

7 269028257953125
4194304 6.43107 0.908071 1.005397

8 129011616275390625
16777216 7.73109 0.921614 1.002243

9 159621687625662109375
134217728 1.231012 0.931602 1.000556

10 123839968932138228515625
536870912 2.331014 0.939271 0.99992

11 471147487418797446943359375
8589934592 5.531016 0.945356 0.99978

12 539212883805702339810673828125
34359738368 1.631019 0.950311 0.99981

13 1462185114846262625626556396484375
274877906944 5.331021 0.95443 0.99987

14 144871600275431039774199176025390625
68719476736 2.131024 0.957911 0.99991

15 67969184060037298421788742225469970703125
70368744177664 9.731026 0.960894 0.99995

16 142608185435906164633493702703533111572265625
281474976710656 5.131029 0.963479 0.99997

17 679265718819054465192747030828993319061279296875
2251799813685248 3.031032 0.965742

18 1822495852683481842017384269925359639728546142578125
9007199254740992 2.031035 0.96774

19 21888188031753229357462565895827650045023616790771484375
144115188075855872 1.531038 0.969516

20 73105891881984796538857909985635411709301443950653076171875
576460752303423488 1.331041 0.971107
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Ramsauer-Townsend resonant scattering between the two
atomic wells and between one or both atomic well(s) and the
linear field potential. The most important extension of this
model would be to consider the effect of time dependence in
the background electric field, which introduces yet another
physical scale into the problem[47–51].
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