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Simple soluble molecular ionization model
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We present a simple exact analytical solution, using the Weyl-Titchmarsh-Kodaira spectral theorem, for the
spectral function of the one-dimensional diatomic molecule model consisting of two attr&dtimetion wells
in the presence of a static external electric field. For sufficiently deep and far apart wells, this molecule
supports both an even and an odd state, and the introduction of a static electric field turns these bound states
into quasibound states which are Stark-shifted and broadened. The continuum spectrum also inherits an intri-
cate pattern of resonances which reflect the competition between resonant scattering between the two atomic
wells and between the linear potential and one or both atomigsnellll results are analytic and can be easily
plotted. The relation between the large orders of the divergent perturbative Stark-shift series and the nonper-
turbative widths of quasibound levels is studied.
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I. INTRODUCTION dramatically changes the basic character of the spectrum,

converting the bound states into quasibound states and modi-

The electronic structure of atoms and molecules is USeq g the resonance structure of the continuum. These spec-
fully probed by external electric and magnetic fields. The_tral changes are seen directly in the spectral funcit®):

development of intense lasers has permitted such probing Ee quasibound states are poleg(f) at complex values of

regimes where simple perturbatiye treatments are not V?‘" e energyE, where the real part of the pole gives the energy
and one must use a nonperturbative semiclassical approximg, '

tion or a numerical aporoach. Experiments with molecule cation of the quasibound level and the imaginary part gives
I Umeri PP - EXper with m UeShe width, and hence lifetime, of the level. Since this molecu-
display a much richer range of phenomena than with atom

Jar ionization model is exactly soluble, we can easily inves-
due to the additional molecular degrees of freeddm3]. . . )
These include above-threshold ionizatids], multiple ion- tigate the dependence of these quasibound levels on the rel

o . e evant physical parameters—the field strengththe atomic
ization [6,7], alignment effect$8], electron localizatiorj9], : :
nonsequential double ionizatigd0], direct excitation[11], well depthg, and the atomic separation paramederrhe

L . o L same applies for the “continuum,” where resonance struc-
stqblllzatlon[12], dissociative recombinatiof 3], and_ SePa  4res appear due to the delicate interplay between tunneling,
ration effects[14]. However, moleculegeven the simplest

diatomic moleculesand their ionization are clearly more Caing: and scattering effects.
latomic molecu esa [heir-jonization are clearly more 0" tign presented here uses the Weyl-Titchmarsh-
difficult to treat theoretically. Many approximation tech-

. : .~ Kodaira (WTK) spectral theorem{22-25. This spectral
hiques have been developed and applied to atamic 'on'zat'ofﬂeorem expresses the completeness of the wave functions of
processeg15-19, but much less is known for molecular

S . . the Schrodinger equation in a general way that applies not
systems. Realistic calculations are rather complicated anqjst to the fagmilia:] discrete spgctrum mogeeimch apg the

one loses some of the physical intuition that can often b'%nfinite square well or the harmonic oscillatpbut also to

gained from simple models. In this paper, we present th%ystems with discrete and continuum spedsach as the

;X:;élaq_zgt'r%ﬂlesg?é'?g tfaokre?] fémféeorr?g.lgﬁgs;gﬂ;atm finite square well or the hydrogen atprand even to systems
' ' ith a purely continuous spectrum, such as for ionization

approxmat.lon' IS (emgrkably go_od in the strong—fu_ald re(::]'meproblems where there are no true bound states. The WTK
where the ionization is predominantly along the field direc-

tion that th stem is effectively one-dimensioigl approach is well suited for numerical implementation and
on, so that the system 1S efiectively one € S.O['m has been applied long ago to the Stark effect in atomic hy-
The s_|mplest such one-dimensional mOIGCUI? consists of tW8rogen[26]. An interesting soluble one-dimensional atomic

atomic well¢ represented by attractivé-function wells of

strengthg, separated by a distance.2This is a well-known model consisting of a single finite square well on the half-

bl del201. Thi lecule al ’ line is solved using the WTK method [27]. More recently,
solubie mo e[20). This molecule always Supports an even-y,o n,merical WTK approach has been used for studying
parity bound ground state and a continuum, andgf- 1 it

2lso SUbPorts an odd-parity bound excited state. There is strong-field ionization effects in effectively one-dimensional
PP partty : fatomic molecule$28,14. Various numerical and approxi-

long tr_ad|t|pn of using model potentials S.UCh as zero-rangg, ie methods for computing resonance locations and widths
potentials in atomic and moIeCl.JIar. phys'm]' The pres- are compared if29]. This current paper is complementary to
ence of an external electrostatic field, of field strength (28], but the choice to represent the atomic wells by
S-function wells makes the entire molecular ionization prob-

Yt is straightforward to generalize the exact solution to the case ofem analytically solvable, thereby bypassing the numerical
unequal atomic well depths, but for simplicity here we consider thepart of the computation. We also mention that this one-
atomic well depths to be equal. dimensional molecular ionization model has been studied in
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[30] using the solution of the associated Lippman-Schwinger Y_(X,E) =u_(X,E) + m_(E)v_(x,E) (4)
equation, and by Korsch and Mossmaf81] in terms of
Stark resonances and geometric phases. such that it is normalizable on the intervake,0) when the

This paper is organized as follows. Section Il contains aenergyE has a small positive imaginary part. This deter-
summary of the implementation of the WTK method for mines the coefficient functiom_(E). The spectral function,
computing the spectral function. This is applied in Sec. lll toand the completeness of the wave functions, can be ex-
the one-dimensional molecular model without an appliedoressed in terms of these coefficient functions(E)
electric field. In Sec. IV the electric field is applied and the[22-25. For example, the spectral function is
exact solution for the spectral function is derived. The de-
pendence of the spectral function on the various physical 1 m.(E+iem(E+ie) +1
parameters is explored through plots and also analytically. p(E) = I|m—Im( ) (%)
Section V is devoted to the simpler case of atomic ionization, eom
obtained from the molecular solution by taking the atomic
separation parametea, to zero. The final section contains
some concluding comments.

M(E+ie)—m(E+ie)

This WTK method is well suited to numerical implementa-
tion for arbitrary potential well$28]. In the models studied

in this paper, the situation is even simpler since the indepen-
dent solutionsu(x, E) andv(x, E) are known in analytic form

Il. WEYL-TITCHMARSH-KODAIRA METHOD for all x; the “integration” process simply involves applying
the correct continuity and discontinuity boundary conditions
at the locations of the twé-function potentials. This will be
shown in detail in Sec. IV.

The Weyl-Titchmarsh-KodairgWTK) spectral theorem
[22—25 for quantum-mechanical Hamiltonians is very gen-
eral, covering not just simple Hamiltonians like the harmonic
oscillator which have only bound states, but also Hamilto-
nians with both bound and continuum states. It also extends  Ill. ONE-DIMENSIONAL MOLECULAR MODEL
to ionization problems where the spectrum is purely con- ] . ] o
the half-line “atomic” problem of a binding-function po-  choose the foII(_)wmg_ simple doubl&function potential to
tential well plus a constant electric field. This approach carfépresent the diatomic molecule:
be applied directly to any one-dimensional or radial

Schrédinger problem. The WTK method can be summarized V(x) =-glalx+a) + sx-a)], (6)
as follows. ) ) o )
Consider the Schrodinger equatiewe work in units ~Whereg>0. This potential has two binding-function wells
where#2/2m=1), located atx=*a, and chosen for simplicity to have equal
strength 9. This problem, without an external electric field,
— /' (X) + V(X) i = E¢(X) (1) is a standard problem in quantum mechanics courdep

The potential (6) always supports a bound ground state
on the real linex e (-, +%). Pick some point, chosen with- which has even parity, and gfa> 1 it also supports a bound
out loss of generality to bg=0, and normalize the two in- excited state which has odd parity. In this section, we present
dependent solutions of E@l), u(x,E) andv(x,E), so that the WTK solution as an introductory illustration of the
their Wronskian is equal to 1 at that point by choosing method.

In the vicinity of x=0, the potential6) vanishes. Thus,
u0,E)=1, Uu'(0,E)=0, the two independent solutionsi(x,E) and v(x,E), of the

Schrodinger equatioril), which satisfy the normalization

v(0,E)=0, v'(0,E)=-1. 2) conditions(2), are

Next, integrate(numerically or analytically each of these

solutions out towardsx=+e and x=-o0, producing four

functionsu.(x,E), andv.(x,E). The WTK method involves

constructing particular linear combinations of these functiongntegrating to the right, these solutions remain valid until we

such that these combinations are normalizable on the intereach the right-hand function atx= +a, at which point we

vals (0, +») and (-,0), when the energjE has a small impose the standard boundary conditi¢2g],

positive imaginary partE— E+ie. Specifically, going to-

wards the right, we construct dip ate
dx | .-

sin(VEX)

U(E)=cog\E ¥, v(x,E)=- =
\J

()

Ha-e)=iyla+e), =-g ¥a). (8)

P (X,E) = U,(X,E) + my(E)v.(X,E) (3

such that it is normalizable on the interv@l, +«) when the ~ These conditions determine the solutionsora to be
energy E has a small positive imaginary part. This deter-

€

. . . - - . . Sin J’EX
mines the coefficient functiom,(E). Similarly, going to the UL(X.E) = A cogVEX) + B (\r ), )
left, we construct the linear combination JE
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FIG. 1. Plots of the spectral

5 1 E function for the free one-

dimensional molecular potential
(6). For ag<1 there is only one
bound state, but forg>1 there

are two bound states.
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v.(x,E) =C codVEx) + D

where the coefficients are

X LE_QL

-0

sin( VEX)

.5

(10

sin(2aVE —
A21+Lr\), B=-gcof(avE), (1
2\E
- in(2aVE
Cz—gsinz(a\s“E), D=—1+M. (1
E 2\E

When the energy has a small positive imaginary part,

1

2)

the linear combination, =u,+m,v, in Eq. (3) will be nor-

malizable on(0, +«) if the exg—iVEX) part is eliminated.

This determines the functiom,(E) in Eq. (3) to be

VEA+iB _-iE - g\E coda\E) é&F

m,(E) = -

JEC+iD  \E- g sinaJE) eaE

(1

3

Since the potential6) is symmetric, it follows thaim_(E)
=-m,(E). Thus, the spectral functiof®) is determined to be zero width, and so would not show up on the plot. Figure 2

P (E)
4
— ag=0.5

1/_/—/

p(E)

(
4
3

2

— ag=1.5

|| —

1 1
E)=lim—Im{-m(E+ie)+ ———|. (14
P = I ( m{E+le) rm(E+ie)> 149
Bound states appear on the negative real energy axis as poles
of the spectral functioril4). The pole ofm,, satisfying the

transcendental equation

— 2\-E
1+eE= = (15)
g
corresponds to the even-parity bound state. From ([E4),
the zero ofm,, satisfying the transcendental equation

1 _e—Za\“‘—_E - 2\_ E
g

also gives a pole of the spectral function, and corresponds to
the odd-parity bound statéf it exists). There is always an
even bound state, given by the polerof(E) satisfying Eq.
(15). If ga>1, there is also an odd bound state, given by the
zero of m,(E) satisfying (16). Some plots of the spectral
function (14) are shown in Figs. 1 and 2. Note the appear-
ance of the single bound state whgs< 1, but of two bound
states wherga>1. In Fig. 1, the width of the bound state
peaks in these plots is artificial, as we have kept the small
imaginary parte of the energy nonzero in order to show the
peaks. In the true— 0 limit, these bound state peaks have

: (16)

FIG. 2. Plots of the continuum
part of the spectral function for
the free one-dimensional molecu-
lar potential(6). Note the periodic
behavior due to resonant back-
scattering between the two wells.
The left-hand plot is forag=0.5,
while the right-hand plot hasg
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shows the continuum part of the spectrum—notice the peri- ©

odic behavior of the spectral function, due to resonant back- AY(E) = 7BI’ T g2

scattering between the twé functions. This periodicity is

determined by the separatiom Between the wells and the

well strengthg. . E
BY(E) = - #Ai'| - =l

IV. ONE-DIMENSIONAL MOLECULAR MODEL WITH AN

ELECTRIC FIELD

In this section, we solve the problem of the one- A<v)(E)__7TF_l/BB'< F2’3>’
dimensional molecular potenti@b) studied in the previous
section, with an additional external static electric field of
magnitudeF. Thus, the potential is

V(x)=-g[d(x+a)+dx-a)]-Fx, (17)

where g>0 and F>0. The potential(17) has no bound Here we have made use of the fundamental Airy function
states wherF # 0, but it does have quasibound states. TheWronskian identity{32],
corresponding Schrodinger equatiofl) is analytically
soluble since the linearly independent solutions are Airy
functions. In fact, the WTK solution proceeds exactly as in
the case without the electric field, except that the basic trigo-
nometric solutions in Eq(7) are replaced by Airy functions. ag pefore, integrating to the right, the solutions in EGs8)
remain valid until we reach the right-hadfunction well at
A. WTK solution for the spectral function X= +a, at which point we apply thé-function boundary con-
In the vicinity of x=0, the independent solutions satisfy- d|t|é)ns (8). This determines the solutions in the regior a
to be

ing the Wronskian normalization conditiq®) are

E
BY(E) = wF~ 1’3A|< F2/3)' (19

Ai(x)Bi’(x)—Ai’(x)Bi(x):1 , OxeR. (20
aa

[ (FX+E) ([ (Fx+E) [ (Fx+E) [ (FX+E)
u(x,E) =AY A'(“ =T BY Bl - £23 ) u.(x,E) =AY Ail - = BY Bil - F2n )
_ (Fx+E)) ( (Fx+E)>
=AY Al - —z— | +BY Bi| - —7— Fx+E Fx+E
VB =A AI( Fos )BT BT T ) v, (E) =AY Ai( : F273 )) +BY Bi(_ : 273 )>’
(18
(21)
where Ai and Bi are Airy function§32], and the coefficients
needed to satisfy the normalization conditi@@s are where the coefficients are

an| (E+Fa)\ [ (E+Fa))_ [ E e[ (ExFa)\? [ E [ E
AY(E) = - gn’F 1’3A|(— = )B|<— = >B| (—FTB)W#F 1’3B|(— = >A| - oan) * 7B~ s

e (E+Fa)\_ [ (E+Fa)\ [ E an[ E+Fa)\? [ E ;
BY(E) = - gn?F 1’3A|(— = >B|(— = )Al (—FTB)+gﬂ2F 1’3A|(— = )Bl - =)~ A

=

2
AV(E) = gm?F2RAi (— (IEF“LTEa))B«— (E;TZ"”)Bi(— %) - ngF‘Z’?’Bi(— (IEFJFTZa)> Ai (— F%,s) - WF‘1’38i<— 53

E+F E+F E E+Fa))? E E
B(f)(E):gqrzF"mAi(—( Fz,ga))si(—( FZ,sa))Ai(— FTB)—QWZF‘ZBAi(—( FZ,;”) Bi(—FT/S)+7TF_1/3Ai ——3).

Similarly, integrating to the left, the solutioni$8) remain valid until we reach the left-har@function well atx=-a, at which
point we apply the boundary condition®). This determines the solutions in the regioft —a to be
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Fx+E Fx+E
u_(x,E) =AY Ai(—( 22,3 )>+B<_“> Bi(—( 22,3 )),

v-(xE) =AY A (— mé;ﬁ) +BY Bi(— (F;;E) ) (23

where the coefficients are

AY(E) = ngF_llgBi<— F_2,3

BY(E) = g Bi| - 5

AY(E) = - gn?F 2B

|m

|
(_ (E-Fa)
|

[ E ofan - 2 yan[ E
Ai (— FTB) +gm°F 2’3A|(— = ) B|<— F2/3> +7F 1’3A|<— m)
(24

BY(E) = - gmF Bi| - — 3

Thus, the independent solutions to the Schrddinger equation for the potéijiale known analytically for alk. As described
in Sec. Il, the WTK method involves finding the functions.(E) such that the linear combinationg. =u,+m,v, are
normalizable ax— +%, when the energy has a small positive imaginary part.

In the regionx>a, the normalizable solution has the form

{ (Fx+E)\ . _.[ (Fx+E)
¢+(x,E)mAu<—W - Bil-—5 ). (25)
This determinesn,(E) to be
__BYE) +i AY(E)
B e i AVE)” 20
In the regionx<-—a, the normalizable solution has the form
[ (FX+E)
P_(X,E) o Al (— W (27)
This determinesn_(E) to be
BY(E)
m.(E) = - 596 (28)

Given these expressions for.(E), the spectral function is given by E¢p), which we can write in terms of the coefficients
(22) and(24) as

p(E) = lim=Im (29

e—0T

<B£“>(E+ ieO)[BY(E+ie) +iIAYE+ie)]+BY(E+ie[BY(E+ie) +iAY(E+ ie)])
BYE+ie[BV(E+ie) +IAY(E+ie)]-BY(E+ie[BYE+ie) +iAYVE+ie)]/)

This is an analytic expression for the exact spectral function for the potéhflalin the remainder of this section, we discuss
the physical properties of this spectral function, using plots and analytical methods.

B. Plots of the spectral function volved. In addition, some animations showing how the spec-

Before discussing the analytic properties of the spectrairal function changes, both in the quasibound and in the
function(29), we present some plots which illustrate how the quasicontinuum region, as we vary the field strenigttthe
spectral function depends on the physical parameters, in oatomic separation parametaror the atomic well depth pa-
der to develop some intuition for the physical processes inrameterg, can be found iff33].
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FIG. 3. Plots of the spectral
function (29) (solid liney illustrat-
ing how the quasibound states
change as the electric field
strengthF varies. The dashed line
shows the correspondindg-=0
molecular spectrunil4). In these
plots, the atomic well strength is
g=1.5, and the separation param-
eter isa=1, so the free molecule
has two bound states. Notice that
asF increases, these two states are
Stark-shifted and broadened.

broaden as the field increases, with the higher state being
In the absence of the electric field, the molecule has on&roader since it is less deeply bound and so can tunnel more

or two bound states depending on the well separation paran§2sily. The quasibound states are Stark-shifted in opposite
etera and well strengtty. And the continuum exhibits struc- directions: the lower state is Stark-shifted down in energy,

ture due to Ramsauer-Townsend resonances in the scatterifdjile the higher state is Stark-shifted up in energy. The ef-
between the twas wells. These two features are illustrated fect of the external electrostatic field on the continuum states

clearly in Figs. 1 and 2. When the field strengtlis nonzero,

is shown in Fig. 4. In these plots, the dashed line shows the

the bound states become quasibound states with a nonzetontinuum spectral function whéf=0. The solid lines show

width, and their central values are Stark-shifted. These efthe spectral

for various values ofF:F

fects are illustrated in Fig. 3, which shows a molecule with=5,10,15,20Note that the free spectral function provides
two bound states subjected to an external electric field on average for th& >0 spectral function. The scale of the
strengthd==0.05,0.1,0.5, 1. Note that the quasibound state®scillations of this average function is clearly independent of

JoX
4

o
4

FIG. 4. Plots of the spectral
function (29) (solid liney illustrat-
ing how the continuum part of the
spectrum changes as the electric
field strengthF varies. The dashed
line shows the corresponding
=0 molecular spectrun14). In
these plots, the atomic well
strength isg=1.5, and the separa-
tion parameter i®=1. Notice the
two oscillation scales—the longer
one is set by the free casgashed
line) while the rapid oscillation is
set by the field strengtlfr, with
the free spectral function provid-
ing an average. AE decreases in
magnitude, the oscillations be-
come more rapid, eventually aver-
aging out to the free case.
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FIG. 5. Plots of the spectral
function (29) (solid liney illustrat-
ing how the continuum part of the
spectrum correlates with the zeros
of the Airy function Ai(—-E/F23)
(dashed ling which are the ener-
gies of the wedge potentiaV/
=-Fx with an infinite wall at
some point. This is an illustration
of the Ramsauer effect. These
plots are fora=0 andg=1, and
various values of the electric field
strengthF, as shown.

F, being determined by the combinatiag, as illustrated in  oscillations, and the electron scattering off thevells and
Fig. 2. ForF>0, there is an additional scale in the “con- the linear electrostatic potential providing the shorter-period
tinuum” spectrum, and ak decreases to zero the rapid os- oscillations.

cillations become more and more rapid, and eventually aver-
age out to the free spectral function. Asincreases, the
period of this oscillation increases. These oscillations can be The dependence of the spectral functi@?8) on the
correlated approximately with the zeros of the Airy function atomic well separation parametaris illustrated in Figs. 7
Ai(-E/F?R), since these zeros give the energies of the halfand 8 for the “bound” and “continuum” parts of the spec-
wedge potential well which hag=-Fx for x<<0, with an  trum, respectively. In the zero-field case, the spectral func-
infinite barrier atx=0. This is illustrated in Figs. 5 and 6, for tion has two bound states gfa>1. These are shown as the
a=0 anda=1, respectively. Note that the peaks of the specdashed curves in Fig. 7. As the separation increases, these
tral function(the solid ling coincide roughly with the zeros two bound states approach the same energy, becoming de-
of Ai(-E/F?/3), the dashed line. The agreement is quitegenerate in the limia— . This is because in the large sepa-
good, even for the molecular model haviag1. This is an ration limit the tunneling which mixes the two levels be-
example of Ramsauer-Townsend resonance, with the electramomes suppressed and the two atoms become essentially
backscattering off the twé wells providing the large-period independent of one another. Thus the bound state spectrum

2. Dependence on the atomic well separation parameter a

FIG. 6. Plots of the spectral
function(29) (solid lineg illustrat-
ing how the continuum part of the
spectrum correlates with the zeros
of the Airy function Ai(—E/F23)
(dashed ling which are the ener-
gies of the wedge potential/
=-Fx with an infinite wall at
some point. This is an illustration
of the Ramsauer effect. These
plots are fora=1 andg=1.5, and
various values of the electric field
strengthF, as shown.
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a=1.5 o (E) a=2.5 P (E)
1 1

FIG. 7. Plots of the spectral
function(29) (solid lineg illustrat-
0.5 0.5 ing how the quasibound part of
the spectrum changes as the well

separation parametarvaries. The

J L ‘JL L dashed line shows the correspond-
I : J ing F=0 molecular spectrurgi4).

-1 -0.5 -1 -0.5 For the solid lines, the field

strength is F=0.1, the well

a=2 o (E) a=3 o (E) strength isg=1.5, anda ranges
1 1 through 1.5, 2, 2.5, and 3. Notice
that asa increases, the quasibound
states become narrower in width
and they move apart. In contrast,
the free bound states move to-
gether, eventually becoming de-

e

°1 0.5 B 0.5

approaches that of a single atomic well. On the other hand, ifnove away from each other; the even state is Stark-shifted
the field strength is nonzero, the quasibound states do ndarther down in energy and the odd state is Stark-shifted
become degenerate in the limit of large separation. This iurther up in energy. This is because for lagghe tunneling

shown by the solid curves in Fig. 7. Instead, the two statess essentially from each well independently, with one Stark-

o (E)
1.35

| IRLERH R

Jsb' HH‘”\\I i

1 > 4 6 8 10of 1 2 4 6 8 10

FIG. 8. Plots of the spectral functig@9) (solid lineg illustrating how the continuum part of the spectrum changes as the well separation
parameter varies. The dashed line shows the corresponéin® molecular spectrurflL4). In these plots, the field strengthfs=0.15 and
the well strength isg=1. Notice that asa increases, a second quasibound state peels off the positive energy continuum and forms a
Stark-shifted pair around the twe=0 bound states which exist fag> 1. Also note that in thé==0 case, as increases the splitting
between the two bound states becomes vanishingly small, as the tunneling between the two wells is suppressed. In the continuum, the
average function varies with due to resonances in the backscattering between the two wells. Even with nénzkeospectral function
follows this average closely asvaries.
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P(E) g=1 g=3.501(E)

FIG. 9. Plots of the spectral

function(29) (solid lineg illustrat-
e i JL ing how the quasibound part of

E _ 5 . 5 E the spectrum changes as the well
depth parameterg varies. The
dashed line shows the correspond-
ing F=0 molecular spectrurfi4).
In these plots, the field strength is
F=0.1 and the well separation pa-
rameter isa=1.5.

=3 “1 -4.5 -4.25 ~3.75 -3.5°

shifted up and the other down, depending on the parity of theompetition between the resonance between the two wells,
original state. These quasibound levels also become narrowahich depends strongly oa, and the resonance between a
in width as there is a larger barrier through which the elecgiven well and the linear potential, which is not sensitive to
tron must tunnel as increases. The effect on the “con- a.
tinuum” part of the spectrum is shown in Fig. 8. Hdfe
=0.15 and the spectrum exhibits resonances which oscillate
about theF=0 case, which is shown by the dashed lines. As The dependence of the spectral functi®®) on the

the well separation changes, the average function changemstomic well depthg is illustrated in Fig. 9 and 10 for the
due to the Ramsauer-Townsend resonance between the tWloound” and “continuum” parts of the spectrum, respec-
wells. Note that for nonzero field strength the spectral functively. In theF=0 case, the difference in energy between the
tion oscillates rapidly with energy, but still follows the free even and odd states gets smaller as the well strength in-
field average. Thus, thE>0 spectral function represents a creases, which is similar to what happens when the well

3. Dependence on the atomic well strength g

FIG. 10. Plots of the spectral
function (29) (solid liney illustrat-
ing how the continuum part of the
spectrum changes as the well
depth parameterg varies. The
dashed line shows the correspond-
ing F=0 molecular spectrurgi4).

In these plots, the field strength is
F=0.5 and the well separation pa-
rameter isa=1. Notice that ag
increases, a second quasibound
state peels off the positive energy
continuum and forms a Stark-
shifted pair around the twé&=0
bound states which exist for
ag>1.
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separation increases. This is because the tunneling mixing is Backscattering resonances in the continuum become more
more highly suppressed as the states become more deegyominent as the well strength increases, because the reso-
bound. The difference between the limit of large well sepanances are sharper, since the scattering potentials are deeper.
ration and the limit of large well strength is that as the well|f the field is weak, the WKB approximation for an infinite
separation increases, the two bounded states approach the|l potential in an electric field can be used to find the
same energy, whereas when the well strength is increased te@ergies of the backscattering states in the strong-well-
states become degenerate but their energies tendetas-  gyrength limit. But these peaks also follow the free field av-
g— 0. However, if the electric field is applied, the two Stateserage(the dashed lines in Fig. 10which is due to the reso-

do not become degenerate in the large well strength limit but,nce petween the wells without the electric field. Thus, the
instead keep a nonzero relative distance between each othgr>0 spectral function represents a competition between the

The distance between the two states approachesa2 well resonance between the two wells, which depends strongly on

strength increases, which is easily explained by the followin . .
argument. If the well strength is very strong, we can think 0199' and. the resonance betwggn a given well and the linear
potential, which is also sensitive to the well strength

a particle being localized at a single well. If a uniform elec-
tric field of strengthF pointing in the positivex direction is
applied, a particle localized at the left well will increase in ¢ analytic properties of spectral function: Stark shifts and
energy byFa while the energy of a particle localized at the level widths

right well will decrease byFa. Since the unperturbed states

have the same energy, the energy difference is jbat Zhis With the electric field present there are no true bound
can be seen in the last panels of Fig. 9, for which0.1 and  states, but there are quasibound states. The location of these
a=1.5, so Fa=0.3, which is roughly the separation betweenquasibound states is given by the real parts of the poles of
the two quasibound levels. Also note that the quasiboundhe spectral functio29), and their widths are given by the
state peaks become narrowergasicreases, as the levels are imaginary part of these poles. These poles are given by the
more deeply bound. zeros of

|
13- 1. (E-Fa) [ (E+Fa)\ . [ (E+Fa) [ (E+Fa)\_.[ (E-Fa)
F13+ig?7°F 1A|<——F2/3 >{|:AI(— 273 )—IBI(- I >][A|<— F273 )BI(— F23 )
E-F E+F E-Fa)\?
—Ai(—( lesa))Bi<—( ;2/3a))}}—gWF_2/3{iAi<—( F2/3a)>

( (E-Fa)\_.[ (E-Fa)\ . .[ (E+Fa)\* [ (E+Fa)\_.[ (E+Fa)
+A'<_ F273 )B'(_ F273 )""A'(_ F273 )+A'(_ F2i3 )B'<_ 273 )] (30

In the weak-field limit, we can use the following asymptotic o F\2n
expansiong32] of the Airy functions to find perturbative E=-g?>, an(—g) . (34)
solutions for the zeros of E¢30): =0 ‘9

L w . To find the real parts of the quasienergies, we can ignore the
et D (= D (31) imaginary parts of Eq30), which are anyway exponentially

A2 2\,';zlf4k=0 & suppressed in the weak-field limit. It is a straightforward
exercise to expand E¢B0) in powers of the field strength,
using, for exampleMATHEMATICA [37]. The leading-order

of 7 Ce FO term produces the equation
Bi(2) ~ WE o (32 _ _
7z ieo ¢ dag— dag+ (1 -9 = 0 (35)
where/= §z3’2, and the expansion coefficientg are whose solutions are just the solutions of the transcendental
equations(15) and (16) derived in the previous section for
I'(3k+1/2) the bound states in the free field case. A solution to (Bg)

(339 satisfying Eq.(15) is an even bound state of tive=0 poten-
tial (6), while a solution to Eq(35) satisfying Eq.(16) is an
odd bound state of Ed6).

%S5 T+ 1/2)

Clearly, only even powers df will appear in the perturba- The first correction to these bound states comes from the
tive expansion for the real parts of the quasienergies. So, Wg? term in the expansion of Eq30), which leads to the
define the expansion following expression for, in terms ofag;
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15(1 - 2\ag) - 15ag(1 - 2\30)2"'12(39)230(1 4\ao) 4(ag)®ag(1 - 2\’30)2

1= (36)
48a3(1 - 2a)[1 - ag(1 - 2/ay)]
[
Thus, to first nontrivial order, the Stark-shifted energy is 2(E+Fa)®?-(E-Fa)®? B
i FZ 5 = =nm. (42)
- —a;—t+ ... 37
%l lg4 37 Note that expressiofdl) approximates the zeros of

To find the shift for the even bound state, we find the solu- [ (E-Fa)
tion a; of Eqg. (52) which also satisfies Eq15), and then Al - F23 )

insert this value of, into Eq.(36) to find the corresponding

a,. It is straightforward to continue this to higher orders. Forwhile Eq.(42) approximates the zeros of
the odd bound state, we must first find if there is such a

solution foray to Eq. (52) satisfying Eq.(16). This odd so- (_ (E+ Fa)) -<_ (E- Fa))
lution will exist if ga> 1. If it exists, then the corresponding F2R 23

Stark shift is obtained by inserting this value &f into the A'( (E- Fa)) ( (E+ Fa))

expression(36) for a;.

The widths of the quasibound states can be derived from
the imaginary part of the poles of the spectral function. Be-SpJutions for expressiof#1) are the energies obtained using
cause of the complicated dependence of the quasibound staffe \WKB approximation for a half-wedge potential with an
energies on the system parametérg, anda, it is difficult  infinitely high wall atx=-a. Therefore, we interpret the en-
to derive simple analytical expressions for the linewidths.ergies satisfying Eq41) as those of the backscattering states
However, in the large atomic separation limit,@s>», we  petween the left well and the electric field, which is the
can use the WKB method to approximate the tunneling rateRamsauer effect illustrated in Figs. 5 and 6. Similarly, ex-

F2/3 F2/3

and hence the linewidth, as pression(42) yields the same set of energies obtained from
A(E, - Fa)®? the WKB approximation for a potential well in an electric
I ~gVE,-Fa exp{— 0 ] , (39 field with infinitely high walls atx=-a andx=a, and there-
3F fore Eq.(42) determines the energies of backscattering states

where E=—E,—iT, and &, is the full Stark-shifted energy Petween the two wells, also in the presence of the electric
of the lower quasibound state. field. In general, the exact resonances reflect a competition

In the limit of infinitely large well strengthg— =, theg?  ©f these scatterings among the linear potential and the atomic

term in Eq.(30) dominates and the zeros of EG0) lie on  Wells.
the positive real axis. If the field strength is small, the

first-order asymptotic expansion of the Airy functiofs2], V. SINGLE-WELL POTENTIAL WITH AN ELECTRIC
1 FIELD
Ai(-2) ~ sm<§+ ) (39)
Nt 4 A nice feature of our molecular analysis is that the
“atomic” analogue of the molecular model studied in Sec. IV
can be obtained simply by setting the separation pararaeter
Bi(-2z) ~ cos<§+ ) §z3’2 (40 of the two wells to zero. All the expressions carry over

smoothly in thisa— 0 limit. The corresponding potential is

zeros of Eq(30). These approximate zeros are determined V(x) = - 2g8(x) — Fx. (43)
by the expressions
2 This atomic problem has also been discussed in terms of the
2(E-Fa)”" _ (n— 1)77 (41)  corresponding Green's functions (84,35, and in terms of

3 F 4 Stark resonances ir86].

WTK solution for the atomic spectral function

The spectral function is given, as before in E2Q), by
(B)= nm£|m( BU(E+ig[BY(E+ie) +IAY(E+ig] +BY(E+ig[B(E+ie +IAY(E+ ie)])
P om \BYE+ig[BYE +ie) +IAYE+ie]-BYE+ig[BUE+ie) +IAVE+ie])

where the coefficient functions in Eg&2) and (24) now simplify to

(44)
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[ E ) E
AY(E) = W{B' (‘ Fz/s) gF USB'( Fz/s)}

[ E [ E
BS.U)(E) :—7T|:AI (— @) —gF 1/3A|<— FTl3>:|,

E
AY(E) = - WF_llgBl( F2,3> :

E
BY(E) = mF~ 1/3A|( F2,3>,

E E
AY(E) = w{& ( F2,3> +gF‘l’SBi<— FTB)}
BY(E) = - W{Ai ( Fi) +gF 1A ( FE3>] ,

E
AYNE) = - 7F~ 1’3B|( F2,3>,

BY(E) = mF" 1’3A|( FE’3> (45)

Taylor expanding ire leads to a more explicit expression for the spectral function,

1 E £
P(E) = E \2]2 E E 5 ({ [(1 _ gz)wF‘2’3Ai< F2/3)B|< F2/3>
\‘2779[:‘2/3A| ( F2/3> J {2 gF-Z/SB|< F2/3)Ai (_ EJ _ F—l/BJ

2
+7TAi’< F§/3>B' ( FE/s) +g F 1/3] |:29F_2/3A|< FE/s) ]} —{[zng‘mB,(_ FT/s)A'( FE/3) F-l/3:|
E \? E \?
[(1 gA)F” ZISA'( Fz/s) A'( Fz/a) ]}) (46)

The quasibound states correspond to poles of the spectral function, namely solutions to

E 22 E E 2
2mgF Ai| - Fz,g) + 27TgF‘2’3B|<—F7,3>A| =T -F1831 =0. (47

The real part of the quasienergy can be found by making aistent with Eq.(35) whena— 0. The width of the quasi-
perturbative expansion for the real péft,,, Of the energy bound state can be estimated by writing

2n B -
Erea= -~ 22 an< ) (48) E=Ereart IEimag: (49

where we expecEj,,4 to be exponentially small. Indeed,
as in Eq.(34). When the field strengtk vanishes, there is a expanding the imaginary part of Eq47) immediately
single (even bound state aE=-g°. Thus,ay,=1, as is con- leads to the leading behavior

053409-12



SIMPLE SOLUBLE MOLECULAR IONIZATION MODEL PHYSICAL REVIEW A 69, 053409(2004

TABLE I. This table lists the coefficients, appearing in the perturbative expansi@d) for the quasienergy level of the atomic system
in an electric field. Note that these coefficients are nonalternating in sign, and that their madyigidlegrows very fast with the
perturbative orden, as is shown in the third column. The fourth column shows the ratio o&tlte the leading factorial growth rate in Eq.
(52), and the fifth column gives the fourth-order Richardson extrapoldd6éhof this ratio, showing its rapid approach to unity.

n an N[a,] N[a,/a**%] Rla,/a®]
0 1 1
1 = 0.3125 0.872665 1.04760
2 & 0.859 0.71106 0.95104
3 o 10.376 0.763133 0.9533
4 e 263.214 0.819423 0.98733
5 e 11198.1 0.860776 1.006199
6 T 715520. 0.888895 1.008710
7 T T 6.4% 107 0.908071 1.005397
8 T e 7.7% 10° 0.921614 1.002243
9 et 2315 1.2x 1012 0.931602 1.000556
10 B 2.3x 101 0.939271 0.99992
11 A e oS 5.5% 1016 0.945356 0.99978
12 S s 2028125 1.6x 101 0.950311 0.99981
13 1462185l1428742382;553322351556396484375 5.3X 102]_ 0.95443 0.99987
14 144871600272;1:;]]:(;3497767743}59176025390625 2.1X 1024 0.957911 0.99991
15 679691840600;%;;2&834;212171878776?62525469970703125 9.7X 1026 0.960894 0.99995
16 1426081854359222;34;(1?;374;73;8625;23533111572265625 5.1X 1029 0.963479 0.99997
17 67926571881905;1;2?2;%292417??633353393319061279296875 3.0% 10’32 0.965742
18 1822495852683481:3;(7)1339'2451679502953;9639728546142578125 2.0X% 10’35 0.96774
19 218881880317532291345111]6-3;526328035;882575685;)2045023616790771484375 1.5% 10’38 0.969516
20 731058918819847965;?22290395%8;5523;1239301443950653076171875 1.3X 1041 0.971107
3 2n
Eimag~ — 0 exp{— 2%} (50) alleading — %(g) r'(2n). (52)

This is in agreement with the tunneling rate and imaginary
part (50), using the standard relation between large-order

in agreement with tha— 0 limit of the molecular casé38), i .
d o €8 perturbation theory and nonperturbative effd@8—45.

and with a simple WKB tunneling estimate.
The perturbative coefficients, for the real part of the

energy can be generated straightforwardly as follows. First, VI CONCLUSIONS

note that the A term in Eq.(47) is exponentially small in In this paper, we have presented the exact analytic solu-
the smallF limit, and so can be neglected. Thus the real partion for the spectral function for the simple one-dimensional
is determined by molecular ionization model of a diatomic molecule repre-

sented by two attractivé-function wells in an external static
electric field. The Weyl-Titchmarsh-Kodaira spectral theo-
2n F1/3 rem provides a simple construction for the spectral function
) = in terms of suitably normalized solutions to the Schrodinger
equation. In this case, these solutions are Airy functions, and
(51) the spectral function can be expressed in closed form in
terms of Airy functions. Thus, the spectral function can eas-
ily be plotted using a program such ®athematica[37]. The
In the smallF limit we can use the asymptotic expansionsdependence of the spectral function on the relevant physical
(31 and(32) of the Airy functions to make an expansion of parameters, the field strengf the well strengthy, and the
Eq. (51) in powers of(F/g®)?, thereby successively deter- well separation parametex, is illustrated in Sec. IV by a
mining the coefficients,. The results for the first 21 expan- collection of plots. This helps develop a body of intuition for

_ g2 “ F\2n _ g2 “ =
Ai —Ean<—> X Bi —Ean — =—.
[ an:o g F2/3n:O g 2mg

sion coefficients are shown in Table I. the behavior of the quasibound states as they are Stark-
All the a, have the same sign, and their magnitude growsshifted and broadened, and also for the resonance structures
factorially fast, in the “continuum,” which reflect a competition between
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