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We study the problem of optimal control of dissipative quantum dynamics. Although under most circum-
stances dissipation leads to an increase in entfopg decrease in purityof the system, there is an important
class of problems for which dissipation with external control can decrease the eirdpgrease the purijy
of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian
part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable.
The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the
purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to
maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily
fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead
to a great simplification, in which the control problem can be reformulated in terms of the spectrum of
eigenvalues op, rather tharp itself. By combining this formulation with the Hamilton-Jacobi-Bellman theo-
rem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the
density matrix. For the three-levél system, we provide a complete analytic solution for the optimal cooling
strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a
“greedy” strategy, in which the purity is increased maximally at each instant.
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[. INTRODUCTION tively as increasing the phase space density, or decreasing the
entropy of the system. Purely Hamiltonian manipulations can
In the last 15 years, optimal control theory has been apin fact do neither, and therefore dissipation, rather than being
plied to an increasingly wide number of problems in physicsa nuisance, is actually necessary to achieve true cooling. The
and chemistry whose dynamics are governed by the timesptimal control of systems of this type is fascinating. The
dependent Schrodinger equatid@®DSE). These problems in-  control itself, no matter what its time dependence, leads only
clude the control of chemical reactiof$—8| state-to-state to Hamiltonian evolution and hence to no true progress to-
population transfer[9-12, shaped wave packet§l3], ward the objective. On the other hand, the dissipation, while
nuclear magnetic resonance spin dynam[dgl], Bose- it is capable of producing progress toward the objective, is
Einstein condensatiofi5-17, quantum computin§l8—20, fundamentally not controllable and could in fact lead to a
oriented rotational wave packei®l], etc.[22,23. More re-  decrease in the objective.
cently, there has been vigorous effort in studying the control In Ref.[26], we elucidated the interplay of the controlled,
of systems governed by the Liouville—von Neumghi'N ) Hamiltonian evolution, and the uncontrolled, dissipative evo-
equation, where the central object is the density matrixjution in producing cooling. The “cooling laser,” while not
rather than the wave functiof4—37. The Liouville—von  directly cooling the system, in fact steers it to a region of
Neumann equation is an extension of the TDSE that allowparameter space where spontaneous emission leads to cool-
for the inclusion of dissipative processes. Important ex-ng rather than heating. We define such a controlled manipu-
amples of what may be thought of as quantum control prolation as a “purity increasing transformation.” We believe
cesses that require the use of the LVN include laser contrahat the study of such transformations in their general math-
of chemical reactions in solution, laser cooling, and coherematical context is of extreme interest, both in terms of dis-
ence transfer in multispin systems. In all these cases, theovering a wider class of physical processes where purity,
external field(the laser or the rf fieldis the coherent control, and therefore coherence content, can be increased, as well as
while the source of dissipation is the contact with the envi-because of the rich mathematical structure of the problems
ronment. In the case of laser cooling, the environment coninvolving the interplay of Hamiltonian and dissipative dy-
sists of the vacuum modes of the electromagnetic field andamics.
the source of dissipation is spontaneous emission. In Ref.[26], we solved the problem of optimal cooling for
In the majority of problems pertaining to the control of a two-level system completely, under the assumption of com-
guantum systems, dissipation is a nuisance; the purpose pfete and rapid Hamiltonian control. We showed that the op-
the control is to either avoid, delay, or cancel the dissipatiortimal cooling strategy in the two-level system avoids produc-
process. Yet there is a remarkable exception to this pattern-ag coherences in the density matrix. Here we present a
laser cooling. The goal of laser cooling is expressed alternageneral framework for the analysis of optimal control in a
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IN+2) positive semidefinite, i.e., that never develops nonnega-
— tive eigenvalues.
IN+M) The first property follows from

Tr(p) =Tr(=i[H,p]) + Tr(Lp) = 0. (2
YIN+1 Vi The second property follows from the fact th@;b* and
’ thereforep(t)=p'(t). We will later derive an explicit expres-
sion for the evolution of the spectrum of the density operator
1)

[IN+1)

— under dissipation. The third property will then be shown as
13) — an immediate consequence of this result.

12) IN)

B. Definitions of purity
FIG. 1. AgeneraN+M level quantum system with spontaneous

o . The density matrix is capable of describing any mixed
emission rates between various energy levels.

state in quantum mechanics, ranging from pure states that are
_ o solutions of the TDSE, to completely incoherent states.
system ofN excited states coupled radiatively k6 ground  There are several common ways of characterizing how close
states, under the same assumptions. Using this framewod, arbitrary mixed statg is to a pure state. These measures
a three-levelA system. P(p) to denote the purity of the density operator

We first introduce the Lindblad dissipation model and a The most common, and perhaps the simplest measure is
generalized concept of purity in Sec. Il. In Sec. 11 C theTr(pz) [25,26,34,35 For any density matrix, & Tr(p?) <1,
problem of the optimal cooling of a quantum mechanicalyih equality only for a pure state. Thus, the larger the value

system is formulated. It is shown in Sec. Il tr_]at this prob]emof Tr(p?), the closer a state is to being pure. Another useful
can be reformulated solely in terms of the eigenvalue distri-

bution of the density operator. In doing this, we derive ameasure 's the von Neumann entrojy=—k Tr(p In p)
: : ' ’ . . The von Neumann entr zero for r
reduced equation of motion for the spectral evolution undePG] € von Neumann entropy goes to zero for a pure state

dissination. parameterized by the unitarv cont@ee. 1l B and is greater than zero for any mixed state, and thus the size
ISdS”IOII(I: ép tion IV .'Zt d y thu : % (t I.t Is f of the von Neumann entropy is a measure of the degree of
and - >ection 1V introduces the mathematcal tools orimpurity of a state. Two other measures are the largest eigen-
finding optimal cooling strategies, namely the Hamilton-

) . ) value of p,|p|.., which goes to 1 for a pure state and is less
J"’.‘Cf’b"Be”m"’!“(HJB) theorem. Sechon V provides an ex- than one for a mixed state; and a measure based on the ex-
plicit description of the optimal cooling strategy for the

. ) SL ) nsion of the characteristi ion fowhich has T¢p?
three-level A system and proves its optimality. Finally we pansion o .t e characte stcequatq fowhic as (%)
. S . as its leading term, but also takes into account higher order
discuss future directions, and conclude, in Sec. VI.

terms, e.g., Tp3) [37].

II. SETTING UP THE CONTROL PROBLEM - ) ]
The purity function can be thought of mathematically agpar-

A. The system equations of motion and the Lindblad formula  tial) ordering over the set of allowed eigenvalues such that the
for dissipation totally pure state having the spectriifn, 0, ... ,( yields the great-

est value of purity and the totally mixed state with spectrum
[1/N,1/N,...,1/N] yields the lowest. A necessary minimum of
structure on the purity ordering is provided by the concept of ma-
jorization [38,39. Let x andy be two d-dimensional real vectors.

p=—i[H(),p] +L(p), (1) We use the notatior! to indicate thg vector whose entries are the

entries ofx, arranged into decreasing ordef>x,=---=x}. We
where 4[H,p] is the unitary evolution of the quantum sys- sayx is majorized byy, written x<y, if
k

Let p denote the density matrix of aN-level quantum
system(see Fig. 1. The density matrix evolves under the
LVN equation which takes the form

tem andL(p) is the dissipative part of the evolution. The K
term L(p) is linear inp and is given by the Lindblad form > X = > Y, 3
[32,33, i.e., j=1 j=1
1 for k=1, ... d, with equality whenk=d. Loosely speaking, this
L(p) = > Fiij?} - _{FEFij,P}a definition gives quantitative meaning to the amount of disorder or
i 2 mixing in a collection of real numbers. For example, for angt0

_ , _ <1,[%,1]<[t,1-t].For anyd-dimensional probability distribution
whereF;; are the Lindblad operators. In this article, we as- [1/2d2 [l/d]]<[p ypd] Note that fhere areyvecto nd
3y 15 ceey . XA

sume the only relaxation mghanism is spontaneous emissi hich are incomparable in the sense that neittety nor y<x
and therefore we tak&;;=vE;, where the operatoE;  (to; examplex=[0.5,0.25,0.25 and y=[0.4,0.4,0.2); majoriza-
=[i)(jl, andy; represents the rate of spontaneous emissiojon therefore gives only partial ordering. Any reasonable mea-
from levelj to leveli. Equation(1) has the following three sure of purity should respect the majorization relation, namely
well-known properties:(1) Tr(p) remains unity for all  for two eigenvalue distributions we should haRé\’)<(\") if
time, (2) p remains a Hermitian matrix, an@) p stays A\’ <\”. Such functions are terme®chur convex
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In general, as is apparent from the above discussion, theumption is well established on physical grounds, since fem-
entire density matriyp is not needed in order to characterize tosecond laser control is now widely available and typical
the purity of the system; rather, all that is necessary is the sefpontaneous emission times are nanoseconds. In this paper
of eigenvaluea of p. All purities can therefore be defined as we make an additional useful simplifying assumption about
functions solely of the eigenvalues, i.e., the dynamics, namely that the control Hamiltonld(t) can

_ produce any unitary transformati®he SU(N) in the N-level
P(p) = P(\(p)). (4) system, i.e., the system of interest is unitarily controllable.
We will use the following definition of purity for the remain- Combining these two assumptions we have that any unitary

ing part of the paper. transformation can be produced on the system in a negligible
Definition 1.Given the density operater, with spectrum  time compared to that of the dissipation.
\, define its purityP(p) as the largest eigenvalue pfi.e., We use the notation
P(p) =pl. = lim Tr(p") " =1, (5) a(p) ={UpU'|U € SUN)}

n—oo

_ _ _ to denote the orbit op under unitary transformations. Since
Here\! is the vector of eigenvalues of arranged in a de- MUpUM)=\(p), it is obvious thatP(p)=P(\) is constant

creasing order; for the remainder of this paper the superscri%tI : } S }
- o . ong the orbita(p); howeverP is not: the rate of change of
1 will be assumed every time is written. Although many of the purity due to dissipation is affected by wherezip) the

the results in this paper are very general, we choose thi§ nsity matrix resides. In other words. due to the “instanta-
measure as it gives simple answers for the cooling strategie ensity ma esl ?S' other words, due to the ‘instanta
neous controllability” assumption, unitary controls can in-

We will often useP(p) or P(\) to mean the same thing,

where it is understood that is the spectrum corresponding Stantaneously diregt along the orbit in order to changein
to p. a controlled manner.

The above dynamical assumptions lead to another very
) important simplification. Since we have assumed that all uni-
C. Formulation of the control problem tary transformations in SWM) can be produced instanta-
The problem we address in this paper is the control of theneously, this includes bringing the density matrix into diag-
purity content of a quantum dissipative system, whichonal form. As a result, the different elements of each orbit
evolves under the LVN equation of motion given by Et).  can be considered redundant, and the orbj oan be com-
The HamiltonianH[E] depends on an externally controlled pletely represented by its diagonal form, or “spectrunig).
laser fieldE(t) through the dipole coupling term. Beginning This suggests reformulating the control problem entirely in
with the system in an initial mixed state it is required to find terms of the spectrum, rather than in termspatself. The
a control field functionalityE(t) that will drive the system key step in this reformulation is to replace the equation of
through its equations of motiofll) to maximal purity, as Mmotion for p, Eg. (1), with an equation of motion for the

defined by Eq(5), at somefinal timeT. spectrum. We do this in the next section. As the purity is a
The system evolution equation contains both a Hamilfunction solely of the spectrum, this equation will allow the
tonian part, optimization to be performed just on the set of allowed spec-

tra, significantly reducing the complexity of the problem.
pn=—i[H[E]p], The controls will enter into this equation in a modified way

that gives additional insight into the interplay of Hamiltonian

and a dissipative part, given by and dissipative dynamics,

ppo=L(p).
The Hamiltonian term leads to unitary evolution, which does B. Equations of motion for the eigenvalues assuming fast
not change the spectrum, and the purity depends only on the unitary evolution

spectrum. Thus, the dissipative term is required to obtain a Suppose thap has a nondegenerate spectrum, andilet
purity increase. 1126], the control problem was solved com- pg s associated diagonal form. Consider two unitary trans-
pletely for the two-level system. In this paper we develop &qrmations, U, and U, Then both p;=U;AU] and p,

formalism applicable to general-level systems. =U2AU§ belong toa(p). However, they do not have the
same spectrum after evolution under the dissipative dynam-
IIl. REFORMULATION OF THE CONTROL PROBLEM ics. To understand how the spectrum of the density operator
IN TERMS OF THE SPECTRUM OF p evolves, note that Hamiltonian dynamics produces no change
in the spectrum. Therefore, the change in the spectrum is
A. Simplifying assumptions: Complete and instantaneous solely due to dissipation. After small tim# the initial den-
unitary control sity operatorp evolves to

In this section we develop a general formalism that high- p+L(p)dt 6)
lights the cooperative interplay between Hamiltonian and p=p prot.
dissipative dynamics. Following26], we assume that the If A represents the diagonalization of the original density
action of the control Hamiltonian can be produced on a fasbperatorp (p=UAUT, whereU is unitary then the new den-
time scale compared with spontaneous emission. This asity operator can be written as
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p—p+L(p)st=UA +UL(UAUNUSHUT.  (7)

Consider now the change in spectrum under the evolutiop;

of Eq. (7). SinceA is diagonal, the spectrum on the right-
hand side is, to first order ift, just the diagonaﬁ,i.e.,

A(t+ 8t) = diagA + UTL(UAUT)U&Y).

Given the matrixA, the notation dia@?) represents a vector
whose entries are the diagonal entriesfofThe rate of
change of eigenvalues is then

\ = diagUTL(UAUMU), (8)

which is in general different for different choices 0f Thus
by applying varying unitary transformatiorid and letting
the dissipative dynamics evolve for some small tidieve
get a different evolution of the spectrum. The unitary trans

formation should therefore be thought of as a control by

which the spectrum of the density matrix can be affected.

C. Canonical decomposition

PHYSICAL REVIEW A 69, 053408(2004)

for example, that the eigenvalues of the density operator al-
ways remain nonnegative. In order to become negative an
genvalue must pass through zero. If any of the eigenvalues

\;j=0, however, the only contributions tg; will be non-
negative since the only nonpositive elementdVir ® 'BO
+0ToD reside on the diagonal. Hence none of the eigenval-
ues can turn negative.

D. Revised definition of the control problem

Having formulated an equation of motion for the spec-
trum, Eg.(9), we can now redefine the control problem in
terms of the spectrum alone. We seek a control strategy in
the form of a time varying unitary-stochastic matiixt),
which when applied to the spectral equation of mot{én
will produce maximal purityP(\) at the final timeT.

One strategy for choosin@(t) is to instantaneously
maximize the purityP(\) at each point in time. Maximiza-
tion algorithms that utilize this strategy are termed “greedy”
algorithms and do not in general guarantee obtaining maxi-
mum possible purity at the final tim&. To calculate the

To proceed further, observe that the right-hand side of Eqglobally optimal cooling strategy we use the principle of
(8), describing the change in the spectrum under the operalynamic programming40], as described in Sec. IV.

tion of the Lindbladian, is a linear transformation on the

vector of eigenvaluegsee the Appendix
A =M.

To obtain an explicit expression fod first note that forU

=1 in Eq. (8) we havex=A\ with A a Q matrix (columns
sum to zerp defined by Ajj=v; for i#j and Aj =2
otherwise. We split

A=B+D,

where D is the diagonal part oA and is all nonpositive
whereasB contains all off-diagonal entries and is all non-
negative. Using these definitions we get for genéfah Eq.
(8) (for details see the Appendix

A=(OTBO +0OTo D)\, (9)

where®;;=|U;;|?, is the Schur product df with its complex
conjugate. Note thad has the important property of being a
doubly stochastic matriXrows and columns all sum to
unity). The notation®TD denotes the linear transformation
of the diagonal oD (as a vectorunder the action 0®". In
other words, ifd=diagD), then®T-D is a diagonal matrix
whose diagonal i®'d. Note that in the special case where
U e {P}—the set of permutations®=P;, Pf-D=P'DP,
and hence Eq(9) simplifies toA=OTAOX.

Equation(9) is one of the central results of this paper; it

provides a reduced equation of motion for the spectral evo-
lution under Lindblad dissipation and parametrized by the

unitary control. From Eq(9), it is straightforward to infer,

%This is simply the well-known result of first-order perturbation

IV. DYNAMIC PROGRAMMING AND THE
HAMILTON-JACOBI-BELLMAN EQUATION

We now use the principle of dynamic programming for
finding the optimal®(t) in Eq.(9). We will develop the basic
ideas through the problem under consideration. ex,t)
denote the maximum achievable purity starting from initial
eigenvalue spectrumm at timet (T—t units of time remain-
ing). By definition of V(\,t), it is the maximum achievable
purity if ® is chosen optimally over the intervid, T]. Sup-
pose that at timé, the spectrum op(t) is A(t) and we make
a choice of®(t). The resulting density operator after tirve
depends on the choice 6X(t). The choice o (t) should be
such that for the resulting new spectrwtt+ ét), the return
function, V(A (t+6t),t+8t) is maximized and by definition
the optimal return function should be the samev@s(t),t).

By a Taylor series expansion we obtain

VOM(E+ ).t + 8t) = VN (D).0) + %&

+m
(€]

This then gives the well-known Hamilton-Jacobi-Bellman

equation
ma>< > =0. (11
(€]

dV(N,D) _ dV(ND) .
dt 4t

Observe that at the final timg, the value of the return func-

tion is just the purity of the density operator, i.e.,

VN, T) =P(\).

IV(\, )

P ,5)\(®)> . (10

IV(\,1) )-\(@)

theory which, when applied to a perturbed Hamiltonian, states that
the first-order corrections to the energies are the diagonal elementé we solve this equation, together with its final condition,

of the perturbing Hamiltoniaiv.

we will get the optimal contro® as a function of the spec-
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trum A and the timet, denoted as®=0@"(\,t). In other |2>
words, given the spectrumof the density operator at tinte
the best cooling strategy is to choo®&(\,t). This implies
that the control problem is solved not just for a particular set
of initial conditions; rather, it is embedded in a wider prob- Y1 Y2
lem and a solution is sought simultaneously for all possible
initial conditions.
In Eqg.(11), the termdV(\,t)/ ot has no dependence &h

therefore W
O"(\,t) = arg ma>< IV ,X()>.
® JN

FIG. 2. Athree-levelA system with spontaneous emission rates

13)

from level 2 to 1 given byy, and spontaneous emission rates from

Substituting forX(@) from Eq. (9), yields 2 to 3 given byy,.
. IVNY o . . .
O (\t)=argmaX ——,(0'BO+O® D)\ ). the spectrum of the density matrix is théd) with A, B, and
o 2 D given by
(12
Thus the problem reduces to finding the optimal control 0 " 0

O (\,t) that maximizes the expression
(A1) p A=|0 —(n+v) O],

F(0) = uT(0BO +@TD)\, (13) 0 3 0O

where the vectop is defined agu;=dV/d\; (althoughu is a

function of A andt, we just useu and keep in mind that the

dependence is impliedNote thata priori V(X ,t) and hence 0 »n O 0 0 0
u are not known. However if we can make a guess at the B=|0 0 0|, D=|0 —(yy+7y) O].
optimal control strategywhich depends o andt) and use 0 0 0 0 0
this optimal strategy to integrate the equation of motion of v
the system evolution to obtaM(\,t) and henceu, then we
can verify if the optimal contro® and the corresponding  The objective is to maximize the purity at tinlgP(T), as

satisfy Eq.(12). We illustrate this by finding optimal cooling measured by the largest eigenvaluepaDefinition 1).
strategies for a three-levél system.

The following properties of Eq(13) will be used subse-
quently. ® being a double stochastic matrix implies that  B. The optimal strategy: Keep p diagonal and ordered
[1,1,...16=[1,1,...1. Furthermord1,1,...1(B+D)=0
and therefore=(®) vanishes foru™=[1,1,...,1. The ele- Given the equation of motion defined by Ed4) and the
ments ofu can therefore be shifted by a constant amount tPbjective defined by Definition 1, we have the following

make a specific component pf vanish without influencing ~theorem: _ _
the value ofF(0). Theorem 1. The optimal cooling stratedyor the three-

level system described aboykbeled as in Fig. Rif any
unitary transformatiord e SU(3) can be produced in an ar-
V. SOLUTION OF THE OPTIMAL CONTROL PROBLEM bitrarily small time, then the optimal cooling strategy is to
FOR THE THREE-LEVEL SYSTEM keep the density operatpft) diagonal for all timegproduce
no coherencésand ordered, i.e p11(t) = poo(t) = pas(t).
The optimal control strategy has the following alternate
Consider a three-leve system depicted in Fig. 2. The description. Throughout the cooling process, we keep the
excited state spontaneously decays into the stable groungrgest eigenvalue in the eigenstat®, the next largest in
states|1) and [3) at ratesy, and y,, respectively. We will  state|2), and finally the smallest in stat8). As the popula-

A. Preliminaries

assume without loss of generality that= 7. tion in state|2) decays spontaneously to stafés and|3),
The evolution of the density matrix of the three-level  after some timer’, the population of statel®) and [3) will
system is given by become equal. From that point onwards, we always maintain
1 the population of statef) and |3), equal(see Fig. 3. We
p=—i[H(t),p] + 71(E1PEI‘ E{E’{El,p}) will refer to this strategy as “greedy” since it maximizes the

rate of increase of the objective at each point in time.
1 To prove optimality of the above strategy we proceed as
+ 7’2( EopE} - E{EEEzP}), (14)  follows. We first computeV(\,t) for the proposed strategy
and then show that it satisfies the HIB equation maximized
whereE;=|1)(2| andE,=|3)(2|. The equation of motion for over all unitary transformations. Following the convention
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FIG. 3. The eigenvalue evolution under the optimal cooling
strategy for the three-level system.

that the elements of the vectarare arranged in decreasing
order, this amounts to showing that

[ argmax F(0®)

0 e{|UZUeSUN)}

argmax u'(O@'BO+0OT-D)\,
0 e{|UZUeSUN)}

(15

wherel is the identity operator. This implies that the eigen-

PHYSICAL REVIEW A 69, 053408(2004)

*

T T.

VL T-1 =N + Ao(1 —e 727y,

Yit Y2

(19
By definition Ay(7) =A5(7") andh,(7)=h,e" 1727 . Using
these equalities, the following explicit forms fas(7) and
7 can be computed:

Yoho + (y1+ ¥2)A3

(7)) =
2 Y1t2%
* A +A\ +
L ( 2Y2+ N3y 72)). (20)
Nty Na(y1+275)

After this point in time, under the ordered diagonal policy,
the populations of statg®) and|3) are maintained at equi-
librium such that\,(7)=\3(7)= 2[1 N(7)]. The system dy-
namics therefore takes the form

y "1

N=——7(1-N\y),

1= =LA

from which the return function for the regime> 7 can be
explicitly computed:

*

VO T-0=1-2,(rF)e ™2 > 7 (21

As the return function enters the HIB equations only through
its derivativesu=dV/J\, we proceed to compute these de-
rivatives explicitly for use in the next section.

For <7, we have

values should be continuously maintained in their ordered

arrangement. Note that despite the simplicity of this result, in

general the continuous intervention of a control field is re-

quired in order that this condition be fulfilled.

C. The return function for the ordered diagonal strategy

We now evaluate the return function for the putative op-

timal strategy. Letr=T-t denote the remaining time for

cooling. According to the strategy proposed above, two evoand for> 7, we have

lution regimes exist depending on whethee r or 7> 7,
where7" is the critical time required fok, and\5 to come to
equilibrium.

In the case where<= 7, under the proposed strategy the
evolution equations of the system take the form

)-\1 = Y1, (16)
)-\2:_(71"' Y2)\2, (17)
).\3 = Yohy, (18

and therefore

m1=1,
M2 = ot 72(1 e 27, (22)
p#3=0,
#1=0,
sy = = YN VNS o) 23)
No(y1+275)
pa= — e 2T

Note that in both regimegy; = u,= us, a property that will
be used beloW.Also note that theu's are continuous at
=7 up to a constant shifisee remark at the end of Sec.)IV

3In order to prove this statement fer< 7 note that in this regime
Ns(D)=<N\y(7), which implies [\o/(y1+y)][(y1+2y)e V+72"
—Y2]= s
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D. Proof that the return function for the ordered diagonal Gi1=— 20N = Np) 11,
strategy satisfies HIB

We proceed to calculate argm&x®) for F(®) given by Gan= = 200g =\
Eq(13) and x given by Eqgs.(22) and (23). We show that 83 ” 37 NJMsY2
®"=1 and hence the ordered diagonal strategy satisfies the
HJB equation, proving that this strategy is globally optimal. Ga1=Gia= - (s = Aoy — stsN = N)yar  (26)
1. Absence of ground state coherences in the ordered diagonal

solution Denotinga= y,u1(A3—\,) andb=y,usz(\1—\,), the deter-

minant of G is 4ab—(a+b)2=-(a-b)2<0 such that one of
We first prove that the optimal transformatiéh in Eq.  the eigenvalues o6 is nonnegative and therefof@ is not
(13) has the property tha®,3=03,=0, namely that the negative definite.
ground state coherences vanish throughout the evolution of
the optimal trajectory. Suppog#,;# 0 and®3;# 0 and say 4. The maximum point iS(@,1,0,9=(0,0)
®3,=0,5 From Eq.(13) we have
As the maximum does not reside in the interior of the
F(O) =[y1(u1011+ 13019 + ¥o(11031 + 13039 ] triangular domain it must lie on one of the edges
[(0,0,(0,1], [(0,0,(1,0], or[(0,1),(1,0].
X[A1O21+ A0z + A3O] It can be shown by checking the first and second deriva-
= (71 + v MO o1 + ugh3053], (24)  tives along the edgEO0,1),(1,0)] that the maximum along
that interval lies at the end poi®,,,0,35)=(0,1). We now
where we have chosem,=0 and henceu;=0= us. Let A check the remaining two edges. A%;; and G;; are both
=0,3 Observe that in the above equation we can increasgonpositive it follows thaF(0) is concave in both thé,,
04, and®33 by an amouniA and decreas®,3and®;;, by  and@,; directions. Therefore, if in addition the slope at the
A, to generate a new doubly stochastic matrix which givesoint (0, 0) is negative in both directions, this establishes the
a larger value ofF(®) (this follows from the relations existence of a maximum at that point. We proceed to show
¥1= ¥z andu; =0= u3). Hence we assum@;3=0. LetA;  that indeed the slopes are nonnegative:
be the new value 063;. Now if we increased; and @3,

by A; and decreas®3;; and ®,, by the same amount we
) . ; ) dF
get a new doubly stochastic matrix which gives a larger = (N = M) ugye + vl + N[ mavad
value of F(®). Hence we need to maximizE(®) only 9921100
gver _those doubly stochastic matrices for whi€hs —(y1+ vy < 0, 27)
2. Dependence of HP) on the remaining parameters if® JF
, = (N3 = N)luayz2 + paya] + ol = pavsl
As the rows and columns @ must sum to unity there 3023] (0,0

remain only two degrees of freedom in the component®.of

Therefore, we can writE(0) as a function of only two of its ~(n* ¥)uahs < 0. (28)

components ) .
The first expression follows from the fact thag = y,, uq
F(O) = F(0,y,0,5 =0= ug, andA;=\,. The second expression can be proved
by inserting the explicit forms fop, Egs.(22) and(23), for
=[y11(1 = O2) + yous(1 = 03] the two regimes off —t.
X[Az+ Oz1(N = No) + Oz5(N3 = \))]
= (71 + ) 1O\ + 3Oo5\5]. (25) VI. DISCUSSION AND CONCLUSIONS
It is now required to find the maximum d¥(@,;,0,3 on We have presented a general framework for calculating
the triangular domain € @,;<1, 0<0,<1, Oy +6Oy optimal purity increasing strategies iN-level dissipative
<1. systems under the assumption of complete and instantaneous

unitary control. In so doing, we derived a reduced equation
of motion for the spectral evolution under dissipation and
parametrized by the unitary control. The Hamilton-Jacobi-
Suppose= has a maximum in the interior, then the Hes- Bellman theorem was invoked to provide sufficient criteria
sian ofF at that point must be negative definite. We proceedor global optimality. This general framework was then ex-
to show that the Hessiai®; E&2F/a®2ia®2j, with i,] plicitly applied to derive and prove optimality of the greedy
={1,3}, is not negative definite anywhere and therefore thecooling strategy for a three-levél system.
maximum must reside on the boundary. Computing the com- In future work we intend to apply this methodology to
ponents ofG we find obtain explicit optimal cooling strategies for genekat M

3. The maximum cannot lie at an interior point
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level systems comprised dfl excited states coupled td N N i o e
ground states. One is tempted, by extrapolation from the U'L(UAU )U:Z Y UT| [DGIUAUT] X
present results, to assume that the greedy algorithm should .

be optimal in general and hence that coherences do not play 1 .. T

a role in the optimal cooling strategy fdt>3. However, - §{|J><J|’UAU HVY
preliminary numerical results based on dynamical program-

ming show that the greedy algorithm is in general not opti- - __[UTi ilUAUTNGIU
mal in these systems. Rather, a strategy based on “delayed % Vi il il

gratification” is superior to the greedy strategy, and coher-
ences play a small but finite role in these larger systems. This _ }{UTU)(] [§; A}] _
will be the subject of a future paper. 2 ’

Expanding Eq.8) and rewriting it in component form we
have
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APPENDIX: DERIVATION OF THE “CANONICAL FORM” EZ Mys\s, (A1)
S
We wish to show that Eq8) is a linear transformation of with
the form
M=0BO+0"-D,
: and with the definitions of®, B, D, and the operation
A =MA. ®°D as provided in the main text. Rewriting the above in
vector format we have precisely E@):
Recall first that A=(0"BO + OToD)\.
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