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We study the problem of optimal control of dissipative quantum dynamics. Although under most circum-
stances dissipation leads to an increase in entropy(or a decrease in purity) of the system, there is an important
class of problems for which dissipation with external control can decrease the entropy(or increase the purity)
of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian
part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable.
The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the
purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to
maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily
fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead
to a great simplification, in which the control problem can be reformulated in terms of the spectrum of
eigenvalues ofr, rather thanr itself. By combining this formulation with the Hamilton-Jacobi-Bellman theo-
rem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the
density matrix. For the three-levelL system, we provide a complete analytic solution for the optimal cooling
strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a
“greedy” strategy, in which the purity is increased maximally at each instant.
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I. INTRODUCTION

In the last 15 years, optimal control theory has been ap-
plied to an increasingly wide number of problems in physics
and chemistry whose dynamics are governed by the time-
dependent Schrödinger equation(TDSE). These problems in-
clude the control of chemical reactions[1–8] state-to-state
population transfer[9–12], shaped wave packets[13],
nuclear magnetic resonance spin dynamics[14], Bose-
Einstein condensation[15–17], quantum computing[18–20],
oriented rotational wave packets[21], etc. [22,23]. More re-
cently, there has been vigorous effort in studying the control
of systems governed by the Liouville–von Neumann(LVN )
equation, where the central object is the density matrix,
rather than the wave function[24–31]. The Liouville–von
Neumann equation is an extension of the TDSE that allows
for the inclusion of dissipative processes. Important ex-
amples of what may be thought of as quantum control pro-
cesses that require the use of the LVN include laser control
of chemical reactions in solution, laser cooling, and coher-
ence transfer in multispin systems. In all these cases, the
external field(the laser or the rf field) is the coherent control,
while the source of dissipation is the contact with the envi-
ronment. In the case of laser cooling, the environment con-
sists of the vacuum modes of the electromagnetic field and
the source of dissipation is spontaneous emission.

In the majority of problems pertaining to the control of
quantum systems, dissipation is a nuisance; the purpose of
the control is to either avoid, delay, or cancel the dissipation
process. Yet there is a remarkable exception to this pattern—
laser cooling. The goal of laser cooling is expressed alterna-

tively as increasing the phase space density, or decreasing the
entropy of the system. Purely Hamiltonian manipulations can
in fact do neither, and therefore dissipation, rather than being
a nuisance, is actually necessary to achieve true cooling. The
optimal control of systems of this type is fascinating. The
control itself, no matter what its time dependence, leads only
to Hamiltonian evolution and hence to no true progress to-
ward the objective. On the other hand, the dissipation, while
it is capable of producing progress toward the objective, is
fundamentally not controllable and could in fact lead to a
decrease in the objective.

In Ref. [26], we elucidated the interplay of the controlled,
Hamiltonian evolution, and the uncontrolled, dissipative evo-
lution in producing cooling. The “cooling laser,” while not
directly cooling the system, in fact steers it to a region of
parameter space where spontaneous emission leads to cool-
ing rather than heating. We define such a controlled manipu-
lation as a “purity increasing transformation.” We believe
that the study of such transformations in their general math-
ematical context is of extreme interest, both in terms of dis-
covering a wider class of physical processes where purity,
and therefore coherence content, can be increased, as well as
because of the rich mathematical structure of the problems
involving the interplay of Hamiltonian and dissipative dy-
namics.

In Ref. [26], we solved the problem of optimal cooling for
a two-level system completely, under the assumption of com-
plete and rapid Hamiltonian control. We showed that the op-
timal cooling strategy in the two-level system avoids produc-
ing coherences in the density matrix. Here we present a
general framework for the analysis of optimal control in a
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system ofN excited states coupled radiatively toM ground
states, under the same assumptions. Using this framework
we explicitly provide the optimal strategy for the cooling of
a three-levelL system.

We first introduce the Lindblad dissipation model and a
generalized concept of purity in Sec. II. In Sec. II C the
problem of the optimal cooling of a quantum mechanical
system is formulated. It is shown in Sec. III that this problem
can be reformulated solely in terms of the eigenvalue distri-
bution of the density operator. In doing this, we derive a
reduced equation of motion for the spectral evolution under
dissipation, parameterized by the unitary control(Sec. III B
and III C. Section IV introduces the mathematical tools for
finding optimal cooling strategies, namely the Hamilton-
Jacobi-Bellman(HJB) theorem. Section V provides an ex-
plicit description of the optimal cooling strategy for the
three-levelL system and proves its optimality. Finally we
discuss future directions, and conclude, in Sec. VI.

II. SETTING UP THE CONTROL PROBLEM

A. The system equations of motion and the Lindblad formula
for dissipation

Let r denote the density matrix of anN-level quantum
system(see Fig. 1). The density matrix evolves under the
LVN equation which takes the form

ṙ = − ifHstd,rg + Lsrd, s1d

where −ifH ,rg is the unitary evolution of the quantum sys-
tem andLsrd is the dissipative part of the evolution. The
term Lsrd is linear in r and is given by the Lindblad form
f32,33g, i.e.,

Lsrd = o
i j

FijrFij
† −

1

2
hFij

†Fij ,rj,

whereFij are the Lindblad operators. In this article, we as-
sume the only relaxation mechanism is spontaneous emission
and therefore we takeFij =Îgi jEij , where the operatorEij
= uilk j u, andgi j represents the rate of spontaneous emission
from level j to level i. Equations1d has the following three
well-known properties:s1d Trsrd remains unity for all
time, s2d r remains a Hermitian matrix, ands3d r stays

positive semidefinite, i.e., thatr never develops nonnega-
tive eigenvalues.

The first property follows from

Trsṙd = Trs− ifH,rgd + TrsLrd = 0. s2d

The second property follows from the fact thatṙ= ṙ† and
thereforerstd=r†std. We will later derive an explicit expres-
sion for the evolution of the spectrum of the density operator
under dissipation. The third property will then be shown as
an immediate consequence of this result.

B. Definitions of purity

The density matrix is capable of describing any mixed
state in quantum mechanics, ranging from pure states that are
solutions of the TDSE, to completely incoherent states.
There are several common ways of characterizing how close
an arbitrary mixed stater is to a pure state. These measures
can be generally termed purity measures or purities. We use
Psrd to denote the purity of the density operatorr.

The most common, and perhaps the simplest measure is
Trsr2d [25,26,34,35]. For any density matrix, 0,Trsr2dø1,
with equality only for a pure state. Thus, the larger the value
of Trsr2d, the closer a state is to being pure. Another useful
measure is the von Neumann entropy,SVN=−k Trsr ln rd
[36]. The von Neumann entropy goes to zero for a pure state
and is greater than zero for any mixed state, and thus the size
of the von Neumann entropy is a measure of the degree of
impurity of a state. Two other measures are the largest eigen-
value of r,uru`, which goes to 1 for a pure state and is less
than one for a mixed state; and a measure based on the ex-
pansion of the characteristic equation forr, which has Trsr2d
as its leading term, but also takes into account higher order
terms, e.g., Trsr3d [37].1

1The purity function can be thought of mathematically as a(par-
tial) ordering over the set of allowed eigenvalues such that the
totally pure state having the spectrumf1,0, . . . ,0g yields the great-
est value of purity and the totally mixed state with spectrum
f1/N,1 /N, . . . ,1 /Ng yields the lowest. A necessary minimum of
structure on the purity ordering is provided by the concept of ma-
jorization [38,39]. Let x and y be two d-dimensional real vectors.
We use the notationx↓ to indicate the vector whose entries are the
entries ofx, arranged into decreasing order,x1

↓ùx2
↓ù ¯ ùxd

↓. We
sayx is majorized byy, written xay, if

o
j=1

k

xj
↓ ø o

j=1

k

yj
↓, s3d

for k=1, . . . ,d, with equality whenk=d. Loosely speaking, this
definition gives quantitative meaning to the amount of disorder or
mixing in a collection of real numbers. For example, for any 0ø t
ø1, f 1

2 , 1
2
ga ft ,1−tg.For anyd-dimensional probability distribution

p, f1/d , . . . , 1/dga fp1, . . . ,pdg. Note that there are vectorsx and
y which are incomparable in the sense that neitherxay nor yax
sfor examplex=f0.5,0.25,0.25g and y=f0.4,0.4,0.2gd; majoriza-
tion therefore gives only partial ordering. Any reasonable mea-
sure of purity should respect the majorization relation, namely
for two eigenvalue distributions we should havePsl8dø sl9d if
l8al9. Such functions are termedSchur convex.

FIG. 1. A generalN+M level quantum system with spontaneous
emission rates between various energy levels.
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In general, as is apparent from the above discussion, the
entire density matrixr is not needed in order to characterize
the purity of the system; rather, all that is necessary is the set
of eigenvaluesl of r. All purities can therefore be defined as
functions solely of the eigenvalues, i.e.,

Psrd = P„lsrd…. s4d

We will use the following definition of purity for the remain-
ing part of the paper.

Definition 1.Given the density operatorr, with spectrum
l, define its purityPsrd as the largest eigenvalue ofr, i.e.,

Psrd = uru` = lim
n→`

Trsrnd1/n = l1
↓. s5d

Here l↓ is the vector of eigenvalues ofr arranged in a de-
creasing order; for the remainder of this paper the superscript
↓ will be assumed every timel is written. Although many of
the results in this paper are very general, we choose this
measure as it gives simple answers for the cooling strategies.
We will often usePsrd or Psld to mean the same thing,
where it is understood thatl is the spectrum corresponding
to r.

C. Formulation of the control problem

The problem we address in this paper is the control of the
purity content of a quantum dissipative system, which
evolves under the LVN equation of motion given by Eq.(1).
The HamiltonianHfEg depends on an externally controlled
laser fieldEstd through the dipole coupling term. Beginning
with the system in an initial mixed state it is required to find
a control field functionalityEstd that will drive the system
through its equations of motion(1) to maximal purity, as
defined by Eq.(5), at somefinal timeT.

The system evolution equation contains both a Hamil-
tonian part,

ṙH = − i†HfEg,r‡,

and a dissipative part, given by

ṙD = Lsrd.

The Hamiltonian term leads to unitary evolution, which does
not change the spectrum, and the purity depends only on the
spectrum. Thus, the dissipative term is required to obtain a
purity increase. Inf26g, the control problem was solved com-
pletely for the two-level system. In this paper we develop a
formalism applicable to generalN-level systems.

III. REFORMULATION OF THE CONTROL PROBLEM
IN TERMS OF THE SPECTRUM OF r

A. Simplifying assumptions: Complete and instantaneous
unitary control

In this section we develop a general formalism that high-
lights the cooperative interplay between Hamiltonian and
dissipative dynamics. Following[26], we assume that the
action of the control Hamiltonian can be produced on a fast
time scale compared with spontaneous emission. This as-

sumption is well established on physical grounds, since fem-
tosecond laser control is now widely available and typical
spontaneous emission times are nanoseconds. In this paper
we make an additional useful simplifying assumption about
the dynamics, namely that the control HamiltonianHstd can
produce any unitary transformationUPSUsNd in theN-level
system, i.e., the system of interest is unitarily controllable.
Combining these two assumptions we have that any unitary
transformation can be produced on the system in a negligible
time compared to that of the dissipation.

We use the notation

øsrd = hUrU†uU P SUsNdj

to denote the orbit ofr under unitary transformations. Since
lsUrU†d=lsrd, it is obvious thatPsrd=Psld is constant

along the orbitøsrd; howeverṖ is not: the rate of change of
the purity due to dissipation is affected by where inøsrd the
density matrix resides. In other words, due to the “instanta-
neous controllability” assumption, unitary controls can in-

stantaneously directr along the orbit in order to changeṖ in
a controlled manner.

The above dynamical assumptions lead to another very
important simplification. Since we have assumed that all uni-
tary transformations in SUsNd can be produced instanta-
neously, this includes bringing the density matrix into diag-
onal form. As a result, the different elements of each orbit
can be considered redundant, and the orbit ofr can be com-
pletely represented by its diagonal form, or “spectrum,”lsrd.
This suggests reformulating the control problem entirely in
terms of the spectrum, rather than in terms ofr itself. The
key step in this reformulation is to replace the equation of
motion for r, Eq. (1), with an equation of motion for the
spectrum. We do this in the next section. As the purity is a
function solely of the spectrum, this equation will allow the
optimization to be performed just on the set of allowed spec-
tra, significantly reducing the complexity of the problem.
The controls will enter into this equation in a modified way
that gives additional insight into the interplay of Hamiltonian
and dissipative dynamics.

B. Equations of motion for the eigenvalues assuming fast
unitary evolution

Suppose thatr has a nondegenerate spectrum, and letL
be its associated diagonal form. Consider two unitary trans-
formations, U1 and U2. Then both r1=U1LU1

† and r2
=U2LU2

† belong to øsrd. However, they do not have the
same spectrum after evolution under the dissipative dynam-
ics. To understand how the spectrum of the density operator
evolves, note that Hamiltonian dynamics produces no change
in the spectrum. Therefore, the change in the spectrum is
solely due to dissipation. After small timedt the initial den-
sity operatorr evolves to

r → r + Lsrddt. s6d

If L represents the diagonalization of the original density
operatorr sr=ULU†, whereU is unitaryd then the new den-
sity operator can be written as
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r → r + Lsrddt = U„L + U†LsULU†dUdt…U†. s7d

Consider now the change in spectrum under the evolution
of Eq. (7). SinceL is diagonal, the spectrum on the right-
hand side is, to first order indt, just the diagonal,2 i.e.,

lst + dtd = diag„L + U†LsULU†dUdt….

Given the matrixA, the notation diagsAd represents a vector
whose entries are the diagonal entries ofA. The rate of
change of eigenvalues is then

l̇ = diag„U†LsULU†dU…, s8d

which is in general different for different choices ofU. Thus
by applying varying unitary transformationsU and letting
the dissipative dynamics evolve for some small timedt we
get a different evolution of the spectrum. The unitary trans-
formation should therefore be thought of as a control by
which the spectrum of the density matrix can be affected.

C. Canonical decomposition

To proceed further, observe that the right-hand side of Eq.
(8), describing the change in the spectrum under the opera-
tion of the Lindbladian, is a linear transformation on the
vector of eigenvalues(see the Appendix)

l̇ = Ml.

To obtain an explicit expression forM first note that forU

= I in Eq. s8d we havel̇=Al with A a Q matrix scolumns
sum to zerod defined by Aij =gi j for i Þ j and Aii =−okgki
otherwise. We split

A = B + D,

where D is the diagonal part ofA and is all nonpositive
whereasB contains all off-diagonal entries and is all non-
negative. Using these definitions we get for generalU in Eq.
s8d sfor details see the Appendixd

l̇ = sQTBQ + QT + Ddl, s9d

whereQi j = uUij u2, is the Schur product ofU with its complex
conjugate. Note thatQ has the important property of being a
doubly stochastic matrixsrows and columns all sum to
unityd. The notationQT+D denotes the linear transformation
of the diagonal ofD sas a vectord under the action ofQT. In
other words, ifd=diagsDd, thenQT+D is a diagonal matrix
whose diagonal isQTd. Note that in the special case where
UP hPij—the set of permutations—Q=Pi, Pi

T+D=Pi
TDPi

and hence Eq.s9d simplifies to l̇=QTAQl.
Equation(9) is one of the central results of this paper; it

provides a reduced equation of motion for the spectral evo-
lution under Lindblad dissipation and parametrized by the
unitary control. From Eq.(9), it is straightforward to infer,

for example, that the eigenvalues of the density operator al-
ways remain nonnegative. In order to become negative an
eigenvalue must pass through zero. If any of the eigenvalues

l j =0, however, the only contributions tol̇ j will be non-
negative since the only nonpositive elements inM =QTBQ
+QT+D reside on the diagonal. Hence none of the eigenval-
ues can turn negative.

D. Revised definition of the control problem

Having formulated an equation of motion for the spec-
trum, Eq. (9), we can now redefine the control problem in
terms of the spectrum alone. We seek a control strategy in
the form of a time varying unitary-stochastic matrixQstd,
which when applied to the spectral equation of motion(9),
will produce maximal purityPsld at the final timeT.

One strategy for choosingQstd is to instantaneously
maximize the purityPsld at each point in time. Maximiza-
tion algorithms that utilize this strategy are termed “greedy”
algorithms and do not in general guarantee obtaining maxi-
mum possible purity at the final timeT. To calculate the
globally optimal cooling strategy we use the principle of
dynamic programming[40], as described in Sec. IV.

IV. DYNAMIC PROGRAMMING AND THE
HAMILTON-JACOBI-BELLMAN EQUATION

We now use the principle of dynamic programming for
finding the optimalQstd in Eq. (9). We will develop the basic
ideas through the problem under consideration. LetVsl ,td
denote the maximum achievable purity starting from initial
eigenvalue spectruml at time t (T− t units of time remain-
ing). By definition of Vsl ,td, it is the maximum achievable
purity if Q is chosen optimally over the intervalft ,Tg. Sup-
pose that at timet, the spectrum ofrstd is lstd and we make
a choice ofQstd. The resulting density operator after timedt
depends on the choice ofQstd. The choice ofQstd should be
such that for the resulting new spectrumlst+dtd, the return
function, Vsl(t+dtd ,t+dt) is maximized and by definition
the optimal return function should be the same asV(lstd ,t).
By a Taylor series expansion we obtain

V„lst + dtd,t + dt… = V„lstd,t… +
] Vsl,td

] t
dt

+ max
Q
K ] Vsl,td

] l
,dlsQdL . s10d

This then gives the well-known Hamilton-Jacobi-Bellman
equation

dVsl,td
dt

=
] Vsl,td

] t
+ max

Q
K ] Vsl,td

] l
,l̇sQdL = 0. s11d

Observe that at the final timeT, the value of the return func-
tion is just the purity of the density operator, i.e.,

Vsl,Td = Psld.

If we solve this equation, together with its final condition,
we will get the optimal controlQ as a function of the spec-

2This is simply the well-known result of first-order perturbation
theory which, when applied to a perturbed Hamiltonian, states that
the first-order corrections to the energies are the diagonal elements
of the perturbing HamiltonianV.
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trum l and the timet, denoted asQ=Q*sl ,td. In other
words, given the spectruml of the density operator at timet,
the best cooling strategy is to chooseQ*sl ,td. This implies
that the control problem is solved not just for a particular set
of initial conditions; rather, it is embedded in a wider prob-
lem and a solution is sought simultaneously for all possible
initial conditions.

In Eq. (11), the term]Vsl ,td /]t has no dependence onQ,
therefore

Q*sl,td = arg max
Q
K ] Vsl,td

] l
,l̇sQdL .

Substituting forl̇sQd from Eq. s9d, yields

Q*sl,td = arg max
Q
K ] Vsl,td

] l
,sQTBQ + Q + DdlL .

s12d

Thus the problem reduces to finding the optimal control
Q*sl ,td that maximizes the expression

FsQd ; mTsQTBQ + QT + Ddl, s13d

where the vectorm is defined asm j =]V/]l j salthoughm is a
function of l and t, we just usem and keep in mind that the
dependence is impliedd. Note thata priori Vsl ,td and hence
m are not known. However if we can make a guess at the
optimal control strategyswhich depends onl andtd and use
this optimal strategy to integrate the equation of motion of
the system evolution to obtainVsl ,td and hencem, then we
can verify if the optimal controlQ and the correspondingm
satisfy Eq.s12d. We illustrate this by finding optimal cooling
strategies for a three-levelL system.

The following properties of Eq.(13) will be used subse-
quently. Q being a double stochastic matrix implies that
f1,1, . . .1gQ=f1,1, . . .1g. Furthermoref1,1, . . .1gsB+Dd=0
and thereforeFsQd vanishes formT=f1,1, . . . ,1g. The ele-
ments ofm can therefore be shifted by a constant amount to
make a specific component ofm vanish without influencing
the value ofFsQd.

V. SOLUTION OF THE OPTIMAL CONTROL PROBLEM
FOR THE THREE-LEVEL SYSTEM

A. Preliminaries

Consider a three-levelL system depicted in Fig. 2. The
excited state spontaneously decays into the stable ground
statesu1l and u3l at ratesg1 and g2, respectively. We will
assume without loss of generality thatg1ùg2.

The evolution of the density matrix of the three-levelL
system is given by

ṙ = − ifHstd,rg + g1SE1rE1
† −

1

2
hE1

†E1,rjD
+ g2SE2rE2

† −
1

2
hE2

†E2,rjD , s14d

whereE1= u1lk2u andE2= u3lk2u. The equation of motion for

the spectrum of the density matrix is thens9d with A, B, and
D given by

A = 30 g1 0

0 − sg1 + g2d 0

0 g2 0
4 ,

B = 30 g1 0

0 0 0

0 g2 0
4, D = 30 0 0

0 − sg1 + g2d 0

0 0 0
4 .

The objective is to maximize the purity at timeT,PsTd, as
measured by the largest eigenvalue ofr sDefinition 1d.

B. The optimal strategy: Keepr diagonal and ordered

Given the equation of motion defined by Eq.(14) and the
objective defined by Definition 1, we have the following
theorem:

Theorem 1. The optimal cooling strategy.For the three-
level system described above(labeled as in Fig. 2) if any
unitary transformationUPSUs3d can be produced in an ar-
bitrarily small time, then the optimal cooling strategy is to
keep the density operatorrstd diagonal for all times(produce
no coherences) and ordered, i.e.,r11stdùr22stdùr33std.

The optimal control strategy has the following alternate
description. Throughout the cooling process, we keep the
largest eigenvalue in the eigenstateu1l, the next largest in
stateu2l, and finally the smallest in stateu3l. As the popula-
tion in stateu2l decays spontaneously to statesu1l and u3l,
after some timet* , the population of statesu2l and u3l will
become equal. From that point onwards, we always maintain
the population of statesu2l and u3l, equal(see Fig. 3). We
will refer to this strategy as “greedy” since it maximizes the
rate of increase of the objective at each point in time.

To prove optimality of the above strategy we proceed as
follows. We first computeVsl ,td for the proposed strategy
and then show that it satisfies the HJB equation maximized
over all unitary transformations. Following the convention

FIG. 2. A three-levelL system with spontaneous emission rates
from level 2 to 1 given byg1 and spontaneous emission rates from
2 to 3 given byg2.
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that the elements of the vectorl are arranged in decreasing
order, this amounts to showing that

I = argmax
QPhuUu2!UPSUsNdj

FsQd

= argmax
QPhuUu2!UPSUsNdj

mTsQTBQ + QT + Ddl,

s15d

whereI is the identity operator. This implies that the eigen-
values should be continuously maintained in their ordered
arrangement. Note that despite the simplicity of this result, in
general the continuous intervention of a control field is re-
quired in order that this condition be fulfilled.

C. The return function for the ordered diagonal strategy

We now evaluate the return function for the putative op-
timal strategy. Lett=T− t denote the remaining time for
cooling. According to the strategy proposed above, two evo-
lution regimes exist depending on whethertøt* or t.t* ,
wheret* is the critical time required forl2 andl3 to come to
equilibrium.

In the case wheretøt* , under the proposed strategy the
evolution equations of the system take the form

l̇1 = g1l2, s16d

l̇2 = − sg1 + g2dl2, s17d

l̇3 = g2l2, s18d

and therefore

Vsl,T − td = l1 +
g1

g1 + g2
l2s1 − e−sg1+g2dtd, t , t* .

s19d

By definition l2st*d=l3st*d andl2st*d=l2e
−sg1+g2dt*

. Using
these equalities, the following explicit forms forl2st*d and
t* can be computed:

l2st*d =
g2l2 + sg1 + g2dl3

g1 + 2g2
,

t* = −
1

g1 + g2
logSl2g2 + l3sg1 + g2d

l2sg1 + 2g2d D . s20d

After this point in time, under the ordered diagonal policy,
the populations of statesu2l and u3l are maintained at equi-
librium such thatl2std=l3std= 1

2f1−l1stdg. The system dy-
namics therefore takes the form

l̇1 = −
g1

2
s1 − l1d,

from which the return function for the regimet.t* can be
explicitly computed:

Vsl,T − td = 1 − 2l2st*de−sg1/2dst−t* d, t . t* . s21d

As the return function enters the HJB equations only through
its derivativesm=]V/]l, we proceed to compute these de-
rivatives explicitly for use in the next section.

For t,t* , we have

m1 = 1,

m2 =
g1

g1 + g2
s1 − e−sg1+g2dtd, s22d

m3 = 0,

and fort.t* , we have

m1 = 0,

m2 = −
2g2l2 + g1l3

l2sg1 + 2g2d
e−sg1/2dst−t* d, s23d

m3 = − e−sg1/2dst−t* d.

Note that in both regimes,m1ùm2ùm3, a property that will
be used below.3 Also note that them’s are continuous att
=t* up to a constant shift(see remark at the end of Sec. IV).

3In order to prove this statement fort,t* note that in this regime
l3stdøl2std, which implies fl2/ sg1+g2dgfsg1+2g2de−sg1+g2dt

−g2gùl3.

FIG. 3. The eigenvalue evolution under the optimal cooling
strategy for the three-levelL system.
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D. Proof that the return function for the ordered diagonal
strategy satisfies HJB

We proceed to calculate argmaxFsQd for FsQd given by
Eq.(13) and m given by Eqs.(22) and (23). We show that
Q* = I and hence the ordered diagonal strategy satisfies the
HJB equation, proving that this strategy is globally optimal.

1. Absence of ground state coherences in the ordered diagonal
solution

We first prove that the optimal transformationQ in Eq.
(13) has the property thatQ13=Q31=0, namely that the
ground state coherences vanish throughout the evolution of
the optimal trajectory. SupposeQ13Þ0 andQ31Þ0 and say
Q31ùQ13. From Eq.(13) we have

FsQd = fg1sm1Q11 + m3Q13d + g2sm1Q31 + m3Q33dg

3fl1Q21 + l2Q22 + l3Q23g

− sg1 + g2dfm1l1Q21 + m3l3Q23g, s24d

where we have chosenm2=0 and hencem1ù0ùm3. Let D
=Q13. Observe that in the above equation we can increase
Q11 andQ33 by an amountD and decreaseQ13 andQ31 by
D, to generate a new doubly stochastic matrix which gives
a larger value ofFsQd sthis follows from the relations
g1ùg2 andm1ù0ùm3d. Hence we assumeQ13=0. Let D1
be the new value ofQ31. Now if we increaseQ11 andQ32
by D1 and decreaseQ31 and Q12 by the same amount we
get a new doubly stochastic matrix which gives a larger
value of FsQd. Hence we need to maximizeFsQd only
over those doubly stochastic matrices for whichQ13
=Q31=0.

2. Dependence of F(Q) on the remaining parameters inQ

As the rows and columns ofQ must sum to unity there
remain only two degrees of freedom in the components ofQ.
Therefore, we can writeFsQd as a function of only two of its
components

FsQd = FsQ21,Q23d

=fg1m1s1 − Q21d + g2m3s1 − Q23dg

3fl2 + Q21sl1 − l2d + Q23sl3 − l2dg

− sg1 + g2dfm1Q21l1 + m3Q23l3g. s25d

It is now required to find the maximum ofFsQ21,Q23d on
the triangular domain 0øQ21ø1, 0øQ23ø1, Q21+Q23
ø1.

3. The maximum cannot lie at an interior point

SupposeF has a maximum in the interior, then the Hes-
sian ofF at that point must be negative definite. We proceed
to show that the HessianGij ;]2F /]Q2i ]Q2j, with i , j
=h1,3j, is not negative definite anywhere and therefore the
maximum must reside on the boundary. Computing the com-
ponents ofG we find

G11 = − 2sl1 − l2dm1g1,

G33 = − 2sl3 − l2dm3g2,

G31 = G13 = − m1sl3 − l2dg1 − m3sl1 − l2dg2. s26d

Denotinga;g1m1sl3−l2d and b;g2m3sl1−l2d, the deter-
minant of G is 4ab−sa+bd2=−sa−bd2ø0 such that one of
the eigenvalues ofG is nonnegative and thereforeG is not
negative definite.

4. The maximum point is„Q21,Q23)=„0,0…

As the maximum does not reside in the interior of the
triangular domain it must lie on one of the edges
fs0,0d ,s0,1dg, fs0,0d ,s1,0dg, or fs0,1d ,s1,0dg.

It can be shown by checking the first and second deriva-
tives along the edgefs0,1d ,s1,0dg that the maximum along
that interval lies at the end pointsQ21,Q23d=s0,1d. We now
check the remaining two edges. AsG11 and G33 are both
nonpositive it follows thatFsQd is concave in both theQ21

andQ23 directions. Therefore, if in addition the slope at the
point s0,0d is negative in both directions, this establishes the
existence of a maximum at that point. We proceed to show
that indeed the slopes are nonnegative:

U ] F

] Q21
U

s0,0d
= sl1 − l2dfm3g2 + m1g1g + l2f− m1g1g

− sg1 + g2dm1l1 ø 0, s27d

U ] F

] Q23
U

s0,0d
= sl3 − l2dfm3g2 + m1g1g + l2f− m3g3g

− sg1 + g2dm3l3 ø 0. s28d

The first expression follows from the fact thatg1ùg2, m1
ù0ùm3, andl1ùl2. The second expression can be proved
by inserting the explicit forms form, Eqs.s22d ands23d, for
the two regimes ofT− t.

VI. DISCUSSION AND CONCLUSIONS

We have presented a general framework for calculating
optimal purity increasing strategies inN-level dissipative
systems under the assumption of complete and instantaneous
unitary control. In so doing, we derived a reduced equation
of motion for the spectral evolution under dissipation and
parametrized by the unitary control. The Hamilton-Jacobi-
Bellman theorem was invoked to provide sufficient criteria
for global optimality. This general framework was then ex-
plicitly applied to derive and prove optimality of the greedy
cooling strategy for a three-levelL system.

In future work we intend to apply this methodology to
obtain explicit optimal cooling strategies for generalN+M
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level systems comprised ofM excited states coupled toN
ground states. One is tempted, by extrapolation from the
present results, to assume that the greedy algorithm should
be optimal in general and hence that coherences do not play
a role in the optimal cooling strategy forN.3. However,
preliminary numerical results based on dynamical program-
ming show that the greedy algorithm is in general not opti-
mal in these systems. Rather, a strategy based on “delayed
gratification” is superior to the greedy strategy, and coher-
ences play a small but finite role in these larger systems. This
will be the subject of a future paper.
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APPENDIX: DERIVATION OF THE “CANONICAL FORM”

We wish to show that Eq.(8) is a linear transformation of
the form

l̇ = Ml.

Recall first that

U†LsULU†dU=o
i j

gi jU
†Fuilk j uULU†u jlki u

−
1

2
hu jlk j u,ULU†jGU

=o
i j

gi jFU†uilk j uULU†u jlki uU

−
1

2
hU†u jlk j uU,LjG .

Expanding Eq.s8d and rewriting it in component form we
have

l̇k = o
i j

gi jFo
s

Uki
† UjslsUsj

† Uik−
1

2
hUkj

† Ujklk + lkUkj
† UjkjG

=o
s
Fo

i j

Qki
Tgi jQ js − o

j

Qkj
T o

i

gi jdksGls

;o
s

Mksls, sA1d

with

M ; QTBQ + QT + D,

and with the definitions ofQ, B, D, and the operation
Q +D as provided in the main text. Rewriting the above in
vector format we have precisely Eq.s9d:

l̇ = sQTBQ + QT + Ddl.
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