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First-principles calculations for the tunnel ionization rate of atoms and molecules
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We present first-principles calculations for the tunnel ionization rate of some atoms and molecules in a static
intense electric field. The Gamow state is calculated to describe the ionization process in the Kohn-Sham
formalism with the self-interaction correction. The tunnel ionization rate is obtained from the imaginary part of
the Gamow state eigenvalue. The ionization rates of rare-gas atoms Ar and Xe and diatomic molgdDjes N
and F, are investigated. The calculations describe well the observed behavior of the tunnel ionization. The
results also show good correspondence with the Ammosov-Delone-Krainov model for rare-gas atoms. We find
that the properties of the highest occupied orbital have significant effects on the ionization rate. In particular,
our calculation reproduces the suppression of the ionization rate ofdlecule in comparison with that of Xe
atom. We also find that the ionization rates of &d F, molecules are very sensitive to the relative angle
between the electric field and the molecular axis, reflecting properties of the highest occupied orbital.
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I. INTRODUCTION scriptions: for example, the ionization of molecule when the

Atoms and molecules under intense laser field show intereXternal field is not parallel to the molecular axis, the ioniza-
esting electron dynamics when the strength of the externd|On Of atoms by a laser with circular polarization, and so on.
electric field is comparable to the strength of the self- e have been developing a three-dimensional computa-
consistent field inside them. Among various phenomena urfion of the many-electron dynamics in the TD-DFT in which

der intense laser field, the change of the ionization mechdl€ time-dependent Kohn-Sham equation is solved in real
nism depending on the laser intensity has attractedime and real space. The method has been most successful to

considerable interests. The key parameter which controls th%gzzngste“nn deeeg t(c))ptthcealp(ra?tsueggz?/zsgggllingarr]ﬁs;)eo(ﬁglsy

E)nlga_tlon mechanlsm is the Keldysh parametgr The multielectron transfer dynamics under strong field in-
Ip is the ionization potential, an& is the strength of the p ¢ [20].

field. The multiphoton ionization is expected to dominate |," inis paper, we present a first-principles, three-

wheny>1, while the direct electron emission through either gimensijonal calculations for the tunnel ionization rates of
tunnel or above barrier processes dominates vwer. atoms and molecules. We present results of the ionization

To describe the ionization rates, analytical expressiongates of neutral atoms and molecules under a static external
have been derived. The Ammosov-Delone-Kraif@DK)  field. We expect these static results will provide useful infor-
model[2] is based on the quasistatic approximation and hasation to understand the basic mechanism of the tunnel ion-
been applied for ionization of atoms with success. Thezation. The static treatment may be justified for rare-gas
Keldysh-Faisal-Reiss mod€l1,3,4 is an alternative ap- atoms and small molecules, since the frequency of the laser
proach which takes into account the time dependence of thigeld is usually much smaller than the frequencies of the low-
external field. est electronic excitations.

Besides these analytical approaches, various computa- It has been known that the tunnel ionization rates of atoms
tional approaches have been rapidly developed to descritend molecules depend crucially on their ionization poten-
the electron dynamics under the intense laser field. For exials. The tunnel ionization rates of atoms and molecules with
ample, the high harmonic generation in atoms has been anapproximately the same ionization potential are usually close
lyzed by solving the time-dependent Schrédinger equation ito each other. Recently, however, the ionization rate of O
the single-electron approximatidi®d]. A coupled dynamics molecule is found to be much smaller than that of Xe atom,
of an electron and ions for His a three-body problem and although their ionization potentials are almost the same
has been studied in Reff6—9]. For atoms and molecules [21,22,29. Regarding the origin of this difference, several
with many electrons, the time-dependent density-functionaéxplanations have been put forwaj@2,23. Recently, an
theory(TD-DFT) has been extensively appli¢t0—14. The  extension of the ADK theory incorporating the properties of
TD-DFT calculations offer arab initio description of the molecular orbitals has been presenf2d] where the impor-
many-electron dynamics, and have been providing insighttance of the orbital properties of molecules was stressed. We
into various nonlinear electron dynamics. They are, howevenyill clarify, by our microscopic calculations, that the proper-
achieved mostly for problems with an axial symmetry. Thereties of the molecular orbitals are indeed responsible for the
are a number of subjects which await three-dimensional desuppression of the ionization rate of @olecule.
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To describe the ionization rates of diatomic moleculesabove barrier processes, and ignore the multiphoton process.
with the external field being not parallel to the molecularUnder these circumstances, the time-dependent Kohn-Sham
axis, we must treat a decaying state without any spatial symequation(1) is expected to yield the static Kohn-Sham equa-
metries. We have developed a computational approach ition with an external dipole fieléf,, () =eFz whereF is the
which the Gamow state is constructed based on the Kohrstrength of the electric field at a certain time.

Sham formalism in the DFT. The decaying boundary condi-

tion is approximately described by introducing an absorbing {hIN(r)] + Ve, N} (1) = €y(F). (4)
boundary condition. The ionization rate is then obtainedyere the electrons in the molecule are continuously emitted
from the imaginary part of the eigenvalue. In the calculation, oytside of the molecule so that the static Kohn-Sham or-
Fhe orbital wave fun_ctions are _representec_i on the grid pointgji5|s #(F) must satisfy the outgoing boundary condition
in the three-dimensional curvilinear coordinates. without any incident waves. This is the so-called Gamow

The organization of the present paper is as follows. Ingia1e Because of the outgoing boundary condition, the or-
Sec. II, we present our formalism to calculate ionization ratg,; eigenvalues; are complex numbers
1 ]

in the Kohn-Sham framework. In Sec. Ill, we show our re-
sults for the rare-gas atoms Ar and Xe and some diatom €= eiR+iFi. (5)
molecules N, O,, and F. In Sec. IV, summary will be pre-

sented. whereeiR andTI’; are the real and the imaginary partseaf

The imaginary part of the eigenvaldg is related to the
ionization rate. To see it, we multiply, to Eq. (4) and
Il. FORMULATION subtract its complex conjugate:

A. Gamow state in the Kohn-Sham formalism K2, ) - _ )

We will employ the Kohn-Sham formalism in the DFT to - %(d’i Vi - Vo) = 2L " 6)
calculate the tunnel ionization rate. Since the DFT is a theory .
for the electronic ground state, we first clarify the groundsWe define the current density of thth orbital j; as usual,
that the DFT can be applicable to calculate the ionization i7
rate. We rely upon the TD-DFT for this purpose. fi=——( V- V). (7)

We consider a molecule under an intense, time-dependent 2m
electric dipole field. We express the interaction potential be1han we find
tween the electrons in the molecule and the external field as
Ve, t)=eF(t)z where F(t) is the strength of the time-
varying dipole field. This external perturbation induces elec-
tron emission to the continuum. Since the ionization rate is ) ) o
proportional to the number of electrons which pass through #tegrating both sides over the volurewhich includes the
sphere of large radius per unit tinf@veraged over a certain Molecule inside and employing the Gauss theorem, we have
time period, the ionization rate is calculated from the time- R 2
dependent electron densityr,t). In the TD-DFT, the time f n-j;dS=- —FJ |i|2dF, 9
evolution of the electron density is described by the time- s v
dependent Kohn-Sham equation,

R
V']i:_%ri|¢i|2- (8

whereS is the surface of the volum¥, andni is a normal
vector in the surfac&. The ionization rate of the orbital w;

e ~ _
i (D) ={h[n(r,t)] + Vex(O}4i(r,1), (1)  is now defined and is related 1§ as
" R A-jds
n(F, Y = 2 [i(F 0. (2) f 2
i ) wizs—:—%ri. (10)
The Kohn-Sham Hamiltoniah[n(f',t)] is given by JV|¢i|2dF
72 n(F' 1) - - o
h[n(f,t)] = - —V2+V,  + ezf di' ——= + w [n(F.0)], The electrons emitted to the continuum, in principle, con-
@)= o on IF =7 #xd (0] tribute to the self-consistent potential. If the ionization rate is

3) very smgll, this contribution Qf _emitted electr_ons to the_po-
tential will be small and negligible. Under this assumption,
whereV,y, is the electron-ion potential and,n(r,t)] is  we will make calculations separating the procedure to calcu-
the so-called exchange-correlation potential. late ionization rate into the following two steps: First, one
We now consider a case in which the external fieldsolves the static Kohn-Sham equation under the static exter-
changes very slowly in time. More precisely, we assume thanal fieldeFz In this step, the tunnel ionization is forced to be
the tunneling time is much shorter than the period of theprohibited by, for example, placing infinite wall potential
external field. Namely, the Keldysh parameteis assumed outside the barrier. At this stage, the problem is a usual static
to be much smaller than unity. We also assume the domiKohn-Sham problem except the appearance of the external
nance of direct emission of electrons through either tunnel odipole and infinite wall potentials. The second step is to cal-
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culate the Gamow state solution for each Kohn-Sham orbital. As will be explained below, we will employ a grid repre-
At this stage, the Kohn-Sham Hamiltonian is kept fixed tosentation in the three-dimensional coordinates to solve the

that obtained in the previous step. Kohn-Sham equation. In this representation, it is practically
impossible to describe core electrons, since the description of
B. Kohn-Sham Hamiltonian core electrons requires extremely fine grid spacing. We there-

fore describe only valence electrons, treating effects of the
Because the ionization rate is sensitive to the asymptotiéore electrons through the norm_conserving pseudopoten_
behavior of the potential as well as the orbital energies of theja|s. we thus ignore the ionization of core electrons and the
occupied orbitals, we should employ the exchangeinfluence of the core electrons through polarization, which
correlation potential which is appropriate in these respectsare expected to be small. In the practical calculations, we
We will employ the exchange-correlation potential which employ the pseudopotentials constructed with a procedure of
takes account of the self-interaction correction for this reargullier and Martins[26] and with a separable approxima-

son. _ _ ~ tion [27],
We adopt an approximate construction of the optimized

effective potential including the self-interaction correction,

which was proposed by Krieger, Li, and lafratéL|) [25]. UpdF,77) = o1 S(F=17)

In this treatment, it has been shown that the ionization po- AvP(N) P (D P(r) AvP(r”)
tentials of atoms and molecules approximately coincide with > ' = i I (18)
the energies of the highest occupied orbitals. The potential in Im A GRIN()

this model also has a correct asymptotic behavigi r-for

neutral molecules. - .
In the KLI prescription, the local, state-independentThe pseudopotential is constructed for each partial wave

exchange-correlation potentiaf' () is constructed by the sEecified by the angular momentumwhich we denote as
following procedure: ' vP(r). We include up tol=2. The pseudopotential with a

certain angular momenturly is adopted for the local one,
I () e — Vioe(N)=vf(r). ¢ R (F) is the atomic wave function for the
Mxeoll) = ; po(1) {vig(") + [ = Vil (11) partial wglvelm calculated with the pseudopotentiab is
7 defined byAvP(r)=vP(r) —vjec(r).

where p;,() is the density of thdth orbital with spino.
Other quantities are defined by C. Boundary condition

SE , - Ag(f/) OB, pig, 0 To calculate the Gamow states, we need to solve the static
Vi(r) =%—fdr’pl ~- X;[p' ], Schrédinger equation, E@4), with the outgoing boundary
Po IF=r’| Pio condition. For systems without spherical symmetry, the treat-

(12) ment of the outgoing boundary condition is not simple. In-
stead of imposing the outgoing boundary condition explic-
itly, we will employ the absorbing boundary condition

—SIC _ SIC

i = (Wiol e o (Dl i), (13 (ABC) in which an imaginaryabsorbing potential is placed
o in the spatial region outside the molecule. Denote the radial
Vie = (Yialvxe.o(D| i) - (14)  distance from the center of the moleculerahe absorbing

. ) ) potential is placed in the spatial region outside a certain ra-
Exdpy.p ] is the exchange-correlation energy density forgj s g with a thicknessR<r < R+AR. Outside the region of
spin-polarized electron gas. In the practical calculationse ahsorhing potential> R+AR, the wave functions are set
[xcio~viol Of Ed. (11) is calculated by solving the fol- (4 yanish. If the absorbing potential works ideally, there exist

lowing algebraic equation: only the outgoing waves just inside the absorbing potential
N,~1 r=R.
M. V(TSIC NN, T In practice, we employ the following spherical absorbing
21 (G0 = Mij. o) (bt = Vi) = Vi —0 potential with a linear radial dependence.
. 0 0<r<R),
(j=1,...N,-12), (15) i ( )
-iwr)=y . r-R A (19
whereN, is the number of the orbitals with spin, and ~1Wo AR (R<r<R+AR),

M :f dF&M (16)  WhereRis set beyond the barrier region. The heigh(>0)
e p(r) and the thicknesAR are determined from the conditions that
the electrons coming into the regiar>R should be ab-

- Ny o) sorbed as completely as possible. For the electrons with ki-
ng=<lﬁia|2 &U—Uja—llﬂi()- (17 netic energyk, the parameters should satisfy the following
ER ) condition[18]:
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1/2 1 - 30 T ;
20—— < W, < —E®?2\8mAr, (20)
Ary8m 10 20 4 H

wherem is the electron mass.
Employing the absorbing potential, the Gamow state is
obtained by solving the following Kohn-Sham equation: 10

{hIN(N]+ VexlF) = IW(D} (7)) = (f +IT) (1), (21)

with the vanishing boundary conditios(r)=0 for |/]>R
+AR.

One may derive an expression for the ionization rate F|G. 1. The adaptive mesh that we use to solve the Kohn-Sham
which includes the absorbing potentiéfr). To show it, we  equation. The grid points inside the large circle are employed in the
start with Eq.(10). We take a sphere of radil&for V and  calculation. The orbital wave functions lie inside the small sphere
apply the Gauss theorem. Then we obtain the following exwhen the external field is not applied. The absorbing potential is

yIA]
o

-20

_30 T I
-30 -20 10 O 10 20 30

x[A]

pression forl';: placed in the spatial region between two circles.
dr] g (F)[AW(F kv
J,_ anaorwe y= . (25)
Fi == . (22) 1 K1 v
+ -

| ansor R

r<R a sinh—

a

The total ionization ratev is given by summing up the
rates of all occupied orbitalsy==;w;. We may assume that

the denominator of Eq22) is equal to a normalization con- kw
stant, unity, so long as the ionization rate is not very large. zZ= . (26)
Then the ionization rate is expressed as the following inte- 1+(k-1) w
gral form including the absorbing potentis(r) and the W
electron densityn(r), a sinh—
a
2 2 . .
w=-=->T= —f drn(HWI(r). (23)  wherea, k, andn determine the property of the transforma-
A ilrer tion. By this transformation, there holds~u for small x

o o ~ (x<a), and x~ku for large x (x>a). We then discretize
The ionization rate calculated in this way should coincideyniformly the variableu,v,w. This produces a uniform grid
with the rate calculated from the imaginary part of the eigen+or small x and a courser grid for large. The grid points
value. In the practical calculation, this relation can be used agmployed in the calculation are shown in Fig. 1. The trans-

a useful check for the numerical calculation. formation parameters to be used in the calculations are sum-
marized in Table I. We have examined carefully that the
D. Numerical details results are not sensitive to the choice of the parameters.

As we mentioned in the last part of Sec. Il A, the calcu-

To express the orbital wave functions, we employ theyiong of the jonization rates proceed in the following two

real-space grid method. Th!s IS a convenient representatio, eps. We first solve the static Kohn-Sham equation under the
in the Kohn-Sham theory, since the potential is almost loca

) ) . : tatic dipole field described by,,() =eFz At this stage, we

Lgutgtetr:c;?rlgrnaetes rsggle‘:’snitg:?g'r ;)rﬁtslgggotiz tmhgleﬁ:%(l:e, ..i_?]eguppress the emission of electrons to the continuum by plac-
ge sp 9 . ' . Ihg a spherical wall potential outside the molecule. Namely,

number of grid points becomes substantially large. To save . o
) . We solve the following Kohn-Sham equation:

the computational effort, we reduce the number of grid

points employing the following adaptive grid. _ _ _

The adaptive grid is generated as follows. We introduce TABLE I. The spatial parameters employed in the calculations

the following coordinate transformation frortx,y,2) to of rare-gas atoms and diatomic moleculgg;is a radius of pseudo-
(u,v,w) for each Cartesian, coordinate e potential.R and AR are the radii related to the absorbing potential.

h is a width of discretization of the variablesv,w. a, k, andn are
parameters which specify the adaptive coordinate transformation.

ku
o n’ 24 Res(A) R(A) ARA) h a k n
1+(k-1)
u Rare-gas atoms 14 100 200 0.2 50 100 2
a sinh- Diatomic molecules 0.8 100 200 0.2 50 100 2
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{h[n(f)] + Vext(F) + VwaII(F)}d’i(F) =€ d’i(ﬂa (27)
whereV,,,(F) is set as
_Joev  (r<Rya)
Vawai(F) = {Vo oV (>R, (28)

The radial distance of the waR,,, is so chosen that the
final results of the ionization rate do not depend on it. |
practice, we employR,,;=6 A and V,=1000 eV for all

PHYSICAL REVIEW A 69, 053404(2004)

Once the self-consistent potential is obtained in the calcu-
lation with the wall potential, this potential is kept fixed in
the calculation of the Gamow state. We remove the wall
potential and add the absorbing potential#) in Eq. (27).

The potential of the dipole external fielelFz becomes
quite large at the spatial region far apart from the origin of
the molecule. The emitted electrons are accelerated strongly
by this potential. This acceleration induces difficulty for the
absorbing boundary condition: the fast electrons may not be

nabsorbed efficiently by the absorbing potential. To remove
the difficulty, we modify the external potentisl.,(r) from a

calculations. In solving the Kohn-Sham equation, Eg.dipole formeFzto a quadratic form outside the barrier re-

(27), the conjugate gradient method is employed.

Vex r= \

R. is taken to be outside the barrier top and to be inside t
radius of the absorbing potentidl The potential value &R,
eFR. should be larger than the ionization potential of th
molecule. In practice, we take.=8-10 A.

gion,
(z<R)
_ 2
R:—AR)"| (Re<z<R:+AR) 29
(z>R:.+ARy).

hemploy the deflation techniqu@8] where the vector space
which was obtained as eigenfunctions in the previous steps is
eremoved in the iteration procedure.

The final problem is to calculate the Gamow state by solv-

ing Eg. (21), in which the densityn(r) is kept fixed to that

obtained with the wall potential. This is not a Hermitian

Ill. RESULTS AND DISCUSSIONS

A. Rare-gas atoms

problem. We have found that this equation can be solved

efficiently with the shifted inverse iteration methfiB]. For
each orbital specified by the algorithm is given as follows:
Start Prepare an initial guess for the wave functio
#(F) and the shiftz.
Iterate Fork=1,2,-- until convergence, compute

1 . 1 (ke
$1(0) = —{hIN(F)] + Ve = W) — 79170, (30)
k
where ¢y is a normalization factor.
As an initial guess for the wave functioff®(7), we uti-
lize the static Kohn-Sham solution with the wall potentia

The shift¢ is also taken as the real eigenvalue of the Kohn-

Sham solution with the wall potential. To calcula}.{a“) de-
fined by Eq.(30), we solve the following Schrodinger-like
equation with a source term:

{RIN()] + Ve = IW(F) = &¢0(F) = g (7).

In the real-space grid representation, this equation can

(31)

We first report calculated results of the rare-gas atoms Ar

and Xe. We show in Fig. 2 the self-consistent potential for

n Xe atom obtained by solving E@27). In the left panel, the
potentials are shown along the axis parallel to the external
field for three cases of different external field. The origin is
set at the center of the atom. The energy of the highest oc-
cupied orbital is denoted by the horizontal lines. The barrier
energy gets lower as the external field increases, while the
change of the orbital energy by the Stark effect is small and
is not seen. In the right panel, the self-consistent potential is
plotted in the plane which includes the center of the atom

| and is parallel to the external field. The strength of the field
is set at 5< 103 W/cn? (1.94 eV/A). The bold line indi-
cates the orbital energy of the highest occupied orbital,
-12.3 eV.

To calculate the Gamow states, we solve Exf) which
includes the absorbing potential. In Fig. 3, we show the be-
havior of the ionization rate of Xe atom when we change the
parametei\V, of the absorbing potential. To demonstrélg

be#ependence clearly, we choose a small radius for the absorb-

regarded as a linear algebraic equation with a sparse matrirg potential, AR=8 A in this calculation. For all other cal-
with complex elements. To solve this equation, we haveculations, we employ much larger radiusR=20 A as we

found the conjugate residual method works efficiently.

wrote in Table |. The laser intensity is fixed at 5

In some cases, there are almost degenerate eigenvalugslO W/cn?. At this intensity, the kinetic energy of emit-
for which the above simple shifted inverse iteration methoded electron is about 7 eV in the spatial region R+AR.
fails to provide all independent solutions. In that case, wdJnder these conditions, the appropriate valu&\gffrom Eq.
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FIG. 3. W, dependence of ionization rate of Xe atom. Laser
intensity is 5x 1013 W/cn?.

energy [eV]

tem from spherical to axial. The complex eigenvalues of the
py andp, orbitals are the same reflecting the axial symmetry.
As seen in the table, the ionization rate of theorbital is

20 L y » - . . . larger by 1-2 order of magnitude than thoseppfand p.
The eigenvalue of thgorbital is not shown, since the imagi-
nary part of the eigenvalue of theeorbital is very small.

FIG. 2. Self-consistent potential of Xe atom in the strong elec- Summing up the ionization rates of all orbitals, we obtain
tric field. The left-hand panel shows the potential along the directhe total ionization rate. In Fig. 4, we show the calculated
tion of the electric field for three cases of external electric field. Theionization rate of the Xe and Ar atoms by open squares. The
right-hand panel shows contour lines of the potential in a planemeasurements are available with the linear polarized, ul-
parallel to the direction of the electric field at the strength oftrashort(30 fs) laser at 800 nnj29]. In the measurements,
5X 10 W/cn?. relative ionization rates at various laser intensities are avail-

able. We plot the measured rates in the figure, normalizing
(20) is restricted as 7 e W,< 16 eV. Figure 3 shows that the measurements to coincide with the calculation at the laser
the ionization rate is almost constant in the wide region ofintensity of 9x 103 W/cn? for Xe atom, and at the laser
the parametey\,. SmallerW, gives too small an ionization intensity of 1.3x 10'* W/cn? for Ar atom. We also plot the
rate, because of the insufficient absorption and reflection agte in the ADK theory by the dotted curve. Since we show
r=R+AR. LargerW, also results in too small an ionization the rate for a static field, we compare the rate expression in
rate, because of the reflectionratR caused by the absorb- the ADK theory for a static field. The rate expression for the
ing potential. Employing wide spatial region of absorbingstatic field wgy. iS related to the rate expression for the
potential, AR=20 A, there are wide regions of paramefés  periodic 0Ne, Wperiodic X Wperiodic= V3F/ Tk3Wsgaic  With
where the ionization rate is not sensitive to the choice of the=y2lp.
parameter. For all the results shown below, we examined As seen in the figure, the measured dependence on the
carefully that the calculated ionization rates are not sensitivéaser intensity is described fairly well by the calculation. The
to the change of\,,. calculated rate decreases much faster than the measurements

In Table 1l, we show the orbital energies of the Gamowwhen the laser intensity is weak:3x 103 W/cn? for Xe
states of Xe atom fop,, py, and p, orbitals. The external and<6x 10" W/cn? for Ar). This trend may be attributed
field is set parallel to the axis. Since we employ self- to the effect of the multiphoton process. Comparing our cal-
interaction correction, the absolute values of the orbital eneulation with the ADK formula, the absolute values of the
ergies are very close to the ionization potential. The calcuionization rate are slightly highgabout a factor of gfor all
lated p orbital energy in the absence of the laser field isthe region of the laser intensity. Thus the laser intensity de-
12.07 eV. The electric field reduces the symmetry of the syspendence is very similar between our calculation and the

TABLE II. Orbital energy of each Gamow state of Xe atom is shown under the static electric field parallel
to thez axis. The measured ionization potential is denoted as well. Numbers in brackets denote powers of 10.

Laser intensity(W/cn?) 2p, (eV) 2py (eV) 2p, (eV) IP (eV)
4x 10 -12.27i1.07-5] -12.2741.07-5] -12.30§1.99-4] 12.13
5x 1018 -12.33i2.27-5] -12.33i2.27-5] -12.38i7.04-4]
6x 1013 -12.39i5.19-5] -12.39i5.13-5] -12.47i1.89-3]
7x 101 -12.4741.37-4] -12.4741.37-4] -12.56i3.64-3]
8x 1013 -12.56i2.5-4] -12.56i2.5-4] -12.69i8.69-3]
9x 1018 -12.67i5.99-4] -12.675.99-4] -12.79i1.11-2]
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10° . . — tonian in Eq.(21). Without the static polarization, the ioniza-
10k ?(2%:% o e tion rates of Ar atom are slightly higher, about a factor of 2,
g 102F  ADK - . '__f—ﬂ"’ 3 than those with the polarization. The dependence on the laser
g 102 3 .- E-. !,.:-"' E intensity is not much affected by the polarization.
ud 0" F . 3
§ 10°F - . 3
g 183 3 3 B. Molecules: N,, O,, and F,
PP E We next show results of tunnel ionization rates for di-
109 I L - atomic molecules, i O,, and k. We first show the Kohn-
20x10™  4.0x10™ 28-°X1°13 Sham eigenvalues and molecular-orbital properties of the di-
Laser Intensity [W/cm"] atomic molecules without external field in Table IIl. The
107 — : _ measured ionization potentials of ,NO,, and F, are
oL Arexpt m ] 15.58 eV, 12.06 eV, and 15.70 eV, respectively. As men-
7} 10»3 P f\atl)?{ S ﬂﬂ_g.!—{:] tioned previously, the measured ionization potentials and the
% 107 F am T calculated highest occupied molecular orbitdOMO) ener-
8 10%F . _E-" E gies are close to each other, since we employ the self-
.g 10°F 4 g 3 interaction correction. The agreement is, however, less accu-
£ 10%p ] rate for these diatomic molecules in comparison with the
2 107 L '3 ] agreement in rare-gas atoms. The HOMO orbital energies
e ) . 2 of O, and k, are about 1 eV smaller than the ionization
4.0x10" 8ox10™®  1.3x10™ potential.
Laser Intensity [W/em?] We note that the properties of HOMO orbitals are differ-

o ent among molecules: The HOMO of the I¥ the o orbital,
FIG. 4. lonization rates of neutral Xe and Ar atoms are shown a*having zero angular momentum around the symmetry axis
a function of the laser intensity. Open squares denote our calculaon the other hand, the HOMO orbitals of,Gand F, are e '

tion. Filled squares are the measured res{#§ whose absolute o oo one-unit angular momentum around the symmetry
values are normalized to coincide with the calculation at a certain

laser intensity, & 1083 W/cn? for Xe atom and & 104 W/cn? axis and having also the nodal plane perpendicular to the
for Ar atom ' molecular axis. The ©molecule has a spin-triplet ground

state. We employ local spin-density approximat{®u$DA)
o for this molecule, these spin properties induce difference be-
ADK results. This indicates the usefulness of the ADK {yeen the HOMO orbitals of Qand K. Namely, four elec-

theory in describing the relative ionization rates of atomsgng occupy degenerate’ orbitals in F, while two elec-
with many electrons for wide laser intensities. trons occupy degeneraté orbitals in Q.’

The present calculation incorporates many-electron ef- \ve show the calculated ionization rates of these mol-
fects through the realistic self-consistent potential generatede jjes and investigate the relationship between the ioniza-
by solving Eq.(27). Beyond single electron approximation, s rates and the molecular-orbital properties. The difference
the screening effect due to the static polarization of atom ig¢ the orbital property manifests clearly in the angle depen-
taken into account. We examined the effect of the screeningence of the ionization rate. Figure 6 shows the angle depen-
on the ionization. In Fig. 5, we show the ionization rate whengyence of the ionization rates of,Nind O, molecules. The

one ignores the static polarization. This is achieved by calyngje is measured between the molecular axis and the exter-

culating the Kohn-Sham Hamiltonian without the external,j'field. If we ignore the properties of the molecular orbital,

potential Ve in Eq. (27) and then employing this Hamil- - 5ne may expect that the ionization rate shows maximum
when the external field is parallel to the molecular axis. The

ot B NZexpt. m' ' calculated ionization rate of Nmolecule, whose HOMO or-
T 192k Nopolaresion o bital has theo character, indeed shows maximum when the
= s o o_g " external field is parallel to the molecular axis.
g 1OF o o W However, the angle dependence of the ionization rate of
5 10*F o W® O, molecule is quite different. The ionization is strongly sup-
8§ 5L g= " pressed when the external field is either parallel to or perpen-
5 % . dicular to the molecular axis. A similar angle dependence is
10°F 8 also found for k. These suppressions of the rate for a certain
107 L~ ! ! ! directions can be understood from the properties of the

4.0x10"  B.0x10"® 9.0x10"™ 1.3x10™
Laser Intensity [W/cm?]

HOMO, the 7" orbital, in O, and K. To obtain more intui-
tive understanding, we show in Fig. 7 the electron-density
FIG. 5. The ionization rates of Ar atom with and without incor- distribution of the HOMO orbital of @ molecule under the
porating the static polarization are compared. The open squaréxternal field changing the relative angle between the exter-
show ionization rates with the polarization, while the open circlesnal field and the molecular axis. The nodal structures in the
without the polarization. Filled squares are the measured resulglane perpendicular to the molecular axis, as well as in the
[29] which is normalized as denoted in the caption of Fig. 4. symmetry axis along the molecular axis, are clearly seen.
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TABLE lll. Molecular orbitals of diatomic molecules, NO,, and k are shown. The Nand F, are
calculation in which two electron occupy the same spatial orbital, whijlés@alculated in the local spin-
density approximation with self-interaction correction. The calculated orbital energies and orbital characters

are shown.
N, 0, [
Orbital Up and down Orbital Up Down Orbital Up and down

o -14.90 T -11.29 T -14.40
™ -16.88 T -11.29 T -14.40
T -18.82 T -18.54 -17.29 T -18.12
o -17.78 T -18.54 -17.29 T -18.12
o -33.47 o -18.45 -18.55 o -20.50

o -24.53 -23.20 o -31.81

o -38.09 -38.16 o -38.89

The electron density is maximally extended spatially at theat the forward angle. Qualitative behavior is similar between
angles/4, where the ionization rate shows maximum. Thusour calculation and the function, showing maximum when
the ionization is strongly influenced by the molecular-orbitalthe molecular axis is parallel to the external field and mini-
properties of the HOMO. This point has also been stressed imum when the molecular axis is perpendicular to the exter-
the molecular ADK treatment by Torgf al. [24]. nal field. However, the calculated angular dependence is
Recently, the angle dependence of the ionization rate hawuch weaker than that which explains measurement. We
been measured for Nmolecule[30]. In the left panel of Fig. note that the laser intensity in our calculation, 1
6, we compare calculated angle dependence of the ionization 10** W/cn?, is smaller than the intensity in the measure-
rate with a function which is one of those functions that canment (2 X 10** W/cn?). The latter intensity corresponds to
explain measurement. Two curves are normalized to coincidthe boundary between the tunnel and the above barrier
mechanisms. The discrepancy between our calculation and

107 —— the measurement may originate from this change of the ion-
:;',‘{j g ization mechanism. Our method cannot be applicable to the
z cale. no polarization  © case of latter intensity where the ionization rate is large.
=102 ° o o Integrating the angle dependent ionization rate over mo-
g ° lecular orientation, we obtain the ionization rate of the mol-
c N T . .
% 3‘“ FB-n. 8 8 5 g ecule. Since it costs much to calculate the angle dependence
10°F T °
L
2 Angle=0 1/167 2/167
10~4 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Angle [1/16 x]
T a0 wiemd  +
_ 10k 9x1013[W/cm2} * 4
't'f * * * .
= 2 L * -
% 10 % * "
= ¥ 3
5 -3 +
i) o + + E
3 10 Lo . _
N +
S 10tk e
10-5 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Angle [1/16 x]
FIG. 6. Angle dependence of ionization rate foy (\eft pane)
and G (right pane) molecules. The angle is measured between the
external field and the molecular axis. In the Malculation, the
calculations with and without the polarization effect are shown by

open square and circles, respectively. The dashed curve indicates a

distribution which explains measuremdB0]. For O, case, angle FIG. 7. Density of electron in the highest occupied orbital f O
dependences for the cases of two different laser intensities am@olecule. The direction of the laser field is always taken to be
shown. vertical direction, while the molecular axis is rotated.
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T T T A
Arexpt. = O2calc. m OG ]
2 Arcalc. O y O2expt. B Og
w 10 N2expt. o s ? w 10 2t Xecdc e 0o® " uf
= 3 N2cale. o E'ﬂ = Xeexpt. © «® mo
© 10 7 © -3 0% Bo ]
® n @ 5 10 o) o
c  10*F a"e* c 0 a
C C
S - S 4ot o® @ ]
o 5 . o © o
A N ) =
5 . 5 5 ] ]
- 10° @ o° - 10 ]
[ ]
10-7 l? 1 1 1 10-6 1 1 1
4.0x10'®  6.0x10"® 9.0x10"™ 1.3x10™ 1.0x10"®  2.0x10" 5.0x10'® 9.0x10'®

Laser Intensity [W/cm?]

Laser Intensity [W/cm?]

FIG. 8. The ionization rates of Nand Ar are shown as a func- FIG. 10. lonization rates of Xe atom and,@olecule as a
tion of the laser intensity. The measured rates are scaled in suchfanction of the laser intensity. Open circles and open squares are
way that the measured rate of Ar at K30 W/cn? coincides  our calculations for Xe and Qrespectively. Filled circles and filled
with the calculation. squares are measured rates at wavelength 800 nm and laser pulse
length of 30 fm. The measured rates are scaled in such a way that
for each laser intensity, we calculate the ionization rates athe measured rate of Xe atx910'3 W/cnm? coincides with the
the angle with maximum ionization rat@° for N, and 45°  calculation.

for O, and F), and rescale them to obtain the angle-
integrated rates assuming that the angle dependence does dependence on the laser intensity. In the left panel of Fig. 6,
depend much on the laser intensity. we show calculated angle dependence when the polarization
In Fig. 8, we show the calculated ionization rate of &  effect is excluded. The ionization is strongly suppressed
a function of the laser intensity. The ionization rate of Ar when the external field is parallel to the molecular axis. This
atom whose ionization potential is close to that gfislalso  is consistent with the fact that the static polarizability is the
plotted. In the measurements, the absolute value of the rate iargest when the external field is parallel to the molecular
not available. As before, we scaled the measured rate of Aaxis.
atom to coincide with the calculation at laser intensity of We next turn to the ionization of Omolecule. In Fig. 10,
1.3X 10" W/cn?. We note that the relative intensity be- we compare the ionization rate of Xe atom angirolecule.
tween Ar and N has been measured and is reliable. TheThe measured ionization rate is also plotted. As before, we
calculation nicely reproduces the relative ionization rates bescaled the measured rate of Xe atom so that the calculated
tween Ar and N as well as the laser intensity dependencerate coincides with the measurement at the laser intensity of
The dependence on the laser intensity is very similar be9x 10" W/cn?. The relative ionization rate of Xe atom and
tween N and Ar. O, molecule shows marked difference, in spite of the similar
For molecules, screening effect by the polarization ofionization potential between two systems. Our calculation
other electrons is expected to be more significant. To see th&icceeds to reproduce this feature. This strong suppression
effect of the static polarization on the ionization rate, weof the ionization rate in @molecule is clearly related to the
made a calculation suppressing the polarization. As we didngle dependence of the ionization rate discussed above. Be-
for Ar atom case, we construct Kohn-Sham Hamiltoniancause ther” orbital vanishes along the molecular axis, the
without external field, and employ this Hamiltonian in the ionization to the direction parallel to the molecular axis is
Gamow state calculation. In Fig. 9, we show the ionizationstrongly suppressed. In other words, theorbital feels the
rates with and without incorporating the effect of the polar-centrifugal barrier along the molecular axis. This centrifugal
ization. If one omits the polarization effect, the ionization barrier hinders the emission of the electrons along the mo-
rate becomes about two to five times larger. Thus the effedecular axis.
of the polarization is indeed more significant for molecule The calculated suppression of the ionization rate fgr O
case. The polarization effect does not affect much on thenolecule is not enough to explain fully the measured sup-
pression. One possible origin of this discrepancy is a limited

10"

102

10

10

108

lonization rate [1/fs]

10°®

107

_.g'

N2I expt.
N2 calc.

L No polarization

°
o WW
|
| ]

ﬁl

T
]
o
o]

[ affo]

0]
L]

4.0x10"®

6.0x10"3

9.0x10"® 1.3x10'

accuracy of the orbital energy in our approach. The ioniza-
tion potential of Q@ molecule is 12.06 eV. However, in our
calculation with the self-interaction correction, the orbital
energy of the HOMO is -11.29 eV. If we could manage to
shift the HOMO energy so as to reproduce the measured
ionization potential, we may expect that the calculated ion-
ization rate would be suppressed further.

We next consider briefly the ionization of, Ffnolecule.
The ionization potential of fis close to those of Ar and N
Figure 11 shows a comparison of calculated ionization rate

Laser Intensity [W/cm?] .. . .
of Ar, N,, and k. The ionization rate of f-is smaller than

those of Ar and M. Since the HOMO of Fis a« orbital,
the same mechanism as that of i® expected. The suppres-

FIG. 9. The ionization rates of Nmolecule with and without
screening are compared.
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sion is, however, not very strong compared with the suppres- 107" VT . .
sion for O, molecule. One of the reasons of this difference 102 L N2 cdlo. o %
between Q@ and F, is the different occupation number of the £ F2cale. o B 81
HOMO orbital. The HOMO of k is occupied by four elec- E 10° ¢ 8 ge J
trons, while the HOMO of @is occupied by two, reflecting T 8 B ]
the triplet structure of the © 2 5 ]
In the measurements, a strong suppression of the ioniza- g 0 8 ]
tion rate is not reported for FOur results may look consis- = 10%F e ]
tent with this observation. However, in our calculation, the 107 “ . . L
HOMO orbital energy of Fis 14.40 eV while the measured 4.0x10'®  6.0x10"® 9.0x10"™ 1.3x10™
ionization potential is 15.70 eV. Therefore, our calculation Laser Intensity [W/cm?]

should have overestimated the ionization rate. To get conclu- o )
sive results, we feel that further analysis are required em- FIG. 11. Calculated ionization rates o} lare compared with
ploying a better functional which describes orbital energie§hose of Ar and h.
consistent with the measured ionization potential.
tion. The ionization rate of Ndoes not depend much on the
orientation, while the rates of Oand F, are strongly sup-
IV. SUMMARY pressed along the molecular axis and to the plane perpen-

We present first-principles calculations of the ionizationdicular to the molecular axis. The property of the HOMO
rates of some atoms and molecules under static dipole fiel@'Pital also has a significant effect on the absolute value of
A new computational method is developed based on thg‘e ionization rate. The measured suppression of the ioniza-
Kohn-Sham formalism. The Gamow states are calculated iffOn rate of Q molecule in comparison with that of Xe is
real-space discretizing the three-dimensional coordinates aftic€ly reproduced by our calculation. o
introducing the absorbing boundary condition. The ioniza- 1he Present analysis is achieved in the static limit, ignor-
tion rates are then obtained from the imaginary part of thén9 the os_cﬂlatory effect qf the external_ field. With the real-
Gamow state eigenvalues. space _grld representation, calculatlor)s of the thrge—

The ionization rates of rare-gas atoms Ar and Xe anodlmenS|or.1aI .elecFron' dynamics are feasible. The extension
homonuclear diatomic molecules,NO,, and F are calcu- toward this direction is now under progress.
lated. Our calculations nicely reproduces overall features of
the measured ionization rates including the dependence on
the laser intensity. They also show good correspondence with This work is supported by the Grant-in-Aid for Scientific
the Ammosov-Delone-Krainov model for rare-gas atoms. Research(Grant No. 14540369 and also by NAREGI

The ionization rate of the diatomic molecules are stronglyNanoscience Project, Ministry of Education, Culture, Sports,
influenced by the properties of the HOMO. The HOMO of Science and Technology, Japan. Numerical calculations are
the N, is the o orbital, while the HOMO's of @ and K are  achieved on the supercomputers at the Institute for Solid
the 7 orbital. The ionization rates show characteristic angleState Physics, University of Tokyo, and at the Research Cen-
dependence between the molecular axis and the laser direer for Nuclear StudyRCNP), Osaka University.
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