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We present first-principles calculations for the tunnel ionization rate of some atoms and molecules in a static
intense electric field. The Gamow state is calculated to describe the ionization process in the Kohn-Sham
formalism with the self-interaction correction. The tunnel ionization rate is obtained from the imaginary part of
the Gamow state eigenvalue. The ionization rates of rare-gas atoms Ar and Xe and diatomic molecules N2, O2,
and F2 are investigated. The calculations describe well the observed behavior of the tunnel ionization. The
results also show good correspondence with the Ammosov-Delone-Krainov model for rare-gas atoms. We find
that the properties of the highest occupied orbital have significant effects on the ionization rate. In particular,
our calculation reproduces the suppression of the ionization rate of O2 molecule in comparison with that of Xe
atom. We also find that the ionization rates of O2 and F2 molecules are very sensitive to the relative angle
between the electric field and the molecular axis, reflecting properties of the highest occupied orbital.
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I. INTRODUCTION

Atoms and molecules under intense laser field show inter-
esting electron dynamics when the strength of the external
electric field is comparable to the strength of the self-
consistent field inside them. Among various phenomena un-
der intense laser field, the change of the ionization mecha-
nism depending on the laser intensity has attracted
considerable interests. The key parameter which controls the
ionization mechanism is the Keldysh parameterg
=vÎ2IP/F [1], wherev is the frequency of the external field,
IP is the ionization potential, andF is the strength of the
field. The multiphoton ionization is expected to dominate
wheng.1, while the direct electron emission through either
tunnel or above barrier processes dominates wheng,1.

To describe the ionization rates, analytical expressions
have been derived. The Ammosov-Delone-Krainov(ADK )
model [2] is based on the quasistatic approximation and has
been applied for ionization of atoms with success. The
Keldysh-Faisal-Reiss model[1,3,4] is an alternative ap-
proach which takes into account the time dependence of the
external field.

Besides these analytical approaches, various computa-
tional approaches have been rapidly developed to describe
the electron dynamics under the intense laser field. For ex-
ample, the high harmonic generation in atoms has been ana-
lyzed by solving the time-dependent Schrödinger equation in
the single-electron approximation[5]. A coupled dynamics
of an electron and ions for H2

+ is a three-body problem and
has been studied in Refs.[6–9]. For atoms and molecules
with many electrons, the time-dependent density-functional
theory(TD-DFT) has been extensively applied[10–14]. The
TD-DFT calculations offer anab initio description of the
many-electron dynamics, and have been providing insights
into various nonlinear electron dynamics. They are, however,
achieved mostly for problems with an axial symmetry. There
are a number of subjects which await three-dimensional de-

scriptions: for example, the ionization of molecule when the
external field is not parallel to the molecular axis, the ioniza-
tion of atoms by a laser with circular polarization, and so on.

We have been developing a three-dimensional computa-
tion of the many-electron dynamics in the TD-DFT in which
the time-dependent Kohn-Sham equation is solved in real
time and real space. The method has been most successful to
describe linear optical responses[15–18]. It has recently
been extended to the perturbative nonlinear responses[19].
The multielectron transfer dynamics under strong field in-
duced by the highly charged ion was also studied in
Ref. [20].

In this paper, we present a first-principles, three-
dimensional calculations for the tunnel ionization rates of
atoms and molecules. We present results of the ionization
rates of neutral atoms and molecules under a static external
field. We expect these static results will provide useful infor-
mation to understand the basic mechanism of the tunnel ion-
ization. The static treatment may be justified for rare-gas
atoms and small molecules, since the frequency of the laser
field is usually much smaller than the frequencies of the low-
est electronic excitations.

It has been known that the tunnel ionization rates of atoms
and molecules depend crucially on their ionization poten-
tials. The tunnel ionization rates of atoms and molecules with
approximately the same ionization potential are usually close
to each other. Recently, however, the ionization rate of O2
molecule is found to be much smaller than that of Xe atom,
although their ionization potentials are almost the same
[21,22,29]. Regarding the origin of this difference, several
explanations have been put forward[22,23]. Recently, an
extension of the ADK theory incorporating the properties of
molecular orbitals has been presented[24] where the impor-
tance of the orbital properties of molecules was stressed. We
will clarify, by our microscopic calculations, that the proper-
ties of the molecular orbitals are indeed responsible for the
suppression of the ionization rate of O2 molecule.
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To describe the ionization rates of diatomic molecules
with the external field being not parallel to the molecular
axis, we must treat a decaying state without any spatial sym-
metries. We have developed a computational approach in
which the Gamow state is constructed based on the Kohn-
Sham formalism in the DFT. The decaying boundary condi-
tion is approximately described by introducing an absorbing
boundary condition. The ionization rate is then obtained
from the imaginary part of the eigenvalue. In the calculation,
the orbital wave functions are represented on the grid points
in the three-dimensional curvilinear coordinates.

The organization of the present paper is as follows. In
Sec. II, we present our formalism to calculate ionization rate
in the Kohn-Sham framework. In Sec. III, we show our re-
sults for the rare-gas atoms Ar and Xe and some diatom
molecules N2, O2, and F2. In Sec. IV, summary will be pre-
sented.

II. FORMULATION

A. Gamow state in the Kohn-Sham formalism

We will employ the Kohn-Sham formalism in the DFT to
calculate the tunnel ionization rate. Since the DFT is a theory
for the electronic ground state, we first clarify the grounds
that the DFT can be applicable to calculate the ionization
rate. We rely upon the TD-DFT for this purpose.

We consider a molecule under an intense, time-dependent
electric dipole field. We express the interaction potential be-
tween the electrons in the molecule and the external field as
VextsrW ,td=eFstdz where Fstd is the strength of the time-
varying dipole field. This external perturbation induces elec-
tron emission to the continuum. Since the ionization rate is
proportional to the number of electrons which pass through a
sphere of large radius per unit time(averaged over a certain
time period), the ionization rate is calculated from the time-
dependent electron densitynsrW ,td. In the TD-DFT, the time
evolution of the electron density is described by the time-
dependent Kohn-Sham equation,

i"
]

] t
cistd = hhfnsrW,tdg + VextstdjcisrW,td, s1d

nsrW,td = o
i

ucisrW,tdu2. s2d

The Kohn-Sham HamiltonianhfnsrW ,tdg is given by

hfnsrW,tdg = −
"2

2m
¹2 + Vion + e2E drW8

nsrW8,td
urW − rW8u

+ mxcfnsrW,tdg,

s3d

whereVion is the electron-ion potential andmxcfnsrW ,tdg is
the so-called exchange-correlation potential.

We now consider a case in which the external field
changes very slowly in time. More precisely, we assume that
the tunneling time is much shorter than the period of the
external field. Namely, the Keldysh parameterg is assumed
to be much smaller than unity. We also assume the domi-
nance of direct emission of electrons through either tunnel or

above barrier processes, and ignore the multiphoton process.
Under these circumstances, the time-dependent Kohn-Sham
equation(1) is expected to yield the static Kohn-Sham equa-
tion with an external dipole fieldVextsrWd=eFz, whereF is the
strength of the electric field at a certain time.

hhfnsrdg + VextsrWdjfisrWd = eifisrWd. s4d

Here the electrons in the molecule are continuously emitted
to outside of the molecule so that the static Kohn-Sham or-
bitals fisrWd must satisfy the outgoing boundary condition
without any incident waves. This is the so-called Gamow
state. Because of the outgoing boundary condition, the or-
bital eigenvaluesei are complex numbers,

ei = ei
R + iGi . s5d

whereei
R andGi are the real and the imaginary parts ofei.

The imaginary part of the eigenvalueGi is related to the
ionization rate. To see it, we multiplyfi

* to Eq. (4) and
subtract its complex conjugate:

−
"2

2m
sfi

*¹2fi − fi¹
2fi

*d = 2iGiufiu2. s6d

We define the current density of theith orbital jWi as usual,

jWi = −
i"

2m
sfi

*¹W fi − fi¹W fi
*d. s7d

Then we find

¹W · jWi = −
2

"
Giufiu2. s8d

Integrating both sides over the volumeV which includes the
molecule inside and employing the Gauss theorem, we have

E
S

nW · jWidS= −
2

"
GiE

V
ufiu2drW, s9d

whereS is the surface of the volumeV, andnW is a normal
vector in the surfaceS. The ionization rate of the orbitali, wi
is now defined and is related toGi as

wi =

E
S

nW · jWidS

E
V

ufiu2drW

= −
2

"
Gi . s10d

The electrons emitted to the continuum, in principle, con-
tribute to the self-consistent potential. If the ionization rate is
very small, this contribution of emitted electrons to the po-
tential will be small and negligible. Under this assumption,
we will make calculations separating the procedure to calcu-
late ionization rate into the following two steps: First, one
solves the static Kohn-Sham equation under the static exter-
nal fieldeFz. In this step, the tunnel ionization is forced to be
prohibited by, for example, placing infinite wall potential
outside the barrier. At this stage, the problem is a usual static
Kohn-Sham problem except the appearance of the external
dipole and infinite wall potentials. The second step is to cal-
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culate the Gamow state solution for each Kohn-Sham orbital.
At this stage, the Kohn-Sham Hamiltonian is kept fixed to
that obtained in the previous step.

B. Kohn-Sham Hamiltonian

Because the ionization rate is sensitive to the asymptotic
behavior of the potential as well as the orbital energies of the
occupied orbitals, we should employ the exchange-
correlation potential which is appropriate in these respects.
We will employ the exchange-correlation potential which
takes account of the self-interaction correction for this rea-
son.

We adopt an approximate construction of the optimized
effective potential including the self-interaction correction,
which was proposed by Krieger, Li, and Iafrate(KLI ) [25].
In this treatment, it has been shown that the ionization po-
tentials of atoms and molecules approximately coincide with
the energies of the highest occupied orbitals. The potential in
this model also has a correct asymptotic behavior −e2/ r for
neutral molecules.

In the KLI prescription, the local, state-independent
exchange-correlation potentialmxc,s

SIC srWd is constructed by the
following procedure:

mxc,s
SIC srWd = o

i

rissrWd
rssrWd

hvissrWd + fm̄xc,is
SIC − v̄isgj, s11d

where rissrWd is the density of theith orbital with spins.
Other quantities are defined by

vissrWd =
dExcfr↑,r↓g

drs

−E dr8W
rissr8W d

urW − r8W u
−

dExcfris,0g
dris

,

s12d

m̄xc,is
SIC = kcisumxc,s

SIC srWducisl, s13d

v̄is = kcisuvxc,ssrWducisl. s14d

Excfr↑ ,r↓g is the exchange-correlation energy density for
spin-polarized electron gas. In the practical calculations,
fm̄xc,is

SIC − v̄isg of Eq. s11d is calculated by solving the fol-
lowing algebraic equation:

o
i=1

Ns−1

sd ji ,s − Mji ,sdsm̄xc,is
SIC − v̄isd = V̄js − v̄ js

s j = 1, . . . ,Ns − 1d, s15d

whereNs is the number of the orbitals with spins, and

Mji ,s =E drW
r jssrWdrissrWd

rsrWd
, s16d

V̄js = kcisuo
j=1

Ns r jssrWdv jssrWd
rssrWd

ucisl. s17d

As will be explained below, we will employ a grid repre-
sentation in the three-dimensional coordinates to solve the
Kohn-Sham equation. In this representation, it is practically
impossible to describe core electrons, since the description of
core electrons requires extremely fine grid spacing. We there-
fore describe only valence electrons, treating effects of the
core electrons through the norm-conserving pseudopoten-
tials. We thus ignore the ionization of core electrons and the
influence of the core electrons through polarization, which
are expected to be small. In the practical calculations, we
employ the pseudopotentials constructed with a procedure of
Troullier and Martins[26] and with a separable approxima-
tion [27],

vpssrW,rW8d = vlocsrddsrW − r8W d

+ o
lm

Dvl
psrdc lm

p srWdc lm
p*sr8W dDvl

psr8d

E drWuc lm
p srWdu2Dvl

psrd
. s18d

The pseudopotential is constructed for each partial wave
specified by the angular momentuml, which we denote as
vl

psrd. We include up tol =2. The pseudopotential with a
certain angular momentuml0 is adopted for the local one,
vlocsrd=vl0

p srd. c lm
p srWd is the atomic wave function for the

partial wavelm calculated with the pseudopotential.Dvl
p is

defined byDvl
psrd=vl

psrd−vlocsrd.

C. Boundary condition

To calculate the Gamow states, we need to solve the static
Schrödinger equation, Eq.(4), with the outgoing boundary
condition. For systems without spherical symmetry, the treat-
ment of the outgoing boundary condition is not simple. In-
stead of imposing the outgoing boundary condition explic-
itly, we will employ the absorbing boundary condition
(ABC) in which an imaginary(absorbing) potential is placed
in the spatial region outside the molecule. Denote the radial
distance from the center of the molecule asr. The absorbing
potential is placed in the spatial region outside a certain ra-
diusR with a thicknessR, r ,R+DR. Outside the region of
the absorbing potentialr .R+DR, the wave functions are set
to vanish. If the absorbing potential works ideally, there exist
only the outgoing waves just inside the absorbing potential
r =R.

In practice, we employ the following spherical absorbing
potential with a linear radial dependence.

− iWsrd = 50 s0 , r , Rd,

− iW0
r − R

DR
sR, r , R+ DRd,

s19d

whereR is set beyond the barrier region. The heightW0s.0d
and the thicknessDR are determined from the conditions that
the electrons coming into the regionr .R should be ab-
sorbed as completely as possible. For the electrons with ki-
netic energyE, the parameters should satisfy the following
condition f18g:
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20
E1/2

DrÎ8m
, W0 ,

1

10
Es3/2dÎ8mDr , s20d

wherem is the electron mass.
Employing the absorbing potential, the Gamow state is

obtained by solving the following Kohn-Sham equation:

hhfnsrWdg + VextsrWd − iWsrWdjfisrWd = sei
R + iGidfisrWd, s21d

with the vanishing boundary conditionfisrWd=0 for urWu.R
+DR.

One may derive an expression for the ionization rate
which includes the absorbing potentialWsrWd. To show it, we
start with Eq.(10). We take a sphere of radiusR for V and
apply the Gauss theorem. Then we obtain the following ex-
pression forGi:

Gi = −

E
r.R

drWufisrWdu2WsrWd

E
r,R

drWufisrWdu2
. s22d

The total ionization ratew is given by summing up the
rates of all occupied orbitals,w=oiwi. We may assume that
the denominator of Eq.(22) is equal to a normalization con-
stant, unity, so long as the ionization rate is not very large.
Then the ionization rate is expressed as the following inte-
gral form including the absorbing potentialWsrWd and the
electron densitynsrWd,

w = −
2

"
o

i

Gi =
2

"
E

r.R
drWnsrWdWsrWd. s23d

The ionization rate calculated in this way should coincide
with the rate calculated from the imaginary part of the eigen-
value. In the practical calculation, this relation can be used as
a useful check for the numerical calculation.

D. Numerical details

To express the orbital wave functions, we employ the
real-space grid method. This is a convenient representation
in the Kohn-Sham theory, since the potential is almost local
in the coordinate representation. To impose the ABC, one
must treat large spatial region far outside the molecule. The
number of grid points becomes substantially large. To save
the computational effort, we reduce the number of grid
points employing the following adaptive grid.

The adaptive grid is generated as follows. We introduce
the following coordinate transformation fromsx,y,zd to
su,v ,wd for each Cartesian, coordinate,

x =
ku

1 + sk − 1d1
u

a sinh
u

a
2

n
, s24d

y =
kv

1 + sk − 1d1 v

a sinh
v

a
2

n
, s25d

z=
kw

1 + sk − 1d1
w

a sinh
w

a
2

n
, s26d

wherea, k, andn determine the property of the transforma-
tion. By this transformation, there holdsx,u for small x
sx!ad, and x,ku for large x sx@ad. We then discretize
uniformly the variableu,v ,w. This produces a uniform grid
for small x and a courser grid for largex. The grid points
employed in the calculation are shown in Fig. 1. The trans-
formation parameters to be used in the calculations are sum-
marized in Table I. We have examined carefully that the
results are not sensitive to the choice of the parameters.

As we mentioned in the last part of Sec. II A, the calcu-
lations of the ionization rates proceed in the following two
steps. We first solve the static Kohn-Sham equation under the
static dipole field described byVextsrWd=eFz. At this stage, we
suppress the emission of electrons to the continuum by plac-
ing a spherical wall potential outside the molecule. Namely,
we solve the following Kohn-Sham equation:

FIG. 1. The adaptive mesh that we use to solve the Kohn-Sham
equation. The grid points inside the large circle are employed in the
calculation. The orbital wave functions lie inside the small sphere
when the external field is not applied. The absorbing potential is
placed in the spatial region between two circles.

TABLE I. The spatial parameters employed in the calculations
of rare-gas atoms and diatomic molecules.Rps is a radius of pseudo-
potential.R andDR are the radii related to the absorbing potential.
h is a width of discretization of the variablesu,v ,w. a, k, andn are
parameters which specify the adaptive coordinate transformation.

Rps sÅd R sÅd DR sÅd h a k n

Rare-gas atoms 1.4 10.0 20.0 0.2 5.0 10.0 2

Diatomic molecules 0.8 10.0 20.0 0.2 5.0 10.0 2
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hhfnsrWdg + VextsrWd + VwallsrWdjfisrWd = eifisrWd, s27d

whereVwallsrWd is set as

VwallsrWd = H0 eV

V0 eV

sr , Rwalld
sr . Rwalld.

s28d

The radial distance of the wallRwall is so chosen that the
final results of the ionization rate do not depend on it. In
practice, we employRwall=6 Å and V0=1000 eV for all
calculations. In solving the Kohn-Sham equation, Eq.
s27d, the conjugate gradient method is employed.

Once the self-consistent potential is obtained in the calcu-
lation with the wall potential, this potential is kept fixed in
the calculation of the Gamow state. We remove the wall
potential and add the absorbing potential −iWsrWd in Eq. (27).

The potential of the dipole external fieldeFz becomes
quite large at the spatial region far apart from the origin of
the molecule. The emitted electrons are accelerated strongly
by this potential. This acceleration induces difficulty for the
absorbing boundary condition: the fast electrons may not be
absorbed efficiently by the absorbing potential. To remove
the difficulty, we modify the external potentialVextsrWd from a
dipole form eFz to a quadratic form outside the barrier re-
gion,

VextsrWd =5
eFz sz, Rcd

eFFRc +
DRc

2
−

1

2DRc
sz− Rc − DRcd2G sRc , z, Rc + DRcd

eFSRc +
DRc

2
D sz. Rc + DRcd.

s29d

Rc is taken to be outside the barrier top and to be inside the
radius of the absorbing potentialR. The potential value atRc,
eFRc should be larger than the ionization potential of the
molecule. In practice, we takeRc.8–10 Å.

The final problem is to calculate the Gamow state by solv-
ing Eq. (21), in which the densitynsrWd is kept fixed to that
obtained with the wall potential. This is not a Hermitian
problem. We have found that this equation can be solved
efficiently with the shifted inverse iteration method[28]. For
each orbital specified byi, the algorithm is given as follows:

Start. Prepare an initial guess for the wave function
ci

s0dsrWd and the shiftj.
Iterate. For k=1,2 ,̄ until convergence, compute

ci
skdsrWd =

1

ak
hhfnsrWdg + Vext − iWsrWd − jj−1ci

sk−1dsrWd, s30d

whereak is a normalization factor.
As an initial guess for the wave functionci

s0dsrWd, we uti-
lize the static Kohn-Sham solution with the wall potential.
The shiftj is also taken as the real eigenvalue of the Kohn-
Sham solution with the wall potential. To calculateci

skd de-
fined by Eq.(30), we solve the following Schrödinger-like
equation with a source term:

hhfnsrWdg + Vext − iWsrWd − jjci
skdsrWd = ci

sk−1dsrWd. s31d

In the real-space grid representation, this equation can be
regarded as a linear algebraic equation with a sparse matrix
with complex elements. To solve this equation, we have
found the conjugate residual method works efficiently.

In some cases, there are almost degenerate eigenvalues
for which the above simple shifted inverse iteration method
fails to provide all independent solutions. In that case, we

employ the deflation technique[28] where the vector space
which was obtained as eigenfunctions in the previous steps is
removed in the iteration procedure.

III. RESULTS AND DISCUSSIONS

A. Rare-gas atoms

We first report calculated results of the rare-gas atoms Ar
and Xe. We show in Fig. 2 the self-consistent potential for
Xe atom obtained by solving Eq.(27). In the left panel, the
potentials are shown along the axis parallel to the external
field for three cases of different external field. The origin is
set at the center of the atom. The energy of the highest oc-
cupied orbital is denoted by the horizontal lines. The barrier
energy gets lower as the external field increases, while the
change of the orbital energy by the Stark effect is small and
is not seen. In the right panel, the self-consistent potential is
plotted in the plane which includes the center of the atom
and is parallel to the external field. The strength of the field
is set at 531013 W/cm2 s1.94 eV/Åd. The bold line indi-
cates the orbital energy of the highest occupied orbital,
−12.3 eV.

To calculate the Gamow states, we solve Eq.(21) which
includes the absorbing potential. In Fig. 3, we show the be-
havior of the ionization rate of Xe atom when we change the
parameterW0 of the absorbing potential. To demonstrateW0
dependence clearly, we choose a small radius for the absorb-
ing potential,DR=8 Å in this calculation. For all other cal-
culations, we employ much larger radius,DR=20 Å as we
wrote in Table I. The laser intensity is fixed at 5
31013 W/cm2. At this intensity, the kinetic energy of emit-
ted electron is about 7 eV in the spatial regionr ,R+DR.
Under these conditions, the appropriate value ofW0 from Eq.
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(20) is restricted as 7 eV,W0,16 eV. Figure 3 shows that
the ionization rate is almost constant in the wide region of
the parameterW0. SmallerW0 gives too small an ionization
rate, because of the insufficient absorption and reflection at
r =R+DR. LargerW0 also results in too small an ionization
rate, because of the reflection atr =R caused by the absorb-
ing potential. Employing wide spatial region of absorbing
potential,DR=20 Å, there are wide regions of parameterW0
where the ionization rate is not sensitive to the choice of the
parameter. For all the results shown below, we examined
carefully that the calculated ionization rates are not sensitive
to the change ofW0.

In Table II, we show the orbital energies of the Gamow
states of Xe atom forpx, py, and pz orbitals. The external
field is set parallel to thez axis. Since we employ self-
interaction correction, the absolute values of the orbital en-
ergies are very close to the ionization potential. The calcu-
lated p orbital energy in the absence of the laser field is
12.07 eV. The electric field reduces the symmetry of the sys-

tem from spherical to axial. The complex eigenvalues of the
px andpy orbitals are the same reflecting the axial symmetry.
As seen in the table, the ionization rate of thepz orbital is
larger by 1–2 order of magnitude than those ofpx and py.
The eigenvalue of thes orbital is not shown, since the imagi-
nary part of the eigenvalue of thes orbital is very small.

Summing up the ionization rates of all orbitals, we obtain
the total ionization rate. In Fig. 4, we show the calculated
ionization rate of the Xe and Ar atoms by open squares. The
measurements are available with the linear polarized, ul-
trashorts30 fsd laser at 800 nm[29]. In the measurements,
relative ionization rates at various laser intensities are avail-
able. We plot the measured rates in the figure, normalizing
the measurements to coincide with the calculation at the laser
intensity of 931013 W/cm2 for Xe atom, and at the laser
intensity of 1.331014 W/cm2 for Ar atom. We also plot the
rate in the ADK theory by the dotted curve. Since we show
the rate for a static field, we compare the rate expression in
the ADK theory for a static field. The rate expression for the
static field wstatic is related to the rate expression for the
periodic one, wperiodic3wperiodic=Î3F /pk3wstatic with k
=Î2IP.

As seen in the figure, the measured dependence on the
laser intensity is described fairly well by the calculation. The
calculated rate decreases much faster than the measurements
when the laser intensity is weak(,331013 W/cm2 for Xe
and,631014 W/cm2 for Ar). This trend may be attributed
to the effect of the multiphoton process. Comparing our cal-
culation with the ADK formula, the absolute values of the
ionization rate are slightly higher(about a factor of 2) for all
the region of the laser intensity. Thus the laser intensity de-
pendence is very similar between our calculation and the

FIG. 3. W0 dependence of ionization rate of Xe atom. Laser
intensity is 531013 W/cm2.

FIG. 2. Self-consistent potential of Xe atom in the strong elec-
tric field. The left-hand panel shows the potential along the direc-
tion of the electric field for three cases of external electric field. The
right-hand panel shows contour lines of the potential in a plane
parallel to the direction of the electric field at the strength of
531013 W/cm2.

TABLE II. Orbital energy of each Gamow state of Xe atom is shown under the static electric field parallel
to thez axis. The measured ionization potential is denoted as well. Numbers in brackets denote powers of 10.

Laser intensitysW/cm2d 2px seVd 2py seVd 2pz seVd IP (eV)

431013 −12.27-i1.07f−5g −12.27-i1.07f−5g −12.30-i1.99f−4g 12.13

531013 −12.33-i2.22f−5g −12.33-i2.22f−5g −12.38-i7.04f−4g
631013 −12.39-i5.13f−5g −12.39-i5.13f−5g −12.47-i1.85f−3g
731013 −12.47-i1.32f−4g −12.47-i1.32f−4g −12.56-i3.68f−3g
831013 −12.56-i2.55f−4g −12.56-i2.55f−4g −12.69-i8.65f−3g
931013 −12.67-i5.93f−4g −12.67-i5.93f−4g −12.79-i1.11f−2g
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ADK results. This indicates the usefulness of the ADK
theory in describing the relative ionization rates of atoms
with many electrons for wide laser intensities.

The present calculation incorporates many-electron ef-
fects through the realistic self-consistent potential generated
by solving Eq.(27). Beyond single electron approximation,
the screening effect due to the static polarization of atom is
taken into account. We examined the effect of the screening
on the ionization. In Fig. 5, we show the ionization rate when
one ignores the static polarization. This is achieved by cal-
culating the Kohn-Sham Hamiltonian without the external
potential Vext in Eq. (27) and then employing this Hamil-

tonian in Eq.(21). Without the static polarization, the ioniza-
tion rates of Ar atom are slightly higher, about a factor of 2,
than those with the polarization. The dependence on the laser
intensity is not much affected by the polarization.

B. Molecules: N2, O2, and F2

We next show results of tunnel ionization rates for di-
atomic molecules, N2, O2, and F2. We first show the Kohn-
Sham eigenvalues and molecular-orbital properties of the di-
atomic molecules without external field in Table III. The
measured ionization potentials of N2, O2, and F2 are
15.58 eV, 12.06 eV, and 15.70 eV, respectively. As men-
tioned previously, the measured ionization potentials and the
calculated highest occupied molecular orbital(HOMO) ener-
gies are close to each other, since we employ the self-
interaction correction. The agreement is, however, less accu-
rate for these diatomic molecules in comparison with the
agreement in rare-gas atoms. The HOMO orbital energies
of O2 and F2 are about 1 eV smaller than the ionization
potential.

We note that the properties of HOMO orbitals are differ-
ent among molecules: The HOMO of the N2 is thes orbital,
having zero angular momentum around the symmetry axis.
On the other hand, the HOMO orbitals of O2, and F2 arep* ,
having one-unit angular momentum around the symmetry
axis and having also the nodal plane perpendicular to the
molecular axis. The O2 molecule has a spin-triplet ground
state. We employ local spin-density approximation(LSDA)
for this molecule, these spin properties induce difference be-
tween the HOMO orbitals of O2 and F2. Namely, four elec-
trons occupy degeneratep* orbitals in F2, while two elec-
trons occupy degeneratep* orbitals in O2.

We show the calculated ionization rates of these mol-
ecules, and investigate the relationship between the ioniza-
tion rates and the molecular-orbital properties. The difference
of the orbital property manifests clearly in the angle depen-
dence of the ionization rate. Figure 6 shows the angle depen-
dence of the ionization rates of N2 and O2 molecules. The
angle is measured between the molecular axis and the exter-
nal field. If we ignore the properties of the molecular orbital,
one may expect that the ionization rate shows maximum
when the external field is parallel to the molecular axis. The
calculated ionization rate of N2 molecule, whose HOMO or-
bital has thes character, indeed shows maximum when the
external field is parallel to the molecular axis.

However, the angle dependence of the ionization rate of
O2 molecule is quite different. The ionization is strongly sup-
pressed when the external field is either parallel to or perpen-
dicular to the molecular axis. A similar angle dependence is
also found for F2. These suppressions of the rate for a certain
directions can be understood from the properties of the
HOMO, thep* orbital, in O2 and F2. To obtain more intui-
tive understanding, we show in Fig. 7 the electron-density
distribution of the HOMO orbital of O2 molecule under the
external field changing the relative angle between the exter-
nal field and the molecular axis. The nodal structures in the
plane perpendicular to the molecular axis, as well as in the
symmetry axis along the molecular axis, are clearly seen.

FIG. 4. Ionization rates of neutral Xe and Ar atoms are shown as
a function of the laser intensity. Open squares denote our calcula-
tion. Filled squares are the measured results[29] whose absolute
values are normalized to coincide with the calculation at a certain
laser intensity, 931013 W/cm2 for Xe atom and 131014 W/cm2

for Ar atom.

FIG. 5. The ionization rates of Ar atom with and without incor-
porating the static polarization are compared. The open squares
show ionization rates with the polarization, while the open circles
without the polarization. Filled squares are the measured results
[29] which is normalized as denoted in the caption of Fig. 4.
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The electron density is maximally extended spatially at the
anglep /4, where the ionization rate shows maximum. Thus
the ionization is strongly influenced by the molecular-orbital
properties of the HOMO. This point has also been stressed in
the molecular ADK treatment by Tonget al. [24].

Recently, the angle dependence of the ionization rate has
been measured for N2 molecule[30]. In the left panel of Fig.
6, we compare calculated angle dependence of the ionization
rate with a function which is one of those functions that can
explain measurement. Two curves are normalized to coincide

at the forward angle. Qualitative behavior is similar between
our calculation and the function, showing maximum when
the molecular axis is parallel to the external field and mini-
mum when the molecular axis is perpendicular to the exter-
nal field. However, the calculated angular dependence is
much weaker than that which explains measurement. We
note that the laser intensity in our calculation, 1
31014 W/cm2, is smaller than the intensity in the measure-
ment s231014 W/cm2d. The latter intensity corresponds to
the boundary between the tunnel and the above barrier
mechanisms. The discrepancy between our calculation and
the measurement may originate from this change of the ion-
ization mechanism. Our method cannot be applicable to the
case of latter intensity where the ionization rate is large.

Integrating the angle dependent ionization rate over mo-
lecular orientation, we obtain the ionization rate of the mol-
ecule. Since it costs much to calculate the angle dependence

TABLE III. Molecular orbitals of diatomic molecules, N2, O2, and F2 are shown. The N2 and F2 are
calculation in which two electron occupy the same spatial orbital, while O2 is calculated in the local spin-
density approximation with self-interaction correction. The calculated orbital energies and orbital characters
are shown.

N2 O2 F2

Orbital Up and down Orbital Up Down Orbital Up and down

s −14.90 p* −11.29 p* −14.40

p −16.88 p* −11.29 p* −14.40

p −18.82 p −18.54 −17.29 p −18.12

s −17.78 p −18.54 −17.29 p −18.12

s −33.47 s −18.45 −18.55 s −20.50

s* −24.53 −23.20 s* −31.81

s −38.09 −38.16 s −38.89

FIG. 6. Angle dependence of ionization rate for N2 (left panel)
and O2 (right panel) molecules. The angle is measured between the
external field and the molecular axis. In the N2 calculation, the
calculations with and without the polarization effect are shown by
open square and circles, respectively. The dashed curve indicates a
distribution which explains measurement[30]. For O2 case, angle
dependences for the cases of two different laser intensities are
shown.

FIG. 7. Density of electron in the highest occupied orbital of O2

molecule. The direction of the laser field is always taken to be
vertical direction, while the molecular axis is rotated.
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for each laser intensity, we calculate the ionization rates at
the angle with maximum ionization rate(0° for N2 and 45°
for O2 and F2), and rescale them to obtain the angle-
integrated rates assuming that the angle dependence does not
depend much on the laser intensity.

In Fig. 8, we show the calculated ionization rate of N2 as
a function of the laser intensity. The ionization rate of Ar
atom whose ionization potential is close to that of N2 is also
plotted. In the measurements, the absolute value of the rate is
not available. As before, we scaled the measured rate of Ar
atom to coincide with the calculation at laser intensity of
1.331014 W/cm2. We note that the relative intensity be-
tween Ar and N2 has been measured and is reliable. The
calculation nicely reproduces the relative ionization rates be-
tween Ar and N2 as well as the laser intensity dependence.
The dependence on the laser intensity is very similar be-
tween N2 and Ar.

For molecules, screening effect by the polarization of
other electrons is expected to be more significant. To see the
effect of the static polarization on the ionization rate, we
made a calculation suppressing the polarization. As we did
for Ar atom case, we construct Kohn-Sham Hamiltonian
without external field, and employ this Hamiltonian in the
Gamow state calculation. In Fig. 9, we show the ionization
rates with and without incorporating the effect of the polar-
ization. If one omits the polarization effect, the ionization
rate becomes about two to five times larger. Thus the effect
of the polarization is indeed more significant for molecule
case. The polarization effect does not affect much on the

dependence on the laser intensity. In the left panel of Fig. 6,
we show calculated angle dependence when the polarization
effect is excluded. The ionization is strongly suppressed
when the external field is parallel to the molecular axis. This
is consistent with the fact that the static polarizability is the
largest when the external field is parallel to the molecular
axis.

We next turn to the ionization of O2 molecule. In Fig. 10,
we compare the ionization rate of Xe atom and O2 molecule.
The measured ionization rate is also plotted. As before, we
scaled the measured rate of Xe atom so that the calculated
rate coincides with the measurement at the laser intensity of
931013 W/cm2. The relative ionization rate of Xe atom and
O2 molecule shows marked difference, in spite of the similar
ionization potential between two systems. Our calculation
succeeds to reproduce this feature. This strong suppression
of the ionization rate in O2 molecule is clearly related to the
angle dependence of the ionization rate discussed above. Be-
cause thep* orbital vanishes along the molecular axis, the
ionization to the direction parallel to the molecular axis is
strongly suppressed. In other words, thep orbital feels the
centrifugal barrier along the molecular axis. This centrifugal
barrier hinders the emission of the electrons along the mo-
lecular axis.

The calculated suppression of the ionization rate for O2
molecule is not enough to explain fully the measured sup-
pression. One possible origin of this discrepancy is a limited
accuracy of the orbital energy in our approach. The ioniza-
tion potential of O2 molecule is 12.06 eV. However, in our
calculation with the self-interaction correction, the orbital
energy of the HOMO is −11.29 eV. If we could manage to
shift the HOMO energy so as to reproduce the measured
ionization potential, we may expect that the calculated ion-
ization rate would be suppressed further.

We next consider briefly the ionization of F2 molecule.
The ionization potential of F2 is close to those of Ar and N2.
Figure 11 shows a comparison of calculated ionization rate
of Ar, N2, and F2. The ionization rate of F2 is smaller than
those of Ar and N2. Since the HOMO of F2 is a p* orbital,
the same mechanism as that of O2 is expected. The suppres-

FIG. 8. The ionization rates of N2 and Ar are shown as a func-
tion of the laser intensity. The measured rates are scaled in such a
way that the measured rate of Ar at 1.331014 W/cm2 coincides
with the calculation.

FIG. 9. The ionization rates of N2 molecule with and without
screening are compared.

FIG. 10. Ionization rates of Xe atom and O2 molecule as a
function of the laser intensity. Open circles and open squares are
our calculations for Xe and O2, respectively. Filled circles and filled
squares are measured rates at wavelength 800 nm and laser pulse
length of 30 fm. The measured rates are scaled in such a way that
the measured rate of Xe at 931013 W/cm2 coincides with the
calculation.
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sion is, however, not very strong compared with the suppres-
sion for O2 molecule. One of the reasons of this difference
between O2 and F2 is the different occupation number of the
HOMO orbital. The HOMO of F2 is occupied by four elec-
trons, while the HOMO of O2 is occupied by two, reflecting
the triplet structure of the O2.

In the measurements, a strong suppression of the ioniza-
tion rate is not reported for F2. Our results may look consis-
tent with this observation. However, in our calculation, the
HOMO orbital energy of F2 is 14.40 eV while the measured
ionization potential is 15.70 eV. Therefore, our calculation
should have overestimated the ionization rate. To get conclu-
sive results, we feel that further analysis are required em-
ploying a better functional which describes orbital energies
consistent with the measured ionization potential.

IV. SUMMARY

We present first-principles calculations of the ionization
rates of some atoms and molecules under static dipole field.
A new computational method is developed based on the
Kohn-Sham formalism. The Gamow states are calculated in
real-space discretizing the three-dimensional coordinates and
introducing the absorbing boundary condition. The ioniza-
tion rates are then obtained from the imaginary part of the
Gamow state eigenvalues.

The ionization rates of rare-gas atoms Ar and Xe and
homonuclear diatomic molecules, N2, O2, and F2 are calcu-
lated. Our calculations nicely reproduces overall features of
the measured ionization rates including the dependence on
the laser intensity. They also show good correspondence with
the Ammosov-Delone-Krainov model for rare-gas atoms.

The ionization rate of the diatomic molecules are strongly
influenced by the properties of the HOMO. The HOMO of
the N2 is thes orbital, while the HOMO’s of O2 and F2 are
the p* orbital. The ionization rates show characteristic angle
dependence between the molecular axis and the laser direc-

tion. The ionization rate of N2 does not depend much on the
orientation, while the rates of O2 and F2 are strongly sup-
pressed along the molecular axis and to the plane perpen-
dicular to the molecular axis. The property of the HOMO
orbital also has a significant effect on the absolute value of
the ionization rate. The measured suppression of the ioniza-
tion rate of O2 molecule in comparison with that of Xe is
nicely reproduced by our calculation.

The present analysis is achieved in the static limit, ignor-
ing the oscillatory effect of the external field. With the real-
space grid representation, calculations of the three-
dimensional electron dynamics are feasible. The extension
toward this direction is now under progress.

ACKNOWLEDGMENTS

This work is supported by the Grant-in-Aid for Scientific
Research(Grant No. 14540369), and also by NAREGI
Nanoscience Project, Ministry of Education, Culture, Sports,
Science and Technology, Japan. Numerical calculations are
achieved on the supercomputers at the Institute for Solid
State Physics, University of Tokyo, and at the Research Cen-
ter for Nuclear Study(RCNP), Osaka University.

[1] L. V. Keldysh, Sov. Phys. JETP20, 1307(1965).
[2] A. M. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys.

JETP 64, 1191(1986).
[3] F. H. M. Faisal, J. Phys. B6, L89 (1973).
[4] H. R. Reiss, Phys. Rev. A22, 1786(1980).
[5] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A

45, 4998(1992).
[6] S. Chelkowski, T. Zuo, and A. D. Bandrauk, Phys. Rev. A46,

R5342(1992).
[7] T. Zuo and and A. D. Bandrauk, Phys. Rev. A52, R2511

(1995).
[8] I. Kawata, H. Kono, and Y. Fujimura, Chem. Phys. Lett.289,

546 (1998).
[9] I. Kawata, H. Kono, and Y. Fujimura, J. Chem. Phys.110,

11 152(1999).
[10] C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B30,

5043 (1997).
[11] C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B31,

1871 (1998).
[12] F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. A. Ullrich,

Phys. Rep.337, 493 (2000).
[13] X. Chu and S.-I. Chu, Phys. Rev. A63, 023411(2001).
[14] X.-M. Tong and S.-I. Chu, Phys. Rev. A64, 013417(2001).
[15] K. Yabana and G. F. Bertsch, Phys. Rev. B54, 4484(1996).
[16] K. Yabana and G. F. Bertsch, Int. J. Quantum Chem.75, 55

(1999).
[17] G. F. Bertsch, J.-I. Iwata, A. Rubio, and K. Yabana, Phys. Rev.

B 62, 7998(2000).
[18] T. Nakatsukasa and K. Yabana, Phys. Rev. A114, 2550

(2001).
[19] J.-I. Iwata, K. Yabana, and G. F. Bertsch, J. Comp. Meth. Sci.

Eng. (to be published).
[20] R. Nagano, K. Yabana, T. Tazawa, and Y. Abe, Phys. Rev. A

62, 062721(2000).
[21] A. Talebpour, C. Y. Chien, and S. L. Chin, J. Phys. B29, L677

(1996).

FIG. 11. Calculated ionization rates of F2 are compared with
those of Ar and N2.

OTOBE, YABANA, AND IWATA PHYSICAL REVIEW A 69, 053404(2004)

053404-10



[22] M. J. DeWitt, E. Wells, and R. P. Jones, Phys. Rev. Lett.87,
153001(2001).

[23] J. Muth-Böhm, A. Becker, and F. H. M. Faisal, Phys. Rev.
Lett. 85, 2280(2000).

[24] X. M. Tong, Z. X. Zhao, and C. D. Lin, Phys. Rev. A66,
033402(2002).

[25] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A45, 101
(1992).

[26] N. Troullier and J. L. Martins, Phys. Rev. B43, 1993(1991).

[27] L. Kleinman and D. Bylander, Phys. Rev. Lett.48, 1425
(1982).

[28] Y. Saad,Numerical Methods for Large Eigenvalue Problems,
Sec. IV (Manchester University Press, Manchester, 1992).

[29] C. Guo, M. Li, P. Nibarger, and G. N. Gibson, Phys. Rev. A
58, R4271(1998).

[30] I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M.
Villeneuve, and P. B. Corkum, Phys. Rev. Lett.90, 233003
(2003).

FIRST-PRINCIPLES CALCULATIONS FOR THE TUNNEL… PHYSICAL REVIEW A 69, 053404(2004)

053404-11


