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Partial wave analysis of scattering with the nonlocal Aharonov-Bohm effect
and the anomalous cross section induced by quantum interference
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Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a
nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a “hard sphere”-like potential
and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized
magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional
quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is
universal, the nonlocal effect is expected to appear in a quite general potential system and will be useful in
understanding some other phenomena in mesoscopic physics.
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I. INTRODUCTION perconductivity, and transport phenomena in nanostructures
] . ) 12,13. Furthermore, since the nonlocal influence of the
Since the global structure of magnetic flux was discovere agnetic flux on the charged particle is universal, the impli-
about 40 years agfi], it has made a great contribution t0 :ation should be general in similar systems.
our comprehension of the foundation of quantum the@iy This paper is organized as follows. In Sec. II, the partial
the phenomenon of quantum Hall eff¢8], superconductiv- \yave method of scattering with AB effect in three dimen-
ity [4], repulsive Bose gase$], and, recently, helped to gjons is established. The nonintegrable phase fadeF)
explore the quantum computers, and quantum cryptographyi 4] is used to couple the magnetic flux with the particle
communication systemg6,7]. Nevertheless, to my knowl- angular momentum such that the partial wave method can be
edge, a general partial wave analysis for a scattering of 8onyeniently developed. In Sec. Ill, special attention is paid
charged particle moving in an arbitrary short range potentialg the specific condition of the incident direction restricted in
plus a magnetic flux in three dimensions is still not doneyne x-y plane. The total cross section of a charged particle
until now [8]. In this paper we discuss the partial wave yith its path in thex-y plane scattered by a hard sphere
method of a charged particle moving in an arbitrary shortygtential plus an AB magnetic flux is discussed in some de-

range potential with scattering center located at the originaj|. Our discussions are summarized in Sec. IV.
and the AB magnetic flux along theaxis in the three di-

mensional space. Special attention is paid to the problem of

the “hard sphere”-like potential plus the magnetic flux with [l. PARTIAL WAVE ANALYSIS OF SCATTERING

the incident direction of particles restricted in tkhg plane. WITH THE NONLOCAL AHARONOV-BOHM EFFECT

Several interesting results are concluded as follois:In . . . i

the long wave length limitequivalently, short range poten- We consider a three-dimensional model. The fixed-energy

tial) the total cross section is drastically suppressed at quarf2'€en’s funct|ong(°)(x,x’;lE) for a charged particle with
tized magnetic flux®=(2n+1)®,/2, wheren=0,1,2, ..., massu propagating fronx’ to x satisfies the Schrodinger
and®, is the fundamental magnetic flux quantino/e. The ~ €duation
global influence of the magnetic flux on the cross section is 22

manifested withd®, periodicity. The result provides another {E - [_ - +V(x)] }G(O)(x,x’;E) =8(x-x'), (1)
possibility to explain the anomalous total cross section given 2u

in Ref. [9], where the quantum entanglement is supposedly

responsible for the suppression of the total cross section iwhere V(x) is the scalar potential ana is the three-
the condensed system. On the other hand, the cross sectigiinensional coordinate vector. In the spherically symmetric
approaches the flux-free case in the short wave length limiSystem, the Green’s function can be decomposed 8ls

i.e., the quantum interference feature of the nonlocal effect
gradually disappears, and the cross section approaches the .
classical limit.(2) If the hard sphere is used to simulate the GO, r";E)=2 2 GO, 1" ;E)Yin(6,9)Yin(0, "),
boson(fermion) moving in thex-y plane, the scattering pro- 1=0 m=-|

cess of identical particles carrying the magnetic flux shows (2
that the total cross section is suppressed at quantized mag-

netic flux ®=(2n+1)®d, for bosong® =2nd, for fermiong  with Y,(6,¢) the well-known spherical harmonics and
and exhibits the global structure wittibg periodicity. These G,(O)(r,r’ ; E) the radial Green'’s function for the specific an-
results shed light on the model of composite bosons andular momentum channél The left-hand side of Eq1) can
fermions in the fractional quantum Hall effef&,10,1%, su-  then be cast into

o |
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o | m
B2 2d\ I1(0+1Dh2 m _ mm< 9-1’) mm
53 [ ali 20 o] o= ar R oo et conn.
XGr, 1" E)Yim(6,0)Yin(6',¢). (3 ©

the angular part of the Green’s function in the expresg&n
For a charged particle affected by a magnetic field, thecan be turned into the following form:
Green'’s functionG(x,x’;E) is different fromG@(x,x’;E)
by a global NPH14-2Q : .

E Y|m((9,(P)Y|m(0,,(p,)

ie X m=-|
G(x,x";E) = GO(x,x";E)ex —f AX) -dX ;. (4
(xx'1E) = G(x, X' E) p{hCX, ) @) | A+ATg-msD) ) .
=> po— +m+1)P' (cos §)P"(cos §' )™M
=—| T
Here the vector potentid (x) is used to represent the mag- ml
netic field. For an infinitely thin tube of finite magnetic flux =3 24171 -m+)I'(+m+1)
3Iong thez-direction, the vector potential can be described = < | 4 r'2(1 +1)
y
!’ ) 0 ) 0/ m (mm)
& i X cosécosEsmEsmE P.oHY (cos 6)
A(x) = ZQ%. (5 , ,
Ty X P{™M(cos ¢')gme=¢"). (10)

where &,&, stand for the unit vector along they axis, ) )

=tarr(y/x) around the AB tube, the components of the Change the index into q relate_d by the definition—m=q.
vector potential can be expressedAs 2gdie(x). The as-  AS @ result Eq(3) can be rewritten as
sociated magnetic field lines are confined to an infinitely

thin tube along the-axis, © 2l 24d (q+m)(q+m+ 142
S S e | ety ) :
2u\dre rdr 2ur

Bs = 29€5 919 ¢(x) = 4mg (X ), () Fom

© o rom| 2@+m+10(q+DI(g+2m+1)
wherex, stands for the transverse vector=(x,y). Since  ~ V() Ggem(r:r";E) . T2(q+m+ 1)
the mggnetic flux through the tube is defined by the integral 0 o 8 g\m
® =[d*xB;, the coupling constar is related to the magnetic U0 Smm)
flux by g=®/4. By using the expression & =2gd ¢, the X(COSECOSESIHZS"]Z ) Pq " (cos0)
angular difference between the initial poiit and the final (nm) N imiee)
point x in the exponent of the NPF is given by X Py (cos 0')e™ e (1)

, . . « < The Green’s functionG,(r,r’;E) for a specific winding
t ) t - yX+ Xy X X dX - : ;
-9 :f dr(7) :f dr—5—— =f — numbern can be obtained by converting the summation over
t t Xty v X min Eqg. (11) into an integral over and another summation
) over n by the Poisson’s summation formule.g., Ref.[22],

p. 469
where p=d¢/dr. Given two path<C; andC, connectingx’
andx, the integral differs by an integer multiple o722 The * % * _
winding number is thus given by the contour integral over > f(m):f dz >, e?™f(z). (12)
the closed difference path: mF—co e
n_ i@ % % % " 280 the expressiofB8) when includes the NPF can be written
Tomd C xR
The magnetic interaction is therefore purely nonlocal and S [ dz> SE+ [h_2<d_2+g£)
topological[21]. Its action takes the formi,,g=—fiue2mn, g=0 n=—c0 2u\dr?  rdr
where uo=-2eg/fic=—-®/d, is a dimensionless number ’
with the customarily minus sign. The NPF now becomes L a+2(q+z+ D } V() {Gyu(r.r"E)
exp {-iuo(2m+¢-¢')}. With the help of the equality be- 2ur? LA
tweeg.tfhe a;soita}[t;;ad Legendre polynonfdl(z) and the y 2(q+2) +1T(q+ DI(q+ 22+ 1)
Jacobi functionP " (z) [19,20, . T2(q+z+1)
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n on the right-hand side is precisely the winding number by
which we want to classify the Green’s function. Employing
2 ey (er ) the special case of the Poisson formdld__, explik(¢
4 ! z- +2nm—¢’ N — NP H ’

X Py (cos ¢')g* Holeranme (13 +onm-g¢)}=3r . sk-mpexpim(e-¢)}, the summa-
where the superscrig0) in G(O) has been suppressed to tion over allbmdlﬁa]sn forcesbz Mo modulo an arbitrary
denote that the AB effect is mcluded Obviously, the number’nteger numboer us, we obtain

0 60 6.6\ .,
X cosacoszsmésmz Py’ (cos6)

S ﬁ2<d2 2d> (q+|m+Mo|)(q+|m+Mo|+1)ﬁ2]
E+ +—-—— - -V(r) (G r,r';E
%mgw{ [ dr?  rdr 2ur? (1) [ Gasfmesl )
2(q+ |m+ po) + 1 T(q+ DI(2Im+ po| +q+ 1 6 6 6 ¢\ mel
[ (9+[m+ uo) +1]T(q 2) (2m+ p + 9 ) ¢=¢') % (cos—cos—sm—sm—)
4 C2(m+ uol +q+1) 2 2 2 2
% pg”“#0|v|m+#o\)(cos 0) pgm’fﬂo\v|m+//-o| (cos®). (14)

Green'’s function is to replace the integer quantum nunhber ar? + rdr +
with a real one(q+|m+ug|) which depends on the magni-
tude of magnetic flux. Analogously the same procedure can (18

be applied to the delta fo?CtiOﬁ(l’-l") on the r.h.S. of Eq. WhereU(r)EZ,uV(r)lﬁz and the Subscript sék, a) with k
(1) by employing the solid angle representation of e _ .5 E/4 in the radial wave functiomR,(r) denotes the

We see that the influence of the AB effect to the radial [ @ 2d ( > U ala+ 1)>}R (1)=0
o - kel '

function, state of scattering particle. For a short range potential, say
V(r) vanishes ag>a, the exterior solution is the linear
> | . combination of first and second kind spherical Bessel
N-0H)=> > Yim(6,0)Y)(0',¢"). (15 functionsj,(kr) andn,(kr), and may be given by
1=0 m=-1
Rak(1) =[Co(K)j4(kr) + Do (K)ny(kr)] = A,(K)
With the help of orthogonal property of the angular gafj, X[€0s 8,(K)j o (kr) = sin 8,(k)n,(kr)], (19)

X where §,(k) is the phase shift defined byD-/(k)/C,(k)
f dcpf (d cos 0)Pg|m+f‘0"‘””“0|)(cos gy P’ ol ') =tan &,(K) and A,(k)=C,(K)/cos 5,(k) which can be used
0 -1 q to measure the interaction strength of potential. Thus the
general solutio’, (x) of a scattering particle with arbi-
6 0\Mwll o g\mrwd trary incident direction(é’,¢') is given b iti
X (cos 6) cos—sm— cos—sm— gm-me rary incident direc ion( ,-(p) is given by superposition
2 2 of partial waves¥,(r), which reads

T?(g+|m+ugl +1) 4w
T(q+ DI+ 2m+ uol + 1) 2(q+ m+ o) + 1 T (x) =2 X ALKI[COS 8,(K)j (k)
=0 m=-%
X .4/ Ot (16)

= sin 8, (KN (KN TVyr(0, ¢ ) Vam(0,0)  (20)

one can show that the radial Green’s function for the set ofn which Vy(6,¢) is defined by
the fixed quantum numbexsg|, m) satisfies

E+[ﬁ—2(d—2+2d) —a(a+1)h2} = V(r)
2u\dr?  rdr 2ur?

r yr 1
Vo) = A/ 2 >F(;(“;|+”;)+ﬂ0|+ )

9 @\lmtul ,
X | cos-sin— Pgm+"°"‘m+“0|)(cosG)e'm‘P.
2 2

X G,r,r’";E)=68(r=r’"). (17
(21
Here we have defined= (q+|m+ o) for convenience. The Since it must describe both the incident and the scattered
corresponding radial wave equation then reads waves at large distance, we naturally expect it to become
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IX|—oe . ie M~ and (0, ¢) is the scattering direction. It is easy to see that
Wi(x) ~ F.| exglik -x}jexp ﬁ_cf A(X) - dx when the magnetic flux disappears, with=0, i.e.k is along
¢ the z-axis, andP,(1) =1, the result reduces to the well-known
exp{ikr amplitude
+1(6,¢) m ! (22 P
where expik -x} describes the incident plane wave of a f(e):lz (21 + 1)€'%sin 5P,(cos ). (29)
charged particle with momentum=uk and F.(-) stands Ki=o

for its asymptotic form. The phase modulation of the NPF ) o o )

comes from the fact that the field(x) of AB magnetic ~Let us consider the case of the incident direction perpendicu-

flux affects the charged particle globally. The subscapt lar to the magnetic flux, i.e(6'=/2,¢'=0). We have the

in the integral is used to represent the nature of the NPEUNction

which depends on the different paths. To find the ampli-

tude (0, ¢) we first note that the plane wave in E(2) T(q+ DI (a+|m+ pol + 1) [ 1)Imsd
Vom(7/2,0) = >

can be expanded in terms of the spherical harmonics IM(a+1)
. o | Xp(lmmo\,\mw()l) 0). 30
=2 X 4niji(k)Yin(0 @) Yin(6,0).  (23) ‘ © %0
1=0 m=- With the help of the formulagpp. 218-219 in Ref[22])
The parametergk, #',¢’) and (r,0,¢) denote the corre-
sponding components & andr in spherical coordinates, PEA (7) = I'2p+1I'(q+p+1) cEV),  (31)
respectively. Using the same procedure as in Eq®—(14), 4 r(+1yrq+2p+1 ¢

we combine the nonlocal flux effect into the partial wave
expansion, and obtain the result

Cqﬁ+1/2(o)
; X
e'kxexp<;i—ef AX) d)"() 0 if g=odd numbers,
Clc
= -~ I'@Q+p+1/2
w o (- Dql“( (?ygm” +)1) if g=even numbers,
=3 S at Di% () Vi 0,0) Vel 6,9). A f
=0 m=— (32
(24 . piais
hereq=q/2=0,1,2,..., andC (2) is the Gegenbauer
By employing approximations of spherical Bessel functionspolynomials, we can fmd thege! ﬂﬁ (0)=0 if g=odd numbers,
[see Eq(42)], and
r—oo
ja(kr) ~ —sm(kr - aml2), (25) reg+1yrEg+p+1)raQ+pg+1/2)

BB (N =(— 1\E
Pa(0=(-1) N(B+1I(2g+2B8+)I(B+ 12T+ 1)’

r—o 1 . —
n,(kr) ~ - Ecos(arr)cos(kﬁ aml?2), (26) it q=even numbers, (33
_ where B=|m+ uo|. Thus the functionVyy(7/2,0) is given
we can find that by
r—oo
)
Rak(r) ~ aml2 + 3,(K)] I@+1/2T @G+ B+1/2)

Varl(m2,0) = (= 1)3—= \/
- sin(amsin s, (Ksinkr + am/2)}.  (27) VN @+ B+ D@+ 1)

Substituting the result faR,(r) in (20), and comparing both
asymptotic forms of20) and(22), the scattering amplitude |n most cases, the total cross section of our major concern is

(34)

is found to be defined byo,=[a(6, ¢)dQ, whered(} is the solid angle. By
employing(16), the partial wave representation of total cross
f(6,¢) = E E (2a+1) sect.ion for a charged particle scatt_ere_d by a short range po-
K =0 me—os tential plus the nonlocal AB effect is given by

€% sin §,c08(am)
1 - Msin §, sin(am)

" (6,0 ) Va6, ).
V00" ) Vol 6, ®) 2 2 Fan(32) (35)
(28) [=0 m=-o

Here (#',¢') is the incident direction of a charged particle, with
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(26 + D)sir? Scod(am) Ve,

I:'“m 5& = . .~ ~ . . ~ y
ol %) 1 -2 sin &, sin(@m)codam — &) + sir? S;sinf(am)
[
where we have defined=(2g+ ), and 167 &
, _T@+12T@+B+1/2) . oi(fermiong = 7% Wgodd Fam(32).  (38)

M ArG+ DTG+ B+ 1]

It is obvious that the cross section is completely determinedri€re the subscript “odd{"even”) is used to indicate the
by the scattering phase shifts which are concluded by th€ummation over oddever) numbers only.

potential of different types. Furthermore, when a nonlocal

AB magnetic flux exists, both the phase shift and the cross

section are affected globally. A relation between the total ll. ANOMALOUS CROSS SECTION INDUCED

cross sectioro; and the scattering amplitude is obtained if BY QUANTUM INTERFERENCE

we setp=0, and then take the imaginary part. It gives o )
=(4wIK)Im f(6=m/2,0=0). This is the optical theorem As a realization of the nonlocal influence of the AB flux

and is essentially a consequence of the conservation & the cross section, let us consider a charged particle scat-
particles. For the scattering of identical bosdfermiong  tered by a hard sphere potential and a magnetic flux. The
carrying the magnetic flux, the differential cross section ispotential is given byV(r)=c, for r<a and V(r)=0, for r
given by (8, 0)=|f(0, ¢) £ f(7— 0, o+ m)|?, where the plus <a. Using the boundary condition of the wave function
sign is for bosons as usual. The total cross sections afg.(@")=0, we find that the phase shift is given by

given by the integral”_ o(6, ¢)dQ2, which yield

167w — tan &, = jz(ka)/ng(ka). (39
obosong==52> X Fgn(8) (37

k 0= =—00
G=0 m=—es,even Substituting this expression in{@5), the total cross section

and is found to be

sz 2%+ 1)co(am B, ,(ka) )2
ot:i—lTE s (26 + DcoS(am) B, ,(ka) V2 0

oo By pka) + 9% (ka) + 2 Sin(am) g o(ka)d -1 o(ka)

——

To obtain the result, we have applied the following relations 4l (2 + 1)j,2(ka)

between the Bessel functions and spherical Bessel functions: o= FE >

< (@) + ré(ka) “3

(41)  limit k— 0 (assuming the radiusis finite) of the phase shift
can be found by the asymptotic expansion of Bessel func-
tions, which yields

_ o if the flux disappears, i.eyy=0. In this case the low energy
J V(Z) = 2_‘]V+l/2(z) ’

and

. k—0 (ka 21+1
tan § = j,(ka)/nj(ka) ~ - (@-Dn P2+ (44)
o
n,(2) =[cogv+ )] 2_ZJ—V—1/2(Z)- (42 Obviously, only indexI=0 survives. The phase shift be-
comes

The asymptotic behavior if26) can be found by the equal- tan &y(K) = jo(ka)/ng(ka) =~ —ka < 0. (45)
ity. Note that the result will reduce to the pure hard sphere
case So the total cross section
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— ka=0.5
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.......
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FIG. 1. The total cross section for a charged particle scattered by

a hard sphere with radius and a magnetic flux along theaxis.

FIG. 2. Periodic structures of total cross sections of a charged

The normalizationry=4ma® has been selected. Due to the existencep"’“'ticIe scattered by a hard sphere plus a magnetic flux along the

of magnetic flux, at the limit of the long wavequivalently, the

short range potentigl sayka<1, the total cross section is drasti-

cally suppressed at quantized magnetic flde(2n+1)dy/2,
wheren=0,1,2,..., withd, periodicity (see Fig. 2 The magnetic
flux effect disappears when the flux is quantizedbatn®d,,.

4 4
o= k—quSin2 & = k—z&g ~ 47a’. (46)

At the high energy limitk— o, we may use the formulas of

spherical Bessel functions of the large argument to turn E

(43) into

[ka]

oy~ 1—727% (2l + 1)sir?(ka— | 7/2)

. [ka]
= lim —=\ X (2 +Dsir? (ka)
ka—e K* | 1=02,...

[ka]

+ > (21 +1)cog (ka)

1=1,3,...
A kalka+1) .
|

+ (ka-1)(ka+2) cos’-(ka)}

~ 27a’. (47)

The numerical result fos with noninteger value is plotted in
Fig. 1, where the normalizatiom, is chosen as #a. There

are two main results which are caused by the quantum inter-

ference of the AB effect{1l) The cross sectiow; is drasti-
cally suppressed at the low energy lintéquivalently, the
short range potentiglsayka<1, at quantized magnetic flux
d=(2n+1)dy/2, n=0,1,2,..., with ®, periodicity as
shown in Figs. 1 and 22) A more interesting consideration

axis. At quantized values of magnetic fllk=(2n+1)dy/2, n
=0,1,2,..., thecross section reduces to the minimum kar<0.5.

the hard spheres carrying the magnetic flux. In Fig. 3, we
plot the total cross sections of identical bosons carrying the
magnetic flux via Eq(37). The outcome shows that the cross
section approaches zefo;— 0) when the valueka— 0 if

the magnetic flux is at quantized valygn+1)®d,. On the
contrary, if the magnetic flux is equal ton®,, the cross
section becomes maximum and the effect of magnetic flux
disappears. Since the decay rate of a curjetraveling a
distancex is given byj (x)=j (0)exp(-oinpx), whereng is the
number of the scattering center, the total cross section
o0y— 0 at the low energy limit atb=(2n+1)d, means that

0 2 4 6 8 10
ka

FIG. 3. Total cross sections for identical bosons carrying the
magnetic flux with variougty. The cross section at the long wave
length limit (equivalently, the sufficient short range potentialay
ka<0.5, approaches zero at the quantized magnetic &ex2n
+1)®,. On the contrary, the cross section becomes maximum and
the effect of magnetic flux disappears wher 2n®,. The periodic

is given by the scattering of identical particles simulated bystructure is @, as shown in Fig. 4.
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FIG. 5. Total cross sections of identical fermions carrying the
agnetic flux with variousuy. The cross section approaches zero
r ka<0.5 when the flux becomes@,. The magnetic flux effect
disappears when the magnitude of flux ig2n+1)®,. The global

the resistanc®— 0 and results in the persistence of cur- periodic structure in cross sections i®@as shown in Fig. 6.
rent. This phenomenon is consistent with the picture of

composite boson in fractional quantum Hall states located Vol ™= 6,0) = Vgl 6, 9). (49
at the filling factor with odd denominator such as1/3.

The composite boson is pictured by an electron carrying

the quantized magnetic flusb=(2n+1)®,. It dictates the These two equalities give us the relation(28)

quantized Hall states which exhibit the perfect conduction

in the longitudinal direction, i.e., the resistance originated

from the collisions between composite bosons, disappear f(0,¢) =f(m—-0,9), (50)
[3]. The global structure of the total cross section is given

by 2d®, periodicity as shown in Fig. 4. In the case of ) )

at the quantized magnetic fluk=2nd, as shown in Fig. is symmetr?c apout t_hez-y plane. If we make thg:- condition
5. Such effect is consistent with the model of the compos# — ~¢. Which is equivalent tan— -m, the effect is equal to
ite fermion in the quantum Hall state located at the filling reverse the direction of flux formz+to —z since [m+ |
factor with even denominator=5/2. The composite fer- — |=m+ ol =M= uq-

mion is described by an electron carrying the quantized

magnetic flux®=2nd,. In Ref.[23], a quantitative expla- 8 ' ' ' '
nation of quantum Hall state at the filling factor=5/2 is
given by the existence of a shorter range potential be- 7|
tween the composite fermions than the case of the filling
factor v=1/2. Here we can sethat, in Fig. 5, a suffi-
ciently short range potential, s«a<<0.5, between the fer-
mions carrying the quantized magnetic fld<2nd, will o
cause negligible cross section and thus agree with the® ,|
composite fermions model. Similar to the boson case, thes™
oscillating period is given by ®, as shown in Fig. 6. 3l

FIG. 4. Periodic structures of cross sections of identical bosons
carrying the magnetic flux. The cross section approaches zero Wh(%ﬂ
the magnetic flux is quantized @t=(2n+1)d, for ka<0.5. 0

5_

IV. DISCUSSION A

A. Symmetries

When the incident direction is perpendicular to the mag-
netic flux, i.e.,0' =7/2,¢' =0, we see fron{32) thatq must 0 . .
be equal to even numbers so that these channels have nor 0 05 1 s 2 25 3 35 4
vanishing contributions. In this case we have

PP (cogm - ) = PP (cos 6). (48) FIG. 6. Periodic structures of total cross sections for identical
a . fermions carrying the magnetic flux. The cross section approaches
On the other hand, fronf21) we have zero when the magnetic flux is quantizeddat 2n®d, for ka<0.5.

052711-7



DE-HONE LIN PHYSICAL REVIEW A 69, 052711(2004

B. Anomalous cross section induced by the quantum +1)dy/2, 2ndy, and (2n+1)d, are apparent.
interference

By way of Fig. 1, we see that the total cross section may  D. Extension of the potential to the more general case
be anomalous due to the quantum interference which pro- Althouah in th d f f Vi)
vides another possibility to explain the depression of the total ough In the procedure of our proot we assuiie
cross section discussed in recent pap@fswhere the quan- =0 for r>a, we do not specify the radius bey.ond \.Nh'Ch
tum entanglement is supposedly responsible for the suppreg-(r)zo' Hence we expect that the theorem given in the ar-
sion of the total cross section in the condensed matter. Howficlé should be valid for a very general potential as long as
ever, issues do exist regarding that the lifetime of thethe potential decreases rapidly enough whenc.
entanglement in condensed system is much shorter than the
present-day time-resolution techniques can resolve, and E. A possible experimental test
therefore it is commonly expected to have no experimental

significance. In Ref.[24], a general fractionghonquantizefimagnetic

flux is observed in the superconducting film. Because of the
) ) ) inevitable pinning of flux in the superconductor, the flux fi-
C. The effects of magnetic flux and dimensions nally attaches to the defect or impurity such that they be-

The quantum interference features in Figs. 1-6 were obcome models of a finite range interaction with flux as men-

served in[25] where a two-dimensional partial wave analysistioned in Sec. IV D. The system scattered by the other low

of scattering with nonlocal AB effect was constructed, and a&nergy charged particle can be as the test ground of the

“hard disk” with the AB magnetic flux was used to simulate anomalous cross section presented in the paper.

the dynamics of a charged particle with magnetic flux. Al-

though thg dominant picture of the_ quantum interfere_nce can ACKNOWLEDGMENTS

be found in the hard disk model, it is somewhat too simple to

yield a “wave-packet-like” object. In the paper, with the hard  The author would like to thank Professor Pi-Guan Luan

sphere model, we see from Figs. 1-6 that quantum interfefor helpful discussions, and Professor Der-San Chuu and

ence features at the quantized magnetic flde(2n Professor Jang-Yu Hsu for reading the manuscript.
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