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Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a
nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a “hard sphere”-like potential
and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized
magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional
quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is
universal, the nonlocal effect is expected to appear in a quite general potential system and will be useful in
understanding some other phenomena in mesoscopic physics.
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I. INTRODUCTION

Since the global structure of magnetic flux was discovered
about 40 years ago[1], it has made a great contribution to
our comprehension of the foundation of quantum theory[2],
the phenomenon of quantum Hall effect[3], superconductiv-
ity [4], repulsive Bose gases[5], and, recently, helped to
explore the quantum computers, and quantum cryptography
communication systems[6,7]. Nevertheless, to my knowl-
edge, a general partial wave analysis for a scattering of a
charged particle moving in an arbitrary short range potential
plus a magnetic flux in three dimensions is still not done
until now [8]. In this paper we discuss the partial wave
method of a charged particle moving in an arbitrary short
range potential with scattering center located at the origin,
and the AB magnetic flux along thez-axis in the three di-
mensional space. Special attention is paid to the problem of
the “hard sphere”-like potential plus the magnetic flux with
the incident direction of particles restricted in thex-y plane.
Several interesting results are concluded as follows:(1) In
the long wave length limit(equivalently, short range poten-
tial) the total cross section is drastically suppressed at quan-
tized magnetic fluxF=s2n+1dF0/2, where n=0,1,2, . . .,
andF0 is the fundamental magnetic flux quantumhc/e. The
global influence of the magnetic flux on the cross section is
manifested withF0 periodicity. The result provides another
possibility to explain the anomalous total cross section given
in Ref. [9], where the quantum entanglement is supposedly
responsible for the suppression of the total cross section in
the condensed system. On the other hand, the cross section
approaches the flux-free case in the short wave length limit,
i.e., the quantum interference feature of the nonlocal effect
gradually disappears, and the cross section approaches the
classical limit.(2) If the hard sphere is used to simulate the
boson(fermion) moving in thex-y plane, the scattering pro-
cess of identical particles carrying the magnetic flux shows
that the total cross section is suppressed at quantized mag-
netic flux F=s2n+1dF0 for bosons(F=2nF0 for fermions)
and exhibits the global structure with 2F0 periodicity. These
results shed light on the model of composite bosons and
fermions in the fractional quantum Hall effect[3,10,11], su-

perconductivity, and transport phenomena in nanostructures
[12,13]. Furthermore, since the nonlocal influence of the
magnetic flux on the charged particle is universal, the impli-
cation should be general in similar systems.

This paper is organized as follows. In Sec. II, the partial
wave method of scattering with AB effect in three dimen-
sions is established. The nonintegrable phase factor(NPF)
[14] is used to couple the magnetic flux with the particle
angular momentum such that the partial wave method can be
conveniently developed. In Sec. III, special attention is paid
to the specific condition of the incident direction restricted in
the x-y plane. The total cross section of a charged particle
with its path in thex-y plane scattered by a hard sphere
potential plus an AB magnetic flux is discussed in some de-
tail. Our discussions are summarized in Sec. IV.

II. PARTIAL WAVE ANALYSIS OF SCATTERING
WITH THE NONLOCAL AHARONOV-BOHM EFFECT

We consider a three-dimensional model. The fixed-energy
Green’s functionGs0dsx ,x8 ;Ed for a charged particle with
massm propagating fromx8 to x satisfies the Schrödinger
equation

HE − F−
"2¹2

2m
+ VsxdGJGs0dsx,x8;Ed = dsx − x8d, s1d

where Vsxd is the scalar potential andx is the three-
dimensional coordinate vector. In the spherically symmetric
system, the Green’s function can be decomposed asf15g

Gs0dsr ,r 8;Ed = o
l=0

`

o
m=−l

l

Gl
s0dsr,r8;EdYlmsu,wdYlm

* su8,w8d,

s2d

with Ylmsu ,wd the well-known spherical harmonics and
Gl

s0dsr ,r8 ;Ed the radial Green’s function for the specific an-
gular momentum channell. The left-hand side of Eq.s1d can
then be cast into
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o
l=0

`

o
m=−l

l HE + F "2

2m
S d2

dr2 +
2

r

d

dr
D −

lsl + 1d"2

2mr2 G − VsrdJ
3Gl

s0dsr,r8;EdYlmsu,wdYlm
* su8,w8d. s3d

For a charged particle affected by a magnetic field, the
Green’s functionGsx ,x8 ;Ed is different fromGs0dsx ,x8 ;Ed
by a global NPFf14–20g

Gsx,x8;Ed = Gs0dsx,x8;EdexpH ie

"c
E

x8

x

Asx̃d ·dx̃J . s4d

Here the vector potentialAsxd is used to represent the mag-
netic field. For an infinitely thin tube of finite magnetic flux
along thez-direction, the vector potential can be described
by

Asxd = 2g
− yêx + xêy

x2 + y2 , s5d

where êx,êy stand for the unit vector along thex,y axis,
respectively. Introducing the azimuthal anglewsxd
=tan−1sy/xd around the AB tube, the components of the
vector potential can be expressed asAi =2g]iwsxd. The as-
sociated magnetic field lines are confined to an infinitely
thin tube along thez-axis,

B3 = 2ge3i j]i] jwsxd = 4pgdsx'd, s6d

wherex' stands for the transverse vectorx';sx,yd. Since
the magnetic flux through the tube is defined by the integral
F=ed2xB3, the coupling constantg is related to the magnetic
flux by g=F /4p. By using the expression ofAi =2g]iw, the
angular difference between the initial pointx8 and the final
point x in the exponent of the NPF is given by

w − w8 =E
t

t8
dtẇstd =E

t

t8
dt

− yẋ+ xẏ

x2 + y2 =E
x8

x x̃ 3 dx̃

x̃2 ,

s7d

whereẇ=dw /dt. Given two pathsC1 andC2 connectingx8
andx, the integral differs by an integer multiple of 2p. The
winding number is thus given by the contour integral over
the closed difference pathC:

n =
1

2p
r C

x̃ 3 dx̃

x̃2 . s8d

The magnetic interaction is therefore purely nonlocal and
topologicalf21g. Its action takes the formAmag=−"m02pn,
where m0;−2eg/"c=−F /F0 is a dimensionless number
with the customarily minus sign. The NPF now becomes
exp h−im0s2pn+w−w8dj. With the help of the equality be-
tween the associated Legendre polynomialPl

mszd and the
Jacobi functionPn

sa,bdszd f19,20g,

Pl
mscosud = s− 1dmGsl + m+ 1d

Gsm+ 1d Scos
u

2
sin

u

2
Dm

Pl−m
sm,mdscosud,

s9d

the angular part of the Green’s function in the expressions8d
can be turned into the following form:

o
m=−l

l

Ylmsu,wdYlm
* su8,w8d

= o
m=−l

l
2l + 1

4p

Gsl − m+ 1d
Gsl + m+ 1d

Pl
mscosudPl

mscosu8deimsw−w8d

= o
m=−l

l F2l + 1

4p

Gsl − m+ 1dGsl + m+ 1d
G2sl + 1d G

3Scos
u

2
cos

u8

2
sin

u

2
sin

u8

2
Dm

Pl−m
sm,mdscosud

3Pl−m
sm,mdscosu8deimsw−w8d. s10d

In order to include the NPF due to the AB effect, we will
change the indexl into q related by the definitionl −m=q.
As a result Eq.s3d can be rewritten as

o
q=0

`

o
m=−`

` HE + F "2

2m
S d2

dr2 +
2

r

d

dr
D −

sq + mdsq + m+ 1d"2

2mr2 G
− VsrdJGq+m

s0d sr,r8;EdF2sq + md + 1

4p

Gsq + 1dGsq + 2m+ 1d
G2sq + m+ 1d G

3Scos
u

2
cos

u8

2
sin

u

2
sin

u8

2
Dm

Pq
sm,mdscosud

3Pq
sm,mdscosu8deimsw−w8d. s11d

The Green’s functionGnsr ,r8 ;Ed for a specific winding
numbern can be obtained by converting the summation over
m in Eq. s11d into an integral overz and another summation
over n by the Poisson’s summation formulase.g., Ref.f22g,
p. 469d

o
m=−`

`

fsmd =E
−`

`

dzo
n=−`

`

e2pnzifszd. s12d

So the expressions3d when includes the NPF can be written
as

o
q=0

` E dzo
n=−`

` HE + F "2

2m
S d2

dr2 +
2

r

d

dr
D

+
sq + zdsq + z+ 1d"2

2mr2 G − VsrdJGq+zsr,r8;Ed

3F2sq + zd + 1

4p

Gsq + 1dGsq + 2z+ 1d
G2sq + z+ 1d G
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3Scos
u

2
cos

u8

2
sin

u

2
sin

u8

2
Dz

Pq
sz,zdscosud

3Pq
sz,zdscosu8deisz−m0dsw+2np−w8d, s13d

where the superscripts0d in Gq+m
s0d has been suppressed to

denote that the AB effect is included. Obviously, the number

n on the right-hand side is precisely the winding number by
which we want to classify the Green’s function. Employing
the special case of the Poisson formulaon=−`

` exphiksw
+2np−w8dj=om=−`

` dsk−mdexphimsw−w8dj, the summa-
tion over all indicesn forces z=m0 modulo an arbitrary
integer number. Thus, we obtain

o
q=0

`

o
m=−`

` HE + F "2

2m
S d2

dr2 +
2

r

d

dr
D −

sq + um+ m0udsq + um+ m0u + 1d"2

2mr2 G − VsrdJGq+um+m0usr,r8;Ed

3H f2sq + um+ m0ud + 1g
4p

Gsq + 1dGs2um+ m0u + q + 1d
G2sum+ m0u + q + 1d Jeimsw−w8d 3 Scos

u

2
cos

u8

2
sin

u

2
sin

u8

2
Dum+m0u

3Pq
sum+m0u,um+m0udscosudPq

sum+m0u,um+m0udscosu8d. s14d

We see that the influence of the AB effect to the radial
Green’s function is to replace the integer quantum numberl
with a real onesq+ um+m0ud which depends on the magni-
tude of magnetic flux. Analogously the same procedure can
be applied to the delta functiondsr −r 8d on the r.h.s. of Eq.
s1d by employing the solid angle representation of thed
function,

dsV − V8d = o
l=0

`

o
m=−l

l

Ylmsu,wdYlm
* su8,w8d. s15d

With the help of orthogonal property of the angular partf20g,

E
0

2p

dwE
−1

1

sd cosudPq
sum+m0u,um+m0udscosudPq8

sum8+m0u,um8+m0ud

3scosudScos
u

2
sin

u

2
Dum+m0uScos

u

2
sin

u

2
Dum8+m0u

eism−m8dw

=
G2sq + um+ m0u + 1d

Gsq + 1dGsq + 2um+ m0u + 1d
4p

2sq + um+ m0ud + 1

3dq,q8dm,m8, s16d

one can show that the radial Green’s function for the set of
the fixed quantum numberssq,md satisfies

HE + F "2

2m
S d2

dr2 +
2

r

d

dr
D −

asa + 1d"2

2mr2 G − VsrdJ
3 Gasr,r8;Ed = dsr − r8d. s17d

Here we have defineda;sq+ um+m0ud for convenience. The
corresponding radial wave equation then reads

F d2

dr2 +
2

r

d

dr
+ Sk2 − Usrd −

asa + 1d
r2 DGRkasrd = 0,

s18d

whereUsrd;2mVsrd /"2 and the subscript setsk,ad with k
;Î2mE/" in the radial wave functionRkasrd denotes the
state of scattering particle. For a short range potential, say
Vsrd vanishes asr .a, the exterior solution is the linear
combination of first and second kind spherical Bessel
functions jaskrd and naskrd, and may be given by

Raksrd = fCaskd jaskrd + Daskdnaskrdg = Aaskd

3fcosdaskd jaskrd − sin daskdnaskrdg, s19d

where daskd is the phase shift defined by −Daskd /Caskd
; tan daskd andAaskd=Caskd /cosdaskd which can be used
to measure the interaction strength of potential. Thus the
general solutionCksxd of a scattering particle with arbi-
trary incident directionsu8 ,w8d is given by superposition
of partial wavesCkasrd, which reads

Cksxd = o
q=0

`

o
m=−`

`

Aaskdfcosdaskd jaskrd

− sin daskdnaskrdgYqm
* su8,w8dYqmsu,wd s20d

in which Yqmsu ,wd is defined by

Yqmsu,wd =ÎGsq + 1dGsa + um+ m0u + 1d
G2sa + 1d

3 Scos
u

2
sin

u

2
Dum+m0u

Pq
sum+m0u,um+m0udscosudeimw.

s21d

Since it must describe both the incident and the scattered
waves at large distance, we naturally expect it to become
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Cksxd ,
uxu→`

F`Sexphik ·xjexpH ie

"c
E

C

x

Asx̃d ·dx̃JD
+ fsu,wd

exphikrj
r

, s22d

where exphik ·xj describes the incident plane wave of a
charged particle with momentump=mk and F`s·d stands
for its asymptotic form. The phase modulation of the NPF
comes from the fact that the fieldAsxd of AB magnetic
flux affects the charged particle globally. The subscriptC
in the integral is used to represent the nature of the NPF
which depends on the different paths. To find the ampli-
tude fsu ,wd we first note that the plane wave in Eq.s22d
can be expanded in terms of the spherical harmonics

eik·x = o
l=0

`

o
m=−l

l

4pi l j lskrdYlm
* su8,w8dYlmsu,wd. s23d

The parameterssk,u8 ,w8d and sr ,u ,wd denote the corre-
sponding components ofk and r in spherical coordinates,
respectively. Using the same procedure as in Eqs.s10d–s14d,
we combine the nonlocal flux effect into the partial wave
expansion, and obtain the result

eik·xexpS ie

"c
E

C

x

Asx̃d ·dx̃D
= o

q=0

`

o
m=−`

`

s2a + 1dia jaskrdYqm
* su8,w8dYqmsu,wd.

s24d

By employing approximations of spherical Bessel functions
fsee Eq.s42dg,

jaskrd ,
r→` 1

kr
sinskr − ap/2d, s25d

naskrd ,
r→`

−
1

kr
cossapdcosskr + ap/2d, s26d

we can find that

Raksrd ,
r→`Aaskd

kr
hsin fkr − ap/2 + daskdg

− sinsapdsin daskdsinskr + ap/2dj. s27d

Substituting the result forRaksrd in s20d, and comparing both
asymptotic forms ofs20d and s22d, the scattering amplitude
is found to be

fsu,wd =
1

k
o
q=0

`

o
m=−`

`

s2a + 1d

3F eida sin dacos2sapd
1 − eisda−apdsin da sinsapdGYqm

* su8,w8dYqmsu,wd.

s28d

Here su8 ,w8d is the incident direction of a charged particle,

and su ,wd is the scattering direction. It is easy to see that
when the magnetic flux disappears, withu8=0, i.e.k is along
thez-axis, andPls1d=1, the result reduces to the well-known
amplitude

fsud =
1

k
o
l=0

`

s2l + 1deidlsin dlPlscosud. s29d

Let us consider the case of the incident direction perpendicu-
lar to the magnetic flux, i.e.,su8=p /2 ,w8=0d. We have the
function

Yqmsp/2,0d =ÎGsq + 1dGsa + um+ m0u + 1d
G2sa + 1d

S1

2
Dum+m0u

3Pq
sum+m0u,um+m0uds0d. s30d

With the help of the formulasspp. 218–219 in Ref.f22gd

Pq
sb,bdszd =

Gs2b + 1dGsq + b + 1d
Gsb + 1dGsq + 2b + 1d

Cq
b+1/2szd, s31d

Cq
b+1/2s0d

= 50 if q = odd numbers,

s− 1dq̃ Gsq̃ + b + 1/2d
Gsb + 1/2dGsq̃ + 1d

if q = even numbers,

s32d

here q̃;q/2=0,1,2, . . ., andCq
b+1/2szd is the Gegenbauer

polynomials, we can find thatPq
sb,bds0d=0 if q=odd numbers,

and

Pq
sb,bds0d=s− 1dq̃ Gs2b + 1dGs2q̃ + b + 1dGsq̃ + b + 1/2d

Gsb + 1dGs2q̃ + 2b + 1dGsb + 1/2dGsq̃ + 1d
,

if q = even numbers, s33d

whereb;um+m0u. Thus the functionYqmsp /2 ,0d is given
by

Yqmsp/2,0d = s− 1dq̃ 1
Îp
ÎGsq̃ + 1/2dGsq̃ + b + 1/2d

Gsq̃ + b + 1dGsq̃ + 1d
.

s34d

In most cases, the total cross section of our major concern is
defined byst=essu ,wddV, wheredV is the solid angle. By
employings16d, the partial wave representation of total cross
section for a charged particle scattered by a short range po-
tential plus the nonlocal AB effect is given by

st =
4p

k2 o
q̃=0

`

o
m=−`

`

Fq̃msdãd s35d

with
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Fq̃msdãd = F s2ã + 1dsin2 dãcos4sãpdYq̃m
2

1 − 2 sindã sinsãpdcossãp − dãd + sin2 dãsin2sãpdG ,

where we have definedã;s2q̃+bd, and

Yq̃m
2 ;

Gsq̃ + 1/2dGsq̃ + b + 1/2d
fpGsq̃ + 1dGsq̃ + b + 1dg

. s36d

It is obvious that the cross section is completely determined
by the scattering phase shifts which are concluded by the
potential of different types. Furthermore, when a nonlocal
AB magnetic flux exists, both the phase shift and the cross
section are affected globally. A relation between the total
cross sectionst and the scattering amplitude is obtained if
we setw=0, and then take the imaginary part. It givesst
=s4p /kdIm fsu=p /2 ,w=0d. This is the optical theorem
and is essentially a consequence of the conservation of
particles. For the scattering of identical bosonssfermionsd
carrying the magnetic flux, the differential cross section is
given by ssu ,wd= ufsu ,wd± fsp−u ,w+pdu2, where the plus
sign is for bosons as usual. The total cross sections are
given by the integrale−p

p ssu ,wddV, which yield

stsbosonsd =
16p

k2 o
q̃=0

`

o
m=−`,even

`

Fq̃msdãd s37d

and

stsfermionsd =
16p

k2 o
q̃=0

`

o
m=−`,odd

`

Fq̃msdãd. s38d

Here the subscript “odd”s“even”d is used to indicate the
summation over oddsevend numbers only.

III. ANOMALOUS CROSS SECTION INDUCED
BY QUANTUM INTERFERENCE

As a realization of the nonlocal influence of the AB flux
on the cross section, let us consider a charged particle scat-
tered by a hard sphere potential and a magnetic flux. The
potential is given byVsrd=`, for r øa and Vsrd=0, for r
øa. Using the boundary condition of the wave function
Rkasa+d=0, we find that the phase shift is given by

tan dã = j ãskad/nãskad. s39d

Substituting this expression intos35d, the total cross section
is found to be

st =
4p

k2 o
q̃=0

`

o
m=−`

` s2ã + 1dcos2sãpdJã+1/2
2 skadYq̃m

2

Jã+1/2
2 skad + J−ã−1/2

2 skad + 2 sinsãpdJã+1/2skadJ−ã−1/2skad
. s40d

To obtain the result, we have applied the following relations
between the Bessel functions and spherical Bessel functions:

jnszd =Î p

2z
Jn+1/2szd, s41d

and

nnszd = fcossn + 1dpgÎ p

2z
J−n−1/2szd. s42d

The asymptotic behavior ins26d can be found by the equal-
ity. Note that the result will reduce to the pure hard sphere
case

st =
4p

k2 o
l=0

` s2l + 1d j l
2skad

j l
2skad + nl

2skad
s43d

if the flux disappears, i.e.,m0=0. In this case the low energy
limit k→0 sassuming the radiusa is finited of the phase shift
can be found by the asymptotic expansion of Bessel func-
tions, which yields

tan dl = j lskad/nlskad ,
k→0

−
skad2l+1

fs2l − 1d ! ! g2s2l + 1d
. s44d

Obviously, only indexl =0 survives. The phase shift be-
comes

tan d0skd = j0skad/n0skad < − ka, 0. s45d

So the total cross section
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st <
4p

k2 sin2 d0 <
4p

k2 d0
2 < 4pa2. s46d

At the high energy limitk→`, we may use the formulas of
spherical Bessel functions of the large argument to turn Eq.
s43d into

st <
4p

k2 o
l=0

fkag

s2l + 1dsin2ska− lp/2d

= lim
ka→`

4p

k2 H o
l=0,2,...

fkag

s2l + 1dsin2 skad

+ o
l=1,3,...

fkag

s2l + 1dcos2 skadJ
= lim

ka→`

4p

k2 Hkaska+ 1d
2

sin2skad

+
ska− 1dska+ 2d

2
cos2skadJ

< 2pa2. s47d

The numerical result fora with noninteger value is plotted in
Fig. 1, where the normalizations0 is chosen as 4pa2. There
are two main results which are caused by the quantum inter-
ference of the AB effect:s1d The cross sectionst is drasti-
cally suppressed at the low energy limitsequivalently, the
short range potentiald, saykaø1, at quantized magnetic flux
F=s2n+1dF0/2, n=0,1,2, . . ., with F0 periodicity as
shown in Figs. 1 and 2.s2d A more interesting consideration
is given by the scattering of identical particles simulated by

the hard spheres carrying the magnetic flux. In Fig. 3, we
plot the total cross sections of identical bosons carrying the
magnetic flux via Eq.s37d. The outcome shows that the cross
section approaches zerosst→0d when the valueka→0 if
the magnetic flux is at quantized values2n+1dF0. On the
contrary, if the magnetic flux is equal to 2nF0, the cross
section becomes maximum and the effect of magnetic flux
disappears. Since the decay rate of a currentj traveling a
distancex is given byj sxd= j s0dexps−stn0xd, wheren0 is the
number of the scattering center, the total cross section
st→0 at the low energy limit atF=s2n+1dF0 means that

FIG. 1. The total cross section for a charged particle scattered by
a hard sphere with radiusa and a magnetic flux along thez axis.
The normalizations0=4pa2 has been selected. Due to the existence
of magnetic flux, at the limit of the long wave(equivalently, the
short range potential), saykaø1, the total cross section is drasti-
cally suppressed at quantized magnetic fluxF=s2n+1dF0/2,
wheren=0,1,2, . . ., withF0 periodicity (see Fig. 2). The magnetic
flux effect disappears when the flux is quantized atF=nF0.

FIG. 2. Periodic structures of total cross sections of a charged
particle scattered by a hard sphere plus a magnetic flux along thez
axis. At quantized values of magnetic fluxF=s2n+1dF0/2, n
=0,1,2, . . ., thecross section reduces to the minimum forkaø0.5.

FIG. 3. Total cross sections for identical bosons carrying the
magnetic flux with variousm0. The cross section at the long wave
length limit (equivalently, the sufficient short range potential), say
kaø0.5, approaches zero at the quantized magnetic fluxF=s2n
+1dF0. On the contrary, the cross section becomes maximum and
the effect of magnetic flux disappears whenF=2nF0. The periodic
structure is 2F0 as shown in Fig. 4.
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the resistanceR→0 and results in the persistence of cur-
rent. This phenomenon is consistent with the picture of
composite boson in fractional quantum Hall states located
at the filling factor with odd denominator such asn=1/3.
The composite boson is pictured by an electron carrying
the quantized magnetic fluxF=s2n+1dF0. It dictates the
quantized Hall states which exhibit the perfect conduction
in the longitudinal direction, i.e., the resistance originated
from the collisions between composite bosons, disappear
f3g. The global structure of the total cross section is given
by 2F0 periodicity as shown in Fig. 4. In the case of
identical fermions, the total cross sectionst→0 is found
at the quantized magnetic fluxF=2nF0 as shown in Fig.
5. Such effect is consistent with the model of the compos-
ite fermion in the quantum Hall state located at the filling
factor with even denominatorn=5/2. The composite fer-
mion is described by an electron carrying the quantized
magnetic fluxF=2nF0. In Ref. f23g, a quantitative expla-
nation of quantum Hall state at the filling factorn=5/2 is
given by the existence of a shorter range potential be-
tween the composite fermions than the case of the filling
factor n=1/2. Here we can seethat, in Fig. 5, a suffi-
ciently short range potential, sayka,0.5,between the fer-
mions carrying the quantized magnetic fluxF=2nF0 will
cause negligible cross section and thus agree with the
composite fermions model. Similar to the boson case, the
oscillating period is given by 2F0 as shown in Fig. 6.

IV. DISCUSSION

A. Symmetries

When the incident direction is perpendicular to the mag-
netic flux, i.e.,u8=p /2 ,w8=0, we see from(32) thatq must
be equal to even numbers so that these channels have non-
vanishing contributions. In this case we have

P2q̃
sb,bdscossp − udd = P2q̃

sb,bdscosud. s48d

On the other hand, froms21d we have

Yqmsp − u,wd = Yqmsu,wd. s49d

These two equalities give us the relation ins28d

fsu,wd = fsp − u,wd, s50d

which means that the amplitude, and thus the cross section,
is symmetric about thex-y plane. If we make the condition
w→−w, which is equivalent tom→−m, the effect is equal to
reverse the direction of flux form +z to −z since um+m0u
→ u−m+m0u= um−m0u.

FIG. 4. Periodic structures of cross sections of identical bosons
carrying the magnetic flux. The cross section approaches zero when
the magnetic flux is quantized atF=s2n+1dF0 for kaø0.5.

FIG. 5. Total cross sections of identical fermions carrying the
magnetic flux with variousm0. The cross section approaches zero
for kaø0.5 when the flux becomes 2nF0. The magnetic flux effect
disappears when the magnitude of flux is ats2n+1dF0. The global
periodic structure in cross sections is 2F0 as shown in Fig. 6.

FIG. 6. Periodic structures of total cross sections for identical
fermions carrying the magnetic flux. The cross section approaches
zero when the magnetic flux is quantized atF=2nF0 for kaø0.5.
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B. Anomalous cross section induced by the quantum
interference

By way of Fig. 1, we see that the total cross section may
be anomalous due to the quantum interference which pro-
vides another possibility to explain the depression of the total
cross section discussed in recent papers[9], where the quan-
tum entanglement is supposedly responsible for the suppres-
sion of the total cross section in the condensed matter. How-
ever, issues do exist regarding that the lifetime of the
entanglement in condensed system is much shorter than the
present-day time-resolution techniques can resolve, and
therefore it is commonly expected to have no experimental
significance.

C. The effects of magnetic flux and dimensions

The quantum interference features in Figs. 1–6 were ob-
served in[25] where a two-dimensional partial wave analysis
of scattering with nonlocal AB effect was constructed, and a
“hard disk” with the AB magnetic flux was used to simulate
the dynamics of a charged particle with magnetic flux. Al-
though the dominant picture of the quantum interference can
be found in the hard disk model, it is somewhat too simple to
yield a “wave-packet-like” object. In the paper, with the hard
sphere model, we see from Figs. 1–6 that quantum interfer-
ence features at the quantized magnetic fluxF=s2n

+1dF0/2, 2nF0, ands2n+1dF0 are apparent.

D. Extension of the potential to the more general case

Although in the procedure of our proof we assumeVsrd
=0 for r .a, we do not specify the radiusa beyond which
Vsrd=0. Hence we expect that the theorem given in the ar-
ticle should be valid for a very general potential as long as
the potential decreases rapidly enough whenr →`.

E. A possible experimental test

In Ref. [24], a general fractional(nonquantized) magnetic
flux is observed in the superconducting film. Because of the
inevitable pinning of flux in the superconductor, the flux fi-
nally attaches to the defect or impurity such that they be-
come models of a finite range interaction with flux as men-
tioned in Sec. IV D. The system scattered by the other low
energy charged particle can be as the test ground of the
anomalous cross section presented in the paper.
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