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Here we study a one-dimensional finite lattice formed by generalized contact interactions in a circular setup,
i.e., under periodic boundary conditions. Considering only four such potentials, we show the emergence of
different behaviors as revivals, bouncing, and trapping for the time evolution of wave packets. This is done by
properly choosing the parameters that characterize the contact interactions. We also discuss possible physical
applications for this type of system, such as using it to split an initially localized state into spatially separated
and dynamically independent parts.
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I. INTRODUCTION

The wavelike characteristics of the quantum world lead to
countless unexpected phenomena at the microscopic scales.
To control these phenomena by driving the time evolution of
quantum states has become a very active research area of
both fundamental and practical importance(see, for instance,
the overview in Ref.[1]). Probably the most straightforward
way of all to achieve quantum control is just to find(or
build) specific systems that, by adjusting appropriate param-
eters, can behave as we wish.

A particularly rich problem is the one of wave-packet
scattering by multiple barrier potentials[2]. Even in very
simple situations interesting effects, such asrevivals, bounc-
ing, andtrapping can take place. Indeed, if we put a Gauss-
ian wave packet inside an infinite one-dimensional(1D)
well, the packet will spread and fill all the allowed space.
However, after a timeTf (partial revival) it will start to re-
construct itself, returning to its original shape after an
elapsed revival timeTr [3]. The so called super-revival can
also be seen in finite square-well potentials[4,5]. Quantum
revivals are present in different contexts like quantum com-
putation [6]; the classical-quantum correspondence in Ryd-
berg atoms[7]; anharmonic vibrational potentials[8]; femto-
second dynamics in physics and chemistry[9]; and many
others[10,11]. Bouncing is when a quantum state oscillates
between only two spatially separated regions, as in resonant
coupling between two particular single wells of a multiple
well potential. Finally, by trapping we mean that the wave
packet stays confined in a particular region of the configura-
tion space, not evolving to the other energetically allowed
regions. As examples we cite suppression of tunneling from
one side to the other for a wave packet in a double well
constituted of a rectangular barrier[12] or a d potential[13]
within an infinite square well; and eigenstate localization for
a starlike quantum graph[14]. It is important to note that
such behavior is not associated with Anderson localization,
since no disorder is involved.

In a recent work[15], the problem of a 1D lattice(peri-
odic or not) of N arbitrary contact interactions was discussed

in general terms and also the many possible physical appli-
cations for it. Contact interactions are idealizations of very
short range potentials, which have the effect of imposing
different boundary conditions on the system wave function at
the potential locations. They are very useful in developing
analytical models to study complicated processes, such as
ion-atom collisions [16], many-body interactions[17],
fermion-boson duality[18], and regularization schemes[19].

In this contribution we show that, by properly setting the
contact interaction parameter values, quite simple configura-
tions of the lattices mentioned above can exhibit revivals,
bouncing, and trapping. We work with a finite 1D lattice of
length L, having just four general contact interactions arbi-
trarily located along it. We assume a circular setup, i.e., pe-
riodic boundary conditions wherex=0;x=L (which we will
call a circle, for short). Our particular choice of four poten-
tials is just because it is a simple case that already displays
all the aspects we shall discuss.

Although this paper deals with a theoretical analysis of a
model system, it may be of concrete interest(and conceiv-
ably be implemented) in actual laboratory conditions. This is
so because, first, general contact interactions can be con-
structed as a composition ofd potentials[20], which in their
turn are in principle realizable from some well behaved
short-range potentials, as in the case of sharp quantum walls
[21]. Second, a series of works by Stöckmann and collabo-
rators[22] studies 1D circular arrangements for microwave
scattering, whose dynamics are analogous to the present sys-
tems. So our predictions eventually could be investigated in
such experiments.

The outline of the paper is as follows. In Sec. II we es-
tablish our systems, presenting their eigenfunctions, eigen-
values, and the construction of wave packets. In Sec. III, we
calculate the wave-packet time evolution for different con-
tact interactions on the circle and discuss the emergence of
revivals, bouncing, and trapping. Finally, in Sec. IV we
present our final remarks and conclusion.

II. THE SYSTEM

A. Eigenvalues and eigenfunctions

The Schrödinger equation of the problem is simply
fd2/dx2+k2gfsxd=0, with x in the intervalf0,Lg and 0;L.
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The effect of the four generalized contact interactions(lo-
cated atl j, with 0, l1, l2, l3, l4,L) is represented by a
set of boundary conditions imposed onf at these l j’s.
Throughout the paper we use the natural units"=2m=1, so
all the plotted quantities will be dimensionless.

Let an eigenfunction in the regionl j−1,x, l j s j
=1, . . . ,5 ,l0=0,l5=Ld be written as

f jsxd = Aj sin skxd + Bj cosskxd. s1d

From self-adjoint extensions, we know that the most general
contact interaction atl j can be represented byf23g

Sf j+1sl jd
f j+18 sl jd

D = exp fiu jgSaj bj

cj dj
DSf jsl jd

f j8sl jd
D, j = 1, . . . ,4.

s2d

Here, f8sxd=dfsxd /dx and ajdj −bjcj =1, with aj ,bj ,cj ,dj,
and u j being real parameters which define each contact in-
teraction atx= l j. Finally, due to the periodic boundary con-
ditions scircle cased we must imposef1s0d=f5sLd and
f18s0d=f58sLd.

The coefficientsA and B are linked through a homoge-
neous system of ten equations plus the normalization condi-
tion. By solving it we get the eigenfunctions as well as the
quantization conditiongskd=0 in terms of the 20 parameters
haj ,bj ,cj ,djj and hu jj. The exact general expressions for the
coefficients and forgskd are very cumbersome and we will
not write them down here. Just as an illustration, we quote
the gskd for two simple cases. When the four contact inter-
actions are the usuald potential and all having the same
strengthg, the eigenvalueEn=kn

2 is obtained as thenth root
of the transcendental equation

gdskd = 16k4scosfkLg − 1d + g2sg2 − 24k2dcosskLd − g2sg2

− 4k2dC1skd + g2sg2 + 4k2dC2skd + g4cosfksL + 2 , dg

− 8gksg2 − 4k2dsin skLd + 4g3kS1skd, s3d

where,= l1− l2+ l3− l4, and

C1skd = cosfksL + 2l1 − 2l2dg + cosfksL + 2l2 − 2l3dg

+ cosfksL + 2l3 − 2l4dg + cosfksL + 2l4 − 2l1dg,

C2skd = cosfksL + 2l1 − 2l3dg + cosfksL + 2l2 − 2l4dg,

S1skd = sinfksL + 2l1 − 2l2dg + sinfksL + 2l2 − 2l3dg

+ sinfksL + 2l3 − 2l4dg − sinfksL + 2l1 − 2l4dg. s4d

For the case where the contact interactions are fourd8 po-
tentials(see next section), also of equal strengthg, we have

gd8skd = k4
„h16s1 − cosfkLgd + s24g2k2 − g4k4dcosskLdj

+ g2k2sg2k2 − 4dC1skd − g2k2sg2k2 + 4dC2skd

− g4k4cosskfL + 2 , gd + 4g3k3S1skd…. s5d

B. Time evolution

To study the time evolution of wave packets, we use the
standard approach of writingcsx,td in terms of the eigen-
functions hfsndj of the problem, or csx,td=oncn

3exp f−ikn
2tgfsndsxd. Here, thecn’s are the expansion coeffi-

cients of the initial state, given bycn=e0
Ldx csx,0dfsnd*sxd.

In practice, the sum overn is truncated at a certainn=N,
whose value determines the numerical precision for the se-
ries in representingc. Unless otherwise mentioned, for the
initial wave packets we consider expansions that closely fit
the Gaussian

csx,0d =
1

s2pd1/4D0
1/2expFik0x −

sx − x0d2

4D0
2 G . s6d

For the L’s, x0, and D0 we are going to use in the ex-
amples, Eq.(6) is practically null atx=0 andx=L; therefore
the fact thatfsnds0d=fsndsLd for all n does not become a
problem in constructing the expansions. Moreover, for such
parameter valuese0

Ldx csx,0dcsx,0d* =1, with the numerical
error being irrelevant, always less than 10−20.

III. WAVE-PACKET PROPAGATION

Using the expansions as described before, we assume dif-
ferent conditions for our four contact interactions and then
analyze some features of the wave-packet propagation on the
circle. For the latter purpose we observe that for a single
contact interaction on the line(−` , +`), placed at the origin
and characterized by the boundary conditions(2), the reflec-
tion and transmission amplitudes for a plane wave of wave
numberk and incident either from left(1) or right (2) are
given by [15]

Rs±d =
c ± iksd − ad + bk2

− c + iksd + ad + bk2, Ts±d =
2ikexp f± iug

− c + iksd + ad + bk2 .

s7d

Hereafter we call the intervalsl1,x, l2, l2,x, l3, and
l3,x, l4, respectively, regions II, III, and IV. Recalling the
periodic boundary conditions, we have that the intervals
0,x, l1 and l4,x,L form in fact the single region I. Re-
garding the wave-packet parameters, in all the calculations
we setD0=0.07 andx0=sl1+ l2d /2, so the initial wave packet
(6) is always in the middle of region II.

In the following we show the emergence of different phe-
nomena such as revival, bouncing, and trapping.

A. d potentials

The simplest case is fourd interactions of the same
strengthg, which are obtained from Eq.(2) by letting a=d
=1, b=u=0, andc=g. In all the calculations here we use
N=102, leading to a precision for the initial wave packet
better than 10−10, i.e., e0

Ldxucsx,0d−on=1
n=Ncnfsndsxdu2,10−10.

We start by choosingg=120 andk0=0 for the initial wave
packet. Consider thenl1=1, l2=1+Î2, l3=2.1+Î2, l4=2.1
+2Î2, andL=5, so that the region lengths areLI =1.07,LII
=Î2, LIII =1.1, andLIV=Î2. For these parameters, we plot in
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Fig. 1 ucsx,tdu2 versusx for some small values oft. At this
time scale the particle essentially does not tunnel to the other
regions, remaining at region II where we can observe partial
and full revivals[see Figs. 1(c) and 1(d)]. For larger times
(t.20), however, the wave packet can leave region II, but
evolving only to region IV, bouncing back and forth, Fig. 2.
The joint probability for the particle to be found in regions I
and III is always quite small, never exceeding 4%, which we
have verified numerically for times up tot=3000.

Note that in the above exampleLII =LIV are incommensu-
rable with bothLI andLIII . This condition associated with the
strengths values of thed ’s prevents the wave packet from
evolving to regions I and III. Bearing this fact in mind, we
can construct other setups where the probability density re-
mains very high within just one of the four regions, say,
region II. For instance, consider the case ofl1=0.8, l2=0.8
+Î3, l3=1.7+Î3, andl4=1.7+Î2+Î3, keeping all the other
parameter values. We find that indeed the particle is trapped,

never leaving region II, so thatel1
l2 ucsx,tdu2dx is practically

equal to 1 for allt (solid curve in Fig. 3).
An interesting point is to determine how the different re-

gions aredynamically disconnectedwhen we have trapping.
To analyze it, we consider att=0 a wave packet that is 50%
in region II and 50% in region IV, or

csx,0d =
Î2

s2pd1/4D0
1/2SexpFik0x −

sx − x0d2

4D0
2 G

+ expFik0x −
sx − x08d

2

4D0
2 GD . s8d

Here, x08=sl3+ l4d /2 is the middle position of region IV. In
Fig. 3 we compare the time evolutions of Eqs.s6d and s8d
snote that for a better comparison, the above wave packet is
normalized to 2d. From the plots we see that the evolution of
the left part of Eq.s8d is very similar to the evolution of Eq.

FIG. 1. The time evolution of
the Gaussian wave packet, Eq.(6),
for the situation as in the text.
Here is shownucsx, tdu2 as a func-
tion of x for the following short
values for the time:(a) t=0; (b) t
=0.132; (c) t=0.574; and (d) t
=0.82. Observe the partial and(al-
most) full revival inside region II.

FIG. 2. The same as in Fig. 1
for the times (a) t=72; (b) t
=1083.08;(c) t=1108; and(d) t
=1440.
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s6d. This shows that the two halves of Eq.s8d evolve fairly
independently, each trapped in its initial region.

From the results so far, we shall make some remarks. By
choosing different parameter values for this very simple sys-
tem composed of fourd potentials within a circle, we can
“drive” the initial Gaussian wave packet to(a) spread over
the whole circle(just by having all the contact interactions
equally spaced); (b) tunnel back and forth between only two
regions, which do not need to be neighbors; or(c) stay con-
fined within one single region. Thus, in principle such de-
vices could be used to generate spatially separated
Schrödinger’s cats[24]. In fact, we could start with a situa-
tion like that of Fig. 2. After some time the initial state would
evolve to a 50-50 probability in two distinct regions. Then,
by an appropriate sudden change in one of thed positions,
we could split the wave packet into two parts, each locked
within its own region, as in Fig. 3.

Such state separation is particularly interesting if the two
parts are far away from each other, as in the case of “mi-
rages” in quantum corrals[25,26]. In [25], the electronic
states surrounding a single magnetic Co atom deposited on a
Cu (111) surface are placed on the focus of a quantum corral
in the shape of an ellipse. Due to interference effects, these
states appear on the second focus, a phenomenon called
quantum mirage. In the experiments, the distance between
the states and their image is roughly about ten times the
characteristic size of the electronic states around the Co
atom. Motivated by those results, we ask if we can also ob-
tain such separations in our much simpler problem. So we
consider fourd interactions all with the same strengthg
=240. We assume that regions I and IV have lengths 13.1
and 13, respectively. For regions II and IV, we assume(a)
LII =LIV=Î2, and (b) LII =Î3 and LIV=Î2. Thus, regions I
and III are about ten times larger than regions II and IV. For
the situation(a) the wave packet predominantly bounces be-
tween the regions II and IV. For this case we plot in Fig. 4(a)
PII ,IV=el1

l2 ucsx,tdu2dx+el3
l4 ucsx,tdu2dx as a function of time.

The probability of the particle staying in these two regions is
never inferior to 88%, a reasonable result. When the lengths

LII and LIV are distinct and irrational, case(b), the wave
packet stays in region II, not evolving to the other three. The
trapping is better than 94% as shown in Fig. 4(b), where we
plot PII =el1

l2 ucsx,tdu2dx as a function oft.
Finally, we report for thed case how much we can change

the parameters and yet have the wave packet confined within
a single region. Considering the parameter values of Fig. 3,
by keepingk0=0 if we decreaseg we see that forg=40 the
particle still stays trapped in a single region. On the other
hand, by fixingg=120, the confinement takes place fork0 up
to 9. We also discuss the incommensurability condition. For
the results shown in Figs. 1–3, the square roots are in fact
taken to seven decades. However, by usingÎ2<1.414 and

FIG. 3. ucsx, tdu2 versus x,
where csx, 0d is the initial wave
packet given in Eq.(6) (solid
curve) and in Eq. (8) (dashed
curve) for the parameters given in
the text. Here (a) t=0; (b) t
=0.487;(c) t=505.04; and(d) the
very long t=14 400.948.

FIG. 4. (a) PII,IV =el1
l2 ucsx,tdu2dx+el3

l4 ucsx,tdu2dx for LII =LIII

=Î2 and (b) PII =el1
l2 ucsx,tdu2dx for LII =Î3 and LIII =Î2 as func-

tions of t (time calculated in steps of ten units, the continuous line
being just for better visualization) and the other parameters as in the
text. It should be mentioned that these oscillation patterns do not
change for larger times.
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Î3<1.732 we find for all the previous examples essentially
the same behaviors of bouncing and trapping. The difference
is that now the wave packets do not evolve exactly in the
same way, e.g., the revival times have different values. By
further approximating the square roots to only two decades,
we see some “leakage,” which nevertheless is small. For in-
stance, for the same parameters as in Fig. 3, the probability
for the particle to be outside region II never exceeds 5%.

B. d8 potentials

The so-called delta-prime interaction,d8, despite the
name is not merely the derivative of the usual delta function
[27]. If it is placed atx= l, then the resulting wave function
becomes discontinuous atx= l, but with the first derivative
remaining continuous. Ad8 of coupling constantg is ob-
tained from Eq.(2) by letting a=d=1, b=g, c=v=0. Here
we quote the quantum amplitudes for a singled8 on the full
line Eq. (7): Rs±d=R=gk/ f2i +gkg andTs±d=T=2i / f2i +gkg.

The first point to observe is that, in order to build a
Gaussian wave packet in this case, one may need several
more eigenfunctions than for thed case. Indeed, in the pre-
vious subsection we construct the initial wave packet with
very good accuracy by usingN=102. If we choose fourd8
potentials all withg=120, we will needN=400 to have Eq.
(6) with an error of 5%. On the other hand, if we replace one
of the d8’s by the usuald potential, then we can built a
Gaussian wave packet with a much smaller number of eigen-
functions, namely,N=107, with a precision of 10−12.

Because of the largeN necessary for fourd8 potentials,
we have investigated for this setup the rebuilding of the
wave packet only for short times. By using the parameter
values of Fig. 1, we observed basically the same type of
revival. Indeed, att=0.955, the wave packet rebuilds itself in
the starting region II, as well as fort=230.955. Also, att
=0.477 it splits into two parts as in Fig. 1(c). For large times,
the wave packet displays similar behavior to that seen in Fig.
2, bouncing between regions II and IV.

The case of threed8 and oned reveals interesting features.
For the case ofd8−d8−d−d8, so that the initial wave packet
(6) is between twod8 potentials, we find a very strong trap-
ping effect. For instance, in Fig. 5 we show typical results for
all the contact interactionsg equal to 10,l1=1, l2=2.4, l3
=3.5, l4=4.9,L=5, andk0=21. The particle stays confined in
region II for all times. Here we should observe that the re-
gion lengths are no longer incommensurable andk0 is rela-
tively high.

If now we consider the configurationd8−d−d8−d8, then
the initial wave packet is between ad8 and ad potential. By
using in this case the same parameters as in Fig. 5, the wave
packet no longer remains confined in region II. It spreads out
over regions II and III. Thed function atx= l3 cannot retail
the wave packet. On the other hand, by keeping all the pa-
rameters but setting thed functiong=120 andk0=0, then we
have the evolution shown in Fig. 6. The wave packet spends
most of its time within region II. There is some leakage,
however, where the particle can be found in region III with a
maximum probability of 11.2%[see Fig. 6(b)].

C. Asymmetric potentials

Next we consider the case where our four contact interac-
tion potentials(all equal) are asymmetric. By asymmetric we
mean that if one of the potentials is placed on the full line,
the corresponding transmission and reflection amplitudes
from the left are different from those from the right. This is
achieved, for instance, by choosinga=c=1/g, b=0, d=g,
u=−p /2, resulting from Eq.(7) in Rs±d=f1± iksg2−1dg / f−1
+ iksg2+1dg andTs±d= ± f2kgg / f−1+iksg2+1dg.

Similarly to thed8 potentials, this case also shows a stron-
ger trapping effect than that observed for thed ’s. In fact,
taking the samel j’s as the ones in Fig. 3 and settingg=10
and the momentumk0=9, in contrast tok0=0 for thed ’s, we
see from Fig. 7 that the particle does not leave the initial
region II (here,N=110 gives a precision better than 10−10 for
the initial Gaussian wave packet). We have also tested the
incommensurability condition. Again, we have verified that

FIG. 5. ucsx,tdu2 as function of
x for the configurationd8−d8−d
−d8 and the parameter values as
in the text. Here, the times are(a)
t=0; (b) t=0.955;(c) t=5000;(d)
t=25 000. We see that the wave
packet does not escape from its
initial region II. The discontinui-
ties of the wave packet are a con-
sequence of thed8 potentials lo-
cated atx= l1 andx= l2.
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by taking irrational lengths to three decades the localization
still holds. Leakage starts to appear for a two-decade ap-
proximation for the square roots.

D. Robin boundary condition–like potentials

As a final example, we turn to the case with all four
contact interactions having the parameter valuesa=1, b
=1/g, c=g, d=2, andu=0. Such values result in the follow-
ing quantum coefficients for a single contact interaction on
the line: Rs±d=fsk2+g2d± ikgg / fsk2−g2d+3ikgg and Ts±d=T
=2ikg / fsk2−g2d+3ikgg. TheseR and T have ak2 depen-
dence, not present in the reflection and transmission ampli-
tudes for thed andd8 (see previous sections), nor for more
usual potentials like step, rectangular, Rosen-Morse, and
Woods-Saxon barriers[2,28].

The reason we pick this set of boundary conditions is
twofold. First, we shall analyze the wave-packet time evolu-

tion for potentials that impose the so called Robin boundary
conditions[29] on the wave function, i.e.,c andc8 just after
the contact interaction depend on bothc andc8 just before
the contact interaction[which is readily seen by putting the
above parameters into Eq.(2)]. Second, these potentials are
interesting on their own because they generate different phe-
nomena in the context of quantum graphs(see, e.g.,[14] and
references therein).

We consider the same parameters as those in Fig. 1.
Again, by usingN=110 we get a precision better than 10−10

for the initial state. The time evolution is shown in Fig. 8,
where we see that the wave packet bounces between regions
II and IV. Despite the fact that in this case the wave function
and its first derivative are discontinuous at allx= l j’s, we still
have partial and(approximate) full revival in regions II and
IV. We have also investigated the dynamics for increasing
values ofk0. Up tok0=12 the joint probability of being in the
regions II and IV remains practically the unity. The patterns

FIG. 6. The same as in Fig. 5,
except for the different configura-
tion d8−d−d8−d8, the d function
strength set to 120, andk0=0. The
times are(a) t=0; (b) t=72; (c) t
=573; (d) t=1705. The confine-
ment is not as strong as in Fig. 5.
For instance, in(b) the probability
for the particle to be found in re-
gion III is about 11%.

FIG. 7. The wave-packet time
evolution for the asymmetric case.
The times are (a) t=0; (b) t
=1.433; (c) t=42.2; and (d) t
=5000. The initial Gaussian has
momentum k0=9 and does not
leave region II for any time.
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of partial and almost full revivals in regions II and IV are
also not destroyed, but of course the revival times change
according tok0.

IV. REMARKS AND CONCLUSION

Here we discussed a simple but nevertheless instructive
problem. We considered a finite 1D lattice, of lengthL, com-
posed of four general contact interactions and under periodic
boundary conditions. By setting different values for the pa-
rameters that characterize the contact potentials, we studied
the time evolution of wave packets. They exhibited different
behaviors, such as revivals, bouncing, and trapping. It is
worth mentioning that, as far as we know, this work is a first
effort to compare, for different cases, the effects of scattering
of wave packets by sets of contact potentials.

To study the time evolution of our problem we used the
standard expansion technique. As seen in most of the ex-
amples, for Gaussian wave packets we can truncate our se-
ries at relatively smallN’s. So the calculations are performed
in a quite reasonable computational time. For some situa-
tions, however, the Fourier expansion may be slowly conver-
gent, as for a Gaussian in a more singular setup for the sys-
tem (e.g., the four-d8 setup in Section III B), or when the
initial wave function has a more complicated shape. In these
cases a possible alternative is to solve the time-dependent
Schrödinger equation directly from well known numerical
procedures like the splitting operator method. Another possi-
bility, if instead of obtainingcsx, td one has interest only in
determining particular quantities, is to try to develop analyti-
cal approaches. For instance, in Ref.[13] the authors discuss
the problem of ad function within an infinite square well.
They are able to derive the revival times for wave packets
that have components with very high quantum numbers.
They do so by making analytical approximations of the tran-
scendental equation of the eigenstates(resulting in explicit
formulas for thekn’s in terms of then’s) and by exploring

symmetry properties. Because of some similarity of our sys-
tem with that in[13], in principle one could follow the same
idea here. The only problem is that in our case the calcula-
tions are far more complicated, as one can grasp from a
direct inspection of Eqs.(3) and(5), which are the quantiza-
tion conditions for the simpler cases of four equald andd8
potentials, respectively.

As pointed out in the Introduction, the possibility of re-
producing similar systems in the laboratory, with micro-
waves[22] or even with ultracold atoms[30], would be very
useful in order to test and develop quantum evolution control
techniques as well as to study fundamental phenomena in
quantum physics. Indeed, by using the usuald functions, we
have shown that one can split an initially localized state into
two parts considerably away from each other(see Fig. 4). If
implemented, such a system could be used as a prototype of
a “macroscopic quantum cat” or as a simpler realization of
the much more complicated experiment on quantum mirages.
We have also shown that, by using more singular contact
interactions, as in the example ofd8 potentials, the trapping
and bouncing can be enhanced due to the stronger effects of
these potentials in scattering off the wave packets. This
would be desirable in order to measure the so called atomic
mirror forces[31].

Finally, we mention that the present is an exploratory
work. So we have considered only some particular sets of
parameter values for just four contact interaction potentials
which, however, have already shown rich dynamics. Making
other parameter combinations and increasing the number of
contact interactions may lead to many other interesting fea-
tures for wave-packet time evolution in finite periodic lat-
tices.
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FIG. 8. ucsx,tdu2 as a function
of x for the Robin boundary
condition–like potentials. Here,
the times are (a) t=0; (b) t
=0.329; (c) t=75; and (d) t
=563.924. We observe approxi-
mately full revival in (b), partial
revivals in regions II and IV in
(c), and somewhat of a reconstruc-
tion at region IV in(d).
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