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Wave-packet dynamics for general contact interactions on a circular setup:
Revivals, bouncing, and trapping
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Here we study a one-dimensional finite lattice formed by generalized contact interactions in a circular setup,
i.e., under periodic boundary conditions. Considering only four such potentials, we show the emergence of
different behaviors as revivals, bouncing, and trapping for the time evolution of wave packets. This is done by
properly choosing the parameters that characterize the contact interactions. We also discuss possible physical
applications for this type of system, such as using it to split an initially localized state into spatially separated
and dynamically independent parts.
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I. INTRODUCTION in general terms and also the many possible physical appli-

The wavelike characteristics of the quantum world lead tgeations for it. Contact interfactions are idealization; of very
countless unexpected phenomena at the microscopic scalé§lort range potentials, which have the effect of imposing
To control these phenomena by driving the time evolution ofdifferent boundary conditions on the system wave function at
quantum states has become a very active research areatBg potential locations. They are very useful in developing
both fundamental and practical importarisee, for instance, analytical models to study complicated processes, such as
the overview in Ref[1]). Probably the most straightforward ion-atom collisions [16], many-body interactions[17],
way of all to achieve quantum control is just to figdr  fermion-boson duality18], and regularization schemgs9].
build) specific systems that, by adjusting appropriate param- In this contribution we show that, by properly setting the
eters, can behave as we wish. contact interaction parameter values, quite simple configura-

A particularly rich problem is the one of wave-packet tions of the lattices mentioned above can exhibit revivals,
scattering by multiple barrier potentia[2]. Even in very  bouncing, and trapping. We work with a finite 1D lattice of
simple situations interesting effects, suchr@gvals, bounc-  |ength L, having just four general contact interactions arbi-
ing, andtrapping can take place. Indeed, if we put a Gauss-trarily located along it. We assume a circular setup, i.e., pe-
ian wave packet inside an infinite one-dimensiot®D) riodic boundary conditions whese=0=x=L (which we will
well, the packet will spread and fill all the allowed space.qq) 4 circle, for shopt Our particular choice of four poten-
However, after a timd; (partial reviva) it will start to re- i35 js just because it is a simple case that already displays
construct itself, returning to its original shape after an_j e aspects we shall discuss.

elapsed revival timd, [3]. The so called super-revival can : ; ; ;

alsg be seen in finiter gq]uare—well potentiEAs%]. Quantum Although th|s. paper deals with a thgoretlcal analy3|_s of a
revivals are present in different contexts like quantum com-mOdeI system, it may be of concrete '”‘er@“.d conceiv-
putation[6]; the classical-quantum correspondence in Ryd-ably be |mplemente)dn actual Iaborat'ory con.d|t|ons. This is
berg atomg7]; anharmonic vibrational potential8]; femto- so because, first, ge_n_eral contac'g |nteract|or_13 can b_e con-
second dynamics in physics and chemisi@y; and many structed as a composition éfpotentials[20], which in their
others[10,13. Bouncing is when a quantum state oscillatestU a@ré in principle realizable from some well behaved

between only two spatially separated regions, as in resonagfiort-range potentials, as in the case of sharp quantum walls
coupling between two particular single wells of a multiple [21]- Second, a series of works by Stéckmann and collabo-

well potential. Finally, by trapping we mean that the wave'ators [_22] studies 1D cir(_:ular arrangements for microwave
packet stays confined in a particular region of the configuraSCattéring, whose dynamics are analogous to the present sys-

tion space, not evolving to the other energetically allowed€ms. So our predictions eventually could be investigated in
regions. As examples we cite suppression of tunneling frontUch experiments. _

one side to the other for a wave packet in a double well 1he outline of the paper is as follows. In Sec. Il we es-
constituted of a rectangular barrigi2] or a & potential[13] tablish our systems, presenting their eigenfunctions, eigen-

within an infinite square well; and eigenstate localization for/&lues, and the construction of wave packets. In Sec. Ill, we
a starlike quantum grapfL4]. It is important to note that calculate the wave-packet time evolution for different con-

such behavior is not associated with Anderson localizationt@Ct interactions on the circle and discuss the emergence of

since no disorder is involved. revivals, bouncing, and trapping. Finally, in Sec. IV we

In a recent work15], the problem of a 1D latticéperi- ~ Present our final remarks and conclusion.
odic or no) of N arbitrary contact interactions was discussed Il. THE SYSTEM

A. Eigenvalues and eigenfunctions

*Electronic address: schmidt@fisica.ufpr.br The Schrédinger equation of the problem is simply
"Electronic address: luz@fisica.ufpr.br [d?/dx2+Kk?](x)=0, with x in the interval[0,L] and O=L.

1050-2947/2004/68)/0527088)/$22.50 69 052708-1 ©2004 The American Physical Society



A. G. M. SCHMIDT AND M. G. E. da LUZ PHYSICAL REVIEW A69, 052708(2004)

The effect of the four generalized contact interacticias B. Time evolution

cated atl;, with 0<l,<l,<lg<l,<L) is represented by a 14 gyydy the time evolution of wave packets, we use the
set of boundary conditions imposed ah at theselj’s.  gangard approach of writing(x,t) in terms of the eigen-
Throughout the paper we use the natural ufit2m=1, so functions {#™} of the problem, or ¥(x,H)=3,c,

all the plotted_quantltle_s W|II_be dlmensm_)nless. _ X exp [—ikﬁt]cﬁ(”)(x). Here, thec,’s are the expansion coeffi-
Let an eigenfunction in the regionlj_;<x<I; (j ) o . L "
=1,...,5),=0,ls=L) be written as cients of the initial state, given bg,=[5dx ¢(x,0)¢'"™ ().
Y ’ In practice, the sum oven is truncated at a certain=N,
[(X) = A; sin (kx) +B; cos (kx). (1) whose value determines the numerical precision for the se-
ries in representings. Unless otherwise mentioned, for the

From self-adjoint extensions, we know that the most generdpltla| wave packets we consider expansions that closely fit

contact interaction &i can be represented 23] the Gaussian
1 (X = Xg)?
(d’jﬂ(lj)) xp[] 0]< )(d’](”) = 4 #(x,0) = Wexp{lkox— 4A20 :| (6)
$1.all) #0)) R e
) For thel'’s, x5, and Ay we are going to use in the ex-

amples, Eq(6) is practically null atx=0 andx=L; therefore

Here, f'(x)=df(x)/dx and ajd;-bjc;=1, with a,b;,c;,d;, the fact Fhat¢(”)(0):_q5<”)(L) for all n does not become a
and ¢; being real parameters which define each contact inProblem in constructing the expansions. Moreover, for such
teraction ax= |;. Finally, due to the periodic boundary con- Parameter valuefgdx ¢(x,0)y(x,0) =1, with the numerical
ditions (circle casée we must imposed;(0)=¢s(L) and  ©€Tor being irrelevant, always less than%b
$1(0)=Bi(L).

The coefficientsA and B are linked through a homoge- I1l. WAVE-PACKET PROPAGATION
neous system of ten equations plus the normalization condi-
tion. By solving it we get the eigenfunctions as well as the
guantization conditiomg(k)=0 in terms of the 20 parameters
{ay,bj,c;,d;} and{6;}. The exact general expressions for the
coefficients and fog(k) are very cumbersome and we will
not write them down here. Just as an illustration, we quote
the g(k) for two simple cases. When the four contact inter-
actions are the usua¥ potential and all having the same
strengthy, the eigenvalueEnzkﬁ is obtained as thath root

Using the expansions as described before, we assume dif-
ferent conditions for our four contact interactions and then
analyze some features of the wave-packet propagation on the
circle. For the latter purpose we observe that for a single
contact interaction on the ling-«, +»), placed at the origin
and characterized by the boundary conditig2)s the reflec-
tion and transmission amplitudes for a plane wave of wave
numberk and incident either from lef¢+) or right (=) are

of the transcendental equation given by[15]
@) _ c+ik(d-a) + bk @ 2ikexp[£id]
05(k) = 16k*(cogkL] - 1) + 12(y? — 24k?)cos (KL) — y2(1? = erikd+a) + bR’ T crikd+a) bR
= 4k Cy(K) + y(¥ + 4k*)Co(K) + y*cos[K(L +2¢)] (7)
= 8yk(y” - 4k)sin (KL) + 4y°kSy(K), (€ Hereafter we call the intervalg <x<l,, |,<x<I,, and
[3<x<l,, respectively, regions Il, Ill, and IV. Recalling the
where€=1,-I+l3-14 and periodic boundary conditions, we have that the intervals
0<x<l; andl,<x<L form in fact the single region I. Re-
Ci(K) = cogk(L +21; = 21p)] + cogk(L + 21, - 2l5)] garding the wave-packet parameters, in all the calculations
+cogk(L + 23— 21,)] + cogk(L + 21, - 21,)], we setA;=0.07 andk,=(1;+1,)/2, so the initial wave packet

(6) is always in the middle of region II.
In the following we show the emergence of different phe-

Ca(K) = cogk(L + 213 = 213)] + cogk(L + 21, = 21,)], nomena such as revival, bouncing, and trapping.
Si(k) =sink(L + 21, = 21,)] + sin k(L + 21, - 215)] A. & potentials
+sink(L +2l3—2,)] - sink(L + 21, - 21,)]. (4) The simplest case is fou$ interactions of the same
strengthvy, which are obtained from Ed?2) by lettinga=d
For the case where the contact interactions are #ypo- =1, b=60=0, andc=v. In all the calculations here we use

tentials(see next sectignalso of equal strengtly, we have N=102, leading to a precision for the initial wave packet
better than 10, i.e., f5dx| ¥(x,0)—=Nc, o™ (x)|2< 10710

0s(K) = K*{16(1 - cos[kL]) + (249%k? - y*k* cos (kL)} We start by choosing=120 and<Q_ 0 for the initial wave
2 22 _ 2v20 212 packet. Consider theh=1, 1,=1+y2, I3= 2.1+2, 1,=2.1
R = 910 = PR+ A0 +2\2 andL=5, so that the region lengths are=1.07,L,,
- YKAcos (KL +2€]) + 4yk3S,(K)). (5)  =v2,L,,=1.1, andL,y=2. For these parameters, we plot in
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FIG. 1. The time evolution of
the Gaussian wave packet, Ef),
for the situation as in the text.
Here is showny(x, t)|? as a func-
tion of x for the following short
values for the time(a) t=0; (b) t
=0.132; (¢c) t=0.574; and(d) t
=0.82. Observe the partial axal-
mos) full revival inside region II.

never leaving region I, so thajﬂ | y(x,t)|?dx is practically

time scale the particle essentially does not tunnel to the othesqual to 1 for allt (solid curve |n Fig. 3.

regions, remaining at region Il where we can observe partial An interesting point is to determine how the different re-
and full revivals[see Figs. (c) and Xd)]. For larger times gions aredynamically disconnectesthen we have trapping.
(t>20), however, the wave packet can leave region Il, butTo analyze it, we consider 4£0 a wave packet that is 50%
evolving only to region IV, bouncing back and forth, Fig. 2. in region Il and 50% in region 1V, or

The joint probability for the particle to be found in regions |

and Il is always quite small, never exceeding 4%, which we V2 i (X = Xo)?
have verified numerically for times up te3000. ¥x,0) = (277)1/4A1/2(8XP['k0X‘ AA2 }
Note that in the above examplg =L, are incommensu- 0 0
rable with bothL, andL,,. This condition associated with the N exp{ik “— (x= X('))ZD ®
strengths values of thé’s prevents the wave packet from 0 4A(2) '

evolving to regions | and lll. Bearing this fact in mind, we

can construct other setups where the probability density reHere, x,=(I3+14)/2 is the middle position of region IV. In
mains very high within just one of the four regions, say, Fig. 3 we compare the time evolutions of Eg§) and (8)
reg_|on Il. For instance, consider the caselG£0.8,1,=0.8  (note that for a better comparison, the above wave packet is
+3, 13=1.7+/3, andl,=1.7+/2+3, keeping all the other normalized to 2 From the plots we see that the evolution of
parameter values. We find that indeed the particle is trappedhe left part of Eq(8) is very similar to the evolution of Eq.

s|@ i : 5 ®)

4 4

3 : : 3

2 2

1 1
oL o :/\/\/\: 0 L . .
- 0 1 0 FIG. 2. The same as in Fig. 1
N for the times (a) t=72; (b) t
2z (o @ =1083.08;(c) t=1108; and(d) t

> : : > : P : =1440.
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3 : : 3 : P :

2 : : 2 : :

1 1 P /\/\,\

0 IN 0 i i : :

0 1 0 1 2

052708-3



A. G. M. SCHMIDT AND M. G. E. da LUZ PHYSICAL REVIEW A69, 052708(2004)

s @ A 5| ®
: : o i
: i : i
3 N 3 Il
I I
2 Il 2 | “
1 H 1 ,' Vg FIG. 3. |¢(x, t)> versus X,
o g : : Y I NN : o where (x, 0) is the initial wave
= 0 1 2 3 4 5 0 1 2 3 4 5 packet given in Eq.(6) (solid
> curve and in Eg. (8) (dashed
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(6). This shows that the two halves of E@) evolve fairly L, andL,, are distinct and irrational, casg), the wave
independently, each trapped in its initial region. packet stays in region II, not evolving to the other three. The
From the results so far, we shall make some remarks. Byrapping is better than 94% as shown in Figb)4 where we

choosing different parameter values for this very simple sysplot P,, :f:i| #(x,1)|?dx as a function ot.

tem composed of fous potentials within a circle, we can  Finally, we report for thes case how much we can change
“drive” the initial Gaussian wave packet t@) spread over the parameters and yet have the wave packet confined within
the whole circle(just by having all the contact interactions a single region. Considering the parameter values of Fig. 3,
equally spaceyl (b) tunnel back and forth between only two by keepingk,=0 if we decreases we see that fory=40 the
regions, which do not need to be neighbors(@rstay con-  particle still stays trapped in a single region. On the other
fiped within one single region. Thus, in prin_ciple such de-pang, by fixingy=120, the confinement takes place kgrup
vices could be used to generate spatially separategh 9. we also discuss the incommensurability condition. For
Schrodinger’s cat$24]. In fact, we could start with a situa- the results shown in Figs. 1-3, the square roots are in fact

evolve to a 50-50 probability in two distinct regions. Then,

by an appropriate sudden change in one of dhaositions,
we could split the wave packet into two parts, each locked
within its own region, as in Fig. 3. 0.96
Such state separation is particularly interesting if the two
parts are far away from each other, as in the case of “mi-
rages” in quantum corral§25,2q. In [25], the electronic
states surrounding a single magnetic Co atom deposited on a 0.88}
Cu (111)) surface are placed on the focus of a quantum corral 0 75 150 505 300
in the shape of an ellipse. Due to interference effects, these (@ t
states appear on the second focus, a phenomenon called 1.F
gquantum mirage. In the experiments, the distance between
the states and their image is roughly about ten times the
characteristic size of the electronic states around the Co
atom. Motivated by those results, we ask if we can also ob- A
tain such separations in our much simpler problem. So we
consider fouré interactions all with the same strength
=240. We assume that regions | and IV have lengths 13.1 0.94t
and 13, re_spectively. For regions |l agd IV, we assu@e (b) 0 = 1‘?0 225 300
L,=Ly=v2, and(b) L,=v3 andL,y=v2. Thus, regions |
and Il are about ten times larger than regions Il and IV. For g 4. @ Py =J12] x, 0)[2dx+ 12| p(x, ) 2dx for Ly =Ly,
the situation(a) the wave packet p_redominantly bc_)unc_es be-- 2 and(b) Py = f':z| z,//(xft)\zdx for |_“:3\;‘§ andL,, =2 as func-
tween tlhe regions |l apd IV. For this case we plot in Fi@4  {jons oft (time calculated in steps of ten units, the continuous line
P||,|v:f|i| ll/(x,t)lzdx+f|;‘|¢(x,t)|2dx as a function of time.  peing just for better visualizatiomnd the other parameters as in the
The probability of the particle staying in these two regions istext. It should be mentioned that these oscillation patterns do not
never inferior to 88%, a reasonable result. When the lengthshange for larger times.

1.F

l:iI,IV

0.92
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s{@ i 5
4 4
3 3
2 2 FIG. 5. [y(x,t)|? as function of
x for the configurationd’ — &' -6
1 1 -6 and the parameter values as
Ng 0 0 in the text. Here, the times afe)
= 0 1 2 3 4 5 0 3 4 5 t=0; (b) t=0.955:(c) t=5000;(d)
s : : : : t=25 000. We see that the wave
= 510 5@ : : : packet does not escape from its
A A : : : : initial region 1. The discontinui-
ties of the wave packet are a con-
3 3 sequence of thé’ potentials lo-
2 2 cated atx=1; andx=l,.
1 1
0 0
0 3 4 5 0 3 4 5
X

V3=~1.732 we find for all the previous examples essentially The case of threé’ and ones reveals interesting features.
the same behaviors of bouncing and trapping. The differencEor the case o’ — &' — 6— &', so that the initial wave packet
is that now the wave packets do not evolve exactly in thg6) is between twas’ potentials, we find a very strong trap-
same way, e.g., the revival times have different values. Bying effect. For instance, in Fig. 5 we show typical results for
further approximating the square roots to only two decadesgll the contact interactiony equal to 10,l,=1, 1,=2.4,15
we see some “leakage,” which nevertheless is small. For in=3.5,1,=4.9,L=5, andky,=21. The particle stays confined in
stance, for the same parameters as in Fig. 3, the probabilityegion Il for all times. Here we should observe that the re-
for the particle to be outside region Il never exceeds 5%. gion lengths are no longer incommensurable knés rela-
tively high.
) If now we consider the configuratioff —6— 46" - &', then

B. &' potentials the initial wave packet is betweend and ad potential. By
using in this case the same parameters as in Fig. 5, the wave
acket no longer remains confined in region Il. It spreads out
ver regions Il and Ill. The’ function atx=I; cannot retail
the wave packet. On the other hand, by keeping all the pa-
rameters but setting th&function y=120 andk,=0, then we
have the evolution shown in Fig. 6. The wave packet spends
most of its time within region Il. There is some leakage,
however, where the particle can be found in region Il with a
maximum probability of 11.2%see Fig. @)].

The so-called delta-prime interactiory, despite the
name is not merely the derivative of the usual delta functiorﬁ
[27]. If it is placed atx=I, then the resulting wave function
becomes discontinuous &tl, but with the first derivative
remaining continuous. AY’ of coupling constanty is ob-
tained from Eq(2) by lettinga=d=1, b=y, c=w=0. Here
we quote the quantum amplitudes for a singleon the full
line Eq.(7): R®'=R=1k/[2i+ k] and T® =T=2i/[2i + 7k].

The first point to observe is that, in order to build a
Gaussian wave packet in this case, one may need several
more eigenfunctions than for th&case. Indeed, in the pre-
vious subsection we construct the initial wave packet with Next we consider the case where our four contact interac-
very good accuracy by using=102. If we choose fous’ tion potentialgall equa) are asymmetric. By asymmetric we
potentials all withy=120, we will need\=400 to have Eq. mean that if one of the potentials is placed on the full line,
(6) with an error of 5%. On the other hand, if we replace onethe corresponding transmission and reflection amplitudes
of the &"’s by the usualé potential, then we can built a from the left are different from those from the right. This is
Gaussian wave packet with a much smaller number of eigerachieved, for instance, by choosiegc=1/vy, b=0, d=v,
functions, namelyN=107, with a precision of 102 6=-/2, resulting from Eq(7) in R®=[1+ik(y2-1)]/[-1

Because of the larghl necessary for fous’ potentials, +ik(y?+1)] and T® = £[2ky]/[-1+ik(2+1)].
we have investigated for this setup the rebuilding of the Similarly to thed’ potentials, this case also shows a stron-
wave packet only for short times. By using the parameteger trapping effect than that observed for th&. In fact,
values of Fig. 1, we observed basically the same type ofaking the samé;’s as the ones in Fig. 3 and setting 10
revival. Indeed, at=0.955, the wave packet rebuilds itself in and the momenturk,=9, in contrast tk,=0 for the's, we
the starting region II, as well as far2Xx0.955. Also, att ~ see from Fig. 7 that the particle does not leave the initial
=0.477 it splits into two parts as in Fig(d. For large times, region Il (here,N=110 gives a precision better than 1dfor
the wave packet displays similar behavior to that seen in Figthe initial Gaussian wave pachketVe have also tested the
2, bouncing between regions Il and IV. incommensurability condition. Again, we have verified that

C. Asymmetric potentials
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@ (0

FIG. 6. The same as in Fig. 5,
except for the different configura-
H tion & —6-6"-4¢', the 6 function
4 5 strength set to 120, arlg=0. The
times are(a) t=0; (b) t=72; (c) t
© i d i =573; (d) t=1705. The confine-

: : : : : : : : ment is not as strong as in Fig. 5.
For instance, ir{b) the probability
for the particle to be found in re-
gion Il is about 11%.

o B N W s u;
o H N W A~

W (x,bP

o P N W !
o B N W s~ W

by taking irrational lengths to three decades the localizatiortion for potentials that impose the so called Robin boundary
still holds. Leakage starts to appear for a two-decade apsonditions[29] on the wave function, i.ey andy’ just after
proximation for the square roots. the contact interaction depend on batrand ¢’ just before
the contact interactiofwhich is readily seen by putting the
above parameters into E(R)]. Second, these potentials are
interesting on their own because they generate different phe-
As a final example, we turn to the case with all four nomena in the context of quantum graghse, e.g.[14] and
contact interactions having the parameter valaesl, b references therejn
=1/vy, c=v,d=2, andg=0. Such values result in the follow- ~ We consider the same parameters as those in Fig. 1.
ing quantum coefficients for a single contact interaction onagain, by usingN=110 we get a precision better than 10
the line: R =[(k?+ ) +iky]/[(K*~9?)+3iky] and T*'=T  for the initial state. The time evolution is shown in Fig. 8,
=2iky/[(k®- %) +3iky]. TheseR and T have ak® depen- where we see that the wave packet bounces between regions
dence, not present in the reflection and transmission ampli{ and IV. Despite the fact that in this case the wave function
tudes for thes and " (see previous sectiopsnor for more  and its first derivative are discontinuous atxadl;'s, we still
usual potentials like step, rectangular, Rosen-Morse, anbave partial andapproximate full revival in regions Il and
Woods-Saxon barrier,28]. IV. We have also investigated the dynamics for increasing
The reason we pick this set of boundary conditions isvalues ofk,. Up tok,=12 the joint probability of being in the
twofold. First, we shall analyze the wave-packet time evoluregions Il and IV remains practically the unity. The patterns

D. Robin boundary condition—like potentials

(a) (b)

FIG. 7. The wave-packet time
evolution for the asymmetric case.
The times are(a) t=0; (b) t

: : : : : : - . =1.433; (c) t=42.2; and(d) t
© : : : G : : : =5000. The initial Gaussian has

: : : : : : : momentum k,=9 and does not
leave region Il for any time.

S B N W obsxuv
o = N W o eWU;

W (x, 0

O = N W o W»;
o = N w oW,
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51 (@) 5| () :

4 4

3 3

2 2 FIG. 8. |y(x,1)|? as a function

1 1 of x for the Robin boundary
o 0 : : : : 0 : : : : condition—like potentials. Here,
= 0 1 2 3 4 5 0 1 2 3 4 5 the times are(a) t=0; (b) t
X =0.329; (c) t=75; and (d) t
> © ) =563.924. We observe approxi-

5 : : : 5 : : : : mately full revival in (b), partial

4 4 revivals in regions Il and IV in

3 3 (c), and somewhat of a reconstruc-

: : : tion at region IV in(d).

2t i 2

1 : : : 1

0 : M VAV 0

0 1 2 3 4 5 0 1 2 3

of partial and almost full revivals in regions Il and IV are symmetry properties. Because of some similarity of our sys-

also not destroyed, but of course the revival times changeem with that in[13], in principle one could follow the same

according tokg. idea here. The only problem is that in our case the calcula-
tions are far more complicated, as one can grasp from a
direct inspection of Eqg¥3) and(5), which are the quantiza-

tion conditions for the simpler cases of four eqéahnd &’

Here we discussed a simple but nevertheless instructive AS Pointed out in the Introduction, the possibility of re-
problem. We considered a finite 1D lattice, of lengtrcom- producing similar systems in the laboratory, with micro-
posed of four general contact interactions and under periodi¢/aVes(22] or even with ultracold atomf80], would be very
boundary conditions. By setting different values for the Ioa_usefu! in order to test and develop quantum evolution contro_l
rameters that characterize the contact potentials, we studid§chniques as well as to study fundamental phenomena in
the time evolution of wave packets. They exhibited differentdu@ntum physics. Indeed, by using the usdiéinctions, we
behaviors, such as revivals, bouncing, and trapping. It i§'ae shown that one can split an initially localized state into
worth mentioning that, as far as we know, this work is a firstWO parts considerably away from each otleee Fig. 4. If
effort to compare, for different cases, the effects of scatteringPleémented, such a system could be used as a prototype of
of wave packets by sets of contact potentials. a “macroscopic quantum cat’ or as a simpler realization of

To study the time evolution of our problem we used thethe much more complicated experiment on quantum mirages.
standard expansion technique. As seen in most of the ex/e have also shown that, by using more singular contact
amples, for Gaussian wave packets we can truncate our sbleractions, as in the example 6f potentials, the trapping
ries at relatively smalN's. So the calculations are performed and bouncing can be enhanced due to the stronger effects of

in a quite reasonable computational time. For some situg'€S€ potentials in scattering off the wave packets. This

tions, however, the Fourier expansion may be slowly conver‘-’VOUld be desirable in order to measure the so called atomic
gent, as for a Gaussian in a more singular setup for the sy&nirror forces[31].

tem (e.g., the fours' setup in Section Il B or when the Finally, we mention t.hat the present is an exploratory
initial wave function has a more complicated shape. In thes&/0'k- SO we have considered only some particular sets of
cases a possible alternative is to solve the time-dependeRframeter values for just four contact interaction potentials
Schrédinger equation directly from well known numerical Which, however, have already shown rich dynamics. Making
procedures like the splitting operator method. Another possiOther parameter combinations and increasing the number of
bility, if instead of obtaining/(x, t) one has interest only in Contact interactions may lead to many other interesting fea-
determining particular quantities, is to try to develop analyti-t.ures for wave-packet time evolution in finite periodic lat-
cal approaches. For instance, in Réf3] the authors discuss tices
the problem of as function within an infinite square well.

They are able to derive the revival times for wave packets
that have components with very high quantum numbers.
They do so by making analytical approximations of the tran-
scendental equation of the eigenstaessulting in explicit The authors gratefully acknowledge CNPq for financial
formulas for thek,’s in terms of then's) and by exploring  support.

ACKNOWLEDGMENT

052708-7



A. G. M. SCHMIDT AND M. G. E. da LUZ PHYSICAL REVIEW AG69, 052708(2004

[1] I. Walmsley and H. Rabitz, Phys. Tod&6(8), 43 (2003. 157 (200Y).
[2] M. G. E. da Luz, B. K. Cheng, and M. W. Beims, J. Phys. A [18] T. Cheon and T. Shigehara, Phys. Rev. L&82, 2536(1999;
34, 5041(200D; F. M. Andrade, B. K. Cheng, M. W. Beims, T. Cheon, T. Filop, and I. Tsutsui, Ann. PhyNL.Y.) 294, 25
and M. G. E. da Luzjbid. 36, 227 (2003. (2001).
[3] D. L. Aronstein and C. R. Stroud, Jr., Phys. Rev55, 4526 [19] C. Grosche, J. Phys. &8, L99 (1995; D. K. Park, J. Math.
(1997). Phys. 36, 5453(1995; M. Carreau, J. Phys. &6, 427(1993;
[4] D. L. Aronstein and C. R. Stroud Jr., Phys. Rev62 022102 F. A. B. Coutinho, Y. Nogami, and J. F. Perdzid. 30, 3937
(2000. (1997).
[5] A. Venugopalan and G. S. Agarwal, Phys. Rev.58, 1413 [20] T. Cheon and T. Shigehara, Phys. Lett.243 111(1998; T.
(1999. Cheon, T. Shigehara, and K. Takayanagi, J. Phys. Soc.68n.
[6] W. G. Harter, Phys. Rev. /4, 012312(200). 345 (2000; T. Shigehara, H. Mizoguchi, T. Mishima, and T.
[7]1 R. Bluhm and V. A. Kostelecky, Phys. Lett. 200 308 Cheon, IEICE Trans. Fundamentat82-A, 1708(1999.
(1995; Phys. Rev. A51, 4767 (1995; A. Peres,ibid. 47, [21] T. Ful6p, T. Cheon, and I. Tsutsui, Phys. Rev.68, 052102
5196 (1993; J. A. Yeazell, M. Mallalieu, and C. R. Stroud, (2002.
Phys. Rev. Lett.64, 2007 (1990. [22] U. Kuhl and H.-J. Stockmann, Physica(Emsterdam 9, 384
[8] S. I. Vetchinkin and V. V. Eryomin, Chem. Phys. Le®22 (200D; U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J.
394 (1994). Stockmann, Appl. Phys. Lett77, 633 (2000; U. Kuhl and
[9] B. M. Garraway and K-A. Suominem, Rep. Prog. Ph%S§, H.-J. Stéckmann, Phys. Rev. Le®&0, 3232(1998).
365(1995; D. J. Tannor and S. A. Rice, J. Chem. Phg8, [23] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden,
5013(1985. Solvable Models in Quantum Mechani¢Springer-Verlag,
[10] I. Sh. Averbukh and N. F. Perelman, Phys. Lett.189, 449 Berlin, 1988.
(1989. [24] M. Murakami, G. W. Ford, and R. F. O’'Connell, Laser Phys.
[11] J. Banerji and G. S. Agarwal, Phys. Rev.39, 4777(1999; 13, 180(2003; A. Montina and F. T. Avecchi, Phys. Rev. A
R. Bluhm, V. A. Kostelecky and J. A. Porter, Am. J. Phy&l, 66, 013605(2002; E. Solano, G. S. Agarwal, and H. Walther,
944(1996); S. Seshadri, S. Lakshmibala, and V. Balakrishnan, Opt. Spectrosc94, 805(2003; G. S. Agarwal, R. R. Puri, and
J. Stat. Phys.101, 213 (2000; D. J. Fernandez and C. B. R. P. Singh, Phys. Rev. A6, 2249 (1997; K. Wodkiewicz,
Mielnik, J. Math. Phys.35, 2083(1994). Opt. Commun.179 215(2000.
[12] Y. Ashkenazy, L. P. Horwitz, J. Levitan, M. Lewkowicz, and [25] H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature
Y. Rothschild, Phys. Rev. Let5, 1070(1995; L. P. Horwitz, (London 403 512(2000.

J. Levitan, and Y. Ashkenazy, Phys. Rev.55, 3697(1997). [26] A. Lobos and A. A. Ligia, Phys. Rev. B8, 035411(2003.
[13] G. A. Vugalter, A. K. Das, and V. A. Sorokin, Phys. Rev. A [27] D. K. Park, J. Phys. A29, 6407(1996); P. Exner and P. Seba,

66, 012104(2002. Rep. Math. Phys.28, 7 (1989; P. Exner, M. Tater, and D.
[14] A. G. M. Schmidt, B. K. Cheng, and M. G. E. da Luz, J. Phys. Varek, J. Math. Phys.42, 4050(2001).

A 36, L545 (2003. [28] S. Flugge, Practical Quantum MechanicgSpringer-Verlag,
[15] A. G. M. Schmidt, B. K. Cheng, and M. G. E. da Luz, Phys. Berlin, 1974.

Rev. A 66, 062712(2002. [29] K. E. Gustafsonintroduction to Partial Differential Equations
[16] H. Danared, J. Phys. B7, 2619(1984); W. Dappenjbid. 10, and Hilbert Space Method®over, Mineola, NY, 1999

2399(1977; G. Scheitler and M. Kleber, Phys. Rev. 42, 55 [30] F. Shimizu, Phys. Rev. Leti86, 987 (2001).

(1990. [31] V. V. Dodonov and M. A. Andreata, Phys. Lett. 275 173
[17] S. Albeverio, S. M. Fei, and P. Kurasov, Rep. Math. PH/3. (2000; Laser Phys.12, 57 (2002.

052708-8



