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An exterior complex rotated finite element method was applied on the diabatic multichannel Schrédinger
equation in order to compute and compare rovibronic energy structures, predissociation widths, and nonradi-
ative lifetimes for levels in thél-4), (1-5), and(1—6)12;' manifolds of H. The rotationlesgv,J=0) levels are
found to be more or less shifted relative to each other when comparing the results for these three manifolds.
The existence of homogeneous spectroscopic perturbations was investigated by studying the rdvikIonic
=0-10 sequences for energies and level widths. Known experimental and theoretical radiative lifetimes were
used to estimate present levels that might be spectroscopically measurable. The computed level widths for the
EF, GK, and H electronic levels were generally found to be about two orders of magnitude larger than
previously reportedP. Quadrelli, K. Pressler, and L. Woiniewicz, J. Chem. PH8&.4958(1990], indicating
a somewhat stronger predissociation.
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INTRODUCTION basis it is understood that the representation is diabatic

. . . . within the set of electronic states taken into account in the
In theoretical studies of diatomic molecules one fre'approximation.

quently takes into account two or more close-lying potential- * The rovibronic energy-level structure of excited states in
energy curvegPECS of electronic states, having the same H, has been the subject of several experimef8atlq and
spin and symmetry, correlating with different dissociationtheoretical[11,3,17 studies, while predissociation studies of
limits. In the adiabatic representation, these PECs do nahese levels are more rare. Usiaf initio wave functions,
cross each othefl], and in the region of avoided intersec- Quadrelliet al.[2] calculated energy shifts, level widths, and
tions nonadiabatic effects are likely to be important. nonradiative lifetimes for the first three excited rovibronic

Interactions between bound levels and the continuum gives * states of H generated by nonadiabatic coupling with the
rise to bond breaking phenomena in the form of predissociaelectronic ground state. According to their results, excited
tion. The variation of the fragmentation width of close-lying rovibronic '3* levels in H, are more or less predissociated.
levels can be quite dramatic. The main fragmentation flow intherefore, it would be interesting to further investigate this
a particular energy region can sometimes be located to only gechanism, applying another approach. We have previously
few rotational levels. It is thus interesting to study these pheysed an exterior complex rotated one-dimensional finite ele-
nomena in some detail. ment method to study CO[13], CaH[14], B, [15], and Al

In systems of singlet states in light molecules, such a$16). In this approach we compute the energy and width of
excited'] states of molecular hydrogenyH,2,4, the first  an individual level as one complex-valued enefgy—21.
derivative coupling elements;;(R)=(i|Vglj), between elec- Both the obtained energy and width are thus converged re-
tronic states|i) and [j), are the dominating mechanism sults. This should be compared with the golden rule treat-
among all of the possible predissociation proce$spShus,  ment of Quadrelliet al. [2]. Here the real part of the energy
vibronically bound states, embedded in the continuum otind the real valued wave function are first obtained and then
lower-lying PECs, may undergo nonradiative transitions reused to compute the width. This means that the wave func-
sulting in a broadening of the energy levels. tion and the real part of the energy in principal have to be

The adiabatic multichannel Schrédinger equation can bgerturbed and shifted in order to account for the predissocia-
difficult to solve numerically{6]. An alternative approach is tion process. Our previous experiengE-14 is that the
to form a diabatic, or approximately diabatic, basis throughenergies and, in particular, the level widths are always more
an orthogonal transformatiofv]. This generally simplifies or less shifted when compared with results based on the
the computations, particularly in the region of strongly golden rule approach. Furthermore, in these calculations,
avoided intersections where ti&;(R) elements are often which were based on a complex rotated finite element
rapidly varying, with respect to both magnitude and sign. Wemethod, convergence was always reached for the real ener-
here refer to a strictly diabatic basis as a representation fagies as well as for the level widths. Therefore, we have rea-
which all derivative couplings in the multichannel sons to believe that the golden rule approach may not always
Schrodinger equation are removigt. This is generally dif- be convenient to apply on theoretical predissociation prob-
ficult to accomplish, even if it is theoretically straightforward lems. This motivates us to use our method also in the present
for a diatomic systenfi7] The problem is that, in numerical study.
applications, only a finite number of PECs are included in Using data of WolniewicZ22], Quadrelliet al. [2], and
the calculations. Thus, when we here speak about a diabativolniewicz and Dressleff{4], we here apply a general
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(i) To study how term energy values and level widths

140000 are influenced by close-lyini}ﬁg states, and to compare re-
sults for approximations containing four, five, and six elec-
tronic states.

120000 [ | Our theoretical approach is described in Sec. I, where the
multichannel Schrédinger problem is outlined in Secs. | A
and | B. Our numerical approach, based on the Runge-Kutta-

100000 - 1 Fehlberg techniqgue and a one-dimensional finite element

— ! method, is discussed in Sec. Il. Our input data and its limi-
T W tations are discussed in Sec. lll. In Sec. IV our calculations
g 80000 17 (16)'; o are briefly described. Presentation and discussion of results
= \/ Y are found in Sec. V. The last section summarizes the paper.
\
\
- A\ -
60000 \\ I. THEORY
\\\ All formulas and equations in this section are expressed in
40000 X e - atomic units(a.u) unless stated otherwise.
A. The multichannel Schrédinger equation
20000 F Consider a diatomic molecule with nuclear masiés
andMg. Nuclear and electronic coordinates are denote® by
0 | | | andr, respectively. The total nonrelativistic Hamiltonian in
0 5 10 15 20 the center of mass system is
R(a.u.) L . L
0 _ T w2~ 2__ =
FIG. 1. Adiabatic(solid lineg and diabatiqdashed lineselec- H=HO - ZMVR 8#«(21: Vri) 2MQVR ' ; Vrj’ (@)

tronic potential-energy curves for tli&—6) 12;]' manifold of H,.
whereR=|R, - Rg|, H? is the clamped-nuclei Hamiltonian,

Runge-Kutta-FehlbergRKF45) (in fourth order with fifth — and

order correction procedure to transform the adiabatic MM MM

(1-6)'3 states of H to a diabatic representatigee. Fig. u=—>"-8 g = A8 2)

1). Then a multichannel Schrddinger equation is formed, Ma+ Mg Ma—Mg

which is numerically solved by means of a complex rotated=or 5 homonuclear diatomic system the last term in (.

one-dimensional finite element method, in order to computgyhich is responsible for thg-u symmetry breaking, disap-

rovibronic term energy values, predissociation widths, anthears. Thus, the Hamiltonian for a two-electron system, such

nonradiative lifetimes of excited levels. as H,, now takes the form
Following Herzberg[23], the 1,2, ... ,6125 states will o D s @
here be denoted @ EF, GK, HH, P, andO, respectively, H=HT+HY+HY+H, 3)

when separate states are considered, while the number regnere
resentation is used for manifolds of states, i&=4), (1-5),
and (1-6)'2 for the 4-, 5-, and 6-state approximation, re- HO = _ ivz @)
. = =4
spectively. 2w
The ground-state Born-OppenheiméBO) PEC was
taken from WolniewicZ22], while the first five excitedX 1
BO PECs, adiabatic corrections, and nonadiabatic coupling H® = - 8—(Vr21+Vr22), (5
elements were obtained from the highly accurabeinitio H
calculations of Wolniewicz and Dressl¢4]. Elements for
the coupling of theEF, GK, and H '3 states with the H(s):_iv v 6)
ground state were taken from Quadreiial. [2], while the 4y "t 2

: . Tt e
corresponding couplings for i@ andP 29 states are miss Here,H is the relative kinetic-energy operator for the nu-

ing. However, assuming these to be relatively weak, they ~."' o . . .
were here neglected. clei, H'¥ is the kinetic-energy correction for the electrons,

. dH® is the mass polarization correction.
There are several reasons for undertaking the preseﬁtn_l_he HO H® and H® terms form the nuclear-mass-

work. P
(i) To test a general method for predissociation studies ogependent Hamiltonian

diatomic n-channel problems, whene is an arbitrary posi- 1

tive integer. H=- Z_(AR +G), (7)
(i) To investigate the difference in our treatment and the #

bound state + golden rule formalism of Quadrelial. with the nuclear Laplaciaf4],
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_ ii<R2£>
" RdR\ dR

where L, =L,+iL, refer to the molecule-fixed frame, and

CLLo-A(A+D)

A R R2 ’

(8

whereA is the eigenvalue of the angular-momentum opera

tor L, within blocks of electronic states belonging to the
same symmetry specids or -) [4]. The second term in

Eq. (7),
G=3(V, +V.)? 9

is formed by the correction termt$® andH®.

The adiabatic corrections to the BO PECs come from the

diagonal elementf4],

T ==5 (i[an+ ¥ V7). 20

A method for calculating these corrections is described in

Ref. [24].
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B. A diabatic representation of the multichannel
Schrédinger equation

It is well known that the nonadiabatic couplings in Eg.
(13) may produce numerical difficultig®]. This is particu-

larly the case for th&;;(R) elements which are usually vary-

ing rapidly, both with respect to magnitude and sign. Further-
more, the coupled differential equatio(ik3) are of second
order, also including first derivativgg5,26. However, these
complications are commonly avoided by making an orthogo-
nal transformation to a diabatid) basis sef7],

dR1)=¢p“RNT(R),

whereT(R) andTT(R) are the transformation matrix and its
transpose, respectively. In order to preserve the total wave
function in Eq.(11) the nuclear wave functions are trans-
formed as

(18

xRN =TRXVRr). (19)

In order to obtain nonadiabatic couplings between differ-a gjapatic Schrédinger equation is obtained by substituting

ent electronic states, we form an expansion

1o 1
W(Rr)= 52 #RNX R =R -x(R), (11
j=1

where ¢;(R,r) are electronic wave functions. The upper

limit n of the truncated sum denotes the total number of
electronic states included in the approximation. The expan-

sion coefficientsy;(R) represent the nuclear motion gov-

the diabatic representatid@t9) into Eq. (13). By doing so, a
second-order differential equation, including first deriva-
tives, is obtained. It is desirable to get rid of the first deriva-
tive termsdy@(R)/dR in Eq. (13). This requires that the
condition

iT(R) +B(RT(R) =0

dR (20

erned by the nonadiabatic multichannel Schrédinger equads fulfilled [15,16,27, which implies thafl (R) is orthogonal

tion,

1 (PR, E

|

d
|:Aij(R) + ZBij(R)d_R] Xj(R)>

- 2/.L dR2 j=1
+UI(RXi(R) = E,axi(R), (12)
or in matrix form,

{—i(l—2+A R) + 2B Ri)+UJR] R
AT (R) ()dR (R) [x(R)
=1E,x(R). (13

The corresponding matrix elements are

> L. -AA+1 _

Aij(R):<i‘d_Rz_%+G‘J>! (14)

| d.
Bij(R):_Bji(R):<|‘ﬁ J>, (15)

. L JJ+1)

J = (0 = =
Ui (R =(i[HYi) + R (16)

The second-order derivative coupling includedAp(R) is
symmetric, i.e.,
)

2
(17)

| d
D;j(R) =Dj(R) = <| ’ iR

[28]. Assuming

imB(R) =00 lmT(R) =1,

R— R—

(21)

one obtains a boundary condition to E0). Thus, by solv-
ing Eq. (20), together with the boundary conditiof21),
unigue solutions of a diabatization problem for any number
of coupled equations can be obtairdd].
By substitution to the diabatic
Schrddinger equatio(l3) transforms to

representation, the

d2

1

JJ+1)
R2
=E, T RXYR).

}l + u<d>(R)}T(R)x<d>(R)

(22)

By working out the differentials in Eq(22), multiplying
from the left by TT(R), and using Eq(20), it is in general
straightforward to derive an expression for the diabatic
potential-energy matrix representing a manifold of OEI§/
electronic statef27]:

UIR) = TT[U(R) - i{A -B%-V B}]T, (23)

where the matrix elements &(R) are calculated as sums
consisting of two part$4], A;j(R)=4;;(R) +G;;(R), with

d2

AR =\ i) (24)

& LL-A(A+D)
dR

R?
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Gj= i<i|V1 +V,|i). (25) taken. This thus forced us to replace the previously discussed
sharp exterior complex scaling by the, computationally more
The elements;;(R) are neither symmetric nor antisymmet- gemanding but more accurate, smooth exterior complex scal-
ric; Gj;(R) are symmetric. In practice, it may happen that theing [33]. Here
chosen electronic basis set is not accurately orthogonal. Con-

sequently, the functionB;;(R) are not mutually antisymmet- R—R+Ag(R), A=¢€’-1, (32)
ric with respect to interchanges @f(R,r) and¢;(R,r). Itis  ith
therefore convenient to form the antisymmetric coupling ma-
trix 0, R<R
9(R) = SRR (33
1 - 25 (R-R)(1-e"®-R)), R>R,,
B%R)=-[B(R) - B
® 2[ R (R, (26) where o is the curvature parameter, and both the function

and its derivative are continuous Ry. In other words, the
sharp bend at the poifiR is replaced by a smooth continu-
B3(R) = %[Bij(R) -B;(R)]. (27)  ation such that all terms in the Haimiltonian are continuous
with respect toR. The accuracy of the calculation then de-
It is further known[29] that the first derivative coupling pends on the density of that point grid.
functions have the property

having the elements

d 1
JqB;—,}(R) _ E[Aij(R) - AR]=AR). 28) Il. NUMERICAL APPROACH
A. Computational diabatization
For a naonorthogonae! basis set we apply E2B) and substi- Equations(20) and(21) give us a formal tool and a com-
tute dBj(R)/dR by A;j(R) From the known relation putational possibility to uniquely obtain a set of diabatic

AR = AS(R) + A4(R), (299 PECs for an arbitrary adiabatic PEC mattie(R).
Using a matrix version of the RKF45 methfgi—3§, we
we then form the symmetric matriA%(R), with elements are able to propagafB(R) in the interval fromR ., t0 Ryin-
A (R=A;(R-Ai(R). Thus, in the case of a nonorthogonal The RKF45 method has a built-in error estimate which al-
basis set the diabatic potential-energy matH®(R) is trans-  lows us to control the accuracy of our calculated mafriR)
formed ag27] to only depend on the word length of the used computer
code.

1
UYR =TT UR) - 2—[AS— BT, (30)
H B. A one-dimensional finite element method

The basic idea of the finite element methd<EM) is to
discretize the solution region into a finite number of subre-
Eigenvalue problems containing bound levels and resogions. The total trial wave function is expanded in a finite
nances may be solved by using complex scall@§) meth-  element basis,
ods[17-21]. The complex energy, which is composed of the 5
real energy and the width of a level, is then a solution of a V(R =D c;f;(R), (34)
non-Hermitian complex symmetric analytic continuation of a ij
nondilated Hermitian Schrédinger problem. The original uni-
form CS, suggested by Balslev and ComfiEg 18, requires
the potential V(R) to be analy_tlc in the entire domain defined within each element and restricted through continu-
[RminRmad- However, wherV(R) is represented by a set of . . ~ .
discrete points, an alternative in the form of the exteriorIty conditions for¥(R) over element boundarig$7]. The

complex scalingECS can be used30—32. In the ECS the local basis functiond;; are nonzero only inside a given ele-

C. Exterior complex scaling

where it is assumed that smooth ECS has been used. The
complex valuedg-dependent expansion coefficientg, are

radial coordinates are scaled as menti,
R, R<R, fj(R)=0 for Re¢[R_,R], i=1,...K. (39
R— R+ (R-RY€?, R>R.. (3D The Rayleigh-Ritz variational principle38] provides an es-

) ) ) ) ) timate to the complex resonance energigswhich are ob-
HereR; is the exterior scaling radius up to which the poten-tained as eigenvalues (ﬁl|H|\~If> and thev are evaluated b
tials are real while the outer paRR> R, is analytically con- 9 ' Y y

tinued. The ECS requirement is that oniR) for R> R, solving finite-dimensional problems of the form
needs to be a function that can be analytically continued. The

potential in the inner regioR<R; may in fact be described (H-&S6=0, (36)
only by discrete numerical values. The ratio between thavhere

energies and their widths in the present problem is so large ~

that extreme care of the numerical procedures need to be (H)ij ke = Cij [H[KkE), (37
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(é)-- = (ij k) TABLE |. Parameters used in the finite element calculations of
ij.ke = 1) ' the 4-, 5-, and 6-channel Schrodinger equation, winée$) is the
with the notati0n|fij>=|ij>, and number of elements and(bas) is the number of basis functions
within each element. The exterior complex scaling p&ipas well
&= Ek -irJ2. (39 as the most inneR;, and outerR;, mesh points are given in atomic

units. The complex scaling angle is given in degrees.

The ﬁij,k{ andéj'ke elements are identically zero faort k,

and therefore the global matricés and'S become banded ~ N(el) n(bas) R Rs Ry ¢
and relatively sparsg37].

60 13 0.03 19.00 42.00 7.0

Il INPUT DATA

By input data we here refer to the diabatic representation?escr'lbeid n Sec.l | B and Il A. Flor+each one of the adiabatic
used in the finite element culculations. This input was cre-l_Af) E% (1-9 %4, and (1-6)%4 manifolds, a diabatic
ated using initial data from different sources. In order toMatrix U'(R) was formed by means of Eq&23) and(30),
understand how this might affect the final results, this sectioflépending on whether the initial data were represented by an
gives a detailed description about the numerical treatment dthogonal basis set or not. The step length in our numerical

the initial data points. diabatization was(1x 10%a,, yielding an error estimate
The reduced masgy,,=0.503 637 435 a.u. for Hwas =~ =2X 10 Hem ™,
used in all calculations. The diabatization results for thd—6)'>; manifold with

The ground-state BO PEC in the regi®¥0.6—8.0 a.u. respectto energidsi(id)(R) are shown in Fig. 1. The structure
was taken from Wolniewic22], while the excitedEF, GK,  of the diabatic diagonal potential energies and the corre-
HH, P, andO '3 BO energies, adiabatic corrections, and SPonding interaction potentialsot displayed hepemay look
nonadiabatic  derivative coupling elements for  father peculiar and nonphysical. However, the diabatic rep-
=1.00-20.00 a.u. were obtained from high-precisibnini- ~ ésentation is just a useful mathematical construction for
tio results of Wolniewicz and Dresslg4]. The upper limit of ~ SIMPlifying numerical treatments and should generally not
R for the ground-state BO electronic energy needed to b§€TVe as a graphical representation for understanding the
extended and was therefore smoothly extrapolated to its dighysics connected with the problem studied.

sociation limitD,=38 293.0406 cit [22] for out, i.e., atR
~20 a.u. IV. CALCULATIONS

Elements for the couplings of tHeF, GK, andHH 12; The(1—4)12;, (1_5)125, and(1—6)125 manifolds repre-
states with the ground state were obtained from Quadelli sent four-, five-, and six-state approximations studied in the
al. [2]. Some of these couplings were given f&  present paper, respectively. The diabatic potenti#$R)
21.00—5.00 a.u., others fdR=1.00-6.00 a.u. Therefore, gpq Ui‘}(R)(i #j) were used as input to an exterior complex
all couplings were smoothly extrapolated to be zeroRor itateq finite element Schrodinger equation solj&f] in
:20'001 a.u. The corresponding coupling elements forRhe oger to compute rovibronic structures as well as level
andO "X states were missing. Assuming these to be relayjqths for the three approximations discussed above. Note
tively weak they were here neglected. . that in the diabatic basis, eat}f(R) in one approximation

The accuracy of an exterior complex scaled f_|n|te glemen iffers slightly from the corresponding element in other ap-
calculation depends on the density of the point grid used . inations. This gives rise to energy shifts when compar-
before the scaling point, the choice of basis functions, and,y computed rovibronic structures for different manifolds.
fch_e_ degree of these polynomial basis functl(_)ns. Therefore a The FEM input grids were found to produce convergent
initial data for R=1.00-20.00 a.u. were interpolated by yoq s for a relatively small number of elements and local
means of tension splme[é}Q] to be represented by a total agig fynctions. The final results are based on a somewhat
number of about 1900 points. All PECs were extrapolated t‘?arger grid, consisting of 60 elements with 13 local basis

a maximum internuclear distance @t=42.00 a.u. , functions within each element. Details of the FEM input is
It is well known that relativistic corrections of the inner presented in Table |. The exterior complex scaling point as
and outer minima of th&F and GK electronic energies of e a5 the angle were varied in small steps in order to check
H, need to be included in high-precision comparisons V‘{'thstability. For anglesp=5° and scaling point&.= 123, the
obs_elrv?d term vaIue§4_]. qugver, th? present p:;\‘per 'S results were stable. According to the table, these parameters
mainly focused on predissociation studies, and as the widthge e he|q constant at somewhat larger values during all cal-
are independent of the small energy shift caused by thes§,|ations.
corrections, they are excluded in the present calculations. The |owerR limits of the PECs were extrapolated down to
Furthermore, when comparing our different multichannel apD.Oaao by using a Lennard-Jones f#0].
proximations with respect to rovibronic energies, only the
relative position of the energies need to be taken into ac- V. RESULTS AND DISCUSSION
count. ’
The last step, required to obtain the necessary input, was The results for the(2-6)12; excited states reported here
to create diabatic representations by applying the procedungere based on best adiabatic PE@$, while the ground
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state was represented by Born-Oppenheimer electronic ener- TABLE Il.  The EF energy differences AEE:,(U,O)
gies[22]. This inconsistency produced a shift, making direct(cm™?) (k,k'=4,5,6 k#k’). Numbers in brackets denote powers
comparisons between the presented results and observed @sl0.

well as with other computed results, not definite. Therefore;
the minimum of the ground-state potential was set to zero s AEEE AEES AEED
energy. Thus, all our computed energies were shifted up-

wards by about 2300 cth relative to observed energies, EO 2.14-2] -1.78-3] —2.31-2]
while the corresponding level widths remained unaffected by’ FO 5.9§-2] 557-3]  -4.29-2]
this constant shift. This shift is irrelevant in comparisons3 F1 3.44-2] 2.39-2] -1.06-2]
between our computed energies for different approximationst El 8.77-2] 2.24-2] -6.51-2]
To be able to compare our results with observed levels wg F2 -1.15-2] -3.14-2] -2.04-2]
present the energy differences between consecutive vibrg: F3 -2.76-2] -5.76-2] -3.00-2]
tional levels instead of the absolute energies themselves. E2 0.82 0.72 ~0.10-2]
In the following sections, term energy values, level

. . o 8 F4 -0.44 -0.49 -5.32-2]
widths, and nonradiative lifetimes are labeled E¥v,J),

v(v,J), and 7(v,J), respectively, where@ denotes vibra- 9 EF8 —9.51-2] ~0.18 ~8.2§-2]
tional levels,J is the total angular momentum, the indices 10 EF9 0.40 —0.19 ~0.20
k=4,5,6 denote what approximation is considered, and 11 EF10 -1.07 -1.18 -0.11
=EF,GK,HH,P, or O is the state studied within a chosen 12 EF11 -1.50 -1.60 —9.952]
approximation. Note that when levels are well localized in13 EF12 -1.10 -1.30 -0.20
only one of theEF, GK, andHH double wells(see Fig. 3 14 EF13 -113 —1.34 -0.20
we use the notatios=E,F,G,K,H, or H instead. 15 EFL14 —2.07 217 ~0.10

16 EF15 —-2.53 -2.63 -9.69-2]
A. Energy levels 17 EF17 -1.60 -1.77 -0.19
. . . EF18 -0.36 -0.50 -0.13
The computed rotationless energigv,J=0) were, in EF19 583 561 0.22
most cases, identified by studying each component of thS0 EF20 _2'11 _2'16 —5.7[&2]
corresponding multichannel total wave functifitb]. In re- : ' ’
gions where diabatic vibrational level spectra from two or?l EF21 —4.02 —4.11 ~9.9%2]
more electronic states are overlapping each other, comparf2 EF22 -11.87 -13.95 -2.08
sons with available experimental resyi812,4] are made. 23 EF23 -3.15 -3.70 -0.56
Many of these levels are more or less mix&d], making the 24 EF24 -11.94 -12.46 -0.52
identification difficult, or even incorrect, in terms of single o5 EF25 —2.97 —2.04 3.719-2]
chara_cters. Levels without a clear domma}mg charac.ter argg EE26 ~14.95 -16.38 144
not given any term symbol but may be discussed with re- EF27 16.39 _18.10 171
spect to their features and the regions in which they appear. ' ' '
Based on the rotationless energigg(v,J=0), the corre- 28 EF28  -1158 ~11.98 ~0.40
sponding rovibronic energiegy(v,J), for J=0,1,...,10, 29 EF29 ~27.08 —29.16 ~2.08
were computed for each electronic state. Let us further defind® EF30  -31.97 —31.62 0.35
the differences,AE}(v,J)=Ej(v+1,J)-E}(v,J), for rota- 31 EF31 -9.67 -10.39 -0.72
tional term sequences between two vibrational levels, and th&2 EF32 -4.06 -4.04 1.982]
shifts, AE,,(v,J)=E(v,d)-E,(v,))(k k'=4,5,6k#k’), 33 EF33 -9.13 -11.30 -2.18

between approximations based on tfe-4), (1-5, and
(1-6'>; manifolds. , R ,
The discrepancieAE;g(v,0) in Table Il show an almost

The EF term values identical behavior adE5f(v,0) and can be summarized as

_ er o o . |AEE (w,0|<6Xx102cm?t for v=0-5, |AEEL(v,0)
The shifts AE, (v, 0) (k,k'=4,5,6 k=k'), between dif-  _ 4 55 ¢y1 for ,=6-9, andjust as in the previous case,

ferent approximations are presented in Table Il. For |OW€I’EEF(U,O)<EEF(U'O) for v=10-32, Where|EEg(10—20,0|

levels of the 4- and 5-state approximatiod&Eg (0 are within the interval 1.46-6.86 crhand |E5¢(21-32,0|
-5,0|<3x10%m™, i.e., within spectroscopic accuracy. are within 10.14-34.51 ci. An exception here is that
For the next four level§AE (6-9,0[<0.67 cmi*, which  |EEF(22,0|=8.21 cmi™.

is still proportionally good. Fop=10-32, aIIEEF(v ,0) en- According to Table II, theAEg(v,O) shifts behave differ-
ergies are shifted upwards relative to EE:(U,O) energies. ently compared to the two previous ones. For most of the
From v=10 to 20, |EEF(v,0)| increases from 1.34 to levels,EEF(v,0)<E§ (v,0), i.e., the energies are shifted up-
6.93 cm®. In the interval v=21-32, we found that wards when adding th® state to the(1-5'" manifold.
|Ezs(v,0)| is within the range 10-35 cM, except that More interesting is tha{AEES(v,0)[<0.2 et for v=0
|E5E(22,0|=7.80 cm™. -17 and|AEEf(v,0)|<2.0 cntt for v=18-32. To summa-
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J=7. Again, this produces an avoided crossing and, conse-
quently, the sharp bends seen in Fi¢h)2The same reason-
ing can be used for the other avoided crossings appearing in
the figure. The source to this specific rovibronic structure is
the rather peculiar shape of tli#- double-well potential.

When continuing along the paths through these avoided
crossings, an essentially linear dependence is seen. This can
be interpreted as if the associated rotatioB8l-E1 and
FO—-F3 wave functions are well localized within each of the
E or F effective potential wells. Furthermore, the two rather

different inclinations of this linear dependence are verified
by the different shapes of the and F wells within the cor-
responding effective potentials.

According to Fig. 2a), the next term serie£2, displays
an E character behavior foJ=0-3, while for J=4-10 the
associated wave functions seem to leak out througtEthe
. . barrier into theF potential well, i.e., a situation where we
manifold the energy levels, particularly Io"’f 10, are  have a mixture of characters. When continuing through the
shifted. When adding th® state to thg1-5 g manifold \iprational progression we notice that the term series as-
most of these shifts remain unchanged. This indicates thajigned as=4 has a somewhat bent shape, again indicating a
the influence of the state on theEF levels is almost neg-  mixing of E and F characters. Th&F8 series displays a
ligible. slightly nonlinear dependence. Beginning with tde0

In Fig. 2(a) the 11 IowestEgF(v,J) rovibronic energies level, it lies just above the correspondidf(R) effective
are plotted as functions dfJ+1) for J=0-10. A number of  potential barrier. A similar comparison for each of the
avoided crossings appear in the structure ofEde-E1 and =1,2,...,10guantum numbers shows that all rotational lev-
FO-F3 term sequences, reflecting perturbations due to thels lie just above their corresponding effecti€ potential
EF double-well shape. In order to achieve a deeper undemarrier edge. Thus, theF wave functions are distorted Wy
standing about this level structure we can study the correand/orF wave functions, causing the nonlinear shape of the
spondingEF effective potentialsy’(R), which are displayed EF8 term series. For th&F9-EF10 levels the previously
for J=0-10 inFig. 2b). Thus, we are here studying lody  discussed distortion has almost disappeared, which is re-
quantum numbers for which the effective potentials are stilflected by the basically linear behavior in Figag The same
far from being shallow. Before doing this analysis, it may beanalysis for theE; (v,0-10 and E5"(v,0-10 rovibronic
interesting to understand why tHeF (and GK) adiabatic  term values displayed almost identical patternsEES(v,0
double-well shape appears. -10).

In a diabatic framework, the double excited configuration In the higherEF spectra, betweeBF10 andKO, pertur-
(2po,)? is allowed to cross the first excited configuration bations should be absent or weak. This was verified by plot-
(1s0)(2s0y) in Hy. In an adiabatic representation, the vonting the correspondinge;™(v,0-10 (k=4,5,6 levels for
Neumann-Wigner noncrossing rule plays an important rolev=11-18, not displayed here. All these rovibronic levels are
Due to an interaction between these two excited configurastill below theGK spectra, and each of the three sets of term
tions, two adiabatic double-well structures ]df; symmetry  series display a strictly linear structure.
are formed, thé&€F andGK electronic states. Thus, the shape The upper part of th&F spectra contains vibrational lev-
of the EF potential curve displayed in Fig.(l)) originates els which appear in an overlapping region, including both
from an avoided crossing situation. GK andH levels as well. This implies that perturbations may

According to the formula,U’(R)=U%+J(J+1)/(2uR?),  occur between levels of different characters. Figure 3 shows
an effective potential generally increases as a function of tha number ofEF energy results originating from calculations
internuclear distanc®. Therefore, theE effective potential  using the(1—6)12ér manifold. Here, we have entered a region
wells will rise much faster than the correspondifgvells,  where theEF, GK, andH spectra are overlapping each other.
which is clearly seen in the figure. This, together with theThe linear dependence is clearly broken for a number of term
fact that theE well has a narrower shape than tRewell,  series, indicating homogeneous perturbations caused by the
produces a larger level spacing for tlkethan for theF GK and/or theH spectra.
rotational energies. If we begin with tHe0 and FO level The EF23 term series is essentially linear upXe6, but
structures, thé&0 rotational energies fal=0-2 arestill be-  for J=7-10 therotational energies are pushed upwards ac-
low the correspondingrO rotational energies. Faf=3 the  cording to the bent shape seen in Fig. 3. This is most likely
EO energy would become larger than the corresponéig due to a perturbation from th@K spectrum displayed in Fig.
energy but, according to the noncrossing rule, an avoided. TheGK3 term series lies in the same energy region as the
intersection produces a sharp bend such thatBBieterm  EF23 rotational levels, and its linear behavior is broken for
series continues along the original path of Beterm series. J=6. The J=7-10 rotational energies are pushed down-
Similarly, the FO term series follows the origindt0 path. wards, indicating a repulsion from theF23 series.

Continuing upwards along this path frods 3, we find that The HO-H2 levels are assumed to give only a weak per-
the rotational energy becomes larger than FBeenergy for  turbation contribution here. This will be further discussed in

FIG. 2. (a) Rovibronic ES7(v,J) energies as functions af(J
+1) for J=0-10; (b) the effective potentials}’(R) for J=0-10 in
the same energy region as the levelgan

rize the behavior of the rotationle&d spectra we conclude
that when adding the electronié state to the(1—4)125
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a subsequent section. The situation may be better understood ! ) L ! L !

by inspecting the potential-energy curves displayed in Fig. 1. 0 20 40 60 80 100 120

While the H potential has a smooth shape in the energy J(J+1)

region of interest, th&K potential well changes drastically

in the sense that it goes from a double-w@l andK) to a FIG. 5. RovibronicEg"°(v,J) energies as functions dfJ+1)

single-well (GK) shape. The next three term seri€24 for 3=0-10. The three lowest levels are assignedHasH1, and

-EF26, do not show considerable signs of perturbations. AcH2. All higher term series may be &f, P, and/orO characters, but

cording to Fig. 3, theEF27 andEF28 rotational spectra dis- these levels are not identified for certain.

play an avoided crossing betwedr8 and 9. According to

their shapes, these two term series are obviously perturbeK7-GK8 andH2 rotational spectra. This was also pointed

particularly theEF27 rotational levels. This conclusion is out by Yu and Dresslef12], and by comparing their plot of

further supported by the study of Yu and Dres$lt], where  rovibronic term valuegFig. 2, upper pajtwe find a similar

they reported arEF(88%) and GK(12%) mixture for the behavior for oureF29-EF30 results as they reported. They

EF27 character. By comparing tHeF and GK spectra we found avoided crossings for term series of different vibronic

find that theGK5 rotational energies, which lies in the same states. This is the repulsive behavior of the differghtterm

energy region as th&F27 rotational spectra, are pushed series discussed above. The almost horizontal dependence of

downwards. the EF31 andEF32 term series indicate a continuum-bound-
The GK5 rotational spectra is probably not the only rea-state behavior which is explained by the fact that Efe

son for the spectroscopic perturbation seen inER@7 ro-  threshold(~120 700 cm') has been reached.

tational energies. Figure 5 indicates that tH2 rotational

spectra also may contribute to the spectroscopic perturbation

of the EF27 term series. Th&€F29-EF32 rotational spec-

trum is rather dense and is further superimposed onto th((?O

2. The GK levels

Our EEK(U,O) results are presented in Table Ill. When
mparing the rotationless levels in the 4- and 5-state ap-

proximations, all 5-state vibrational levels are shifted up-

121000 F T T ! T T T CKE] . -
W%ﬁ:z:*:* GK7 wards relative to the 4-state levels. These shift&,s(v,0)|,
120000 - WGKG- are all between 5.4 cth (for v=10) and 46.3 crit* (for v
= 119000 | W ol =6). The correspondingAE,g(v,0)| shifts show a similar
g behavior and are in the interval 5.8-48.7 ¢mAEsgv, 0)|
= 118000 |- s are still shifted upwards but are much smaller than the pre-
'} 117000 | i vious ones. Here|AEsg(v,0)| are in the interval 0.21
o &’ -5.4 cmt. Although|AEsg(v,0)|>5 cnit for one level they
%;50 116000 - . are generally less than 3 ¢fn Due to the results of these
115000 - X0 comparisons, the effect of adding tHe state to the(l
-4)'> manifold is much stronger than when adding e
114000 - ¥+ 4 state to the(1-5)'2; system.

FIG. 4. RovibronicEgK(v,J) energies as functions ai(J+1)

for J=0-10.

0 20 40 60 80 100 120
JJ+1)

Figure 4 shows thel(J+1) behavior of GK rovibronic
energies. As was pointed out in the preceding sectiorG; Kl
levels are in a region where boHF andH levels appear as
well. TheKO andGO levels are well localized within each of
the G and K potentials, and therefore show an essentially
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TABLE Ill. The GK energy differencesAEg,,(v,0) (cmi™) 130000
(k,k'=4,5,6 k#k’";s=H,GK) between the 4-, 5-, and 6-state
approximations. 128000
- . . 126000
s AES; AESg AES, = 124000 |
1 KO -13.76 -13.77 7.963] § 122000
2 GO -5.90 -6.16 -0.26 S 120000
3 HO 1.22 1.78 0.56
4 GK2 ~17.09 ~20.47 ~3.38 118000
5 GK3 -24.07 -24.98 -0.91 116000
6 GK4 -33.78 -39.94 -6.15 114000
7 H1 6.66 6.36 -0.30 1
8 GKS5 ~25.38 -26.47 ~1.10 Rlau.)
9 GK6 —42.57 —43.46 -0.89 FIG. 6. The best adiabatid, P, andO potential-energy curves
10 H2 -13.42 -13.77 -0.35 in a chosen energy region.
11 GK7 -16.90 -17.87 -0.97
12 GK8 -10.91 -14.00 -3.07

ergies are displayed as functionsXd+1) for J=0-5. The
shape of this plot agrees with our curve displayed in Fig. 5.
linear behavior. Th&&K2 andGK4 term series also seem to As was pointed out by Yu and Dresslgr2], the choice of
be more or less unperturbed according to the plot. The rest ¢érm symbols may be somewhat arbitrary for such strongly
the GK rovibronic level dependence is not linear over the mixed states as we have here.
=0-10 interval. For theGK3 and GK5-GKG6 rotational The fourth rovibronic term serigsquaresfrom below, in
structure we refer to the previous discussion aboutBRe Fig. 5, follows an essentially horizontal line. This may be
spectra as the homogeneous perturbations discussed there @x@lained by the fact that its rovibronic energy interval
mutual. TheGK7 -GK8 term squences behave as €31 120 686-120 757 ci for J=0-10lies just at theEF and
-EF32 levels and can, similarly, be explained by &  GK dissociation limits(~120 700 cri?). Similar behavior is
energy threshold. seen for the highest term sequerftguarter filled circles}
in Fig. 5. The reason for this might be that the corresponding
3. The H, P, and O levels energy interval 129 721-129 877 thnis centered around

the HH local potential maximung129 825 cm).

Most of the other 12 rovibronic sequences presented in
Fig. 5 follow essentially straight lines, indicating that they
are unperturbed or only weakly perturbed. Although different
, ) Y¥inclinations appear in this linear structure, the identification
U”Sh'fltef' when compared with the correspondiigd) and ot the corresponding characters is relatively uncertain. How-
(1-97%, results. The identification of the othét, P, O oyer 4 good guess may be based on the following arguments:
rotationless levels in this interval is more uncertain. Whencgnsider the chosen parts of the best adialifi®, andO
comparing results based on calculations for ¢he4) and  potential-energy curves displayed in Fig. 6. According to the
(1-57%, manifolds, theH levels aboveH?2 are seen to be ghapes and widths of these potentials, kheibrational en-
considerably shifted. Thus, thel energy-level positions, ergies should generally have a smaller level spacing than the
computed with thé1-4)*%; manifold, cannot be used in the p and O states in the same energy region. Thus, the vibra-
identification of theH and P spectra obtained with the tional energy spacing of th® levels should be somewhat
(1-9'3; states. When adding th@ electronic state to the greater than for thé@ levels. Consequently, when consider-
(1—5)12g manifold, the calculated spectra again change theiing each of theH, P, and O term sequences, they should

When the(1—6)12$ manifold was used in our calculations
a total number of 17 vibrationaH, P, and O levels were
found in the energy regioit115 000—131 000cm™. The
EQ(O—Z,O) levels are easily identified as they are essentiall

structure. This makes the analysis even more difficult. have somewhat different inclinations. Unfortunately, due to
A study of the rovibronic spectra often gives some addi-the shape of the three potentials, these inclinations vary
tional information. In Fig. 5 our computell;"°(v,J) rovi-  within each of theH, P, and O rovibronic spectra, making

bronic term series forJ=0-10, in the energy region the identification rather difficult.

115 000-131 000 ci, are displayed. The nonlinear behav-  There are essentially three different intervals to consider
ior of the HO—H2 term series indicates spectroscopic pertur-here. The firstl) is between 114 000 and 120 000 ¢prthe
bations. This is most likely because of a strong mixing ofsecond(ll) is between 122 200 and 124 500 ¢mand the
electronic states as these levels are within a region whertsird (Ill) is between 124 500 and th¢ threshold at about
both EF andGK levels appear as well. This level mixing has 129 825 cm. When going from region | to Il the potentials
been reported in the theoretical study by Yu and Dressleget wider, particularly th& andO wells. Because of this, the
[12] where they graphically presented a number of rovi-corresponding vibrational energy-level spacings and the local
bronic term sequences. In their Fig. 2, tH2 rotational en- rotational constants, defined as
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B,;= <X§,%)(R) % ng)(R)>1 (39) 136000 %&% 11 EfO(v,J) (b)g i
. 135000 - S0 ——+ P4
decrease. Th&,; constant is a measure of theRe/distri- g5 134000 I | R e
bution of the diabatic wave functior)év‘?(R), and thus tells = 133000 - M AL W ,
us in what internuclear distance region the dominating levels .00, L T 11 ﬁ i
wave function is located. According to Carlsund-Leeinal. et ’
[14], an estimate of the loc#, ; value can be obtained as the 131000 0 "
slope of the term energy series as a functionJaf+1)." 130000 s 40 80 80 100 120 0 20 40 80 80 100 120
However, we can still compare the inclinations of tHeP, J(J+1) JI+1)

and O rovibronic term sequences within each interval. In

region Il, we have three parallel term series, having a similar FIG. 7. Rovibronic term sequences as functiong(af lp)oin the
inclination as theH1 andH2 term series. The corresponding interval 130 000136 800 cmh for (a) Es(v,J) and (b) Eg-(v,J)
vibrational energy-level spacings suggest that the term seriegergies forJ=0-10.

5, 7, and 10'in Fig. 5 aréi rovibronic energies. The term 135 820-135909 ci, close to the dissociation limit,

series denoted as 8 in the figure has essentially the samg . . L
o . . .~ 'shows an almost horizontal behavior. This is also the case for
inclination and is therefore most likely ofRcharacter. This

: . the rotational energies of the high&3tlevel as well as for
Is further supported by th.e fapt .thaF the 3”0' P potential ._the second highed® rotational levels forJ>5. Two of the
shapes and widths are quite similar in region Il. The remain-

ing rovibronic levels, 6 and 9, are finally interpreted @s term serieg4 and 5 from abovewere identified as having an
9 ; ' S ally P . O character, although they seem to be too close to each other.
electronic term values. Continuing to interval Ill, and using

) . . Atn alternative is that one of these term se(ig$rom above
the same arguments as for the previous regions, we mterpr% of aP character. It is likely, according to Fig(d, that the
levels 11, 14, and 16 ad term series. This makes a total : Y 9 9(a),

number of nineH levels, which is in agreement with the energy gap between the 5th and 6th term series is consider-

number ofH vibrational levels found when thé1—4)125 ably larger than the prevoius gap between the 4th and 5th

fold di lculati Th broni term series. Thus, somewhere at about 134700
maniioid was used In our caicuiations. 1he rovibronic S€-_, s, ggg ot possibly existing term series could be

quence 12 is probably of a@® character, while 13 then missing.

should be aP term series. The linear behavior is clearly
broken for series 15 and it might therefore be of a miked 4. The Hlevels
andO character. The highest term seque(i? lies at theH — .
threshold which is reflected by the horizontal linear depen- The computecH0-H15 levels most likely have well lo-
dence. calized wave functions within thel potential well, because

_Above theH threshold we have to distinguish between theits minimum is aR~10 a.u., i.e., more or less isolated from
HH, P, and O spectra. However, according to our previousthe other electronic states which have their potential minima

discussion about the influence of different potential shape¥/ithin the intervalR=2-4 a.u.This is clearly verified when
. . . — . . comparing the different approximations studied here. Ac-
on the rovibronic term energies, ti¢H spectrum is easily "

; H - -
identified. This will be further discussed below. Thus, the€0rding to Table IV[AE(v,0)|<9.8x 107 cm™* for v=0
remaining levels in the same energy region arePobr O -9, and |AEj(v,0)<0.35 cm? for v=10-14, and
characters. A general conclusion from an inspection of Fig.

|s_that there exist only weak spectroscopic perturbations i ost of the energies for the 4- and 5-state approximations.
this energy region. = =

.. H H
By comparing the rovibroni¢1-5'S; results presented A similar pattern was seen farE,q(v,0) and AEsq(v, 0).
in Fig. 7(a), where theO electronic state is excluded, with This can be summarized 88E(v,0)| <8.4x 1072 cm* for
the(1—6)125 result; pt:%slenteld ir|1| Figl), we We:jg able tﬁ v=0-7, |AEH(v,0)|<0.45 cm! for v=8-14, AE}L(15,0
sort out seven probable levels. However, according to the _ 1 " 2 1 L
plot, there are a number of avoided crossings, indicating tha_t25ﬁ'3 e, [AEgg(v,0)| <8.65x 1(} cm™ for v=0-13,
some of theseP levels are perturbed by th® rovibronic  |AE5y(14,0(=0.12 cmi’, and |AEf(15,0|=24.11 cm™.

spectra. The rest of the term series, appearing only in th@ccording to Table IV alEL(0-14,0 andEg(0-14,0 lev-

(1-6)'> spectra, should be of @, or perhaps of a mixe# . ~
andO, character. This is supported by the fact that these tern(1aIS are shifted upwards when compared to Eﬁ'éo 14,0

sequences have a steeper inclination than the others for lowlgvels. The same is true for thEf(0-14,0 levels when
J values. This is further in agreement with the more narrowcompared to thE?(O—l4,0 levels, but the shifts are much
shape of theéd potential than for thé> well within the same  |ess than in the previous case. The rotationtesg5 energy
energy interval. The highest identifie® term series |evel is shifted downwards by about 24 thwhen theP
electronic state is included in the calculations, while it re-
The definition of Carlsund-Leviet al.[14] was based on Hund’s mains more or Ie_ss the same when ﬂ"@'eC”?”'C state Is
casetb) type interactions, i.e., th& quantum number was used included. T_hus, it seems to be tlfe electronic state that

instead ofJ. affects theH energy-level spectra the most.

AE}(15,J=0)|<1.15 cm?, i.e., a good agreement between
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TABLE IV. The ﬁenergy differencegEEkl(vlo) (cmd) (k,k' tra, are not presented graphically here. The reason is that the

=4,5,6 k# k') between the 4-, 5-, and 6-state approximations. HH spectra do not show significant signs of perturbations
— — — even if some internal shifts were found for the different ap-
s AER, AEH, AEH proximations. The rotationless energy results are presented in

— Table V, where the lowest level is denoted tabklI25. This

1 -1.54-2 -1.594-2 -1.41-4 . o —
) io 1 92{ 2] ) O:{ 2] X 5][ 3] choice of numbering is based on the fact that thand H
H1 ~1.93-2] ~2.08-2] ~1.56-3] spectra below the lowedtiH level, i.e., HO-H8 and HO
8 H2 —2.54-2] —2.79-2] —2.01-3] —-H15, makes 25 levels in totgkee previous sectionpsTo
4 H3 -3.21-2] -3.57-2] -3.64-3] summarize the differences in the rotationless level structures
5 H4 -3.94-2] -4.47-2] -5.10-3] 4-, 5-, and 6-state approximations we found {idg' (v, 0)|
6 H5 -4.87-2] -5.63-2] -7.51-3] varies within 0.6-89.5 cit, |AE¢!(v,0)] within 0.2
7 H6 -5.84-2] -6.86-2] -9.80-3] -89.5 cm?, and|AEH (v,J=0)| within 0.2-91.3 crit. The
8 H7 -6.97-2] -8.39-2] -1.40-2] variations within these intervals are rather different when
— comparing the three approximations with each other. We
9 -8.21-2 -0.10 -1.92-2 -
58 -2 #-2] computed levels fov =0-32 butwhether the higher of these
10 H9 -9.74-2] -0.12 —2.67-2] levels should be considered as isolated resonances or over-
11 H10 -0.12 -0.15 -3.64-2] lapping resonances is a matter of definition.
12 H11 -0.14 -0.19 -4.912] The rovibronic energiesE"(v,J) for J=0-10Qk
13 012 ~0.16 —0.22 -6.36-2] =4,5,6 were also studied as functions de+1)_. The_se
_ three structures were found to behave essentially linearly.
14 H13 035 044 -8.64-2] Only for a few higher levels this linearity was slightly bro-
15 H14 -0.17 -0.28 -0.12 ken, indicating possible perturbations originating from Ehe
16 H15 -1.15 25.25 2411 and/orO electronic states.

_ B. Level widths
. . H _

~ The rovibronicEg(0-15,J) term values fod=0-10 are All computed rotationless level widthEj(v,0) are re-
displayed in Fig. 8. The curveld0-H14 do not show any norted in Tables VI-VIIL. In the case of rovibronic level
signs of perturbations. Only thd15 term series behaves a widths I'i(v,J) strong variations within a vibrational level
little differently but still not as if it was perturbed by another may indicate electronic spectroscopic perturbatidrig. It is
state. TheJ=0 energy is positioned at an expected vibra-important to emphasize that this is particularly useful within
tional spacing but fod>0 interactions with theHH con-  a relatively limited interval of thel quantum number. For

tinuum occur as indicated by the plot. high rotational levels the corresponding effective potentials
— become more and more shallow. This, in turn, generally im-
5. The HH levels plies stronger and stronger predissociation until the con-

Our computed rotationlesEEﬁ(v,O) (k=4,5,6 energy tinuum is_reached. In general,_ for_higher vibrational levels
— approaching the threshold, this situation occurs for much

lower rotational levels than for lower vibrational levels.
Within the intervalJ=0—10most of the level widths, except

levels, i.e.,HﬁvibrationaI energies above tikandH spec-

130000 F M ,;,'15_ a few at the t_hresholds, are stiII_ relatively narrow. F_ur_ther-
A At ——+ 14 more, the inclination of the rotational level widths within a
A — At ——————+ H13 vibronic level may be positive, horizontal, or negative. That
- 129000 - Wgﬁ' is, the widths are either increasing, staying constant, or de-
i S RS 5 creasing. However, what is relevant for the perturbation stud-
= 128000 F T T L s ies here are mainly signs of nonlinearity, irrespective of the
™ oA+ 7 inclination of the rotational dependence of the widths.
,f' 127000 F mﬁ ] According to Figs. 9-11, logl';(v,J) was plotted as
oy b+ H4 functions ofJ(J+1) for J=0—10. The choice of using a loga-
126000 | mg ] rithmic scale is because the widths are often varying with
Ht————————t————F A1 several orders of magnitude, making a graphical representa-
ot a0 tion in a linear scale inconvenient.
125000 L L L L 1
0 20 40 60 80 100 120 )
J(J+1) 1. The EF widths

B Our calculated rotationless level widthEE (v,0) (k
FIG. 8. RovibronicEf(v=0-157) energies as functions of =4,5,6 are presented in Table VI. Most of the lower widths
J(J+1) for J=0-10. are within 10%1-106 cm™, while for higher levels they are

052507-11



S. ANDERSSON AND N. ELANDER PHYSICAL REVIEW A69, 052507(2004

TABLE V. The HH vibrational level spacing, AEfH(v,0) (cmi?), and energy differences,
AEEk'j(v,O) (cm™) (k,k'=4,5,6 k#k’), between the 4-, 5-, and 6-state approximations.

s AERH IN= N=l AERH AERH AEHH

1 HH25 0 0 0 -15.19 23.74 38.92
2 HH26 145.18 134.95 103.23 -25.41 -18.21 7.20
3 HH27 206.31 273.06 266.77 41.33 42.24 0.91
4 HH28 194.93 183.30 179.35 29.71 26.66 -3.05
5 HH29 193.04 182.67 180.59 19.34 14.21 -5.13
6 HH30 200.51 190.29 189.66 9.11 3.35 -5.76
7 HH31 205.62 195.92 193.39 -0.60 -8.88 -8.28
8 HH32 207.88 297.40 287.74 88.93 70.98 -17.95
9 HH33 208.95 155.31 170.70 35.29 32.73 -2.56
10 HH34 210.25 189.39 187.40 14.43 9.88 -4.54
11 HH35 212.99 203.96 203.35 5.39 0.24 -5.15
12 HH36 217.26 210.93 210.26 -0.94 -6.76 -5.82
13 HH37 221.34 299.63 317.59 77.35 89.49 12.14
14 HH38 223.95 160.03 148.10 13.43 13.64 0.21
15 HH39 225.26 217.41 210.59 5.58 -1.02 -6.61
16 HH40 224.20 224.03 218.15 5.41 -7.08 -12.49
17 HH41 221.20 221.33 215.49 5.55 -12.79 -18.33
18 HH42 219.04 239.23 238.02 25.74 6.19 -19.55
19 HH43 216.89 216.38 205.35 25.23 -5.35 -30.57
20 HH44 213.23 218.67 208.90 30.66 -9.68 -40.34
21 HH45 207.49 209.44 212.33 32.61 -4.84 -37.45
22 HH46 202.71 219.74 203.36 49.64 -4.19 -53.83
23 HHA47 197.15 203.27 193.90 55.76 -7.44 -63.20
24 HH48 189.16 200.05 187.21 66.65 -9.39 -76.04
25 HH49 182.17 38.07 189.87 -77.46 -1.69 75.77
26 HH50 172.28 328.79 166.52 79.05 -7.45 -86.50
27 HH51 162.69 173.17 168.40 89.53 -1.73 -91.27
28 HH52 150.66 149.36 -3.04

29 HH53 138.42 152.58 136.52 -46.97 -4.94 42.03
30 HH54 123.85 209.94 123.61 39.12 -5.18 -44.30
31 HH55 108.19 110.62 -2.75

32 HH56 90.84 224.05 91.12 64.14 -2.46 -66.60
33 HH57 71.23 75.75 2.05

generally found to be of the order of 3104 cm™®. Thus,  the rotational dependence of kg5 (v,J) for J=0-10.

most of theEF levels have rather narrow widths, indicatinga  In Fig. 9a) the logarithm of theEO—EF8 series of level
weak predissociation. This is, at least qualitatively, in agreewidths is plotted as functions @df{J+1). The avoided cross-
ment with the study of Quadreliet al. [2]. Furthermore, ings, appearing in thE0—E2 andFO—F3 rovibronic energy
some differences are seen for the three approximations. Witktructure displayed in Fig.(8), are here reflected by the

a few exceptions, it is generally found that sudden jumps in the corresponding widths. As an example,
I'EF(v,0<T5 (v,00<T'EF(v,0). In the analysis of th&€F  we consider theEO width, which suddenly decreases from
energies we concluded that a number of levels were more d& X 107° to about 10° cm™ when going fromJ=2 to 3. This

less perturbed. In order to further investigate this we studieds due to the previously discussed avoided crossing between
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TABLE VI. The EF energy shift differencesEE" (v,0) (cm™Y) between the present and observed levels

C

from Ref. [12], the corresponding present width§™(v,0) (cm™) (k=4,5,6, and the theoretical widths
I'57(v,0) (cm™) from Ref.[11].

s SES, g s g e
1 EO 0 2.98-7] 2.11-8] 3.79-6] 1.5-11]
2 FO 0.61 8.95-11] 4.57-9] 4.67-9] 8.6-11]
3 F1 0.01 3.36-10] 1.66-8] 1.51-8] 9.7-10]
4 El -0.27 1.48-7] 2.21-7] 2.89-5] 2.0-7]
5 F2 0.35 4.55-8] 1.37-7] 2.07-8] 9.1-10]
6 F3 -0.50 2.80-7] 4.61-7] 7.20-8] 3.4-10]
7 E2 0.27 8.95-6] 4.67-7] 7.97-5] 2.1-8]
8 F4 0.63 9.16-7] 2.11-6] 3.21-5] 6.0-9]
9 EF8 -2.22 1.27-6] 3.23-6] 4.01-5] 2.1-8]
10 EF9 1.75 1.3p-5] 5.3-6] 1.67-4] 1.71-7]
11 EF10 2.97 1.5p-5] 1.20-6] 1.40-4] 1.9-7]
12 EF11 -1.43 1.3p-5] 1.59-8] 1.33-4] 1.2-7]
13 EF12 0.45 1.45-5] 1.93-8] 2.21-4] 2.9-8]
14 EF13 1.88 1.50-5] 6.63-9] 3.06-4] 3.4-8]
15 EF14 0.44 1.8[-5] 6.17-8] 3.71-4] 3.7-7]
16 EF15 -0.39 3.3p-5] 1.30-6] 5.29-4] 6.94-7]
17 EF16 0.56 7.17-5] 5.5—6] 7.99-4] 6.9-7
18 EF17 1.69 1.1p-4] 1.21-5] 9.80—4] 1.5-7]
19 EF18 -5.75 8.5p-5] 7.27-6] 3.84—4] 6.4-7)
20 EF19 5.30 1.95-4] 2.94-5] 1.65-3] 1.9-10]
21 EF20 1.94-4] 5.54-5] 1.45-3] 7.5-7)
22 EF21 1.17-4] 7.19-5] 2.43-3) 1.9-7]
23 EF22 2.31-4] 1.33-5] 2.17-3] 2.4-8]
24 EF23 1.77-4] 4.37-5] 2.21-3] 5.4-6]
25 EF24 1.05 2.3[-4] 4.49-5] 3.57-3] 9.7-7]
26 EF25 -4.62 1.8p-4] 9.89-6] 1.93-3] 1.0-5]
27 EF26 3.71 1.8p-4] 6.56—7] 1.34-3] 7.9-6]
28 EF27 2.40 1.7p-4] 1.55-6] 2.54-3] 4.7-6]
29 EF28 9.10-5] 3.07-5] 5.49-4] 1.6-6]
30 EF29 3.23-5] 1.27-5] 2.53-3] 1.7-6]
31 EF30 7.43-5] 1.41-6] 1.29-3] 9.5-7]
32 EF31 1.75-4] 1.30-5] 3.33-3] 7.4-8]
33 EF32 -9.18 4.2p-5] 1.49-6] 9.51-4] 3.5-6]

the EO andFO term series. At the same point, tR® width  well varies with the height of the effective barrier when
makes a jump of the same order of magnitude in the othecounted from the corresponding rotational level. Betwéen
direction. Between)=3 and 10, theEO width varies more =3 and 6, thek effective potential minimum approaches the
smoothly, having a local minimum of about Z0cm™ for  corresponding= potential minimum. Somewhere betwegn
J=5-6. =5 and 6 the minimum of th& potential passes the corre-
The variation of the width is about two orders of magni- spondingF minimum. From that point the effective barrier
tude within the interval=3-10. The reasons for this may be height as well as the cutoff hill area becomes smaller and
manifold, but an investigation of the effective potentials dis-smaller, implying higher penetration probabilities, i.e., the
played in Fig 2b) might give us some further information. level will have more of & character and thus a larger width.
According to the theory of quantum-mechanical tunneling, The behavior of the othét andF rovibronic widths may
the smaller the area of the cutoff hill, and the greater thébe qualitatively explained in a similar way. Furthermore, the
frequency of the vibration, the shorter the mean lifetime ofgeneral behavior of the level widths, in the region where
the level [42]. If we assume that this area here becomesvoided crossings appear, is that they vary linearly, or
smaller as a function of the distance from the level to theslightly nonlinearly, within each interval between the
barrier edge, the probability for penetration to a neighboringavoided crossings. Note that intervals displaying somewhat
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TABLE VII. The GK andH energy shift differencesEg (v, 0) (cm™) (k=4,5,65=GK,H) between the
present and the observed levels reported in Ref], the corresponding present width§(v,0) (cm™) (k
=4,5,65=GK,H), and the theoretical widthE(v,0) (cm™Y) (s=GK,H) from Ref.[11].

s SES, rs rs rs rs
1 KO 0 4.15-5] 1.49-2] 7.94-4] 1.4-4]
2 GO 18.67 8.0p-6] 2.41-3] 8.56-5] 1.6-6]
3 HO 0 6.91-7] 1.2q-4] 8.94-6] 3.5-7]
4 GK2 8.84-5] 2.99-3] 9.24-5] 2.7-6]
5 GK3 12.32 1.97-6] 1.67-3] 1.65-4] 5.9-6]
6 GK4 5.20-7] 5.27-3] 2.79-4] 1.4-5]
7 H1 21.48 1.1p-8] 1.59-6] 2.47-4] 1.6-6]
8 GK5 -4.43 4.78-5] 7.10-2] 3.47-3] 5.1-6]
9 GK6 1.09-4] 6.39-2] 3.14-3] 5.5-7]
10 H2 55.44 1.57-4] 1.27-5] 2.53-3] 5.5-7]
11 GK7 9.63-5] 3.51-2] 1.47-3] 1.7-5]
12 GK8 -1.28 1.89-5] 2.07-3] 1.49-4]

bent shapes of thEO, FO, andF1 curves in Fig. @) are not -10® cm™* in comparison with theEF8 widths ~5X 107°
signs of strong spectroscopic perturbations. All these widths5x 108 cm™ for J=0-10. TheE2 width decreases from
are of the order of 13°-108 cm™, i.e., rather narrow. This 107* to 10° cm ™t within J=0-3, from 10°° to 108 cm™
conclusion is in agreement with the corresponding term sewithin J=3-9, andincreases by about one order of magni-
ries dependence displayed in Figap tude when going frond=9 to 10. When comparing this be-
The three remaining curves in Fig(e are the ones rep- havior with theE2 term series, displayed in Fig(&, the
resenting the&e2, F4, andEF8 level widths. These curves do overall impression is that these two graphical representations
not display strong signs of avoided crossings in the sensagree with each other. The rather steep inclination in the
that sudden jumps in the level widths are basically absenbeginning of theE2 term series becomes more flat at about
The E2 andF4 levels are still below th&F barrier edge. J=3-4.This is due to a repulsion from the4 term series.
This is reflected by their stronger variations 10 Up to that point, the decrease of the corresponding width is

TABLE VIIIl. The H energy shift differencesSEE'_o(v,O) (cm™h between the present and the levels
(observed or computgdeported in Ref[41], and our calculated widthSE(v,O) (cm™) (k=4,5,%,6).

s SEN, rH rH rt r
1 HO 0 6.96-7] 7.34-7] 3.6-7] 7.44-7]
2 H1 2.84 1.77-6] 1.69-7] 1.36-8] 1.0§-6]
3 H2 3.13 1.4%-5] 1.5§-5] 1.17-5] 1.60-5]
4 H3 6.07 4.74-5] 4.90-5] 1.27-5] 4.99-5]
5 H4 8.41 5.38-5] 6.21-5] 2.74-5] 6.1§-5]
6 H5 10.58 7.5[-5] 8.74-5] 1.04-4] 8.80-5]
7 H6 21.64 9.47-5] 1.09-4] 1.06-4] 1.09-4]
8 H7 24.50 8.85-5] 1.69-4] 2.07-4] 1.61-4]
9 H8 27.04 4.00-5] 7.34-5] 1.31-4] 6.93-5]
10 H9 29.56 5.47-6] 3.64-5] 3.04-4] 4.01-5]
11 H10 31.92 2.49-4] 2.34-4] 3.74-4] 2.44-4]
12 H11 33.58 2.86-4] 6.53-4] 2.39-4] 4.50-4]
13 H12 34.65 4.46-3] 4.49-3] 5.00-4] 3.93-3]
14 H13 32.48 0.29 0.21 0.37 0.23
15 H14 35.61 0.55 1.26 0.19 1.00
16 ﬁ15 32.50 7.75 11.25 7.12 7.41
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FIG. 9. TheJ(J+1) dependence of the logarithm for calculated

widths TE (v, J) for J=0-10.

less than one order of magnitude. Within the3—9interval,
where theE2 term series is less steep, the gap between ea
rotational energy and theF barrier edge of the correspond-
ing effective potential, displayed in Fig(l9, increases. This
is reflected by the decrease of the width as functiond(&f
+1). At J=9 an avoided crossing appears betweenERe
and F3 term series. This raises tH2 energy forJ=10 a
little. At the same time the corresponding width increases byovibronic
about one order of magnitude. Tik& widths may be ana-

lyzed in a similar way.

The EF8 rotational energies fod=0-10 are allposi-
tioned above the barrier edge in the correspondifgeffec-
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FIG. 11. TheJ(J+1) dependence of the logarithm for calculated
widths: (a) 'y (v=0-7J) and(b) TH(v=8-15) for J=0-10.

Fig. 9a). Although most of the widths in Fig.(8) are vary-
ing considerably within thd=0-10interval, we know from
the analysis of the rovibronic term series that these variations
generally do not originate from homogeneous spectroscopic
perturbations from other electronic potential-energy curves.
The sudden jumps in theF level widths discussed above
rather reflect the nonadiabatic effects appearing inERe
double-well potential.

In Fig. 9Ab) we have entered a region where, according to

ctne rovibronic energy analysis, we know that spectroscopic

perturbations are very weak or absent. TERE9-EF11
widths are found to be little affected by the double-well
structure, whileEF12—-EF17 display a more linear behavior.
All presentedEF9—EF17 widths are within 1-107° cm 2.
The EF18-EF26 widths are presented in Fig(c9. Here
we have reached the energy region where Bk and H
levels appear. According to the plot, the
EF18-EF20, EF22, and EF24-EF26 widths are only
weakly perturbed. Most of these widths are within
104-102 cm?t, with the exception ofl'§7(24,10=1.3
X 1077 cm L. The EF21 andEF23 widths are strongly vary-

tive potential. This is clearly reflected by the dependence oing, indicating that spectroscopic perturbations exist. When

the corresponding level widths. Within the intervst0—10

comparing these variations with the conclusions from the

they display a smooth variation, slowly decreasing by aboutovibronic energy analysis, tHeF21 levels should be essen-

one order of magnitude, starting fromi§ (v,0)=4.01

tially unperturbed, while th€eF23 levels are weakly per-

x10°° cm L. An inspection of the energy gap, between eacHurbed. The behavior of these widths look similar to B
rotational energy and its effective potential barrier edge@ndF1 widths displayed in Fig.@. The EF21 vibrational
shows that this distance varies little. This is most likely thelevel is below theGK barrier and, according to Yu and

reason for the smooth nonlinear shape of B8 curve in

10810 F(?K(va J)

GKs
AGKT 7

40 60
J(J+1)

FIG. 10. TheJ(J+1) dependence of the logarithm for calculated

widths T§¥(v,J) for J=0-10.

80

100

120

Dressier[12], it is mainly a mixture ofEF (70%) and GK
(20%) characters. Taking that into account and the fact that
at that energy, theGK potential has a double-well shape
similar to that of theEF potential, one may qualitatively
explain the variation of these widths in the same way as was
previously done for thé&=0 andF1 levels. TheEF23 rovi-
bronic levels lie above th&K barrier but the corresponding
widths display a similar behavior as tl&=21 widths. The
EF22 levels, in between these two, are positioned around the
GK barrier but do not seem to be considerably affected with
respect to variations. Finally we consider tB&27-EF32
widths displayed in Fig. @l). First we note that most of these
higher levels have widths within the interval
104-102 cmL. This should be compared with the lowest
EF levels, which all have widths within T8-10% cm™.
This verifies that we are here dealing with levels approaching
the EF dissociation limit.

The EF27 widths are all about I®cm™ within J
=0-10. This, almost constant behavior, agrees with the
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shape of the correspondiif-27 term series. ThEF28 term  tion of the sudden jump ol“go(v,J), but one suggestion is
series do not show any strong signs of spectroscopic pertuthat it might be a spectroscopic perturbation, due toERe
bations withinJ=0-8. This is in agreement with the linear state, which is responsible.

behavior of the corresponding term series discussed above. A difference here, from the previous loweBF vibra-

For J=9 and 10 theEF28 rotational energies are pushed tional levels, is that we have several possible sources of per-
upwards. This is reflected by the jumps observed in the corturbations. Apart from theGK double-well potential, we
responding widths. Why these widths, particularly J&r10, have to consider homogeneous spectroscopic perturbations
become smaller is not clear but a partial reason might be dueriginating from theEF and/orH electronic states. The struc-

to an interaction with thé&sK state. TheEF29 widths vary  ture of theGK2-GK6 widths is rather dense which might
more than theEF27 andEF28 widths. AtJ=3 there is a reflect the homogeneous perturbations predicted for this
local minimum of about 5 107> cm™. WhenJ goes from 5  overlapping energy region. A general observation here is that
to 9, the width curve displays an almost constant behavioall widths are within 10°—1073 cm™t. The GK7-GK8 levels
around 10° cmL. ForJ=10 a sudden increase of about threefor J=0—5behave essentially like th@K2—-GK6 levels, but
orders of magnitude occurs. The dependence ofBR29 for J=6-10 the corresponding rovibronic levels have
widths agree with the corresponding term values within reached the threshold. This is clearly seen in Fig. 10, where
=0-9. Thejump atJ=10 is more difficult to explain but the the GK7-GK8 widths forJ=7-10 arepositioned along an
existence of th&sK, and perhaps thel, states might be the almost horizontal line, indicating bound-state continuum
reason. TheEF30 widths display a similar behavior as the level interactions.
EF29 widths, but here the local minimuta-10"° cm™?) ap-

pears atl=6. The decrease from about$@o 10° cm™, for

J=9-10, may partly be explained from the behavior of the

corresponding interval for thEF30 term series. That is, the We also computed widths for thd0—H15 levels. The
gap between the rotational energy and the edge of the effec- —

tive potential forJ=0—10increases. Th&F31 and EF32 rotationlesdH widths are collected in Table VIII. When com-
widths are all about T8 et within J=0—6. BetweenJ  paring thel';(v,0), T'(v,0), andTg (v, 0) widths, these are
=7-10, allEF31 andEF32 widths increase by about five found to be of the same order of magnitude within each
orders of magnitude and thus become very broad. Furthekibrational level. For theHO—H12 levels, the widths vary
more, the horizontal dependence of these widths in Ki). 9 1 7% 107 to 4x 1073 cnil. The H13-H15 levels are
indicates a bound-state continuum interaction. This is in . — . N
agreement with the behavior of the corresponding term See_lpproachmg theiH barrier edge. Consequently, .theII’WIdthS .
ries, for which it was concluded that tl& (andGK) thresh- become broader and are of the order of a few inverse centi-
old had been reached. meters. —

The fourth set of widths in Table VI, denoted &%},
were computed from thé2—6)125 manifold. Most of these
widths are of the same order of magnitude as

=4,5,0, are presented in Table VII. A general conclusion FE(U’O)’ FE(U,O), and FE@,O) which reflects the fact that
when ,inspecting this table, is thatT®(v,0) 'the predissociation of thel levels is mainly not due to the

<TS(v,0<I'SX(y,0), while the H widths behave more 9round state.
irregularly. Ami)ng these, the most interesting widths to The rovibronic width dependence were computed for each

study with respect to the rovibronic dependence aréf the HO—H15 levels. The results for thel—6)'>g mani-
rgKvH(U,J), i.e., results based on calculations using thefold are displayed in Fig. 11. Due to the rather dense struc-
(1-6'3; manifold. ture, the data have been divided into two parts. Fife-H1

The rather detailed analysis of tiigF widths discussed widths, displayed in Fig. X&), are seen to jump up and
earlier can also be applied on ti@K widths displayed in down but the variation is rather small, about one order of

Fig. 10. The structure of th&K widths is rather dense, par- magnitude fordJ=0-10 TheH2-H7 widths, presented in the
ticularly for the GK2—-GK6 levels. According to the term same figure, behave more smoothly and display a local mini-
series analysis, th0 andGO rovibronic spectra should be mum for J=4-6. This smooth behavior with the exception
only weakly perturbed. Th&0 andGO indeed vary within of the H8" J=4 level. continues for théd8—H11 widths
J=0-10 but it israther difficult to give a detailed explana- displayed'in Fig. 1(1b5- The variation for these widths is

tion of the irregularities in these widths. However, from Fig. . . . .
10. we conclugde thaF (v, J) ~ 107~ 1073 em® within J g within one order of magnitude. The12-H15 widths are
’ 6 ’

rather broadfrom 1073 to several inverse centimetgrand

=0-10. This variation may only partly be understood by e .
studying the correspondirig0 term series. There should ex- do n_ot behave smoothly withid=0-10. According to the

ist, at the moment unknown, additional reasons for thes®revious study of theH0O—H15 rovibronic energies, these
irregularities. TheGO width has a distinct minimum of about Vvariations are not due to spectroscopic perturbations from
107 at J=3 but have values within the range other electronic states. One possible reason might be the
10°-10% cm ! for all the otherJ=0-2 and]=4-10, quan- rather wide and unusual shape of tHepotential well(see

tum numbers. Th&O0 term series does not give any indica- Fig. 1). In a more detailed analysis of these, and the other

3. The H widths

2. The GK and H widths
The rotationless level widthd;$¥(v,0) and I'}(v,0) (k
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rovibronic H widths discussed here, it would be convenient7EF-'—"'\B'-E IX. The pre_sent calculateF nonradiative lifetimes
to plot the corresponding effective potentials fbx0—10. %F(U'O) (ms,us,n9 ]Ek“";”?’lla”d the  theoretical = results
However, such an analysis is not carried out in the preserfie (V-0 (MS.us,ng from Ref.[11].

study.

s 7JEF 7J§F 7J6EF 7JEF

a

4. The HH widths 1 EO 17.82us  251.66us 1.40us 354 ms
FO 59.33 ms 1.17 ms 1.15ms 61.7 ms
F1 15.80 ms  319.8@&s 351.61us 5.8 ms
E1l 37.13us 24.03us  186.32 ns 27.6us

For the rotationless levels, not presented here, we found
that I'"(v,0) varies between 8.0 and 67.1 cinl't™(v,0)

between 3.5 and 201.3 chyandI'g"(v,0) between 9.8 and F2  11670us 38.76us 256.52us 5.8 ms
110.3 cm?, with the exception thal“?”(l,O):OAl cm™. 6 F3 18.70us  1152us  73.75ns 156 ms
Thus, here we are dealing with strongly predissociated levs E2  593.30ns 11.3%Ls  67.05ns  252.9s
els. 8 F4  580us  252us 165.42ns 885.Qus

For the rovibronic levelgv,0-10, the |Og_01—‘EH(v,J) 9 EF8 4.18us 1.64 us 13242 ns  252.9is
(k=4,5,6 dependence orJ(J+1) did not indicate any 4, EE9  402.27 ns 14%s  990.67ns  3L.us
strong pgrturt;ations. Tge roviﬁronic widtlhs are all c;fhthe 1 EF10 33822ns  4.4%s 37.93 ns 29.5us
same order of magnitude as the rotationless ones alt ou]P}
they vary within eagcl"(v,J) sequence fod=0-10. Due to x EF1l 408.46ns  3339ps  39.93ns  44.3us
the large sizefrom a few to ~100 crf) of these widths, a 5 EF12  366.21ns  275.1as  24.03ns  183.Jus
graphical representation is not meaningful from a physicalt4 EF13 351.66ns 800.9ps  17.35ns  156.%s
point of view. Just as we suggested for tHewidths, a rea- EF14 29337ns  860ms 14.31ns  16.Gus
son for the size and variation of théH widths is most likely 16 EFL5 15804 ns 4.0s 10.11 ns 78us

. — . . . EF16 74.06 ns 951.61 ns 6.65 ns B
the wide shape of thelH potential well. This shape is more
sensitive to changes than a deep and narrow well when caJr-8 EFL7 4462ns 43884 ns 5.42 ns e
culating effective potentials. Thus, the wave functions, assol® EF18  6203ns  73546ns  1383ns &8
ciated with the corresponding rovibronic levels, become lesg0  EF19  27.23ns  18061ns  3.22ns  27.9ms
localized than they would be for a deeper and more narrol EF20  27.37 ns 95.85 ns 3.66 ns s

potential well. 22 EF21 4538 ns 73.95 ns 2.19ns 34
23 EF22 2299 ns 399.25 ns 2.50 ns 22u8
5. The HPO widths 24 EF23 30.00 ns 122.92 ns 2.40 ns 983.3 ns

TheHPO level width dependence was also studied but, in25 EF24  22.99ns  119.33ns  1.49ns w8
order to limit the amount of presented data, we just present26 EF25 28.55ns  536.91 ns 2.75ns 531.0 ns
short summary here. A further reason is that most of these7 EF26  29.50 ns 8.09%s 3.96 ns 672.2 ns
levels are strongly predissociated. In general, H®-H2 23 EF27 2966 ns 3.43is 210 ns 1.3s
widths vary between 16-10"* cm except thal'§(1,10 59  Er2s  5835ns  172.96ns  9.74 ns 8
=0.18x10°%cm™. The perturbations discussed earlier may,y  £rog  1g440ns  41841ns  2.10 ns e
be the reason for these variations. A few of the lowest rota-31 EF30 7156 ns 3.7%s 4.95 ns 5 6us
tional energies of the lowe#® vibrational level have widths ' ' ' '
of the order of 10?2 cni’%, while the otheHPO widths are of 32 EF31  30.34ns  408.4ps  1.59ns  71.8s
the order of 10'—1( cm™. However, according to the un- 33 EF32 12583 ns  3.7ks 5.58 ns 1.5us
certainty in the identification of thelPO energy spectra, we
should be careful with drawing conclusions about a specific  The rotationles&SK andH nonradiative lifetimes are pre-
level. sented in Table X. The GK results vary within the intervals
759%0v,0),,=55.14 ns-10.21 ms,  7£"(v,0),,=83.23 ps
-3.18 ns, and7gX(v,0),,=1.55 ns—62.03 ns. The corre-
sponding H results are H;'(v,O)m:33.82 ns—47.4Lus,

C. Nonradiative lifetimes

From the relation , the nonradiative lefetime was obtained!(v,0),,,=44.25 ns—3.3Gus, and 75(v,0)nr
for each computed level. Our rotationless resufi@,0),,, =2.10 ns—593.96 ns. For the mutual magnitudeGif as
are listed in Tables IX-XI. well asH, lifetimes vary from level to level.

According to Table IX, the rotationlessF nonradiative The rotationles$i nonradiative lifetimes are presented in

. . . . . F
lifetimes ~ vary  within  the intervals 75 (v,0),, Table XI. Here, ther(v,0)p, %(v,0),, and £(v,0),, re-

— F —
=22.99 ns—59.33 msg (v,0n=73.95 ns-1.17 ms, = and sults are found to be about the same magnitude within each

7 (v,0),,=1.49 ns—1.15 ms. For lower vibrational levels = ° — ne
the mutual magnitude of these lifetimes seems to vary ranviPrational level. For théi0—H12 levels, these lifetimes are

domly, while for EFI0-EF32 they generally vary as Within 1.19 ns—31.4s. TheH13-H15 levels approach the
5 (0,0 <75 (V,0)n <75 (v,0)p. local HH barrier edge and, consequently, their lifetimes be-
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TABLE X. The present calculate@K andH nonradiative life-  lated. From this relation it is easy to imagine the graphical
times 77", 0) (us,ns,ps (k=4,5,6, and the theoretical results structure of the rovibronic lifetimes by studying the widths

757(v,0) (us,ng from Ref.[11]. displayed in Figs. 9-11.
N T‘S‘ s % = D. Estimations of spectroscopically measurable

1 KO  127.95ns  358.8 ps 6.69 ns 18 rovibronic levels
2 GO  656.37ns  220ns 62.03 ns 33 Many of the level widths reported in the present paper are
3 HO 7.68us 4425ns  593.96 ns 154 rather narrow. This implies that the corresponding levels
4 GK2  60.07 ns 1.78 ns 57.47 ns 28 have nonradiative lifetimes long enough to be spectroscopi-
5 GK3  2.70us 3.18 ns 32.18 ns 1,0s cally measurable. In order to obtain estimations of such lev-
6 GK4  1021us 1.02 ns 1931 ns 2950ns ¢€ls we first have to assume that the?r radiative Iifet?mes,
7 H1 47 41ps 3.355 21.50 ns 3.3 7(v,J), vary smgothly withJ W|.th|n a rowbromp tgrm series
8 GK5  111.00ns  74.79 ps 156 ns 18 [43,44].. From this we can estimate a lower limif""(v,J),

for which a level might be experimentally observable. The
9 ~ GK6 4872ns  8323ps  169ns Qb second assumption is that we consider levels for which
10~ H2  3382ns 4181lns  210ns Qs 7(v,J) =~ 7, (v,J), wherer,(v,J) are our calculated nonra-
11 GK7 5514ns 15128ps  36lns  4425ns (jative lifetimes. Thus, from experimentally obtained radia-
12 GK8 280.95ns 2.63 ns 35.64 ns tive lifetimes, we are able to suggest spectroscopically mea-

surable rovibronic levels which have not yet been
experimentally observed.

come shorter, typically of the order of ps. From the discus- According to Kiyoshima and Saf@5], the observed life-
sion on theH widths we know that the predissociation is times of the rovibronidEF6 andEF7 levels vary smoothly
mainly not due to the ground state. This is reflected here bwithin the intervalJ=0-4. TheEF6 lifetimes fF(6,J) in-

the 7L(v,0), lifetimes computed for thé2-5's mani- Crease from 101+2 ns to 170+9 ns whkgoes from O to 4,

fold. Although these lifetimes differ somewhat from the While 7-7(7,J) decrease from 246+13ns to 1296 ns

2 (1.,0).. results, these are all of the same order of magni-Within the same interval. Assuming this behavior to be true
tljaee nr ' also for otherEF levels we may use the calculations of

Instead of giving a detailed analysis of the rovibronic Glass-Maujearet al. [46] to estimate a lower limit for the

nonradiative lifetimes we refer to the discussions on the Cor[adiative lifetimes. By analyzing the available experimental
responding widths, as these two quantities are directl re[-A's"m and theoreticaj46] data we found that foEF levels
P 9 ' q Y "below theGK spectra, the shortest measured radiative life-

— S time is 7,=100.0 ns for theEF6 level. This is further sup-
TABLE XI. The present calculatedd nonradiative lifetimes ported by the calculations carried out by Glass-Maujetin

7ie (v, 0) (us,ns,ps (k=4,5,,6). al. [46]. They obtained a nonadiabatics=99.0 ns(J
- - — — =0 and 2, as well as an adiabati¢,=100.0 ns(J=1), result
S 7 75 75, 75 for the EF6 level. Their other computeBF lifetimes in the

same energy region are in all cases longer, typically several

! io 7.63pus 7-20us 14.43us 7-1us hundreds of nanoseconds. From these, theoretical and experi-

2 H1  3.00us  31.42us  390.44us  4.92us mental results, a lower limit for the radiative lifetimes was

3 H2 366.21ns 336.08ns 474.11ns 331,88 chosen to be 100.0 ns which corresponds to,d®g.=

4 O3 11203ns 10837ns 4183  107.27us f4.2_7. This maximum value is md,cated by the dashed line
i in Figs. 9a) and 9b) and should be interpreted in such a way

5 H4 98.70ns  8551lns 193.80ns 868  that EF levels having logarithmic widths smaller than

6 Hs  70.71ns 60.76 ns 52.06 ns 60.34 logio 'max may be spectroscopically measurable.

7 b 56.07ns 5057 ns 50.09 ns 5206 _ For higherEF levels, an experimental rotationless life-
_ time of 7,=48.5 ns[48] was found for theEF26 level. All

8 H7 ~ 60.00ns  3142ns  25.65ns 3278 calculated adiabatic and nonadiabatic radiaff lifetimes

9 H8 132.75ns  74.24ns 40.53 ns 76.62 for J=0, presented by Glass-Maujeanal. [46], are consid-

10 ﬁg 970.75 ns 145.88 ns 17.47 ns 13242 erably Ionger, while their nonadiapalﬁFZG result fOI’J::!. '
— was calculated to be,=34.5 ns. This corresponds to a limit

11 Hio 21.33ns  2269ns  1420ns 2148 yoq 1 =-3.81, which is indicated by the dashed line in

12 H11 18.57 ns 8.13 ns 22.22 ns 11.88 Figs. 9¢) and 9d).

13 Hi2 119ns 1.19 ns 10.62 ns 1.35 " For the (;Ksspect;a fwe rEoangItheIs(;mrtestdex@perimental
— ifetime 7,=24.8 ng[49] for the evel(denoted a&K1 in

14 ﬂl?’ 1831 ps 25.29 ps 14.35ps 23.09 ps Ref. [46]). The corresponding nonadiabatiz0 and 1, re-

15 Hi4 9.65ps 4.21 ps 27.95 ps 5.31ps sult is 7,=20.8 ns, while the calculated adiabatic value for

16 His 0.69 ps 0.47 ps 0.75 ps 0.72ps J=1is 18.1 ns. Choosing the nonadiabatic results as the

limit, we find that logl'ha==3.59, which is indicated in
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Fig. 10. Here, approximately half of the levels are seen taussion we concluded that the overlappiag, GK, andH
have their logarithmic widths below this limit. It is also clear |eyels were perturbing each other, while for tHdevels no
from the figure that all nin&SK vibrational levels have at gy ch signs were seen. A possible reason for the large discrep-
least some rotational level withid=0-10which may be  ancies may be the incomplete set of electronic singlet states
spectroscopically measurable. used in our calculations. Even though we include the ground
Finally, we consider thed0—H2 levels. For these three gtate when comparing different approximations we exclude it
characters we do not have any experimental results for thgere. The fact that we are here considering dmz states
radiative lifetimes. Therefore, we again use the adiabatic angheans that perturbations seen in our spectra are all homoge-
nonadiabatic results reported by Glass-Mauj¢d6l. The  nequs(AA=0). Other states, which appear in the energy re-
shortest adiabatic radiative lifetime,=27.6 ns, is found for  ginn stydied here but were excluded in our calculations, are
thel—_|2(Ji1) level, while the corresponding nonadmbgﬂ_c re- of 1Hg, lAg and 1Ag character. The possible heterogenous
sult is 7,=28.6 ns. From the latter result we find a limit of AA==1) perturbations originating from these terms are
I'may=1.86x 10“cn™ in the sense that all widths less than yerefore not taken into account. This is most likely one of

this limit may be spectroscopically measurable. We do nofhe reasons why the discrepancies increase higher up in the
present our calculated rovibronic widths id0—-H2 graphi- i ational level structure.

cally but a comparison, between otir—6)'X results with Another reason might be that relativistic corrections were
I'maxgiven above, can be summarizedigS(v,J) <Tmafor  not included in our calculations. However, according to Ref.
J=0-4 and 610, 754 (v,J) <I'ma for =9 and 10, and [4], these are all of the order of -2 chat the outer and
I'§%(v,J) <I'maxfor =9 and 10. inner minima of theEF andGK potential curves and smaller
The above analysis as well as our choice of limits for theelsewhere. Therefore, these should not produce any of the
EF, GK, andH levels, is rather simplified. For thHeF spec-  shifts discussed above.
tra the comparable data for lower levels is rather good but for
higher EF levels as well as for th6&K andH spectra, it is
rather poor. With a larger amount of experimental data, par-
ticularly for higher rotational levels, one would most likely
find more appropriate limits for each of these terms.

2. The level widths

To the best of our knowledge, the only directly compa-
rable results here are the rotationless level widths reported in

E. Comparisons with experiments and other calculations the theoretical predissociation studytf, GK, andH states
in H, by Quadrelliet al. [2]. According to their calculated
1. The energy levels widths T'S(v,0) (s=EF,GK,H), collected in Tables VI and

In order to compare our computed rotationless energie¥Il, they found the predissociation to be rather weak for
with observed term values we used the manifold consistingnost of these levels. Our corresponding theoretical results,
of the first five excited state$2—6)12;, as they all originate T'i(v,0), for the 4-, 5-, and 6-state approximations, presented
from the same sourcgl]. However, for reasons already dis- in the same tables, indicate a somewhat stronger predissocia-
cussed earlier, we compared the differences between adjacdittn for most of the levels.
levels calculated here with the corresponding differences of A relevant comparison between our and their computa-
known observed term valu¢$2,41. These comparisons are tional methods should be based on calculations using the
collected in Tables VI-VIII. Using the notatiodE; (v,0) same basis set. Therefore, we now only consider our com-
=AES,(v,0)-AES, (v,0), where the indicesalc andobs  putedT7(v,0), I'$(v,0), andI;(v,0) widths. Beginning
refer to our computed energies and observed term value®ith the EF widths, presented in Table VI, we find that our
respectively, we found th«'iﬁEcE.E(vyoﬂ varies between 0.01 calculatedFO0, F2, andE1 widths are of the same order of
and 9.18 crt, but for most of the levels this discrepancy is Magnitude ad’z" (v,0) for the corresponding levels. For all
~0-2 cnt?. Note that the label&F8 andEF9 in Table VI  other levels,I';"(v,0)>T5 (v,0) and the difference is, in
correspond td=5 andE3 in Ref.[12]. general, 1-2 orders of magnitude. A similar comparison for

For the GK levels, 6ESK(v,0) varies between the GK widths presented in Table VII shows a better agree-
-4.43(GK5) and 18.67 cmt (G0). Qualitatively, these dis- ment, but our calculated widths are still generally larger than
crepancies agree with tHeF results in the sense that tké=  the results of Quadreliet al. [2]. When comparing théi0
levels within the same energy region suddenly demonstrateH2 widths in Table VIl we find a rather good agreement for
larger SEET shifts. Also theHO—H2 are within the same the HO results. OuH1 width is narrower by two orders of

range, wﬁich is reflected by the discrepanclﬁ'_lo(v,o) magnitude, while ouH?2 width is wider by three orders of
=21.48 cm? and 6E2 (v,0)=55.44 cm, magnitude when compared with the results of Quadetll.

(o]

. . . 2].

Our theoreticaH energy shifts were compared with the : ]Although the differences are generally rather large, be-
experimentally observed and calculatdcenergies by Rein-  tween our seperate level widths and the corresponding cal-
hold et al. [41]. According to Table VIII, the discrepancies culated widths of Quadreltt al.[2], it may be interesting to
SE" (v,0) increase from 2.84 cm to 35.61 cmi* when go-  compare  relative  widths, I'(v,0)/T'(v+1,0), between
ing fromv=0 to 15. I';(v,0) andT3(v,0) (s=EF,GK,H) presented in Tables VI

The discrepancies oBE; (v,0) discussed above may and VII. If we define a quantityl'y(v,0) for these compari-
originate from several different sources. In our previous dissons
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[5(v,0/T5v + 1,0 One interesti_ng feature, particularly investigated in the
TS(u.0/T5w + 1,0 |’ (40) present paper, is how the complex eigenvalues are affected
av’s a ’ by the number of states included in a diatomic manifold.
we find that for a majority of theEF (~75%) and the When, for example, comparing results for the Iower.rotation-

GK,H (~70%) level widths, STE"(v,0)~0-1 orders of |eSSEF levels in the(1-4), (1-5), and(1-6) '35 manifolds
magnitude, while for the remaining level widths, of H,, the term values are clearly converged, while the cor-

sTSKH(, 0)~2-5 orders of magnitude. Thus, the agree—res onding level widths are seen to vary according to

E EF EF ;
ment here is somewhat better than what was found for th(g5 (v,00<I';"(v,0)<I'g"(v,0). Some of these widths vary

mutual comparison between the levels themselves. as much as four orders of magnitude when different approxi-

o . mati . This i i
A similar treatment can, of course, be carried out for the ations are compared. This information may be extremely

I o . useful as it offers a possibility to understand how a specific
nonradiative lifetimes. Thd3(v,J) (s=EF,GK,H) widths ,ihronic level is affg.cted whyen adding one or severa[I)more
were therefore converted to nonradiative lifetimgév,J)  electronic states to the already existing manifold of states.
which are presented in Tables IX and X. A more general conclusion, shared by several of the stud-

A natural reflection here is that the weak predissociatiories considered here, is that diabatic, or approximately diaba-
for excitedEF, GK, andH levels in H, generated by cou- tic, multichannel calculations generate term values which are
pling to the ground state, reported by Quadretlal.[2] may  usually in a better agreement with experiments than results
be somewhat stronger. A possible reason for the differencesased on pure Born-Oppenheimer potential-energy curves.
between their computed widths and the present results, The rovibronic spectra often gives a lot more information
which are already mentioned in the introductory sectionthan the corresponding rotationless levels. The rotational
might be the different methods used by us and Quadeelli term series are very useful when identifying the characters of
al. [2]. While their method is based on a golden rule ap_different electronic states included in a manifold. In the case
proach, for which the width is calculated from a real valuedof unperturbed, or only weakly perturbed levels, a term se-
energy and wave function, our computed widths are includedies generally display a linear dependence as a function of
as the imaginary part Of Converged Comp|ex eigenva|ues_ J(J"‘l) The inClination Of th|S Iinear funCtion I’ef|ectS the

shape of the corresponding electronic potential well and thus
SUMMARY AND CONCLUSIONS the character of a specific term series. Simply speaking, the
steeper the inclination the narrower the potential well. In the

By applying a general Runge-Kutta-Fehlberg method angtase when significant spectroscopic perturbations exist, the
available nonadiabatic coupling elements, the adialfdtic linear term series dependence is often seen to be broken.
4), (1-5), and(1-6)'2§ manifolds of H, were transformed to  This is in general a useful information which motivates a
diabatic representations. In order to obtain rovibronic termfurther investigation of these levels.
energy values and level widths, the multichannel Furthermore, the present as well as the four previous stud-
Schrédinger equation was solved for each diabatic represefes [13—-16 considered here all demonstrate the importance
tation by means of an exterior complex rotated finite elemento include nonradiative widths for many rotational levels as
method. The structures of our term values and widths werghey often vary with several orders of magnitude within a
compared between the three different manifolds. In generaterm series. A sudden jump in a width thus indicate if the
our results verified the homogeneous spectroscopic perturb@erturbation seen in the term series plot implies a stronger or
tions reported in the theoretical study by Yu and Dressleweaker predissociation for a specific rovibronic level. From
[12]. In our analysis we focused on ti&—6)'S; manifold  the nonradiative level widths, particularly when these sud-
for which most of the rovibronic level§y,J=0-10 were  denly become narrow, it is convenient to convert to nonradi-
identified. From graphical representations of the various roative lifetimes. By comparing observed and theoretically ob-
bivronic energy and width sequences withlr0—-10, we tained radiative lifetimes with our nonradiative lifetimes we
investigated the existence of homogeneous spectroscopi@ve, in several of these studies, been able to estimate upper

o5(v,0) =

perturbations. time and width(==1/I") limits for which the corresponding
The (1—4)12; widths, in particular, were compared with levels may be spectroscopically measurable.
the theoretical predissociation study of Quadretlal. [2]. It In order to further motivate the usefulness of our complex

was found that our calculated level widths are generallyrotated finite element method for computing the widths we
about two orders of magnitude wider than theirs, indicating garticularly refer to the studies of CO[13] and Al, [16].
somewhat stronger predissociation than previously reportedfor CG** it was found that our method produced results in a
From observed and theoretically obtained radiative life-better agreement with experiments when compared with re-
times we were able to estimate upper width limits for whichsults based on a golden rule approach. In the case Hf Al
our computed rovibroni€F, GK, andH levels may be ex- nonradiative lifetimes computed with our method were com-
perimentally observed. pared with two other sets of results obtained by different
Concludingly, the present work as well as a number ofgolden rule type method$®]. Our obtained nonradiative life-
previous nonadiabatic multichannel studid$8-16 are all times were found to be considerably different when com-
based on the same theoretical and numerical approach. Byared with the other two sets of nonradiative lifetimes. How-
summarizing these results we are here able to draw sonever, the agreement between the two golden rule type results
general conclusions about our method for predissociatiomas found to be rather poor. This disagreement indicates an
studies of diatomic molecules. uncertainty when using the golden rule approach for predis-
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sociation studies, particularly when computing level widthsstudying and comparing rovibronic term energy values and

(and lifetimes. This weakness, together with the previously the corresponding widths, we have achieved some general
discussed proven convergence of our complex eigenvalueknowledge about interpretations of the different types of per-

supports the strength and reliability of our method. turbed energy-level structures in diatomic molecules.

Finally, we believe that the present as well as the previous
similar predissociation studigd3-1§ show the usefulness
of our general method for predissociation studies. With our
complex rotated finite element code we are able to solve the This work was supported by a grant from the Swedish
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