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An exterior complex rotated finite element method was applied on the diabatic multichannel Schrödinger
equation in order to compute and compare rovibronic energy structures, predissociation widths, and nonradi-
ative lifetimes for levels in the(1–4), (1–5), ands1–6d1Sg

+ manifolds of H2. The rotationlesssv ,J=0d levels are
found to be more or less shifted relative to each other when comparing the results for these three manifolds.
The existence of homogeneous spectroscopic perturbations was investigated by studying the rovibronicsv ,J
=0−10d sequences for energies and level widths. Known experimental and theoretical radiative lifetimes were
used to estimate present levels that might be spectroscopically measurable. The computed level widths for the
EF, GK, and H electronic levels were generally found to be about two orders of magnitude larger than
previously reported[P. Quadrelli, K. Pressler, and L. Woiniewicz, J. Chem. Phys.93, 4958(1990)], indicating
a somewhat stronger predissociation.
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INTRODUCTION

In theoretical studies of diatomic molecules one fre-
quently takes into account two or more close-lying potential-
energy curves(PECs) of electronic states, having the same
spin and symmetry, correlating with different dissociation
limits. In the adiabatic representation, these PECs do not
cross each other[1], and in the region of avoided intersec-
tions nonadiabatic effects are likely to be important.

Interactions between bound levels and the continuum give
rise to bond breaking phenomena in the form of predissocia-
tion. The variation of the fragmentation width of close-lying
levels can be quite dramatic. The main fragmentation flow in
a particular energy region can sometimes be located to only a
few rotational levels. It is thus interesting to study these phe-
nomena in some detail.

In systems of singlet states in light molecules, such as
excited1Sg

+ states of molecular hydrogen H2 [3,2,4], the first
derivative coupling elementsBijsRd=ki u=Ru jl, between elec-
tronic statesuil and u jl, are the dominating mechanism
among all of the possible predissociation processes[5]. Thus,
vibronically bound states, embedded in the continuum of
lower-lying PECs, may undergo nonradiative transitions re-
sulting in a broadening of the energy levels.

The adiabatic multichannel Schrödinger equation can be
difficult to solve numerically[6]. An alternative approach is
to form a diabatic, or approximately diabatic, basis through
an orthogonal transformation[7]. This generally simplifies
the computations, particularly in the region of strongly
avoided intersections where theBijsRd elements are often
rapidly varying, with respect to both magnitude and sign. We
here refer to a strictly diabatic basis as a representation for
which all derivative couplings in the multichannel
Schrödinger equation are removed[7]. This is generally dif-
ficult to accomplish, even if it is theoretically straightforward
for a diatomic system[7] The problem is that, in numerical
applications, only a finite number of PECs are included in
the calculations. Thus, when we here speak about a diabatic

basis it is understood that the representation is diabatic
within the set of electronic states taken into account in the
approximation.

The rovibronic energy-level structure of excited states in
H2 has been the subject of several experimental[8–10] and
theoretical[11,3,12] studies, while predissociation studies of
these levels are more rare. Usingab initio wave functions,
Quadrelliet al. [2] calculated energy shifts, level widths, and
nonradiative lifetimes for the first three excited rovibronic
1Sg

+ states of H2 generated by nonadiabatic coupling with the
electronic ground state. According to their results, excited
rovibronic 1Sg

+ levels in H2 are more or less predissociated.
Therefore, it would be interesting to further investigate this
mechanism, applying another approach. We have previously
used an exterior complex rotated one-dimensional finite ele-
ment method to study CO2+ [13], CaH[14], B2 [15], and Al2
[16]. In this approach we compute the energy and width of
an individual level as one complex-valued energy[17–21].
Both the obtained energy and width are thus converged re-
sults. This should be compared with the golden rule treat-
ment of Quadrelliet al. [2]. Here the real part of the energy
and the real valued wave function are first obtained and then
used to compute the width. This means that the wave func-
tion and the real part of the energy in principal have to be
perturbed and shifted in order to account for the predissocia-
tion process. Our previous experience[13–16] is that the
energies and, in particular, the level widths are always more
or less shifted when compared with results based on the
golden rule approach. Furthermore, in these calculations,
which were based on a complex rotated finite element
method, convergence was always reached for the real ener-
gies as well as for the level widths. Therefore, we have rea-
sons to believe that the golden rule approach may not always
be convenient to apply on theoretical predissociation prob-
lems. This motivates us to use our method also in the present
study.

Using data of Wolniewicz[22], Quadrelliet al. [2], and
Wolniewicz and Dressler[4], we here apply a general
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Runge-Kutta-Fehlberg(RKF45) (in fourth order with fifth
order correction) procedure to transform the adiabatic
s1–6d1Sg

+ states of H2 to a diabatic representation(See. Fig.
1). Then a multichannel Schrödinger equation is formed,
which is numerically solved by means of a complex rotated
one-dimensional finite element method, in order to compute
rovibronic term energy values, predissociation widths, and
nonradiative lifetimes of excited levels.

Following Herzberg[23], the 1,2, . . . ,61Sg
+ states will

here be denoted asX, EF, GK, HH̄, P, andO, respectively,
when separate states are considered, while the number rep-
resentation is used for manifolds of states, i.e.,(1–4), (1–5),
and s1–6d1Sg

+ for the 4-, 5-, and 6-state approximation, re-
spectively.

The ground-state Born-Oppenheimer(BO) PEC was
taken from Wolniewicz[22], while the first five excited1Sg

+

BO PECs, adiabatic corrections, and nonadiabatic coupling
elements were obtained from the highly accurateab initio
calculations of Wolniewicz and Dressler[4]. Elements for
the coupling of theEF, GK, and H 1Sg

+ states with the
ground state were taken from Quadrelliet al. [2], while the
corresponding couplings for theO andP 1Sg

+ states are miss-
ing. However, assuming these to be relatively weak, they
were here neglected.

There are several reasons for undertaking the present
work.

(i) To test a general method for predissociation studies of
diatomic n-channel problems, wheren is an arbitrary posi-
tive integer.

(ii ) To investigate the difference in our treatment and the
bound state + golden rule formalism of Quadrelliet al.

(iii ) To study how term energy values and level widths
are influenced by close-lying1Sg

+ states, and to compare re-
sults for approximations containing four, five, and six elec-
tronic states.

Our theoretical approach is described in Sec. I, where the
multichannel Schrödinger problem is outlined in Secs. I A
and I B. Our numerical approach, based on the Runge-Kutta-
Fehlberg technique and a one-dimensional finite element
method, is discussed in Sec. II. Our input data and its limi-
tations are discussed in Sec. III. In Sec. IV our calculations
are briefly described. Presentation and discussion of results
are found in Sec. V. The last section summarizes the paper.

I. THEORY

All formulas and equations in this section are expressed in
atomic units(a.u.) unless stated otherwise.

A. The multichannel Schrödinger equation

Consider a diatomic molecule with nuclear massesMA
andMB. Nuclear and electronic coordinates are denoted byR
and r , respectively. The total nonrelativistic Hamiltonian in
the center of mass system is

H = Hs0d −
1

2m
¹R

2 −
1

8mSo
j

=r jD2
−

1

2ma

=R ·o
j

=r j
, s1d

whereR= uRA −RBu, Hs0d is the clamped-nuclei Hamiltonian,
and

m =
MAMB

MA + MB
, ma =

MAMB

MA − MB
. s2d

For a homonuclear diatomic system the last term in Eq.s1d,
which is responsible for theg-u symmetry breaking, disap-
pears. Thus, the Hamiltonian for a two-electron system, such
as H2, now takes the form

H = Hs0d + Hs1d + Hs2d + Hs3d, s3d

where

Hs1d = −
1

2m
¹R

2 , s4d

Hs2d = −
1

8m
s¹r1

2 + ¹r2

2 d, s5d

Hs3d = −
1

4m
=r1

· =r2
. s6d

Here,Hs1d is the relative kinetic-energy operator for the nu-
clei, Hs2d is the kinetic-energy correction for the electrons,
andHs3d is the mass polarization correction.

The Hs1d, Hs2d, and Hs3d terms form the nuclear-mass-
dependent Hamiltonian

H8 = −
1

2m
sDR + Gd, s7d

with the nuclear Laplacianf4g,

FIG. 1. Adiabatic(solid lines) and diabatic(dashed lines) elec-
tronic potential-energy curves for thes1–6d 1Sg

+ manifold of H2.
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DR =
1

R2

d

dR
SR2 d

dR
D −

L+L− − LsL + 1d
R2 , s8d

where L±=Lx± iLy refer to the molecule-fixed frame, and
whereL is the eigenvalue of the angular-momentum opera-
tor Lz within blocks of electronic states belonging to the
same symmetry speciess+ or −d f4g. The second term in
Eq. s7d,

G = 1
4s=r1

+ =r2
d2, s9d

is formed by the correction termsHs2d andHs3d.
The adiabatic corrections to the BO PECs come from the

diagonal elements[4],

ki uH8uil = −
1

2m
kiuDR + 1

4s=r1
+ =r2

d2uil . s10d

A method for calculating these corrections is described in
Ref. f24g.

In order to obtain nonadiabatic couplings between differ-
ent electronic states, we form an expansion

CsR,r d =
1

R
o
j=1

n

f jsR,r dx jsRd =
1

R
fsR,r d · xsRd, s11d

where f jsR,r d are electronic wave functions. The upper
limit n of the truncated sum denotes the total number of
electronic states included in the approximation. The expan-
sion coefficientsx jsRd represent the nuclear motion gov-
erned by the nonadiabatic multichannel Schrödinger equa-
tion,

−
1

2m
Sd2xisRd

dR2 + o
j=1

n FAijsRd + 2BijsRd
d

dR
Gx jsRdD

+ Uii
JsRdxisRd = EvJxisRd, s12d

or in matrix form,

F−
1

2m
SI

d2

dR2 + AsRd + 2BsRd
d

dR
D + UJsRdGxsRd

= IEvJxsRd. s13d

The corresponding matrix elements are

AijsRd =KiU d2

dR2 −
L+L− − LsL + 1d

R2 + GU jL , s14d

BijsRd = − BjisRd =KiU d

dR
U jL , s15d

Uii
JsRd = ki uHs0duil +

JsJ + 1d
mR2 . s16d

The second-order derivative coupling included inAijsRd is
symmetric, i.e.,

DijsRd = DjisRd =KiU d2

dR2U jL . s17d

B. A diabatic representation of the multichannel
Schrödinger equation

It is well known that the nonadiabatic couplings in Eq.
(13) may produce numerical difficulties[6]. This is particu-
larly the case for theBijsRd elements which are usually vary-
ing rapidly, both with respect to magnitude and sign. Further-
more, the coupled differential equations(13) are of second
order, also including first derivatives[25,26]. However, these
complications are commonly avoided by making an orthogo-
nal transformation to a diabatic(d) basis set[7],

fsR,r d = fsddsR,r dTTsRd, s18d

whereTsRd andTTsRd are the transformation matrix and its
transpose, respectively. In order to preserve the total wave
function in Eq. s11d the nuclear wave functions are trans-
formed as

xsR,r d = TsRdxsddsR,r d. s19d

A diabatic Schrödinger equation is obtained by substituting
the diabatic representations19d into Eq. s13d. By doing so, a
second-order differential equation, including first deriva-
tives, is obtained. It is desirable to get rid of the first deriva-
tive termsdxsddsRd /dR in Eq. s13d. This requires that the
condition

d

dR
TsRd + BsRdTsRd = 0 s20d

is fulfilled f15,16,27g, which implies thatTsRd is orthogonal
f28g. Assuming

lim
R→`

BsRd = 0 ⇒ lim
R→`

TsRd = I , s21d

one obtains a boundary condition to Eq.s20d. Thus, by solv-
ing Eq. s20d, together with the boundary conditions21d,
unique solutions of a diabatization problem for any number
of coupled equations can be obtainedf16g.

By substitution to the diabatic representation, the
Schrödinger equation(13) transforms to

H−
1

2m
F d2

dR2 −
JsJ + 1d

R2 GI + UsddsRdJTsRdxsddsRd

= EvJIT sRdxsddsRd. s22d

By working out the differentials in Eq.s22d, multiplying
from the left byTTsRd, and using Eq.s20d, it is in general
straightforward to derive an expression for the diabatic
potential-energy matrix representing a manifold of onlySg

+

electronic statesf27g:

UsddsRd = TTFUsRd −
1

2m
hA − B2 − = BjGT , s23d

where the matrix elements ofAsRd are calculated as sums
consisting of two partsf4g, AijsRd=Di jsRd+GijsRd, with

Di jsRd =KiU d2

dR2 −
L+L− − LsL + 1d

R2 U jL , s24d
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Gij = 1
4ki u=1 + =2uil. s25d

The elementsDi jsRd are neither symmetric nor antisymmet-
ric; GijsRd are symmetric. In practice, it may happen that the
chosen electronic basis set is not accurately orthogonal. Con-
sequently, the functionsBijsRd are not mutually antisymmet-
ric with respect to interchanges offisR,r d andf jsR,r d. It is
therefore convenient to form the antisymmetric coupling ma-
trix

BasRd =
1

2
fBsRd − BTsRdg, s26d

having the elements

Bij
asRd = 1

2fBijsRd − BjisRdg. s27d

It is further known f29g that the first derivative coupling
functions have the property

d

dR
Bij

asRd =
1

2
fAijsRd − AjisRdg = Aij

asRd. s28d

For a nonorthogonal basis set we apply Eq.s23d and substi-
tute dBij

asRd /dR by Aij
asRd From the known relation

AijsRd = Aij
s sRd + Aji

asRd, s29d

we then form the symmetric matrixAssRd, with elements
Aij

s sRd=AijsRd−Aji
asRd. Thus, in the case of a nonorthogonal

basis set the diabatic potential-energy matrixUsddsRd is trans-
formed asf27g

UsddsRd = TTFUsRd −
1

2m
fAs − B2gGT , s30d

C. Exterior complex scaling

Eigenvalue problems containing bound levels and reso-
nances may be solved by using complex scaling(CS) meth-
ods[17–21]. The complex energy, which is composed of the
real energy and the width of a level, is then a solution of a
non-Hermitian complex symmetric analytic continuation of a
nondilated Hermitian Schrödinger problem. The original uni-
form CS, suggested by Balslev and Combes[17,18], requires
the potential VsRd to be analytic in the entire domain
fRmin,Rmaxg. However, whenVsRd is represented by a set of
discrete points, an alternative in the form of the exterior
complex scaling(ECS) can be used[30–32]. In the ECS the
radial coordinates are scaled as

R→ HR, Rø Rs

Rs + sR− Rsdeiu, R. Rs.
s31d

HereRs is the exterior scaling radius up to which the poten-
tials are real while the outer part,R.Rs is analytically con-
tinued. The ECS requirement is that onlyVsRd for R.Rs

needs to be a function that can be analytically continued. The
potential in the inner regionRøRs may in fact be described
only by discrete numerical values. The ratio between the
energies and their widths in the present problem is so large
that extreme care of the numerical procedures need to be

taken. This thus forced us to replace the previously discussed
sharp exterior complex scaling by the, computationally more
demanding but more accurate, smooth exterior complex scal-
ing f33g. Here

R→ R+ LgsRd, L = eif − 1, s32d

with

gsRd =H0, Rø Rs

sR− Rsds1 − essR − Rsd
2
d, R. Rs,

s33d

where s is the curvature parameter, and both the function
and its derivative are continuous inRs. In other words, the
sharp bend at the pointRs is replaced by a smooth continu-
ation such that all terms in the Haimiltonian are continuous
with respect toR. The accuracy of the calculation then de-
pends on the density of that point grid.

II. NUMERICAL APPROACH

A. Computational diabatization

Equations(20) and(21) give us a formal tool and a com-
putational possibility to uniquely obtain a set of diabatic
PECs for an arbitrary adiabatic PEC matrixUsadsRd.

Using a matrix version of the RKF45 method[34–36], we
are able to propagateTsRd in the interval fromRmax to Rmin.
The RKF45 method has a built-in error estimate which al-
lows us to control the accuracy of our calculated matrixTsRd
to only depend on the word length of the used computer
code.

B. A one-dimensional finite element method

The basic idea of the finite element method(FEM) is to
discretize the solution region into a finite number of subre-
gions. The total trial wave function is expanded in a finite
element basis,

C̃sRd = o
i j

cij f i jsRd, s34d

where it is assumed that smooth ECS has been used. The
complex valued,f-dependent expansion coefficients,cij are
defined within each element and restricted through continu-

ity conditions forC̃sRd over element boundariesf37g. The
local basis functionsf ij are nonzero only inside a given ele-
ment i,

f ijsRd ; 0 for R¹ fRi−1,Rig, i = 1, . . . ,K. s35d

The Rayleigh-Ritz variational principlef38g provides an es-
timate to the complex resonance energies,ẽk which are ob-

tained as eigenvalues ofkC̃uHuC̃l, and they are evaluated by
solving finite-dimensional problems of the form

sH̃ − ẽkS̃dck = 0, s36d

where

sH̃di j ,k, = ki j uHuk,l, s37d
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sS̃di j ,k, = ki j uk,l,

with the notationuf ijl= ui j l, and

ẽk = Ẽk − iGk/2. s38d

The H̃ij ,k, and S̃ij ,k, elements are identically zero fori Þk,

and therefore the global matricesH̃ and S̃ become banded
and relatively sparsef37g.

III. INPUT DATA

By input data we here refer to the diabatic representations
used in the finite element culculations. This input was cre-
ated using initial data from different sources. In order to
understand how this might affect the final results, this section
gives a detailed description about the numerical treatment of
the initial data points.

The reduced massmH2
=0.503 637 435 a.u. for H2 was

used in all calculations.
The ground-state BO PEC in the regionR=0.6–8.0 a.u.

was taken from Wolniewicz[22], while the excitedEF, GK,

HH̄, P, and O 1Sg
+ BO energies, adiabatic corrections, and

nonadiabatic derivative coupling elements forR
=1.00–20.00 a.u. were obtained from high-precisionab ini-
tio results of Wolniewicz and Dressler[4]. The upper limit of
R for the ground-state BO electronic energy needed to be
extended and was therefore smoothly extrapolated to its dis-
sociation limitDe=38 293.0406 cm−1 [22] for out, i.e., atR
<20 a.u.

Elements for the couplings of theEF, GK, andHH̄ 1Sg
+

states with the ground state were obtained from Quadrelliet
al. [2]. Some of these couplings were given forR
ù1.00–5.00 a.u., others forRù1.00–6.00 a.u. Therefore,
all couplings were smoothly extrapolated to be zero forR
=20.00 a.u. The corresponding coupling elements for theP
and O 1Sg

+ states were missing. Assuming these to be rela-
tively weak they were here neglected.

The accuracy of an exterior complex scaled finite element
calculation depends on the density of the point grid used
before the scaling point, the choice of basis functions, and
the degree of these polynomial basis functions. Therefore all
initial data for Rù1.00–20.00 a.u. were interpolated by
means of tension splines[39] to be represented by a total
number of about 1900 points. All PECs were extrapolated to
a maximum internuclear distance atRf =42.00 a.u.

It is well known that relativistic corrections of the inner
and outer minima of theEF and GK electronic energies of
H2 need to be included in high-precision comparisons with
observed term values[4]. However, the present paper is
mainly focused on predissociation studies, and as the widths
are independent of the small energy shift caused by these
corrections, they are excluded in the present calculations.
Furthermore, when comparing our different multichannel ap-
proximations with respect to rovibronic energies, only the
relative position of the energies need to be taken into ac-
count.

The last step, required to obtain the necessary input, was
to create diabatic representations by applying the procedure

described in Sec. I B and II A. For each one of the adiabatic
s1–4d1Sg

+, s1–5d 1Sg
+, and s1–6d1Sg

+ manifolds, a diabatic
matrix UsddsRd was formed by means of Eqs.(23) and (30),
depending on whether the initial data were represented by an
orthogonal basis set or not. The step length in our numerical
diabatization wass1310−4da0, yielding an error estimate
.2310−11cm−1.

The diabatization results for thes1–6d1Sg
+ manifold with

respect to energiesUii
sddsRd are shown in Fig. 1. The structure

of the diabatic diagonal potential energies and the corre-
sponding interaction potentials(not displayed here) may look
rather peculiar and nonphysical. However, the diabatic rep-
resentation is just a useful mathematical construction for
simplifying numerical treatments and should generally not
serve as a graphical representation for understanding the
physics connected with the problem studied.

IV. CALCULATIONS

The s1–4d1Sg
+, s1–5d1Sg

+, ands1–6d1Sg
+ manifolds repre-

sent four-, five-, and six-state approximations studied in the
present paper, respectively. The diabatic potentialsUii

dsRd
andUij

dsRdsi Þ jd were used as input to an exterior complex
rotated finite element Schrödinger equation solver[37] in
order to compute rovibronic structures as well as level
widths for the three approximations discussed above. Note
that in the diabatic basis, eachUij

dsRd in one approximation
differs slightly from the corresponding element in other ap-
proximations. This gives rise to energy shifts when compar-
ing computed rovibronic structures for different manifolds.

The FEM input grids were found to produce convergent
results for a relatively small number of elements and local
basis functions. The final results are based on a somewhat
larger grid, consisting of 60 elements with 13 local basis
functions within each element. Details of the FEM input is
presented in Table I. The exterior complex scaling point as
well as the angle were varied in small steps in order to check
stability. For anglesf.5° and scaling pointsRsù12a0 the
results were stable. According to the table, these parameters
were held constant at somewhat larger values during all cal-
culations.

The lowerR limits of the PECs were extrapolated down to
0.03a0 by using a Lennard-Jones fit[40].

V. RESULTS AND DISCUSSION

The results for thes2-6d1Sg
+ excited states reported here

were based on best adiabatic PECs[4], while the ground

TABLE I. Parameters used in the finite element calculations of
the 4-, 5-, and 6-channel Schrödinger equation, wherenselid is the
number of elements andnsbasid is the number of basis functions
within each element. The exterior complex scaling pointRs as well
as the most inner,Ri, and outer,Rf, mesh points are given in atomic
units. The complex scaling angle is given in degrees.

nselid nsbasid Ri Rs Rf f

60 13 0.03 19.00 42.00 7.0
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state was represented by Born-Oppenheimer electronic ener-
gies[22]. This inconsistency produced a shift, making direct
comparisons between the presented results and observed as
well as with other computed results, not definite. Therefore,
the minimum of the ground-state potential was set to zero
energy. Thus, all our computed energies were shifted up-
wards by about 2300 cm−1 relative to observed energies,
while the corresponding level widths remained unaffected by
this constant shift. This shift is irrelevant in comparisons
between our computed energies for different approximations.
To be able to compare our results with observed levels we
present the energy differences between consecutive vibra-
tional levels instead of the absolute energies themselves.

In the following sections, term energy values, level
widths, and nonradiative lifetimes are labeled asEk

ssv ,Jd,
Gk

ssv ,Jd, and tk
ssv ,Jd, respectively, wherev denotes vibra-

tional levels,J is the total angular momentum, the indices
k=4,5,6 denote what approximation is considered, ands

=EF,GK,HH̄ ,P, or O is the state studied within a chosen
approximation. Note that when levels are well localized in

only one of theEF, GK, andHH̄ double wells(see Fig. 1)
we use the notations=E,F ,G,K ,H, or H̄ instead.

A. Energy levels

The computed rotationless energiesEk
ssv ,J=0d were, in

most cases, identified by studying each component of the
corresponding multichannel total wave function[15]. In re-
gions where diabatic vibrational level spectra from two or
more electronic states are overlapping each other, compari-
sons with available experimental results[3,12,41] are made.
Many of these levels are more or less mixed[12], making the
identification difficult, or even incorrect, in terms of single
characters. Levels without a clear dominating character are
not given any term symbol but may be discussed with re-
spect to their features and the regions in which they appear.
Based on the rotationless energiesEk

ssv ,J=0d, the corre-
sponding rovibronic energiesEk

ssv ,Jd, for J=0,1, . . . ,10,
were computed for each electronic state. Let us further define
the differences,DEk

ssv ,Jd=Ek
ssv+1,Jd−Ek

ssv ,Jd, for rota-
tional term sequences between two vibrational levels, and the
shifts, DEkk8

s sv ,Jd=Ek
ssv ,Jd−Ek8

s sv ,Jdsk,k8=4,5,6;kÞk8d,
between approximations based on the(1–4), (1–5), and
s1–6d1Sg

+ manifolds.

The EF term values

The shifts,DEkk8
EFsv ,0d sk,k8=4,5,6;kÞk8d, between dif-

ferent approximations are presented in Table II. For lower
levels of the 4- and 5-state approximationsuDEkk8

EFs0
−5,0du,3310−2cm−1, i.e., within spectroscopic accuracy.
For the next four levels,uDEkk8

EFs6−9,0du,0.67 cm−1, which
is still proportionally good. Forv=10−32, allE5

EFsv ,0d en-
ergies are shifted upwards relative to theE4

EFsv ,0d energies.
From v=10 to 20, uE5

EFsv ,0du increases from 1.34 to
6.93 cm−1. In the interval v=21−32, we found that
uE45

EFsv ,0du is within the range 10−35 cm−1, except that
uE45

EFs22,0du=7.80 cm−1.

The discrepanciesDE46
EFsv ,0d in Table II show an almost

identical behavior asDE45
EFsv ,0d and can be summarized as

uDE46
EFsv ,0du,6310−2 cm−1 for v=0−5, uDE46

EFsv ,0du
ø0.55 cm−1 for v=6−9, andjust as in the previous case,
E4

EFsv ,0d,E6
EFsv ,0d for v=10−32, whereuE46

EFs10−20,0du
are within the interval 1.46−6.86 cm−1 and uE46

EFs21−32,0du
are within 10.14−34.51 cm−1. An exception here is that
uE46

EFs22,0du=8.21 cm−1.
According to Table II, theD56

EFsv ,0d shifts behave differ-
ently compared to the two previous ones. For most of the
levels,E5

EFsv ,0d,E6
EFsv ,0d, i.e., the energies are shifted up-

wards when adding theO state to thes1–5d1Sg
+ manifold.

More interesting is thatuDE56
EFsv ,0duø0.2 cm−1 for v=0

−17 anduDE56
EFsv ,0duø2.0 cm−1 for v=18−32. To summa-

TABLE II. The EF energy differences DEkk8
EFsv ,0d

scm−1d sk,k8=4,5,6;kÞk8d. Numbers in brackets denote powers
of 10.

s DE45
EF DE46

EF DE56
EF

1 E0 2.14f−2g −1.78f−3g −2.31f−2g
2 F0 5.95f−2g 5.52f−3g −4.29f−2g
3 F1 3.44f−2g 2.39f−2g −1.06f−2g
4 E1 8.77f−2g 2.26f−2g −6.51f−2g
5 F2 −1.15f−2g −3.15f−2g −2.00f−2g
6 F3 −2.76f−2g −5.76f−2g −3.00f−2g
7 E2 0.82 0.72 −0.10f−2g
8 F4 −0.44 −0.49 −5.32f−2g
9 EF8 −9.57f−2g −0.18 −8.23f−2g
10 EF9 0.40 −0.19 −0.20

11 EF10 −1.07 −1.18 −0.11

12 EF11 −1.50 −1.60 −9.95f−2g
13 EF12 −1.10 −1.30 −0.20

14 EF13 −1.13 −1.34 −0.20

15 EF14 −2.07 −2.17 −0.10

16 EF15 −2.53 −2.63 −9.69f−2g
17 EF17 −1.60 −1.77 −0.19

18 EF18 −0.36 −0.50 −0.13

19 EF19 −5.83 −5.61 0.22

20 EF20 −2.11 −2.16 −5.78f−2g
21 EF21 −4.02 −4.11 −9.11f−2g
22 EF22 −11.87 −13.95 −2.08

23 EF23 −3.15 −3.70 −0.56

24 EF24 −11.94 −12.46 −0.52

25 EF25 −2.97 −2.94 3.79f−2g
26 EF26 −14.95 −16.38 −1.44

27 EF27 −16.39 −18.10 −1.71

28 EF28 −11.58 −11.98 −0.40

29 EF29 −27.08 −29.16 −2.08

30 EF30 −31.97 −31.62 0.35

31 EF31 −9.67 −10.39 −0.72

32 EF32 −4.06 −4.04 1.58f−2g
33 EF33 −9.13 −11.30 −2.18
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rize the behavior of the rotationlessEF spectra we conclude
that when adding the electronicP state to thes1–4d1Sg

+

manifold the energy levels, particularly forvù10, are
shifted. When adding theO state to thes1–5d1Sg

+ manifold
most of these shifts remain unchanged. This indicates that
the influence of theO state on theEF levels is almost neg-
ligible.

In Fig. 2(a) the 11 lowestE6
EFsv ,Jd rovibronic energies

are plotted as functions ofJsJ+1d for J=0−10. A number of
avoided crossings appear in the structure of theE0–E1 and
F0–F3 term sequences, reflecting perturbations due to the
EF double-well shape. In order to achieve a deeper under-
standing about this level structure we can study the corre-
spondingEF effective potentials,UJsRd, which are displayed
for J=0−10 in Fig. 2(b). Thus, we are here studying lowJ
quantum numbers for which the effective potentials are still
far from being shallow. Before doing this analysis, it may be
interesting to understand why theEF (and GK) adiabatic
double-well shape appears.

In a diabatic framework, the double excited configuration
s2psud2 is allowed to cross the first excited configuration
s1ssgds2ssgd in H2. In an adiabatic representation, the von
Neumann–Wigner noncrossing rule plays an important role.
Due to an interaction between these two excited configura-
tions, two adiabatic double-well structures of1Sg

+ symmetry
are formed, theEF andGK electronic states. Thus, the shape
of the EF potential curve displayed in Fig. 2(b) originates
from an avoided crossing situation.

According to the formula,UJsRd=U0+JsJ+1d / s2mR2d,
an effective potential generally increases as a function of the
internuclear distanceR. Therefore, theE effective potential
wells will rise much faster than the correspondingF wells,
which is clearly seen in the figure. This, together with the
fact that theE well has a narrower shape than theF well,
produces a larger level spacing for theE than for theF
rotational energies. If we begin with theE0 and F0 level
structures, theE0 rotational energies forJ=0−2 arestill be-
low the correspondingF0 rotational energies. ForJ=3 the
E0 energy would become larger than the correspondingF0
energy but, according to the noncrossing rule, an avoided
intersection produces a sharp bend such that theE0 term
series continues along the original path of theF0 term series.
Similarly, the F0 term series follows the originalE0 path.
Continuing upwards along this path fromJ=3, we find that
the rotational energy becomes larger than theF0 energy for

J=7. Again, this produces an avoided crossing and, conse-
quently, the sharp bends seen in Fig. 2(b). The same reason-
ing can be used for the other avoided crossings appearing in
the figure. The source to this specific rovibronic structure is
the rather peculiar shape of theEF double-well potential.

When continuing along the paths through these avoided
crossings, an essentially linear dependence is seen. This can
be interpreted as if the associated rotationalE0–E1 and
F0–F3 wave functions are well localized within each of the
E or F effective potential wells. Furthermore, the two rather
different inclinations of this linear dependence are verified
by the different shapes of theE andF wells within the cor-
responding effective potentials.

According to Fig. 2(a), the next term series,E2, displays
an E character behavior forJ=0−3, while for J=4−10 the
associated wave functions seem to leak out through theEF
barrier into theF potential well, i.e., a situation where we
have a mixture of characters. When continuing through the
vibrational progression we notice that the term series as-
signed asF4 has a somewhat bent shape, again indicating a
mixing of E and F characters. TheEF8 series displays a
slightly nonlinear dependence. Beginning with theJ=0
level, it lies just above the correspondingU0sRd effective
potential barrier. A similar comparison for each of theJ
=1,2, . . . ,10quantum numbers shows that all rotational lev-
els lie just above their corresponding effectiveEF potential
barrier edge. Thus, theEF wave functions are distorted byE
and/orF wave functions, causing the nonlinear shape of the
EF8 term series. For theEF9−EF10 levels the previously
discussed distortion has almost disappeared, which is re-
flected by the basically linear behavior in Fig. 2(a). The same
analysis for theE4

EFsv ,0−10d and E5
EFsv ,0−10d rovibronic

term values displayed almost identical patterns asE6
EFsv ,0

−10d.
In the higherEF spectra, betweenEF10 andK0, pertur-

bations should be absent or weak. This was verified by plot-
ting the correspondingEk

EFsv ,0−10d sk=4,5,6d levels for
v=11−18, not displayed here. All these rovibronic levels are
still below theGK spectra, and each of the three sets of term
series display a strictly linear structure.

The upper part of theEF spectra contains vibrational lev-
els which appear in an overlapping region, including both
GK andH levels as well. This implies that perturbations may
occur between levels of different characters. Figure 3 shows
a number ofEF energy results originating from calculations
using thes1–6d1Sg

+ manifold. Here, we have entered a region
where theEF, GK, andH spectra are overlapping each other.
The linear dependence is clearly broken for a number of term
series, indicating homogeneous perturbations caused by the
GK and/or theH spectra.

The EF23 term series is essentially linear up toJ=6, but
for J=7−10 therotational energies are pushed upwards ac-
cording to the bent shape seen in Fig. 3. This is most likely
due to a perturbation from theGK spectrum displayed in Fig.
4. TheGK3 term series lies in the same energy region as the
EF23 rotational levels, and its linear behavior is broken for
J=6. The J=7−10 rotational energies are pushed down-
wards, indicating a repulsion from theEF23 series.

The H0−H2 levels are assumed to give only a weak per-
turbation contribution here. This will be further discussed in

FIG. 2. (a) Rovibronic E6
EFsv ,Jd energies as functions ofJsJ

+1d for J=0−10; (b) the effective potentialsUJsRd for J=0−10 in
the same energy region as the levels in(a).
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a subsequent section. The situation may be better understood
by inspecting the potential-energy curves displayed in Fig. 1.
While the H potential has a smooth shape in the energy
region of interest, theGK potential well changes drastically
in the sense that it goes from a double-well(G andK) to a
single-well sGKd shape. The next three term series,EF24
−EF26, do not show considerable signs of perturbations. Ac-
cording to Fig. 3, theEF27 andEF28 rotational spectra dis-
play an avoided crossing betweenJ=8 and 9. According to
their shapes, these two term series are obviously perturbed,
particularly theEF27 rotational levels. This conclusion is
further supported by the study of Yu and Dressler[12], where
they reported anEFs88%d and GKs12%d mixture for the
EF27 character. By comparing theEF and GK spectra we
find that theGK5 rotational energies, which lies in the same
energy region as theEF27 rotational spectra, are pushed
downwards.

The GK5 rotational spectra is probably not the only rea-
son for the spectroscopic perturbation seen in theEF27 ro-
tational energies. Figure 5 indicates that theH2 rotational
spectra also may contribute to the spectroscopic perturbation
of the EF27 term series. TheEF29−EF32 rotational spec-
trum is rather dense and is further superimposed onto the

GK7−GK8 andH2 rotational spectra. This was also pointed
out by Yu and Dressler[12], and by comparing their plot of
rovibronic term values(Fig. 2, upper part) we find a similar
behavior for ourEF29−EF30 results as they reported. They
found avoided crossings for term series of different vibronic
states. This is the repulsive behavior of the differentEF term
series discussed above. The almost horizontal dependence of
theEF31 andEF32 term series indicate a continuum-bound-
state behavior which is explained by the fact that theEF
thresholds,120 700 cm−1d has been reached.

2. The GK levels

Our Ek
GKsv ,0d results are presented in Table III. When

comparing the rotationless levels in the 4- and 5-state ap-
proximations, all 5-state vibrational levels are shifted up-
wards relative to the 4-state levels. These shifts,uDE45sv ,0du,
are all between 5.4 cm−1 (for v=10) and 46.3 cm−1 (for v
=6). The correspondinguDE46sv ,0du shifts show a similar
behavior and are in the interval 5.8−48.7 cm−1. uDE56sv ,0du
are still shifted upwards but are much smaller than the pre-
vious ones. HereuDE56sv ,0du are in the interval 0.21
−5.4 cm−1. AlthoughuDE56sv ,0du.5 cm−1 for one level they
are generally less than 3 cm−1. Due to the results of these
comparisons, the effect of adding theP state to thes1
-4d1Sg

+ manifold is much stronger than when adding theO
state to thes1-5d1Sg

+ system.
Figure 4 shows theJsJ+1d behavior ofGK rovibronic

energies. As was pointed out in the preceding section, allGK
levels are in a region where bothEF andH levels appear as
well. TheK0 andG0 levels are well localized within each of
the G and K potentials, and therefore show an essentially

FIG. 3. RovibronicE6
EFsv ,23−32,Jd energies as functions of

JsJ+1d for J=0−10.

FIG. 4. RovibronicE6
GKsv ,Jd energies as functions ofJsJ+1d

for J=0−10.

FIG. 5. RovibronicE6
HPOsv ,Jd energies as functions ofJsJ+1d

for J=0−10. The three lowest levels are assigned asH0, H1, and
H2. All higher term series may be ofH, P, and/orO characters, but
these levels are not identified for certain.
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linear behavior. TheGK2 andGK4 term series also seem to
be more or less unperturbed according to the plot. The rest of
the GK rovibronic level dependence is not linear over theJ
=0−10 interval. For theGK3 and GK5−GK6 rotational
structure we refer to the previous discussion about theEF
spectra as the homogeneous perturbations discussed there are
mutual. TheGK7−GK8 term squences behave as theEF31
−EF32 levels and can, similarly, be explained by theGK
energy threshold.

3. The H, P, and O levels

When thes1–6d1Sg
+ manifold was used in our calculations

a total number of 17 vibrationalH, P, and O levels were
found in the energy regions115 000−131 000d cm−1. The
E6

Hs0−2,0d levels are easily identified as they are essentially
unshifted when compared with the corresponding(1–4) and
s1–5d1Sg

+ results. The identification of the otherH, P, O
rotationless levels in this interval is more uncertain. When
comparing results based on calculations for the(1–4) and
s1–5d1Sg

+ manifolds, theH levels aboveH2 are seen to be
considerably shifted. Thus, theH energy-level positions,
computed with thes1–4d1Sg

+ manifold, cannot be used in the
identification of theH and P spectra obtained with the
s1–5d1Sg

+ states. When adding theO electronic state to the
s1–5d1Sg

+ manifold, the calculated spectra again change their
structure. This makes the analysis even more difficult.

A study of the rovibronic spectra often gives some addi-
tional information. In Fig. 5 our computedE6

HPOsv ,Jd rovi-
bronic term series forJ=0−10, in the energy region
115 000−131 000 cm−1, are displayed. The nonlinear behav-
ior of theH0−H2 term series indicates spectroscopic pertur-
bations. This is most likely because of a strong mixing of
electronic states as these levels are within a region where
bothEF andGK levels appear as well. This level mixing has
been reported in the theoretical study by Yu and Dressler
[12] where they graphically presented a number of rovi-
bronic term sequences. In their Fig. 2, theH2 rotational en-

ergies are displayed as functions ofJsJ+1d for J=0−5. The
shape of this plot agrees with our curve displayed in Fig. 5.
As was pointed out by Yu and Dressler[12], the choice of
term symbols may be somewhat arbitrary for such strongly
mixed states as we have here.

The fourth rovibronic term series(squares) from below, in
Fig. 5, follows an essentially horizontal line. This may be
explained by the fact that its rovibronic energy interval
120 686−120 757 cm−1 for J=0−10 lies just at theEF and
GK dissociation limitss,120 700 cm−1d. Similar behavior is
seen for the highest term sequence(“quarter filled circles”)
in Fig. 5. The reason for this might be that the corresponding
energy interval 129 721−129 877 cm−1 is centered around

the HH̄ local potential maximums129 825 cm−1d.
Most of the other 12 rovibronic sequences presented in

Fig. 5 follow essentially straight lines, indicating that they
are unperturbed or only weakly perturbed. Although different
inclinations appear in this linear structure, the identification
of the corresponding characters is relatively uncertain. How-
ever, a good guess may be based on the following arguments:
Consider the chosen parts of the best adiabaticH, P, andO
potential-energy curves displayed in Fig. 6. According to the
shapes and widths of these potentials, theH vibrational en-
ergies should generally have a smaller level spacing than the
P and O states in the same energy region. Thus, the vibra-
tional energy spacing of theO levels should be somewhat
greater than for theP levels. Consequently, when consider-
ing each of theH, P, and O term sequences, they should
have somewhat different inclinations. Unfortunately, due to
the shape of the three potentials, these inclinations vary
within each of theH, P, andO rovibronic spectra, making
the identification rather difficult.

There are essentially three different intervals to consider
here. The first(I) is between 114 000 and 120 000 cm−1, the
second(II ) is between 122 200 and 124 500 cm−1, and the
third (III ) is between 124 500 and theH threshold at about
129 825 cm−1. When going from region I to II the potentials
get wider, particularly theP andO wells. Because of this, the
corresponding vibrational energy-level spacings and the local
rotational constants, defined as

TABLE III. The GK energy differencesDEkk8
s sv ,0d scm−1d

sk,k8=4,5,6;kÞk8 ;s=H ,GKd between the 4-, 5-, and 6-state
approximations.

s DE45
s DE46

s DE56
s

1 K0 −13.76 −13.77 7.96f−3g
2 G0 −5.90 −6.16 −0.26

3 H0 1.22 1.78 0.56

4 GK2 −17.09 −20.47 −3.38

5 GK3 −24.07 −24.98 −0.91

6 GK4 −33.78 −39.94 −6.15

7 H1 6.66 6.36 −0.30

8 GK5 −25.38 −26.47 −1.10

9 GK6 −42.57 −43.46 −0.89

10 H2 −13.42 −13.77 −0.35

11 GK7 −16.90 −17.87 −0.97

12 GK8 −10.91 −14.00 −3.07

FIG. 6. The best adiabaticH, P, andO potential-energy curves
in a chosen energy region.
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BvJ =KxvJ
sddsRdU 1

R2UxvJ
sddsRdL , s39d

decrease. TheBvJ constant is a measure of the 1/R2 distri-
bution of the diabatic wave functionsxvJ

sddsRd, and thus tells
us in what internuclear distance region the dominating level
wave function is located. According to Carlsund-Levinet al.
[14], an estimate of the localBvJ value can be obtained as the
slope of the term energy series as a function ofJsJ+1d.1

However, we can still compare the inclinations of theH, P,
and O rovibronic term sequences within each interval. In
region II, we have three parallel term series, having a similar
inclination as theH1 andH2 term series. The corresponding
vibrational energy-level spacings suggest that the term series
5, 7, and 10 in Fig. 5 areH rovibronic energies. The term
series denoted as 8 in the figure has essentially the same
inclination and is therefore most likely of aP character. This
is further supported by the fact that theH and P potential
shapes and widths are quite similar in region II. The remain-
ing rovibronic levels, 6 and 9, are finally interpreted asO
electronic term values. Continuing to interval III, and using
the same arguments as for the previous regions, we interpret
levels 11, 14, and 16 asH term series. This makes a total
number of nineH levels, which is in agreement with the
number of H vibrational levels found when thes1–4d1Sg

+

manifold was used in our calculations. The rovibronic se-
quence 12 is probably of anO character, while 13 then
should be aP term series. The linear behavior is clearly
broken for series 15 and it might therefore be of a mixedP
andO character. The highest term sequence(17) lies at theH
threshold which is reflected by the horizontal linear depen-
dence.

Above theH threshold we have to distinguish between the

HH̄, P, andO spectra. However, according to our previous
discussion about the influence of different potential shapes

on the rovibronic term energies, theHH̄ spectrum is easily
identified. This will be further discussed below. Thus, the
remaining levels in the same energy region are ofP or O
characters. A general conclusion from an inspection of Fig. 7
is that there exist only weak spectroscopic perturbations in
this energy region.

By comparing the rovibronics1–5d1Sg
+ results presented

in Fig. 7(a), where theO electronic state is excluded, with
the s1–6d1Sg

+ results presented in Fig 7(b), we were able to
sort out seven probableP levels. However, according to the
plot, there are a number of avoided crossings, indicating that
some of theseP levels are perturbed by theO rovibronic
spectra. The rest of the term series, appearing only in the
s1–6d1Sg

+ spectra, should be of anO, or perhaps of a mixedP
andO, character. This is supported by the fact that these term
sequences have a steeper inclination than the others for lower
J values. This is further in agreement with the more narrow
shape of theO potential than for theP well within the same
energy interval. The highest identifiedP term series

135 820−135 909 cm−1, close to the dissociation limit,
shows an almost horizontal behavior. This is also the case for
the rotational energies of the highestO level as well as for
the second highestP rotational levels forJ.5. Two of the
term series(4 and 5 from above) were identified as having an
O character, although they seem to be too close to each other.
An alternative is that one of these term series(5 from above)
is of aP character. It is likely, according to Fig. 7(a), that the
energy gap between the 5th and 6th term series is consider-
ably larger than the prevoius gap between the 4th and 5th
term series. Thus, somewhere at about 134 700
−134 800 cm−1, a possibly existing term series could be
missing.

4. The H̃ levels

The computedH̄0−H15 levels most likely have well lo-

calized wave functions within theH̄ potential well, because
its minimum is atR<10 a.u., i.e., more or less isolated from
the other electronic states which have their potential minima
within the intervalR=2−4 a.u.This is clearly verified when
comparing the different approximations studied here. Ac-

cording to Table IV,uDE45
H̄ sv ,0du,9.8310−2 cm−1 for v=0

−9, and uDE45
H̄ sv ,0duø0.35 cm−1 for v=10−14, and

uDE45
H̄ s15,J=0du,1.15 cm−1, i.e., a good agreement between

most of the energies for the 4- and 5-state approximations.

A similar pattern was seen forDE46
H̄ sv ,0d andDE56

H̄ sv ,0d.
This can be summarized asuDE46

H̄ sv ,0duø8.4310−2 cm−1 for

v=0−7, uDE46
H̄ sv ,0duø0.45 cm−1 for v=8−14, DE46

H̄ s15,0d
=25.3 cm−1, uDE56

H̄ sv ,0du,8.65310−2 cm−1 for v=0−13,

uDE56
H̄ s14,0du=0.12 cm−1, and uDE56

H̄ s15,0du=24.11 cm−1.

According to Table IV allE5
Hs0−14,0d andE6

H̄s0−14,0d lev-

els are shifted upwards when compared to theE4
H̄s0−14,0d

levels. The same is true for theE6
H̄s0−14,0d levels when

compared to theE5
H̄s0−14,0d levels, but the shifts are much

less than in the previous case. The rotationlessv=15 energy
level is shifted downwards by about 24 cm−1 when theP
electronic state is included in the calculations, while it re-
mains more or less the same when theO electronic state is
included. Thus, it seems to be theP electronic state that

affects theH̄ energy-level spectra the most.

1The definition of Carlsund-Levinet al. [14] was based on Hund’s
case-(b) type interactions, i.e., theN quantum number was used
instead ofJ.

FIG. 7. Rovibronic term sequences as functions ofJsJ+1d in the
interval 130 000−136 800 cm−1 for (a) E5

Psv ,Jd and (b) E6
POsv ,Jd

energies forJ=0−10.
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The rovibronicE6
H̄s0−15,Jd term values forJ=0−10 are

displayed in Fig. 8. The curvesH0–H14 do not show any

signs of perturbations. Only theH̄15 term series behaves a
little differently but still not as if it was perturbed by another
state. TheJ=0 energy is positioned at an expected vibra-

tional spacing but forJ.0 interactions with theHH̄ con-
tinuum occur as indicated by the plot.

5. The HH̄ levels

Our computed rotationlessEk
HH̄sv ,0d sk=4,5,6d energy

levels, i.e.,HH̄ vibrational energies above theH andH̄ spec-

tra, are not presented graphically here. The reason is that the

HH̄ spectra do not show significant signs of perturbations
even if some internal shifts were found for the different ap-
proximations. The rotationless energy results are presented in

Table V, where the lowest level is denoted asHH̄25. This

choice of numbering is based on the fact that theH and H̄

spectra below the lowestHH̄ level, i.e., H0−H8 and H̄0

−H̄15, makes 25 levels in total(see previous sections). To
summarize the differences in the rotationless level structures

4-, 5-, and 6-state approximations we found thatuDE45
HH̄sv ,0du

varies within 0.6−89.5 cm−1, uDE46
HH̄sv ,0du within 0.2

−89.5 cm−1, anduDE56
HH̄sv ,J=0du within 0.2−91.3 cm−1. The

variations within these intervals are rather different when
comparing the three approximations with each other. We
computed levels forv=0−32 butwhether the higher of these
levels should be considered as isolated resonances or over-
lapping resonances is a matter of definition.

The rovibronic energies Ek
HH̄sv ,Jd for J=0−10sk

=4,5,6d were also studied as functions ofJsJ+1d. These
three structures were found to behave essentially linearly.
Only for a few higher levels this linearity was slightly bro-
ken, indicating possible perturbations originating from theP
and/orO electronic states.

B. Level widths

All computed rotationless level widthsGk
ssv ,0d are re-

ported in Tables VI–VIII. In the case of rovibronic level
widths Gk

ssv ,Jd strong variations within a vibrational level
may indicate electronic spectroscopic perturbations[15]. It is
important to emphasize that this is particularly useful within
a relatively limited interval of theJ quantum number. For
high rotational levels the corresponding effective potentials
become more and more shallow. This, in turn, generally im-
plies stronger and stronger predissociation until the con-
tinuum is reached. In general, for higher vibrational levels
approaching the threshold, this situation occurs for much
lower rotational levels than for lower vibrational levels.
Within the intervalJ=0–10most of the level widths, except
a few at the thresholds, are still relatively narrow. Further-
more, the inclination of the rotational level widths within a
vibronic level may be positive, horizontal, or negative. That
is, the widths are either increasing, staying constant, or de-
creasing. However, what is relevant for the perturbation stud-
ies here are mainly signs of nonlinearity, irrespective of the
inclination of the rotational dependence of the widths.

According to Figs. 9–11, log10Gk
ssv ,Jd was plotted as

functions ofJsJ+1d for J=0–10. The choice of using a loga-
rithmic scale is because the widths are often varying with
several orders of magnitude, making a graphical representa-
tion in a linear scale inconvenient.

1. The EF widths

Our calculated rotationless level widthsGk
EFsv ,0d sk

=4,5,6d are presented in Table VI. Most of the lower widths
are within 10−11−10−6 cm−1, while for higher levels they are

TABLE IV. The H̄ energy differencesDEkk8
H̄ sv ,0d scm−1d sk,k8

=4,5,6;kÞk8d between the 4-, 5-, and 6-state approximations.

s DE45
H̄ DE46

H̄ DE56
H̄

1 H̄0 −1.52f−2g −1.53f−2g −1.41f−4g

2 H̄1 −1.93f−2g −2.08f−2g −1.56f−3g

3 H̄2 −2.59f−2g −2.79f−2g −2.01f−3g

4 H̄3 −3.21f−2g −3.57f−2g −3.64f−3g

5 H̄4 −3.96f−2g −4.47f−2g −5.10f−3g

6 H̄5 −4.87f−2g −5.63f−2g −7.51f−3g

7 H̄6 −5.88f−2g −6.86f−2g −9.80f−3g

8 H̄7 −6.97f−2g −8.38f−2g −1.40f−2g

9 H̄8 −8.27f−2g −0.10 −1.92f−2g

10 H̄9 −9.78f−2g −0.12 −2.67f−2g

11 H̄10 −0.12 −0.15 −3.64f−2g

12 H̄11 −0.14 −0.19 −4.91f−2g

13 H̄12 −0.16 −0.22 −6.36f−2g

14 H̄13 −0.35 −0.44 −8.64f−2g

15 H̄14 −0.17 −0.28 −0.12

16 H̄15 −1.15 25.25 24.11

FIG. 8. Rovibronic E6
H̄sv=0−15,Jd energies as functions of

JsJ+1d for J=0−10.
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generally found to be of the order of 10−6−10−4 cm−1. Thus,
most of theEF levels have rather narrow widths, indicating a
weak predissociation. This is, at least qualitatively, in agree-
ment with the study of Quadrelliet al. [2]. Furthermore,
some differences are seen for the three approximations. With
a few exceptions, it is generally found that
G5

EFsv ,0d,G4
EFsv ,0d,G6

EFsv ,0d. In the analysis of theEF
energies we concluded that a number of levels were more or
less perturbed. In order to further investigate this we studied

the rotational dependence of log10G6
EFsv ,Jd for J=0–10.

In Fig. 9(a) the logarithm of theE0–EF8 series of level
widths is plotted as functions ofJsJ+1d. The avoided cross-
ings, appearing in theE0–E2 andF0–F3 rovibronic energy
structure displayed in Fig. 2(a), are here reflected by the
sudden jumps in the corresponding widths. As an example,
we consider theE0 width, which suddenly decreases from
5310−6 to about 10−9 cm−1 when going fromJ=2 to 3. This
is due to the previously discussed avoided crossing between

TABLE V. The HH̄ vibrational level spacing, DEk
HH̄sv ,0d scm−1d, and energy differences,

DEkk8
HH̄sv ,0d scm−1d sk,k8=4,5,6;kÞk8d, between the 4-, 5-, and 6-state approximations.

s DE4
HH̄ DE5

HH̄ DE6
HH̄ DE45

HH̄ DE46
HH̄ DE56

HH̄

1 HH̄25 0 0 0 −15.19 23.74 38.92

2 HH̄26 145.18 134.95 103.23 −25.41 −18.21 7.20

3 HH̄27 206.31 273.06 266.77 41.33 42.24 0.91

4 HH̄28 194.93 183.30 179.35 29.71 26.66 −3.05

5 HH̄29 193.04 182.67 180.59 19.34 14.21 −5.13

6 HH̄30 200.51 190.29 189.66 9.11 3.35 −5.76

7 HH̄31 205.62 195.92 193.39 −0.60 −8.88 −8.28

8 HH̄32 207.88 297.40 287.74 88.93 70.98 −17.95

9 HH̄33 208.95 155.31 170.70 35.29 32.73 −2.56

10 HH̄34 210.25 189.39 187.40 14.43 9.88 −4.54

11 HH̄35 212.99 203.96 203.35 5.39 0.24 −5.15

12 HH̄36 217.26 210.93 210.26 −0.94 −6.76 −5.82

13 HH̄37 221.34 299.63 317.59 77.35 89.49 12.14

14 HH̄38 223.95 160.03 148.10 13.43 13.64 0.21

15 HH̄39 225.26 217.41 210.59 5.58 −1.02 −6.61

16 HH̄40 224.20 224.03 218.15 5.41 −7.08 −12.49

17 HH̄41 221.20 221.33 215.49 5.55 −12.79 −18.33

18 HH̄42 219.04 239.23 238.02 25.74 6.19 −19.55

19 HH̄43 216.89 216.38 205.35 25.23 −5.35 −30.57

20 HH̄44 213.23 218.67 208.90 30.66 −9.68 −40.34

21 HH̄45 207.49 209.44 212.33 32.61 −4.84 −37.45

22 HH̄46 202.71 219.74 203.36 49.64 −4.19 −53.83

23 HH̄47 197.15 203.27 193.90 55.76 −7.44 −63.20

24 HH̄48 189.16 200.05 187.21 66.65 −9.39 −76.04

25 HH̄49 182.17 38.07 189.87 −77.46 −1.69 75.77

26 HH̄50 172.28 328.79 166.52 79.05 −7.45 −86.50

27 HH̄51 162.69 173.17 168.40 89.53 −1.73 −91.27

28 HH̄52 150.66 149.36 −3.04

29 HH̄53 138.42 152.58 136.52 −46.97 −4.94 42.03

30 HH̄54 123.85 209.94 123.61 39.12 −5.18 −44.30

31 HH̄55 108.19 110.62 −2.75

32 HH̄56 90.84 224.05 91.12 64.14 −2.46 −66.60

33 HH̄57 71.23 75.75 2.05
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the E0 andF0 term series. At the same point, theF0 width
makes a jump of the same order of magnitude in the other
direction. BetweenJ=3 and 10, theE0 width varies more
smoothly, having a local minimum of about 10−10 cm−1 for
J=5–6.

The variation of the width is about two orders of magni-
tude within the intervalJ=3–10. The reasons for this may be
manifold, but an investigation of the effective potentials dis-
played in Fig 2(b) might give us some further information.
According to the theory of quantum-mechanical tunneling,
the smaller the area of the cutoff hill, and the greater the
frequency of the vibration, the shorter the mean lifetime of
the level [42]. If we assume that this area here becomes
smaller as a function of the distance from the level to the
barrier edge, the probability for penetration to a neighboring

well varies with the height of the effective barrier when
counted from the corresponding rotational level. BetweenJ
=3 and 6, theE effective potential minimum approaches the
correspondingF potential minimum. Somewhere betweenJ
=5 and 6 the minimum of theE potential passes the corre-
spondingF minimum. From that point the effective barrier
height as well as the cutoff hill area becomes smaller and
smaller, implying higher penetration probabilities, i.e., the
level will have more of aF character and thus a larger width.

The behavior of the otherE andF rovibronic widths may
be qualitatively explained in a similar way. Furthermore, the
general behavior of the level widths, in the region where
avoided crossings appear, is that they vary linearly, or
slightly nonlinearly, within each interval between the
avoided crossings. Note that intervals displaying somewhat

TABLE VI. The EF energy shift differencesdEc-o
EFsv ,0d scm−1d between the present and observed levels

from Ref. [12], the corresponding present widthsGk
EFsv ,0d scm−1d sk=4,5,6d, and the theoretical widths

G0
EFsv ,0d scm−1d from Ref. [11].

s dEc-o
EF G4

EF G5
EF G6

EF Ga
EF

1 E0 0 2.98f–7g 2.11f–8g 3.79f–6g 1.5f–11g
2 F0 0.61 8.95f–11g 4.52f–9g 4.62f–9g 8.6f–11g
3 F1 0.01 3.36f–10g 1.66f–8g 1.51f–8g 9.2f–10g
4 E1 −0.27 1.43f–7g 2.21f–7g 2.85f–5g 2.0f–7g
5 F2 0.35 4.55f–8g 1.37f–7g 2.07f–8g 9.1f–10g
6 F3 −0.50 2.84f–7g 4.61f–7g 7.20f–8g 3.4f–10g
7 E2 0.27 8.95f–6g 4.67f–7g 7.92f–5g 2.1f–8g
8 F4 0.63 9.16f–7g 2.11f–6g 3.21f–5g 6.0f–9g
9 EF8 −2.22 1.27f–6g 3.23f–6g 4.01f–5g 2.1f–8g
10 EF9 1.75 1.32f–5g 5.36f–6g 1.62f–4g 1.7f–7g
11 EF10 2.97 1.57f–5g 1.20f–6g 1.40f–4g 1.8f–7g
12 EF11 −1.43 1.30f–5g 1.59f–8g 1.33f–4g 1.2f–7g
13 EF12 0.45 1.45f–5g 1.93f–8g 2.21f–4g 2.9f–8g
14 EF13 1.88 1.51f–5g 6.63f–9g 3.06f–4g 3.4f–8g
15 EF14 0.44 1.81f–5g 6.17f–8g 3.71f–4g 3.2f–7g
16 EF15 −0.39 3.36f–5g 1.30f–6g 5.25f–4g 6.8f–7g
17 EF16 0.56 7.17f–5g 5.58f–6g 7.98f–4g 6.9f–7g
18 EF17 1.69 1.19f–4g 1.21f–5g 9.80f–4g 1.5f–7g
19 EF18 −5.75 8.56f–5g 7.22f–6g 3.84f–4g 6.4f–7g
20 EF19 5.30 1.95f–4g 2.94f–5g 1.65f–3g 1.9f–10g
21 EF20 1.94f–4g 5.54f–5g 1.45f–3g 7.5f–7g
22 EF21 1.17f–4g 7.18f–5g 2.43f–3g 1.5f–7g
23 EF22 2.31f–4g 1.33f–5g 2.12f–3g 2.4f–8g
24 EF23 1.77f–4g 4.32f–5g 2.21f–3g 5.4f–6g
25 EF24 1.05 2.31f–4g 4.45f–5g 3.57f–3g 9.2f–7g
26 EF25 −4.62 1.86f–4g 9.89f–6g 1.93f–3g 1.0f–5g
27 EF26 3.71 1.80f–4g 6.56f–7g 1.34f–3g 7.9f–6g
28 EF27 2.40 1.79f–4g 1.55f–6g 2.54f–3g 4.2f–6g
29 EF28 9.10f–5g 3.07f–5g 5.45f–4g 1.6f–6g
30 EF29 3.23f–5g 1.27f–5g 2.53f–3g 1.7f–6g
31 EF30 7.42f–5g 1.41f–6g 1.25f–3g 9.5f–7g
32 EF31 1.75f–4g 1.30f–5g 3.33f–3g 7.4f–8g
33 EF32 −9.18 4.22f–5g 1.43f–6g 9.51f–4g 3.5f–6g
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bent shapes of theE0, F0, andF1 curves in Fig. 9(a) are not
signs of strong spectroscopic perturbations. All these widths
are of the order of 10−10−10−8 cm−1, i.e., rather narrow. This
conclusion is in agreement with the corresponding term se-
ries dependence displayed in Fig. 2(a).

The three remaining curves in Fig. 9(a) are the ones rep-
resenting theE2, F4, andEF8 level widths. These curves do
not display strong signs of avoided crossings in the sense
that sudden jumps in the level widths are basically absent.
The E2 andF4 levels are still below theEF barrier edge.
This is reflected by their stronger variations,10−4

−10−8 cm−1 in comparison with theEF8 widths ,5310−5

−5310−6 cm−1 for J=0–10. TheE2 width decreases from
10−4 to 10−5 cm−1 within J=0–3, from 10−5 to 10−8 cm−1

within J=3–9, andincreases by about one order of magni-
tude when going fromJ=9 to 10. When comparing this be-
havior with theE2 term series, displayed in Fig. 2(a), the
overall impression is that these two graphical representations
agree with each other. The rather steep inclination in the
beginning of theE2 term series becomes more flat at about
J=3–4.This is due to a repulsion from theF4 term series.
Up to that point, the decrease of the corresponding width is

TABLE VII. The GK andH energy shift differencesdEc-o
s sv ,0d scm−1d sk=4,5,6;s=GK,Hd between the

present and the observed levels reported in Ref.[12], the corresponding present widthsGk
ssv ,0d scm−1d sk

=4,5,6;s=GK,Hd, and the theoretical widthsGa
ssv ,0d scm−1d ss=GK,Hd from Ref. [11].

s dEc-o
s G4

s G5
s G6

s Ga
s

1 K0 0 4.15f−5g 1.48f−2g 7.94f−4g 1.8f−4g
2 G0 18.67 8.09f−6g 2.41f−3g 8.56f−5g 1.6f−6g
3 H0 0 6.91f−7g 1.20f−4g 8.94f−6g 3.5f−7g
4 GK2 8.84f−5g 2.99f−3g 9.24f−5g 2.7f−6g
5 GK3 12.32 1.97f−6g 1.67f−3g 1.65f−4g 5.3f−6g
6 GK4 5.20f−7g 5.22f−3g 2.75f−4g 1.8f−5g
7 H1 21.48 1.12f−8g 1.58f−6g 2.47f−4g 1.6f−6g
8 GK5 −4.43 4.78f−5g 7.10f−2g 3.42f−3g 5.1f−6g
9 GK6 1.09f−4g 6.38f−2g 3.14f−3g 5.5f−7g
10 H2 55.44 1.57f−4g 1.27f−5g 2.53f−3g 5.5f−7g
11 GK7 9.63f−5g 3.51f−2g 1.47f−3g 1.2f−5g
12 GK8 −1.28 1.89f−5g 2.02f−3g 1.49f−4g

TABLE VIII. The H̄ energy shift differencesdEc-o
H̄ sv ,0d scm−1d between the present and the levels

(observed or computed) reported in Ref.[41], and our calculated widthsGk
H̄sv ,0d scm−1d sk=4,5,5b,6d.

s dEc-o
H̄ G4

H̄ G5
H̄ G5b

H̄ G6
H̄

1 H̄0 0 6.96f−7g 7.38f−7g 3.68f−7g 7.44f−7g

2 H̄1 2.84 1.77f−6g 1.69f−7g 1.36f−8g 1.08f−6g

3 H̄2 3.13 1.45f−5g 1.58f−5g 1.12f−5g 1.60f−5g

4 H̄3 6.07 4.74f−5g 4.90f−5g 1.27f−5g 4.95f−5g

5 H̄4 8.41 5.38f−5g 6.21f−5g 2.74f−5g 6.16f−5g

6 H̄5 10.58 7.51f−5g 8.74f−5g 1.02f−4g 8.80f−5g

7 H̄6 21.64 9.47f−5g 1.05f−4g 1.06f−4g 1.02f−4g

8 H̄7 24.50 8.85f−5g 1.69f−4g 2.07f−4g 1.61f−4g

9 H̄8 27.04 4.00f−5g 7.35f−5g 1.31f−4g 6.93f−5g

10 H̄9 29.56 5.47f−6g 3.64f−5g 3.04f−4g 4.01f−5g

11 H̄10 31.92 2.49f−4g 2.34f−4g 3.74f−4g 2.44f−4g

12 H̄11 33.58 2.86f−4g 6.53f−4g 2.39f−4g 4.50f−4g

13 H̄12 34.65 4.46f−3g 4.45f−3g 5.00f−4g 3.93f−3g

14 H̄13 32.48 0.29 0.21 0.37 0.23

15 H̄14 35.61 0.55 1.26 0.19 1.00

16 H̄15 32.50 7.75 11.25 7.12 7.41
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less than one order of magnitude. Within theJ=3–9interval,
where theE2 term series is less steep, the gap between each
rotational energy and theEF barrier edge of the correspond-
ing effective potential, displayed in Fig. 2(b), increases. This
is reflected by the decrease of the width as functions ofJsJ
+1d. At J=9 an avoided crossing appears between theE2
and F3 term series. This raises theE2 energy forJ=10 a
little. At the same time the corresponding width increases by
about one order of magnitude. TheF4 widths may be ana-
lyzed in a similar way.

The EF8 rotational energies forJ=0–10 are allposi-
tioned above the barrier edge in the correspondingEF effec-
tive potential. This is clearly reflected by the dependence of
the corresponding level widths. Within the intervalJ=0–10
they display a smooth variation, slowly decreasing by about
one order of magnitude, starting fromG6

EFsv ,0d=4.01
310−5 cm−1. An inspection of the energy gap, between each
rotational energy and its effective potential barrier edge,
shows that this distance varies little. This is most likely the
reason for the smooth nonlinear shape of theEF8 curve in

Fig. 9(a). Although most of the widths in Fig. 9(a) are vary-
ing considerably within theJ=0–10interval, we know from
the analysis of the rovibronic term series that these variations
generally do not originate from homogeneous spectroscopic
perturbations from other electronic potential-energy curves.
The sudden jumps in theEF level widths discussed above
rather reflect the nonadiabatic effects appearing in theEF
double-well potential.

In Fig. 9(b) we have entered a region where, according to
the rovibronic energy analysis, we know that spectroscopic
perturbations are very weak or absent. TheEF9–EF11
widths are found to be little affected by the double-well
structure, whileEF12–EF17 display a more linear behavior.
All presentedEF9–EF17 widths are within 10−6–10−3 cm−1.

The EF18–EF26 widths are presented in Fig. 9(c). Here
we have reached the energy region where bothGK and H
rovibronic levels appear. According to the plot, the
EF18–EF20, EF22, and EF24–EF26 widths are only
weakly perturbed. Most of these widths are within
10−4–10−2 cm−1, with the exception ofG6

EFs24,10d=1.3
310−7 cm−1. TheEF21 andEF23 widths are strongly vary-
ing, indicating that spectroscopic perturbations exist. When
comparing these variations with the conclusions from the
rovibronic energy analysis, theEF21 levels should be essen-
tially unperturbed, while theEF23 levels are weakly per-
turbed. The behavior of these widths look similar to theF0
andF1 widths displayed in Fig. 9(a). The EF21 vibrational
level is below theGK barrier and, according to Yu and
Dressier[12], it is mainly a mixture ofEF s70%d and GK
s20%d characters. Taking that into account and the fact that
at that energy, theGK potential has a double-well shape
similar to that of theEF potential, one may qualitatively
explain the variation of these widths in the same way as was
previously done for theF0 andF1 levels. TheEF23 rovi-
bronic levels lie above theGK barrier but the corresponding
widths display a similar behavior as theEF21 widths. The
EF22 levels, in between these two, are positioned around the
GK barrier but do not seem to be considerably affected with
respect to variations. Finally we consider theEF27–EF32
widths displayed in Fig. 9(d). First we note that most of these
higher levels have widths within the interval
10−4–10−2 cm−1. This should be compared with the lowest
EF levels, which all have widths within 10−10–10−4 cm−1.
This verifies that we are here dealing with levels approaching
the EF dissociation limit.

The EF27 widths are all about 10−3 cm−1 within J
=0–10. This, almost constant behavior, agrees with the

FIG. 9. TheJsJ+1d dependence of the logarithm for calculated
widths G6

EFsv ,Jd for J=0–10.

FIG. 10. TheJsJ+1d dependence of the logarithm for calculated
widths G6

GKsv ,Jd for J=0–10.

FIG. 11. TheJsJ+1d dependence of the logarithm for calculated

widths: (a) G6
H̄sv=0–7,Jd and (b) G6

H̄sv=8–15,Jd for J=0–10.
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shape of the correspondingEF27 term series. TheEF28 term
series do not show any strong signs of spectroscopic pertur-
bations withinJ=0–8.This is in agreement with the linear
behavior of the corresponding term series discussed above.
For J=9 and 10 theEF28 rotational energies are pushed
upwards. This is reflected by the jumps observed in the cor-
responding widths. Why these widths, particularly forJ=10,
become smaller is not clear but a partial reason might be due
to an interaction with theGK state. TheEF29 widths vary
more than theEF27 andEF28 widths. At J=3 there is a
local minimum of about 5310−5 cm−1. WhenJ goes from 5
to 9, the width curve displays an almost constant behavior
around 10−3 cm−1. ForJ=10 a sudden increase of about three
orders of magnitude occurs. The dependence of theEF29
widths agree with the corresponding term values withinJ
=0–9. Thejump atJ=10 is more difficult to explain but the
existence of theGK, and perhaps theH, states might be the
reason. TheEF30 widths display a similar behavior as the
EF29 widths, but here the local minimums,10−5 cm−1d ap-
pears atJ=6. The decrease from about 10−3 to 10−5 cm−1, for
J=9–10, may partly be explained from the behavior of the
corresponding interval for theEF30 term series. That is, the
gap between the rotational energy and the edge of the effec-
tive potential forJ=0–10 increases. TheEF31 andEF32
widths are all about 10−3 cm−1 within J=0–6. BetweenJ
=7–10, all EF31 andEF32 widths increase by about five
orders of magnitude and thus become very broad. Further-
more, the horizontal dependence of these widths in Fig. 9(d)
indicates a bound-state continuum interaction. This is in
agreement with the behavior of the corresponding term se-
ries, for which it was concluded that theEF (andGK) thresh-
old had been reached.

2. The GK and H widths

The rotationless level widths,Gk
GKsv ,0d and Gk

Hsv ,0d sk
=4,5,6d, are presented in Table VII. A general conclusion,
when inspecting this table, is that G4

GKsv ,0d
,G6

GKsv ,0d,G5
GKsv ,0d, while the H widths behave more

irregularly. Among these, the most interesting widths to
study with respect to the rovibronic dependence are
G6

GK,Hsv ,Jd, i.e., results based on calculations using the
s1–6d1Sg

+ manifold.
The rather detailed analysis of theEF widths discussed

earlier can also be applied on theGK widths displayed in
Fig. 10. The structure of theGK widths is rather dense, par-
ticularly for the GK2–GK6 levels. According to the term
series analysis, theK0 andG0 rovibronic spectra should be
only weakly perturbed. TheK0 andG0 indeed vary within
J=0–10 but it israther difficult to give a detailed explana-
tion of the irregularities in these widths. However, from Fig.
10, we conclude thatG6

G0sv ,Jd,10−7−10−3 cm−1 within J
=0–10. This variation may only partly be understood by
studying the correspondingK0 term series. There should ex-
ist, at the moment unknown, additional reasons for these
irregularities. TheG0 width has a distinct minimum of about
10−7 at J=3 but have values within the range
10−5–10−4 cm−1 for all the other,J=0–2 andJ=4–10, quan-
tum numbers. TheG0 term series does not give any indica-

tion of the sudden jump ofG6
K0sv ,Jd, but one suggestion is

that it might be a spectroscopic perturbation, due to theEF
state, which is responsible.

A difference here, from the previous lowestEF vibra-
tional levels, is that we have several possible sources of per-
turbations. Apart from theGK double-well potential, we
have to consider homogeneous spectroscopic perturbations
originating from theEF and/orH electronic states. The struc-
ture of theGK2–GK6 widths is rather dense which might
reflect the homogeneous perturbations predicted for this
overlapping energy region. A general observation here is that
all widths are within 10−5–10−3 cm−1. TheGK7–GK8 levels
for J=0–5behave essentially like theGK2–GK6 levels, but
for J=6–10 the corresponding rovibronic levels have
reached the threshold. This is clearly seen in Fig. 10, where
the GK7–GK8 widths for J=7–10 arepositioned along an
almost horizontal line, indicating bound-state continuum
level interactions.

3. The H̄ widths

We also computed widths for theH̄0–H̄15 levels. The

rotationlessH̄ widths are collected in Table VIII. When com-

paring theG4
H̄sv ,0d, G5

H̄sv ,0d, andG6
H̄sv ,0d widths, these are

found to be of the same order of magnitude within each

vibrational level. For theH̄0–H̄12 levels, the widths vary

from 7310−7 to 4310−3 cm−1. The H̄13–H̄15 levels are

approaching theHH̄ barrier edge. Consequently, their widths
become broader and are of the order of a few inverse centi-
meters.

The fourth set of widths in Table VIII, denoted asG5b
H̄ ,

were computed from thes2–6d1Sg
+ manifold. Most of these

widths are of the same order of magnitude as

G4
H̄sv ,0d , G5

H̄sv ,0d, andG6
H̄sv ,0d which reflects the fact that

the predissociation of theH̄ levels is mainly not due to the
ground state.

The rovibronic width dependence were computed for each

of the H̄0–H̄15 levels. The results for thes1–6d1Sg
+ mani-

fold are displayed in Fig. 11. Due to the rather dense struc-

ture, the data have been divided into two parts. TheH̄0–H̄1
widths, displayed in Fig. 11(a), are seen to jump up and
down but the variation is rather small, about one order of

magnitude forJ=0–10 TheH̄2–H̄7 widths, presented in the
same figure, behave more smoothly and display a local mini-
mum for J=4–6. This smooth behavior with the exception

of the H̄8; J=4 level, continues for theH̄8–H̄11 widths
displayed in Fig. 11(b). The variation for these widths is

within one order of magnitude. TheH̄12–H̄15 widths are
rather broad(from 10−3 to several inverse centimeters) and
do not behave smoothly withinJ=0–10. According to the

previous study of theH̄0–H̄15 rovibronic energies, these
variations are not due to spectroscopic perturbations from
other electronic states. One possible reason might be the

rather wide and unusual shape of theH̄ potential well (see
Fig. 1). In a more detailed analysis of these, and the other
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rovibronic H̄ widths discussed here, it would be convenient
to plot the corresponding effective potentials forJ=0–10.
However, such an analysis is not carried out in the present
study.

4. The HH̄ widths

For the rotationless levels, not presented here, we found

that G4
HH̄sv ,0d varies between 8.0 and 67.1 cm−1, G5

HH̄sv ,0d
between 3.5 and 201.3 cm−1, andG6

HH̄sv ,0d between 9.8 and

110.3 cm−1, with the exception thatG5
HH̄s1,0d=0.41 cm−1.

Thus, here we are dealing with strongly predissociated lev-
els.

For the rovibronic levelssv ,0–10d, the log10 Gk
HH̄sv ,Jd

sk=4,5,6d dependence onJsJ+1d did not indicate any
strong perturbations. The rovibronic widths are all of the
same order of magnitude as the rotationless ones although
they vary within eachsv ,Jd sequence forJ=0–10. Due to
the large size(from a few to ~100 cm−1) of these widths, a
graphical representation is not meaningful from a physical

point of view. Just as we suggested for theH̄ widths, a rea-

son for the size and variation of theHH̄ widths is most likely

the wide shape of theHH̄ potential well. This shape is more
sensitive to changes than a deep and narrow well when cal-
culating effective potentials. Thus, the wave functions, asso-
ciated with the corresponding rovibronic levels, become less
localized than they would be for a deeper and more narrow
potential well.

5. The HPO widths

TheHPO level width dependence was also studied but, in
order to limit the amount of presented data, we just present a
short summary here. A further reason is that most of these
levels are strongly predissociated. In general, theH0–H2
widths vary between 10−4–10−1 cm−1 except thatG6

Hs1,10d
=0.18310−6 cm−1. The perturbations discussed earlier may
be the reason for these variations. A few of the lowest rota-
tional energies of the lowestP vibrational level have widths
of the order of 10−2 cm−1, while the otherHPO widths are of
the order of 10−1–102 cm−1. However, according to the un-
certainty in the identification of theHPO energy spectra, we
should be careful with drawing conclusions about a specific
level.

C. Nonradiative lifetimes

From the relation , the nonradiative lefetime was obtained
for each computed level. Our rotationless resultstk

ssv ,0dnr

are listed in Tables IX–XI.
According to Table IX, the rotationlessEF nonradiative

lifetimes vary within the intervals t4
EFsv ,0dnr

=22.99 ns–59.33 ms,t5
EFsv ,0dnr=73.95 ns–1.17 ms, and

t6
EFsv ,0dnr=1.49 ns–1.15 ms. For lower vibrational levels

the mutual magnitude of these lifetimes seems to vary ran-
domly, while for EF10–EF32 they generally vary as
t6

EFsv ,0dnr,t4
EFsv ,0dnr,t5

EFsv ,0dnr.

The rotationlessGK andH nonradiative lifetimes are pre-
sented in Table X. The GK results vary within the intervals
t4

GKsv ,0dnr=55.14 ns–10.21 ms, t5
GKsv ,0dnr=83.23 ps

–3.18 ns, andt6
GKsv ,0dnr=1.55 ns–62.03 ns. The corre-

sponding H results are t4
Hsv ,0dnr=33.82 ns–47.41ms,

t5
Hsv ,0dnr=44.25 ns–3.36ms, and t6

Hsv ,0dnr
=2.10 ns–593.96 ns. For the mutual magnitude ofGK as
well asH, lifetimes vary from level to level.

The rotationlessH̄ nonradiative lifetimes are presented in

Table XI. Here, thet4
H̄sv ,0dnr, t5

H̄sv ,0dnr, and t6
H̄sv ,0dnr re-

sults are found to be about the same magnitude within each

vibrational level. For theH̄0–H̄12 levels, these lifetimes are

within 1.19 ns–31.42ms. TheH̄13–H̄15 levels approach the

local HH̄ barrier edge and, consequently, their lifetimes be-

TABLE IX. The present calculatedEF nonradiative lifetimes
tk

EFsv ,0d sms,ms,nsd sk=4,5,6d, and the theoretical results
ta

EFsv ,0d sms,ms,nsd from Ref. [11].

s t4
EF t5

EF t6
EF ta

EF

1 E0 17.82ms 251.66ms 1.40ms 354 ms

2 F0 59.33 ms 1.17 ms 1.15 ms 61.7 ms

3 F1 15.80 ms 319.88ms 351.61ms 5.8 ms

4 E1 37.13ms 24.03ms 186.32 ns 27.6ms

5 F2 116.70ms 38.76ms 256.52ms 5.8 ms

6 F3 18.70ms 11.52ms 73.75 ns 15.6 ms

7 E2 593.30 ns 11.37ms 67.05 ns 252.9ms

8 F4 5.80ms 2.52ms 165.42 ns 885.0ms

9 EF8 4.18ms 1.64 ms 132.42 ns 252.9ms

10 EF9 402.27 ns 1.49ms 990.67 ns 31.2ms

11 EF10 338.22 ns 4.43ms 37.93 ns 29.5ms

12 EF11 408.46 ns 333.96ms 39.93 ns 44.3ms

13 EF12 366.21 ns 275.13ms 24.03 ns 183.1ms

14 EF13 351.66 ns 800.90ms 17.35 ns 156.2ms

15 EF14 293.37 ns 86.06ms 14.31 ns 16.6ms

16 EF15 158.04 ns 4.08ms 10.11 ns 7.8ms

17 EF16 74.06 ns 951.61 ns 6.65 ns 7.7ms

18 EF17 44.62 ns 438.84 ns 5.42 ns 35.4ms

19 EF18 62.03 ns 735.46 ns 13.83 ns 8.3ms

20 EF19 27.23 ns 180.61 ns 3.22 ns 27.9 ms

21 EF20 27.37 ns 95.85 ns 3.66 ns 7.1ms

22 EF21 45.38 ns 73.95 ns 2.19 ns 35.4ms

23 EF22 22.99 ns 399.25 ns 2.50 ns 221.3ms

24 EF23 30.00 ns 122.92 ns 2.40 ns 983.3 ns

25 EF24 22.99 ns 119.33 ns 1.49 ns 5.8ms

26 EF25 28.55 ns 536.91 ns 2.75 ns 531.0 ns

27 EF26 29.50 ns 8.09ms 3.96 ns 672.2 ns

28 EF27 29.66 ns 3.43ms 2.10 ns 1.3ms

29 EF28 58.35 ns 172.96 ns 9.74 ns 3.3ms

30 EF29 164.40 ns 418.11 ns 2.10 ns 3.1ms

31 EF30 71.56 ns 3.77ms 4.25 ns 5.6ms

32 EF31 30.34 ns 408.46ms 1.59 ns 71.8ms

33 EF32 125.83 ns 3.71ms 5.58 ns 1.5ms
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come shorter, typically of the order of ps. From the discus-

sion on theH̄ widths we know that the predissociation is
mainly not due to the ground state. This is reflected here by

the t5b
H̄ sv ,0dnr lifetimes computed for thes2–5d1Sg

+ mani-
fold. Although these lifetimes differ somewhat from the

t4–6
H̄ sv ,0dnr results, these are all of the same order of magni-

tude.
Instead of giving a detailed analysis of the rovibronic

nonradiative lifetimes we refer to the discussions on the cor-
responding widths, as these two quantities are directly re-

lated. From this relation it is easy to imagine the graphical
structure of the rovibronic lifetimes by studying the widths
displayed in Figs. 9–11.

D. Estimations of spectroscopically measurable
rovibronic levels

Many of the level widths reported in the present paper are
rather narrow. This implies that the corresponding levels
have nonradiative lifetimes long enough to be spectroscopi-
cally measurable. In order to obtain estimations of such lev-
els we first have to assume that their radiative lifetimes,
trsv ,Jd, vary smoothly withJ within a rovibronic term series
[43,44]. From this we can estimate a lower limit,tr

minsv ,Jd,
for which a level might be experimentally observable. The
second assumption is that we consider levels for which
trsv ,Jd<tnrsv ,Jd, wheretnrsv ,Jd are our calculated nonra-
diative lifetimes. Thus, from experimentally obtained radia-
tive lifetimes, we are able to suggest spectroscopically mea-
surable rovibronic levels which have not yet been
experimentally observed.

According to Kiyoshima and Sato[45], the observed life-
times of the rovibronicEF6 andEF7 levels vary smoothly
within the intervalJ=0–4. TheEF6 lifetimes tr

EFs6,Jd in-
crease from 101±2 ns to 170±9 ns whenJ goes from 0 to 4,
while tr

EFs7,Jd decrease from 246±13 ns to 129±6 ns
within the same interval. Assuming this behavior to be true
also for otherEF levels we may use the calculations of
Glass-Maujeanet al. [46] to estimate a lower limit for the
radiative lifetimes. By analyzing the available experimental
[45,47] and theoretical[46] data we found that forEF levels
below theGK spectra, the shortest measured radiative life-
time is tr =100.0 ns for theEF6 level. This is further sup-
ported by the calculations carried out by Glass-Maujeanet
al. [46]. They obtained a nonadiabatic,tr =99.0 nssJ
=0 and 1d, as well as an adiabatic,tr =100.0 nssJ=1d, result
for the EF6 level. Their other computedEF lifetimes in the
same energy region are in all cases longer, typically several
hundreds of nanoseconds. From these, theoretical and experi-
mental results, a lower limit for the radiative lifetimes was
chosen to be 100.0 ns which corresponds to log10 Gmax=
−4.27. This maximum value is indicated by the dashed line
in Figs. 9(a) and 9(b) and should be interpreted in such a way
that EF levels having logarithmic widths smaller than
log10 Gmax may be spectroscopically measurable.

For higherEF levels, an experimental rotationless life-
time of tr =48.5 ns[48] was found for theEF26 level. All
calculated adiabatic and nonadiabatic radiativeEF lifetimes
for J=0, presented by Glass-Maujeanet al. [46], are consid-
erably longer, while their nonadiabaticEF26 result forJ=1
was calculated to betr =34.5 ns. This corresponds to a limit
log10 Gmax=−3.81, which is indicated by the dashed line in
Figs. 9(c) and 9(d).

For the GK spectra we found the shortest experimental
lifetime tr =24.8 ns[49] for theG0 level (denoted asGK1 in
Ref. [46]). The corresponding nonadiabatic,J=0 and 1, re-
sult is tr =20.8 ns, while the calculated adiabatic value for
J=1 is 18.1 ns. Choosing the nonadiabatic results as the
limit, we find that log10Gmax=−3.59, which is indicated in

TABLE X. The present calculatedGK andH nonradiative life-
timestk

GK,Hsv ,0d sms,ns,psd sk=4,5,6d, and the theoretical results
ta

EFsv ,0d sms,nsd from Ref. [11].

s t4
s t5

s t6
s ta

s

1 K0 127.95 ns 358.8 ps 6.69 ns 2.9ms

2 G0 656.37 ns 2.20 ns 62.03 ns 3.3ms

3 H0 7.68ms 44.25 ns 593.96 ns 15.2ms

4 GK2 60.07 ns 1.78 ns 57.47 ns 2.0ms

5 GK3 2.70ms 3.18 ns 32.18 ns 1.0ms

6 GK4 10.21ms 1.02 ns 19.31 ns 295.0 ns

7 H1 47.41ms 3.35ms 21.50 ns 3.3ms

8 GK5 111.09 ns 74.79 ps 1.55 ns 1.0ms

9 GK6 48.72 ns 83.23 ps 1.69 ns 9.7ms

10 H2 33.82 ns 418.11 ns 2.10 ns 9.7ms

11 GK7 55.14 ns 151.28 ps 3.61 ns 442.5 ns

12 GK8 280.95 ns 2.63 ns 35.64 ns

TABLE XI. The present calculatedH̄ nonradiative lifetimes
tk

GK,Hsv ,0d sms,ns,psd sk=4,5,5b,6d.

s t4
H̄ t5

H̄ t5b
H̄ t6

H̄

1 H̄0 7.63ms 7.20ms 14.43ms 7.14ms

2 H̄1 3.00 ms 31.42ms 390.44ms 4.92ms

3 H̄2 366.21 ns 336.08 ns 474.11 ns 331.88ms

4 H̄3 112.03 ns 108.37 ns 418.11ms 107.27ms

5 H̄4 98.70 ns 85.51 ns 193.80 ns 86.20ms

6 H̄5 70.71 ns 60.76 ns 52.06 ns 60.34ms

7 H̄6 56.07 ns 50.57 ns 50.09 ns 52.06ms

8 H̄7 60.00 ns 31.42 ns 25.65 ns 32.98ms

9 H̄8 132.75 ns 74.24 ns 40.53 ns 76.62ms

10 H̄9 970.75 ns 145.88 ns 17.47 ns 132.42ms

11 H̄10 21.33 ns 22.69 ns 14.20 ns 21.76ms

12 H̄11 18.57 ns 8.13 ns 22.22 ns 11.80ms

13 H̄12 1.19 ns 1.19 ns 10.62 ns 1.35ms

14 H̄13 18.31 ps 25.29 ps 14.35 ps 23.09 ps

15 H̄14 9.65 ps 4.21 ps 27.95 ps 5.31 ps

16 H̄15 0.69 ps 0.47 ps 0.75 ps 0.72 ps
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Fig. 10. Here, approximately half of the levels are seen to
have their logarithmic widths below this limit. It is also clear
from the figure that all nineGK vibrational levels have at
least some rotational level withinJ=0–10 which may be
spectroscopically measurable.

Finally, we consider theH0–H2 levels. For these three
characters we do not have any experimental results for the
radiative lifetimes. Therefore, we again use the adiabatic and
nonadiabatic results reported by Glass-Maujean[46]. The
shortest adiabatic radiative lifetime,tr =27.6 ns, is found for
theH2sJ=1d level, while the corresponding nonadiabatic re-
sult is tr =28.6 ns. From the latter result we find a limit of
Gmax=1.86310−4cm−1 in the sense that all widths less than
this limit may be spectroscopically measurable. We do not
present our calculated rovibronic widths forH0–H2 graphi-
cally but a comparison, between ours1–6d1Sg

+ results with
Gmax given above, can be summarized asG6

H0sv ,Jd,Gmax for
J=0–4 and 6–10, t6

H1sv ,Jd,Gmax for J=9 and 10, and
G6

H2sv ,Jd,Gmax for J=9 and 10.
The above analysis as well as our choice of limits for the

EF, GK, andH levels, is rather simplified. For theEF spec-
tra the comparable data for lower levels is rather good but for
higher EF levels as well as for theGK and H spectra, it is
rather poor. With a larger amount of experimental data, par-
ticularly for higher rotational levels, one would most likely
find more appropriate limits for each of these terms.

E. Comparisons with experiments and other calculations

1. The energy levels

In order to compare our computed rotationless energies
with observed term values we used the manifold consisting
of the first five excited states,s2–6d1Sg

+, as they all originate
from the same source[4]. However, for reasons already dis-
cussed earlier, we compared the differences between adjacent
levels calculated here with the corresponding differences of
known observed term values[12,41]. These comparisons are
collected in Tables VI–VIII. Using the notationdEc-o

s sv ,0d
=DEcalc

s sv ,0d−DEobs
s sv ,0d, where the indicescalc and obs

refer to our computed energies and observed term values,
respectively, we found thatudEc-o

EFsv ,0du varies between 0.01
and 9.18 cm−1, but for most of the levels this discrepancy is
,0–2 cm−1. Note that the labelsEF8 andEF9 in Table VI
correspond toF5 andE3 in Ref. [12].

For the GK levels, dEc-o
GKsv ,0d varies between

−4.43sGK5d and 18.67 cm−1 sG0d. Qualitatively, these dis-
crepancies agree with theEF results in the sense that theEF
levels within the same energy region suddenly demonstrate
larger dEc-o

EF shifts. Also theH0–H2 are within the same
range, which is reflected by the discrepanciesdEc−o

H1 sv ,0d
=21.48 cm−1 anddEc−o

H2 sv ,0d=55.44 cm−1.

Our theoreticalH̄ energy shifts were compared with the

experimentally observed and calculatedH̄ energies by Rein-
hold et al. [41]. According to Table VIII, the discrepancies

dEc-o
H̄ sv ,0d increase from 2.84 cm−1 to 35.61 cm−1 when go-

ing from v=0 to 15.
The discrepancies ofdEc-o

s sv ,0d discussed above may
originate from several different sources. In our previous dis-

cussion we concluded that the overlappingEF, GK, andH

levels were perturbing each other, while for theH̄ levels no
such signs were seen. A possible reason for the large discrep-
ancies may be the incomplete set of electronic singlet states
used in our calculations. Even though we include the ground
state when comparing different approximations we exclude it
here. The fact that we are here considering only1Sg

+ states
means that perturbations seen in our spectra are all homoge-
neoussDL=0d. Other states, which appear in the energy re-
gion studied here but were excluded in our calculations, are
of 1pg,

1Dg and 1Lg character. The possible heterogenous
sDL= ±1d perturbations originating from these terms are
therefore not taken into account. This is most likely one of
the reasons why the discrepancies increase higher up in the
vibrational level structure.

Another reason might be that relativistic corrections were
not included in our calculations. However, according to Ref.
[4], these are all of the order of −2 cm−1 at the outer and
inner minima of theEF andGK potential curves and smaller
elsewhere. Therefore, these should not produce any of the
shifts discussed above.

2. The level widths

To the best of our knowledge, the only directly compa-
rable results here are the rotationless level widths reported in
the theoretical predissociation study ofEF, GK, andH states
in H2 by Quadrelliet al. [2]. According to their calculated
widths Ga

ssv ,0d ss=EF,GK,Hd, collected in Tables VI and
VII, they found the predissociation to be rather weak for
most of these levels. Our corresponding theoretical results,
Gk

ssv ,0d, for the 4-, 5-, and 6-state approximations, presented
in the same tables, indicate a somewhat stronger predissocia-
tion for most of the levels.

A relevant comparison between our and their computa-
tional methods should be based on calculations using the
same basis set. Therefore, we now only consider our com-
putedG4

EFsv ,0d, G4
GKsv ,0d, and G4

Hsv ,0d widths. Beginning
with the EF widths, presented in Table VI, we find that our
calculatedF0, F2, andE1 widths are of the same order of
magnitude asGa

EFsv ,0d for the corresponding levels. For all
other levels,G4

EFsv ,0d.Ga
EFsv ,0d and the difference is, in

general, 1−2 orders of magnitude. A similar comparison for
the GK widths presented in Table VII shows a better agree-
ment, but our calculated widths are still generally larger than
the results of Quadrelliet al. [2]. When comparing theH0
−H2 widths in Table VII we find a rather good agreement for
the H0 results. OurH1 width is narrower by two orders of
magnitude, while ourH2 width is wider by three orders of
magnitude when compared with the results of Quadrelliet al.
[2].

Although the differences are generally rather large, be-
tween our seperate level widths and the corresponding cal-
culated widths of Quadrelliet al. [2], it may be interesting to
compare relative widths, Gsv ,0d /Gsv+1,0d, between
G4

ssv ,0d andGa
ssv ,0d ss=EF,GK,Hd presented in Tables VI

and VII. If we define a quantitydG4
ssv ,0d for these compari-

sons
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dG4
ssv,0d = UG4

ssv,0d/G4
ssv + 1,0d

Ga
ssv,0d/Ga

ssv + 1,0d
U , s40d

we find that for a majority of theEF s,75%d and the
GK,H s,70%d level widths, dG4

EFsv ,0d,0−1 orders of
magnitude, while for the remaining level widths,
dG4

GK,Hsv ,0d,2−5 orders of magnitude. Thus, the agree-
ment here is somewhat better than what was found for the
mutual comparison between the levels themselves.

A similar treatment can, of course, be carried out for the
nonradiative lifetimes. TheGa

ssv ,Jd ss=EF,GK,Hd widths
were therefore converted to nonradiative lifetimesta

ssv ,Jd
which are presented in Tables IX and X.

A natural reflection here is that the weak predissociation
for excitedEF, GK, andH levels in H2, generated by cou-
pling to the ground state, reported by Quadrelliet al. [2] may
be somewhat stronger. A possible reason for the differences
between their computed widths and the present results,
which are already mentioned in the introductory section,
might be the different methods used by us and Quadrelliet
al. [2]. While their method is based on a golden rule ap-
proach, for which the width is calculated from a real valued
energy and wave function, our computed widths are included
as the imaginary part of converged complex eigenvalues.

SUMMARY AND CONCLUSIONS

By applying a general Runge-Kutta-Fehlberg method and
available nonadiabatic coupling elements, the adiabatic(1–
4), (1–5), ands1–6d1Sg

+ manifolds of H2 were transformed to
diabatic representations. In order to obtain rovibronic term
energy values and level widths, the multichannel
Schrödinger equation was solved for each diabatic represen-
tation by means of an exterior complex rotated finite element
method. The structures of our term values and widths were
compared between the three different manifolds. In general,
our results verified the homogeneous spectroscopic perturba-
tions reported in the theoretical study by Yu and Dressler
[12]. In our analysis we focused on thes1–6d1Sg

+ manifold
for which most of the rovibronic levelssv ,J=0−10d were
identified. From graphical representations of the various ro-
bivronic energy and width sequences withinJ=0−10, we
investigated the existence of homogeneous spectroscopic
perturbations.

The s1–4d1Sg
+ widths, in particular, were compared with

the theoretical predissociation study of Quadrelliet al. [2]. It
was found that our calculated level widths are generally
about two orders of magnitude wider than theirs, indicating a
somewhat stronger predissociation than previously reported.

From observed and theoretically obtained radiative life-
times we were able to estimate upper width limits for which
our computed rovibronicEF, GK, andH levels may be ex-
perimentally observed.

Concludingly, the present work as well as a number of
previous nonadiabatic multichannel studies[13–16] are all
based on the same theoretical and numerical approach. By
summarizing these results we are here able to draw some
general conclusions about our method for predissociation
studies of diatomic molecules.

One interesting feature, particularly investigated in the
present paper, is how the complex eigenvalues are affected
by the number of states included in a diatomic manifold.
When, for example, comparing results for the lower rotation-
lessEF levels in the(1–4), (1–5), and(1–6) 1Sg

+ manifolds
of H2, the term values are clearly converged, while the cor-
responding level widths are seen to vary according to
G5

EFsv ,0d,G4
EFsv ,0d,G6

EFsv ,0d. Some of these widths vary
as much as four orders of magnitude when different approxi-
mations are compared. This information may be extremely
useful as it offers a possibility to understand how a specific
rovibronic level is affected when adding one or several more
electronic states to the already existing manifold of states.

A more general conclusion, shared by several of the stud-
ies considered here, is that diabatic, or approximately diaba-
tic, multichannel calculations generate term values which are
usually in a better agreement with experiments than results
based on pure Born-Oppenheimer potential-energy curves.

The rovibronic spectra often gives a lot more information
than the corresponding rotationless levels. The rotational
term series are very useful when identifying the characters of
different electronic states included in a manifold. In the case
of unperturbed, or only weakly perturbed levels, a term se-
ries generally display a linear dependence as a function of
JsJ+1d. The inclination of this linear function reflects the
shape of the corresponding electronic potential well and thus
the character of a specific term series. Simply speaking, the
steeper the inclination the narrower the potential well. In the
case when significant spectroscopic perturbations exist, the
linear term series dependence is often seen to be broken.
This is in general a useful information which motivates a
further investigation of these levels.

Furthermore, the present as well as the four previous stud-
ies [13–16] considered here all demonstrate the importance
to include nonradiative widths for many rotational levels as
they often vary with several orders of magnitude within a
term series. A sudden jump in a width thus indicate if the
perturbation seen in the term series plot implies a stronger or
weaker predissociation for a specific rovibronic level. From
the nonradiative level widths, particularly when these sud-
denly become narrow, it is convenient to convert to nonradi-
ative lifetimes. By comparing observed and theoretically ob-
tained radiative lifetimes with our nonradiative lifetimes we
have, in several of these studies, been able to estimate upper
time and widthst=1/Gd limits for which the corresponding
levels may be spectroscopically measurable.

In order to further motivate the usefulness of our complex
rotated finite element method for computing the widths we
particularly refer to the studies of CO2+ [13] and Al2 [16].
For CO2+ it was found that our method produced results in a
better agreement with experiments when compared with re-
sults based on a golden rule approach. In the case of Al2,
nonradiative lifetimes computed with our method were com-
pared with two other sets of results obtained by different
golden rule type methods[5]. Our obtained nonradiative life-
times were found to be considerably different when com-
pared with the other two sets of nonradiative lifetimes. How-
ever, the agreement between the two golden rule type results
was found to be rather poor. This disagreement indicates an
uncertainty when using the golden rule approach for predis-
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sociation studies, particularly when computing level widths
(and lifetimes). This weakness, together with the previously
discussed proven convergence of our complex eigenvalues,
supports the strength and reliability of our method.

Finally, we believe that the present as well as the previous
similar predissociation studies[13–16] show the usefulness
of our general method for predissociation studies. With our
complex rotated finite element code we are able to solve the
multichannel Schrödinger equation for any number of
coupled electronic states within a diatomic manifold. By

studying and comparing rovibronic term energy values and
the corresponding widths, we have achieved some general
knowledge about interpretations of the different types of per-
turbed energy-level structures in diatomic molecules.
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