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In this paper, the Thomas-Fermi model for large atoms is reformulated by incorporating the nonextensive
entropy prescription. The entropy nonextensivity contribution dominates the usual thermal correction term in
the “low-temperature” limit. On the other hand, the entropy nonextensivity concept appears to provide a useful
framework to describe the fractal nature of the Fermi surface in the nondegenerate case. Analytical calculations
are given for some atomic properties, such as the total binding energy of the electrons in the atom. The
nonextensivity of entropy is indicated to have the potential to provide a means to remedy one of the well-
known weaknesses in the Thomas-Fermi model—the boundary effect. The virial theorem has been shown to be
a robust result that holds also in the nonextensive entropy regime.
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I. INTRODUCTION

The Thomas-Fermi statistical model(Thomas[1], Fermi
[2]) of the atom provides a heuristic semiclassical method to
describe the ground-state potential fields and charge densities
in large atoms, metals, and in astrophysical objects such as
neutron stars[3], [4]. Despite the crudeness of the physical
approximation, the Thomas-Fermi model remains useful due
to its simplicity and elegance and serves rather well as a
starting point for the study of interacting many particle sys-
tems. In this model one starts with relations appropriate to
the homogeneous electron gas obeying the Fermi-Dirac sta-
tistics and then uses alocal density approximationto apply
these to the inhomogeneous charge cloud. The electrostatic
potentialVsr d of the system can be determined by solving
Poisson’s equation forVsr d. Though more than 75 years old
the Thomas-Fermi model is still a subject of improvements
(see Shivamoggi[5], and references therein).

One well-known weakness of the Thomas-Fermi model is
that it describes incorrectly the innermost electrons that con-
tribute most to the binding energy of the atom—thebound-
ary effect. This defect may be traced to the fact that this
model allows too great a density of electrons very close to
the nucleus(the electron density in fact tends to infinity at
the nucleus asr−3/2) thereby causing a breakdown of the
local-density approximation near the nucleus. This defect
leads to predictions of the total binding energy of the atom
that are higher than the experimental binding energies de-
rived from spectroscopy.

In dealing with the statistical properties of systems with
long-range interactions,1 it has been proven useful to extend
Boltzmann-Gibbs thermodynamics by generalizing the con-
cept of entropy to nonextensive regimes(Tsallis [9], see Ref.

[10] for an extensive bibliography on the theory and appli-
cations). This nonextensive thermostatistical prescription has
been shown[11,12] to afford a consistent thermodynamic
description of such systems. It is therefore of interest to re-
formulate the Thomas-Fermi model for an atom with thermal
effects by incorporating the nonextensive entropy prescrip-
tion [13] and to explore whether this approach provides a
remedy for the above-mentioned weakness of the Thomas-
Fermi model.

II. NONEXTENSIVE THERMOSTATISTICS

Tsallis’s nonextensive thermostatistics is based on two
postulates[9]:

(1) The entropy of the system is given by

Ssqd = kb

1 − oi=1

W
pi

q

q − 1
, s1d

(2) the expectation value of an observableA is

kAl =

o
i=1

W

Aipi
q

o
i=1

W

pi
q

, s2d

where q is the nonextensivity parameter,pi :oi=1
W pi =1 are

probabilities of the microstatesseef12g for a discussiond, and
kb is a constant.

Maximizing (1) subject to constraints of conservation of
total energy and the number of particles one may derive for
the Fermion distribution function[12] and [14]:

*Electronic address: bhimsens@pegasus.cc.ucf.edu
1Generalization of Boltzman-Gibbs thermodynamics has also

been found useful in dealing with multifractal properties of systems
(Beck [6], Shivamoggi and Beck[7], and Shivamoggi[8]).
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f sqdsEd = 5 1

1 + f1 + sq − 1dbsE − mdgq/q−1 if 1 + sq − 1dbsE − md . 0,

1 otherwise.

s3d

Here,b;1/kbT andq.1. In the limit q→1, s1d reduces to
the familiar Shannon entropy function,

lim
q→1

Ssqd = − kbo
i=1

W

pi ln pi , s4d

and Eq.s3d reduces to the familiar Fermi-Dirac distribution,

lim
q→1

f sqdsEd =
1

ebsE − md + 1
. s5d

Figure 1 shows a plot off sqdsEd for different values ofq,
with m=5 eV and T=300K. Figure 2 shows a plot of
f sqdsEd for different values ofT, with m=5 eV andq=1.1. As
one can see in the zero temperature limit, Eq.(3) will reduce
to the step function corresponding to an ideal degenerate
Fermi gas. On the other hand, withT kept fixed, increasingq
will make the distributionf sqdsEd steeper. It has apparently
the same effect as that produced by reducingT (see Fig. 3).
In fact, the slope off sqdsEd at f sqdsEd=0.5 is equal to −qb /4,
so “nonextensivity” seems to increase the degree of degen-
eracy. This of course supports the viewpoint thatq is a mea-
sure of the correlation in the system.

III. THOMAS-FERMI MODEL BASED ON THE
TSALLIS FORMALISM

Rewriting (3) as a function of momentum we obtain for
the electron number density

n =
1

p2"3
E

0

` p2dp

1 +H1 + sq − 1dbF p2

2m
− eVsrd − mGJq/sq−1d

,

1 + sq − 1dbF p2

2m
− eVsrd − mG . 0. s6d

Using Eq.(6) in the Poisson equation

¹2V = 4pen, s7d

and assuming spherical symmetry, we obtain a generalized
Thomas-Fermi equation

1

r

d2srVd
dr2 =

2

p"3es2mbd3/2Q1/2
sqd
„bheVsrd − mj…, s8d

where the functionQn
sqdsyd is defined by

Qn
sqdsyd =E

0

` tn

1 + f1 + sq − 1dst − ydgq/sq−1d

3H„1 + sq − 1dst − yd…dt, s9d

Hsxd being the Heaviside step function.
Integration by parts yields

FIG. 1. Plot of f sqd vs E for m=5 eV andT=300 K. FIG. 2. Plot of f sqd vs E for m=5 eV andq=1.1.
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Qn
sqdsyd =

q

n + 1
E

0

` tn+1f1 + sq − 1dst − ydg1/sq−1d

h1 + f1 + sq − 1dst − ydgq/sq−1dj2

3H„1 + sq − 1dst − yd…dt. s10d

Settingz; t−y, we obtain for weak-thermal effectssi.e., uyu
@1d,

Qn
sqdsyd =

q

n + 1
yn+1E

−`

` S1 +
z

y
Dn+1

f1 + sq − 1dzg1/sq−1d

h1 + f1 + sq − 1dzgq/sq−1dj2

3H„1 + sq − 1dz…dz. s11d

Further, expandingf1+sz/ydgn+1 in powers ofz/y we obtain

Qn
sqdsyd =

1

n + 1
yn+1I0

sqd + ynI1
sqd +

n

2
yn−1I2

sqd + ¯ , s12d

where

In
sqd = qE

−`

` znf1 + sq − 1dzg1/sq−1d

h1 + f1 + sq − 1dzgq/sq−1dj2H„1 + sq − 1dz…dz.

s13d

Now, Eq.(8) can be simplified using Eq.(12) and making
the following change of variables:

r ; bx, Vsrd − m ;
Ze2F

r
,

whereZ is the atomic number, and

b ;
p2/332/3

27/3

"2

fI0
sqdg2/3Z1/3mee

2, ṽ ;
3

2
kbT

I1
sqdb

I0
sqde2Z

, s14d

v ;
3

8
skbTd2 I2

sqdb2

I0
sqde4Z2 ,

we then obtain

d2F

dx2 =
F3/2

Îx
F1 + ṽ

x

F
+ vS x

F
D2G . s15d

Observe the appearance of a Tsallis correction term, namely,
the one withṽ in the Thomas-Fermi equation. Note that the
Tsallis correction term is proportional tokbT whereas the
usual thermal-correction term… f15g, namely, the one with
v, is proportional to skbTd2. So, v! ṽ!1, in the
“low-temperature”2 limit and the Tsallis correction term
dominates the usual thermal correction term in this limit.

Equation(15) may therefore be approximated by

d2F

dx2 =
F3/2

Îx
S1 + ṽ

x

F
D . s16d

The Tsallis correction also leads to theq-dependent integrals
in the scaling factors ins14d. The integralI0

sqd is, however,
easily calculated and can be shown to be identically equal to
1; therefore, the Tsallis correction vanishes whenT=0, as to
be expected. Thus, following the general ideas inf6g, f7g,
andf8g, the entropy nonextensitity appears to provide a use-
ful framework to describe the fractal nature of the Fermi
surface in the nondegenerate case. Table I presents values for
the first two integralsIn

sqd estimated numericallyssuch an
evaluation was also done by Torres and Tirnaklif16gd.

One notices thatI1
sqd tends to vanish withq→1, as it

should. To highlight theq dependence ofIn
sqd, (13) can be

written as

In
sqdE

−`

`

znjsz,qddz, s17d

where

jsz,qd =
qf1 + sq − 1dzgq1/sq−1d

h1 + f1 + sq − 1dzgqq/sq−1dj2Hf1 + sq − 1dzg.

Differentiatingjsz,qd over q and evaluating the first two
derivatives forq=1, we have

U ] jsz,qd
] q

U
q=1

=
ez

s1 + ezd2 −
e2z2

2s1 + ezd2 +
ze2zsz− 2d
s1 + ezd3 ,

2The“low-temperature” actually refers to temperatures of
Os106 Kd. The concomitant thermal effects are still small because
of the very large Fermi energy in cases of interest.

FIG. 3. Plot of f sqd8 vs E for m=5 eV andT=300 K.

TABLE I. Values for the first two integralsIn
sqd estimated

numerically.

q I1
sqd I2

sqd

1.01 0.016 3.228

1.05 0.075 3.039

1.10 0.137 2.907

1.20 0.236 2.870

1.50 0.488 4.000
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U ] jsz,qd
] q2 U

q=1
=

ezz2

s1 + ezd2 +
2e2zsz− 2d
s1 + ezd3 +

ezz4

4s1 + ezd2

+
2ezz3

3s1 + ezd2 −
ezz2sz− 2d
s1 + ezd3

+

3

2
z2e3zsz2 − 4z+ 4d

s1 + ezd4 −
1

2

z2e2zsz2 − 4z+ 4d
s1 + ezd3

−
2

3

e2zz2s− 3 + 2zd
s1 + ezd3 , s18d

etc. Using these results we obtain from Eq.(17)

I1
sqd =

p2

6
sq − 1d −

2p

3
sq − 1d2 + O„sq − 1d3

…,

I2
sqd =

p2

3
−

2p2

3
sq − 1d −

229p2

90
sq − 1d2 + O„sq − 1d3

…,

s19d

etc.
Observe that, using Eqs.(14) and (19), Eq. (15) reduces,

in the limit q→1, to the Marshak-Bathe[15] equation

d2f

dx2 =
F3/2

Îx
F1 + vS x

F
D2G . s20d

IV. VIRIAL THEOREM

Following Feynman, Metropolis, and Teller[17], consider
the kinetic energy of all electrons in some atom with radius
a:

Ekin =
16p2

h3m
E

0

a

r2drE
0

` p4dp

1 +F1 + sq − 1dSb
p2

2m
− hDGq/sq−1d

,

s21d

where

h ; bfeVsrd − mg.

Setting

y ; b
p2

2m
, s22d

Eqs.s21d and s6d become

Ekin =
s2mkbd5/2

p"3m
E

0

a

r2drE
0

` y3/2dy

1 + f1 + sq − 1dsy − hdgq/sq−1d ,

s23d

n =
s2mkbd3/2

2p2"3m
E

0

` y1/2dy

1 + f1 + sq − 1dsy − hdgq/sq−1d . s24d

Integrating Eq.s23d by parts, first with respect tor, and then
again with respect toy, and using Eq.s24d, we obtain

Ekin =
a3s2mkbd5/2

3p"3m
E

0

` y3/2dy

1 + f1 + sq − 1dsy − h*dgq/sq−1d

− 2peE
0

a

r3] V

] r
nsrddr, s25d

whereh* is the value ofh at the surface of the atom.
Computing the pressure at the surface as the momentum

carried across this surface in unit time per unit area, we have

P =
2

h3
E

0

`
4p

1

3
pS p

m
Dp2dp

1 +F1 + sq − 1dSb
p2

2m
− h*DGq/sq−1d

or

P =
s2mkbd5/2

6p2"3m
E

0

` y3/2dy

1 + f1 + sq − 1dsy − h*dgq/sq−1d . s26d

The first term in Eq.(25) can then be expressed as 3PV /2
whereV is the atomic volumeV=4/3pr3. To evaluate the
second term in Eq.(25), note that Eq.(7) and the spherical
symmetry assumption will lead to

n =

V9 +
2

r
V8

4pe
. s27d

We have for the potential energy of all atomic electrons

Epot =
4pe

2
E

0

a

Vsrdnsrdr2dr. s28d

Using Eqs.(27) and (28) leads to

2peE
0

a

r3] V

] r
nsrddr =

Epot

2
. s29d

Using Eqs.s25d, s26d, ands29d, we obtain the virial theorem

2Ekin + Ep = 3PV, ∀ q ù 1. s30d

Thus, the virial theorem is a robust result that is not altered
by the nonextensivity of entropy.

V. BINDING ENERGY OF AN ATOM

The virial theorem(30) shows that the total binding en-
ergy −E of the atom is equal to the total kinetic energy.
Using Eqs.(9) and (23) becomes
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Ekin =
s2mkbd5/2

p"3m
E

0

`

Q3/2
sqd shdr2dr. s31d

Using the same approach as inf5g, and expandingQ, under
the weak-thermal effect condition, we have from Eq.s12d,

Q3/2
sqd shd =

2

5
h5/2 + h3/2I1

sqd + ¯ . s32d

Using Eq.(32) and the truncated Thomas-Fermi equation
(16), and scaling the variables as per(14), we obtain

Ekin =
3

5

e2Z2

b
E

0

` F5/2

Îx
dx+

3

2
I1

sqdZkbTE
0

`

F3/2Îxdx. s33d

After integration by parts and some algebra we obtain the
result for the binding energy of the atom

Eb = −
3

7

e2Z2

b
F− F8s0d −

2

3
ṽG + Osṽ2d. s34d

Equations34d shows thatEb is reduced by the nonextensive
entropy effectq.1. Thus, the nonextensivity of entropy ap-
pears to provide a means to remedy theboundary effect.

VI. DISCUSSION

In the present paper we have reformulated the Thomas-
Fermi model by incorporating the nonextensive entropy pre-

scription. The entropy nonextensivity contribution dominates
the usual thermal correction term in the “low-temperature”
limit. On the other hand, the entropy nonextensivity concept
appears to provide a useful framework to describe the fractal
nature of the Fermi surface in the nondegenerate case. We
have given generalization of the Thomas-Fermi equation for
the nonextensive entropy cases. The nonextensive entropy
corrections vanish in the zero-temperature limit, as to be ex-
pected. However, in the low-temperature limit, the nonexten-
sive entropy corrections dominate the usual thermal correc-
tions. We also have shown that the virial theorem is a robust
result that continues to hold also in the nonextensive entropy
regime. We have made analytical calculations of some
atomic properties as the binding energy of the electrons in
the atoms and have found that the binding energy is reduced
by the nonextensive entropy effects. So, the nonextensivity
of entropy appears to provide a means to remedy the bound-
ary effect. However, quantitative comparison of Eq.(34)
with experimental data at this time appears to be difficult
because binding energies of neutral atoms forZ.20 are
rarely known experimentally(Englert [18]).
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