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Thomas-Fermi model: Nonextensive statistical mechanics approach
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In this paper, the Thomas-Fermi model for large atoms is reformulated by incorporating the nonextensive
entropy prescription. The entropy nonextensivity contribution dominates the usual thermal correction term in
the “low-temperature” limit. On the other hand, the entropy nonextensivity concept appears to provide a useful
framework to describe the fractal nature of the Fermi surface in the nondegenerate case. Analytical calculations
are given for some atomic properties, such as the total binding energy of the electrons in the atom. The
nonextensivity of entropy is indicated to have the potential to provide a means to remedy one of the well-
known weaknesses in the Thomas-Fermi model—the boundary effect. The virial theorem has been shown to be
a robust result that holds also in the nonextensive entropy regime.
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[. INTRODUCTION [10] for an extensive bibliography on the theory and appli-
cationg. This nonextensive thermostatistical prescription has
The Thomas-Fermi statistical mod@homas[1], Fermi  been shown11,17 to afford a consistent thermodynamic
[2]) of the atom provides a heuristic semiclassical method tglescription of such systems. It is therefore of interest to re-
describe the ground-state potential fields and charge densitié@mulate the Thomas-Fermi model for an atom with thermal
in large atoms, metals, and in astrophysical objects such #&ffects by incorporating the nonextensive entropy prescrip-
neutron starg3], [4]. Despite the crudeness of the physicaltion [13] and to explore whether this approach provides a
approximation, the Thomas-Fermi model remains useful du&émedy for the above-mentioned weakness of the Thomas-
to its simplicity and elegance and serves rather well as &€rmi model.
starting point for the study of interacting many particle sys-
tems. In this model one starts with relations appropriate to
the homogeneous electron gas obeying the Fermi-Dirac sta- Il. NONEXTENSIVE THERMOSTATISTICS
tistics and then useslacal density approximatioto apply
these to the inhomogeneous charge cloud. The electrostatic
potential V(r) of the system can be determined by solving
Poisson’s equation fov(r). Though more than 75 years old
the Thomas-Fermi model is still a subject of improvements
(see Shivamogdi5], and references thergin
One well-known weakness of the Thomas-Fermi model is

Tsallis's nonextensive thermostatistics is based on two
postulateq9]:
(1) The entropy of the system is given by

that it describes incorrectly the innermost electrons that con- 1 _ZW pd
tribute most to the binding energy of the atom—thmund- g9 = kb—'zl, (1)
ary effect This defect may be traced to the fact that this q-1
model allows too great a density of electrons very close to ; :
the nucleugthe electron density in fact tends to infinity at (2) the expectation value of an observakles
the nucleus ag=?) thereby causing a breakdown of the
local-density approximation near the nucleus. This defect
leads to predictions of the total binding energy of the atom W
that are higher than the experimental binding energies de- EAipiq
rived from spectroscopy. (Ay= i=1 2
In dealing with the statistical properties of systems with W '
long-range interactionsit has been proven useful to extend > p
i=1

Boltzmann-Gibbs thermodynamics by generalizing the con-
cept of entropy to nonextensive regim@sallis[9], see Ref.

where q is the nonextensivity parametepi:E}’;’lpizl are
probabilities of the microstatesee]12] for a discussiojy and
*Electronic address: bhimsens@pegasus.cc.ucf.edu k, is a constant.
'Generalization of Boltzman-Gibbs thermodynamics has also Maximizing (1) subject to constraints of conservation of
been found useful in dealing with multifractal properties of systemstotal energy and the number of particles one may derive for
(Beck[6], Shivamoggi and Beck7], and Shivamoggj8]). the Fermion distribution functiofiLl2] and [14]:
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1
— if1+(g-1)BE-w >0,
(8 = T+[1+(q- DAE- et | AT DRETH @
1 otherwise.
[
Here,3=1/k,T andgq>1. In the limitq— 1, (1) reduces to 1 (= p’dp
the familiar Shannon entropy function, = f ,
W2ﬁ3 0 p2 a/(g-1)
w 1+11+(q-DB| ——-eMr -u
imS?=-k,> p; Inp, (4) o
-1 i=1
2
and Eq.(3) reduces to the familiar Fermi-Dirac distribution, 1+(q- 1)’8{2% -eMr) - ,u} > 0. (6)
i (@D(E) = 1 . . . .
lelf (B)= PE- L (5 Using Eq.(6) in the Poisson equation
Figure 1 shows a plot of¥(E) for different values of, V2V = dmen, )

with =5 eV and T=300K. Figure 2 shows a plot of
f(@(E) for different values off, with x=5 eV andq=1.1. As
one can see in the zero temperature limit, &ywill reduce i .
to the step function corresponding to an ideal degenerat&nomas-Fermi equation
Fermi gas. On the other hand, withkept fixed, increasing
will make the distributionf®(E) steeper. It has apparently 1d3(rv) 2

= -_= 32 (q) -
the same effect as that produced by redudingee Fig. 3. C A aae2mp) o (Blevr) - ub),  (®
In fact, the slope of @(E) at f9(E)=0.5 is equal to g3/4,
SO “nonextensivity” seems to increase the degree of degen- (@ ,
eracy. This of course supports the viewpoint thas a mea-  Where the functior® *(y) is defined by
sure of the correlation in the system.

and assuming spherical symmetry, we obtain a generalized

tn

@ﬂw=J
_ — v)]%(a-1)
IIl. THOMAS-FERMI MODEL BASED ON THE o 1+[1+(Q-D(t-y)]
TSALLIS FORMALISM XH(1+(g-1)(t-y))dt, (9

Rewriting (3) as a function of momentum we obtain for

the electron number density H(x) being the Heaviside step function.

Integration by parts yields
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FIG. 1. Plot of f@ vs E for u=5 eV andT=300 K. FIG. 2. Plot off@ vs E for u=5 eV andq=1.1.
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FIG. 3. Plot off@" vs E for =5 eV andT=300 K.

09(y) = q f“ ™1 +(q- 1)(t - y)]H@D

n+1 o {1+[1+(q-1D)(t-y)¥aD)2
XH(1+(q-1)(t-y)dt. (10)

Settingz=t-y, we obtain for weak-thermal effectse., |y|
> 1)1

z n+l
S (1 +§) [1+(q- Dz
oty =—L s

n+1” J. {1+[1+(@-)7¥ Y
XH(1+(q-1)2)dz (11

Further, expandin§l +(z/y)]™! in powers ofz/y we obtain

0W(y) =

1 n
— 1yn+1|8q) + yn|(lq) + Eyn—1| (Zq) +0, (12

where

T (A b (e V)4
") @ nZe Ty

H(1+(q-1)2dz

(13

Now, Eq.(8) can be simplified using E¢12) and making
the following change of variables:

2P
r = bx, V(r)‘,U«ET,

whereZ is the atomic number, and

71,2/332/3 h2
27/3 [| gq)]2/3zl/3meeZ’

3
b= v= kT
v 2b

|9e?z’

we then obtain
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TABLE I. Values for the first two integralsl(n‘” estimated
numerically.

q |;(1) |(2CI)
1.01 0.016 3.228
1.05 0.075 3.039
1.10 0.137 2.907
1.20 0.236 2.870
1.50 0.488 4.000

qu) (1)3/2 X ( X )2

—=—=1+v—+v| ] |.

d@  Vx O ®
Observe the appearance of a Tsallis correction term, namely,
the one withv in the Thomas-Fermi equation. Note that the
Tsallis correction term is proportional tQ,T whereas the
usual thermal-correction term. [15], namely, the one with
v, is proportional to (k,T)2. So, v<v<1, in the
“Iow—temperaturea limit and the Tsallis correction term

dominates the usual thermal correction term in this limit.
Equation(15) may therefore be approximated by

d2q) CD3/2 X
=147~ ].
e \x ( ”cb)

The Tsallis correction also leads to thalependent integrals
in the scaling factors irf14). The integrallgq) is, however,
easily calculated and can be shown to be identically equal to
1; therefore, the Tsallis correction vanishes wherD, as to
be expected. Thus, following the general ideag6h [7],
and[8], the entropy nonextensitity appears to provide a use-
ful framework to describe the fractal nature of the Fermi
surface in the nondegenerate case. Table | presents values for
the first two integralslﬁf” estimated numericallysuch an
evaluation was also done by Torres and Tirnfk8]).

One notices thal(lq) tends to vanish withg—1, as it
should. To highlight theg dependence ofgq), (13) can be
written as

(15

(16)

1@ f k 2'¢(z,q)dz, (17)

where
q[1 +(q-)zZjq" @™
{1+[1+(g- 1zJq¥@ D)2

Differentiating £(z,q) over q and evaluating the first two
derivatives forg=1, we have

dézq)| _ & &7 +ze22(z—2)
99 g (1+€)? 2(1+€)2 (1+e)®’

&zg) = H[1+(g-1z].

2The"low-temperature“ actually refers to temperatures of
O(10° K). The concomitant thermal effects are still small because
of the very large Fermi energy in cases of interest.
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2e?(z-2) . ez
(1+e)®  4(1+e)?
e72(z- 2)
(1+e)?

a8z | | €2
aqz g=1 B (1 +ez)2
2¢’7
+ -
3(1 +€)?

§23z _
. 226 (22 47+ 4) 1.22622(22—42"'4)

1+e* 2 1+
26¥72(-3+2)
3 (1+€)° (18)

etc. Using these results we obtain from E#j7)

i 2
I ="a-1- ;’T(q— 12+ 0((q- 1)%),

w27 2297
=5 -5 (@-1- =5 ~@-1?+0((a- 1,

(19

etc.

Observe that, using Egél4) and (19), Eq. (15) reduces,

in the limit g— 1, to the Marshak-BathEL5] equation
d2 3/2 2
d) ® {1 v( X ) } .
dX2 \rX (I)

IV. VIRIAL THEOREM

(20)

Following Feynman, Metropolis, and Tellgt7], consider
the kinetic energy of all electrons in some atom with radius

a:

p*dp

p? @D’
1+ 1+(q—1)(ﬁ—— 71)
2m

(21)

1672
=] e

where

n= pleMr) - u].
Setting

2

y= B—,

om (22

Egs.(21) and(6) become

Ekm (zml%)SIZJ f

3/2dy
1+[1+(a- Dy -]V
(29)
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3/2 o> 1/2
_ (2mk) f y-“dy (24

C27m )y 1+[1+(q- Dy - p]¥@ Y

Integrating Eq(23) by parts, first with respect to, and then
again with respect tg, and using Eq(24), we obtain

‘,:.13(2',7“%)5/2[0O y3/2dy
gmh’m Jo 1+[1+(q- Dy 7)]7 7

Buin=
(25

where 7" is the value ofy at the surface of the atom.
Computing the pressure at the surface as the momentum
carried across this surface in unit time per unit area, we have

Ad7—p| — |pdp
2 (* 3 \m

h3 0 pz a/(g-1)
1+ 1+(q—1)<ﬂ——n*)
2m

~ (ZmKD)S/sz y3/2dy
- 6a'm Jo 1+[1+(q- D)y - 7)1V

The first term in Eq(25) can then be expressed aB)d 2
whereV is the atomic volume/’=4/3xr3. To evaluate the
second term in Eq(25), note that Eq(7) and the spherical
symmetry assumption will lead to

or

(26)

2
V' + FVI
n=———. (27)

47e

We have for the potential energy of all atomic electrons

4 a
Epot= lef V(r)n(r)r?dr. (28)
2 Jo
Using Eqgs.(27) and(28) leads to
a oV E
27-ref r3—n(r)dr = 22 (29)
o ar 2

Using Egs.(25), (26), and(29), we obtain the virial theorem

2Ein+Ep=3PY, Oqg=1. (30)
Thus, the virial theorem is a robust result that is not altered

by the nonextensivity of entropy.

V. BINDING ENERGY OF AN ATOM

The virial theorem(30) shows that the total binding en-
ergy —E of the atom is equal to the total kinetic energy.
Using Egs.(9) and(23) becomes
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(2mk,)%? [~ © ) scription. The entropy nonextensivity contribution dominates

Eyin = WJ O3f(mredr. (31 the usual thermal correction term in the “low-temperature”
limit. On the other hand, the entropy nonextensivity concept

Using the same approach as[B], and expanding®, under  appears to provide a useful framework to describe the fractal

the weak-thermal effect condition, we have from Etp), nature of the Fermi surface in the nondegenerate case. We
have given generalization of the Thomas-Fermi equation for

57)2(77) =Z 512 7]3/2|(lq)+ (32) the nopextensi\_/e (_antropy cases. The non(_axt_ensive entropy
5 corrections vanish in the zero-temperature limit, as to be ex-

pected. However, in the low-temperature limit, the nonexten-
sive entropy corrections dominate the usual thermal correc-
tions. We also have shown that the virial theorem is a robust

Using EQ.(32) and the truncated Thomas-Fermi equation
(16), and scaling the variables as géd), we obtain

36272 [* P52 @ [ result that continues to hold also in the nonextensive entropy
Eyin = 5 p f N dx+ Ellq ZkaJ @7 %xdx. (33)  regime. We have made analytical calculations of some
oV 0

atomic properties as the binding energy of the electrons in
After integration by parts and some algebra we obtain théhe atoms and have found that the binding energy is reduced

result for the binding energy of the atom by the nonextensive entropy effects. So, the nonextensivity
5 of entropy appears to provide a means to remedy the bound-
E :_§92_Z {—CI)’(O)— 25} +0@?) (34) ary effect. However, quantitative comparison of K§4)
L b 3 ' with experimental data at this time appears to be difficult

because binding energies of neutral atoms Zor 20 are

Equation(34) shows thatE, is reduced by the nonextensive rarely known experimentallyEnglert[18]).

entropy effectg> 1. Thus, the nonextensivity of entropy ap-
pears to provide a means to remedy Hmeindary effect
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