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Long-wavelength quantum electrodynamics
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The description of few electron atoms interacting with a slowly varying electromagnetic field including
relativistic effects is analyzed. Simple and transparent derivations of relativistic and radiative corrections to
various atomic properties such as magnetic moments, radiative decay rates, and shielding of the electric dipole
moment are presented.
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I. INTRODUCTION shift [6,7] and fine structurd8,9], which currently are of

i . ) i primary interest in high-precision tests of QED and funda-
The aim of this work is the reformulation of quantum antal constants determinations.

electrodynamic theory for the description, including relativ-
istic effects, of the interaction of light atomic systems with
slowly varying electromagnetic fields with characteristic Il. FOLDY-WOUTHUYSEN TRANSEORMATION
wavelengths\ much larger than the atomic size. We obtain
this in several steps. The first step is the Foldy-Wouthuysen The Foldy-Wouthuysen transformati¢®] is the nonrela-
transformation of a Dirac Hamiltonian including the anoma-tivistic expansion of the Dirac Hamiltonian in an external
lous magnetic moment. The second step is the inclusion oflectromagnetic field. While it is well described in many
the electron-electron interaction in an external electromagtextbooks, we present here a slightly different and simpler
netic field which leads to a generalized Breit-Pauli Hamil-version. Moreover, we include the anomalous magnetic mo-
tonianHgp. The third step is the Power-Ziendil transfor-  ment and include some higher-order terms in this expansion
mation, followed by an additional transformation of tHgp ~ for further applications. In this section we closely follow the
Hamiltonian of an atom in an external time-varying electro-former work in Ref.[10]. The Dirac Hamiltonian for a spin
magnetic field, which leads tHl,\y. These unitary transfor- 1/2 particle[2] interacting with an external electromagnetic
mations lead to equivalent Hamiltonians, in the sense thaield including the anomalous magnetic moments [for
matrix elements with asymptotic states are the same. Howelectronsk= a/(2m)]
ever finite time evolution usually leads to gauge dependent,
ill-defined matrix elements and this issue is not studied here. ex o

The second quantization of the electromagnetic field in- H=a -7+ pm+eA+—(iBa-E-B%-B), (1)
teracting with the atom is performed using Feynman integra- 2m
tions by pathg2]. This way of quantization allows for great
flexibillity ir_1 using any transformation of fields, as long as the \where 7=p- eA The Foldy-WouthuyseiFW) transforma-
Jacobian is 1. This approach resembles the Lagrangian @t S[2] leads to a new Hamiltonian
nonrelativistic quantum electrodynami@§RQED), first in-
troduced by Caswell and Lepad8] in the calculation of . L
higher-order QED corrections to positronium hyperfine split- Hew=€° (H-id)e™, (@)
ting. We use this approach for investigation of three related
problems: relativistic and radiative corrections to the magwhich does not couple upper and lower components of the
netic moment of a bound electron, relativistic corrections toDirac wave function up to a specified order in thend éx-
transition rates, and relativistic corrections to shielding of thepansion, namely 1. The FW operatoS is a sum of two
electric dipole moment. We obtain here known and even olderms, S=S,+ S, where the second one includes an addi-
results, but present their derivation in a simple and unifiedional transformation required by the presence of the anoma-
way. We obtain also several new results, apart fidp,, lous magnetic moment. These terms are
such as self-energy correctionsgdactors of 2°P; state of

helium, and relativistic corrections to some transition rates. i 1 1

This approach, we think, can be used for the calculation of§ = - —1 Ba-7- —=B(a-m)°+ —[a - meA-ig],

relativistic corrections to the Casimir-Polder potentjd], 2m 3n? 2m

calculation of two-loop radiative corrections to the bound-

electrong factor [5], and of higher-order self-energy correc- .

tions in few electron atoms, for example, to helium Lamb SS=— B B s - S B 3

om|2m @ 7 gppl® TR Bl (3

*Email address: krp@fuw.edu.pl; www.fuw.edugtp The FW Hamiltonian is expanded in a power serieSin
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1 IIl. THE GENERALIZED BREIT-PAULI HAMILTONIAN
Hew=H +[iS;H —ig]+ =[iS;[iS;H —i4]]
2! Since the one-particle HamiltoniaHg,, represents the
1 complete interaction of a charged particle with the electro-
+§[is;[is;(iS;H—iﬁt)]] magnetic field, it allows one to obtain the few-electron,
' Breit-Pauli HamiltonianHgp [12]. Hgp includes a sum of
T ) Hry for all electrons, static Coulomb interactions, and cor-
* plSASiS;ASIH =g+ -+, (4 rections to the electric as well as magnetic interactions be-
' tween electrons and the nucleus. Corrections to the electron-

and higher-order terms in this expansion, denoted by dotycleus interaction are easily accounted for by seting
v_v|II not play a r_ole. As a resullt.of_ these mu_It|pIe commu'ta— =-Zaf/r3 in Eq. (5) and we assume for simplicity that the
tions one obtains a nonrelativistic expansion of the Diragyycleus is static and spinless. The derivation of electron-

HamiltonianH, namely electron interactions is as follows. In the nonrelativistic limit,
- e =4 the few electron Hamiltonian is
_ 0 - 5T e
Hew= o+ e~ —(1+ k)G B - s = — (1 + 2) S
2m 2m 8m> 8m P, Za o
Ho=2 (oo -—]+2 —. (6)
a 2m Mo a>b lab

- N - N R > e N
X[V-E+o-(EX7-7X E)]+—3{0'-B71'2
8m This Hamiltonian determines the nonrelativistic equal-time

+ 726 . B+ W7 Bi.g+m. a0 é]}_ (5) two-particle _propagator. In quantum field thgoretlcal ap-
proach one is able to calculate various corrections to propa-

The Foldy-Wouthuysen transformation, apart for determinagators, which inverse leads to some effective Hamiltonian

tion of leading relativistic effects, was found to be very con-8H. The relativistic correctiordH,, to interaction between

venient in the calculation of higher-order corrections to theparticlesa andb is obtained from the one-photon exchange

Lamb shift in hydrogenic systenjg1]. amplitude
|
(b|oHqe|d) = & J T, ] (@l t0eT Ty~ e g)
o m*i * 2 E,—Ho—ko+i e™®
Kip_ L ik
+(p|Tp(K) € E¢—H0+ko+ie‘7:‘( k) e |¢>}. (7)

where ¢ is an eigenstate ofy, J is an electromagnetic dk > = )
current operator for particla, andG,, is the photon propa- (¢loHarl ) = € (27 3GuuK) (9| Th (ke
gator, for convenience in the Coulomb gauge R

1 X Ty~ K)|¢)- 9

o p=v=0 It is convenient at this point to recall the Fourier transform of

G(k) = 1 Kk (8 G(k) in the nonretardation approximation
—( - '—l>, =i, v=]
k(2) -k +ie k? . 1
3

Since we aim here to derive only leading relativistic correc- GW(F) :J d kaew(ﬁ) =4 X
tions, we perform nonretardation approximation, namely set (2m _ _(5__ + ﬂ)
ko=0 in the photon propagat@,,(k) and (k). Without this e\ f2)
approximation Eq(8) would include higher-order terms in- (10)

cluding Lamb shift, see for details R¢fL3]. The integration
with respect tdk in Eq. (7), after symmetrizatioky«—ko, ~ The first term is responsible for the Coulomb interaction and
leads to the second one for the magnetic interaction. The electromag-
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netic current operatog7“(k) is defined as a coefficient in
front of eA,(K) in Hey,. The J° component,

PR =1+ '(14m2")*12 %—%KIZ{ (11)

gives relativistic corrections of the form

M=~ 5 (1 + 20 8(1ap) + m2 e (1420

X(J’b-FabX 77rb—5'a-l’ab>< ’lTa) (12)
Thejcomponent,
77 |(1 K) .
k) = &% K, 13
JK) = om (13)

gives the following corrections:

a (& rr . 2T«
SH.. =— = [ ab ab) 71-] _
=" ome e <rab 3, ) 3

(04 g.
(1 +4)22b
4“( & rgb

X(1+K)? Gy 0,0%(r ) +

r
(5” abzab>+4m2r32(l+K)

lab
X(&a-FabX %b—&b'rabx 7Ta) (14)

The sum ofHgy,, for each electron, the electron-nucleus
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+(1+2) (0 Tap X = &a “Tap X 7a)]. (17)

The A E,B fields are assumed here to be slowly varying
along the atomic size. They could represent, for example,
external magnetic and electric fields or the field of an emit-
ted or absorbed photon. Let us recall that the Breit-Pauli
Hamiltonian can be extended to higher orders of perturbation
calculus. It leads however to singular operators, which can
be regularized with some cutoff parameters. Within this ap-
proach one has obtained energy levels of ores® for
helium atom[6,7].

IV. POWER-ZIENAU TRANSFORMATION

The Power-Zienau transformatidi] explores the long
wavelength of electromagnetic field and is defined by

H' =e' ?He ?+ 44, (18)
with phase¢ given by

1
¢:eJ0 duF-Ai(uF). (19

The assumption that th&field is slowly varying allows one
to perform a Taylor expansion,

. 1 ..
AKX, 1) = A%(0,1) +r'A(0,t) + Er'rJ A0,

1
3 'A% (00 + - (20)

terms, electric and magnetic electron-electron mteractlongnd express derivatives &fin the Hamiltonian in terms of

forms the generalized Breit-Pauli Hamiltoniétgp

Hgp= EH + > Hap, (15)
a>b
-2 >4
m, Za e - T,
Ho= 2 -——+eA-—(1+k) G4+ B~ ==
a2m o, & 2m( K) 0a-Bs 8m’
7TZa r

or? (1+2x) é‘°’(r3)+ (1+2K) Ta- r—gxﬁa

e - - -
- 8—m2(1 +26)[V -Eq+ 0, (Eg X 71— 7y X Ep)]

m3{0'a B AT+ a0 - B, + K [7- a’TTa O,

+ 1;'a ’ &aﬁa ’ éa]}a (16)
a
Hap= ;_?(1"'2’() 53 (rap) =

SN2
X(_ + rabsrab>77Jb_ Z?(l +K)? Gy 5p6°(I 5p)

lab lab

r o
m2(1 )2 a b<5|1 ab2 ab>+ —

rab rab 4m rab

X[2(1+ k) (04 Fap X = O~ Fap X 77p)

fields E andB. The phasep takes the form
b= e{riAi + %ririA‘J— + %r‘rjr"Afjk + %r‘rjrkr'Afjk, +o } :

(21)

The potentialeA’ and 4,¢p combines to

0 - L I A
eA +at¢-—e[r ‘E+ P rJE’j+ar e, + ]

(22

and the transformation of is

o e . -. e , ,
e—l¢ e ¢ — pJ + 5(lf- X B)J + Erlrm(fjlkB!(m"' E]kah)

e . . .
+ Zr'rmr”(e”kBkmn+ E‘kaljn + ejnkBﬁm).

(23

In the many electron case, the phages a sum over all
electrons

1
¢=Eef0 du T, - A(uf,). (24)

and the Power-Zienau Hamiltonidth; being a sum of the
transformed HamiltonianBl, andH_, becomes
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Hpz= E Ha+ 2 Hip, (25)
a>b
22 =4 >
z Ly e
H;:;—;]—r—j— Pa m2(1+2;<)53(ra)+ 8 142072 3 @ _ef, . ——[L +(1+K)6.] B—Er rLE)+ (X B)?

e . F i e - e L2 R e ., - N > ek . ..,. =
- %(L;r]a*' r]aLla)Bij - _(1 + k)OJar!anj - m(l +2K)0,  EX P+ mpg(l-a"' o) B+ m(pa - 02)(Pa-B)

_e(1+2)Za eA(1 + 2«) Y - S e S
et 3 S (Fa X G)(Fa X B) - —mz(a'aX E)(Fy X B) - Er'arlar;E[jk— ﬁ(Lgr'arg+ r;rng)Bﬁj
e(l+k) e(l+ 2«)
= S RO + T NG X Bl + (G X BIr] B = AT, (26)
« S rl I" . 27« J ri r)
P =L T2 w20 S <—+ ab ) | - 1+x)?2 a6, 8(r t o 1+ 2"" (8'—3 bab)
ab Fab mz K) ( ab) Fob rgb Po 3m2( K) Oq - 0Op ( ab) ( ) rab rgb

o N N N N N N N N N N N N
+WX[Z(1+K) (Ga Tap X Pp= 0p - Tap X Pa) + (1 + 2«) (0 - Fap X Pp— T4 Fap X Pa)]
ab

- 252 X BYiph + i, X B (r £ rab) * gnpe? 2 LG Fap) (3 B) = (5 X Fa o B)

ab

+ (1 + 20)[(Gp X Fap) (Fy X B) = (G X Fap) (Fa X B)T}, (27)

whereE=E(0) andB=B(0). We have neglectel; and higher-order quadratic terms @ The HamiltoniarHp; in Eq. (25

is equivalent to the generalized Breit-Pauli Hamiltonldge under the assumption that the electromagnetic field is slowly
varying on the scale of atomic size. We perform now the next transformation which legtlg,t@a Hamiltonian in the form
most convenient for the calculation of various relativistic effects. This transformation is defined B¥8tauith

e(l+ 2K) - Eiryxpes 8120 fag o '
% 0dtcra-E(tra)><ra—§ e <E><ra 2E > (28)

The transformed HamiltoniaH, \, is decomposed into three parts

How=Hg+6H+H,, (29

whereH, is a Schrodinger Hamiltonian of a few electron atom in &), SH is a relativistic correction obtained frohiigp by
neglecting the electromagnetic field, akglis an interaction with the electromagnetic field

H|=E{—era ——[L +(1+K)0,] - B—Er = +i(ra>< B) ——(L'rJ +riL)B -——(1+k)0'al’JB'

a

e(l+2«) . e o ..oz ek o . o e(l+2)Za e’(1+ 2«)
+ =g OBl 7 5PALat ) B+ 5(Par Ga)(Pa B) -~ o (X G X B)= = (G2 X E)

1+ - e(l+2« -
e( K)OJ;r;I’LBIY(IJ+ ( )—> - e( K)

R R e . . ) e - .
X (Fa X B) = grgrgr';E[jk— —16m(L§r'arJa+ roriLeBY - i G EX T ol r Elrk

eqa o i
- 4Er r’r"rI EIJK|} + gb{ mz[(r X B) pb+ pa(rb X B)ﬂ(aj + rf’;k;rb ) + P 3 ——{2(1 + k)[ (04 X ) (Fp X B) (ap
X Fap) (Fa X B)] + (L + 26)[(Gp X Fap) (Fp X B) = (G X Fap) (F X é)]}}. (30)
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This classical electromagnetic field can now be quantized BB . =i .= S riab rgb

using the Feynman integration by paff®, by expressing Hs= > om [(Fa X B)' ph+p; (Fp X B)'] ot )

radiative corrections in terms of Green functions. As a test a=b ab ab

we have verified the equivalence of the nonrelativistic one-

loop, as well as two-loop self-energy in hydrogenic systems U K . . =

as derived fronHg,, andH, . The difference is proportional He=~-2> Py mz(pa *0a) (Pa-B). (32)
; ; ; ; a

to the linear and quadratic terms in the cutaff which are

eliminated by matching with the contribution coming from

, These terms agree with the former work of Hegstrom in Ref.
high-frequency photons.

[16]. They were the basis for precise numerical calculations
V. RELATIVISTIC AND RADIATIVE CORRECTIONS TO of g factors for low-lying states of lithium performed by Yan
THE ZEEMAN EFFECT in Ref. [20]. We have not considered here recoil and relativ-
istic recoil corrections, which were studied in Ref$6,18.
One of the interesting applications bff y is the deriva-  However, we obtain below radiative corrections of ordér
tion of relativistic corrections to the Zeeman effect. The Zeeor 2 3p; states of helium, with the aim of explaining the
man splitting has been measured very precisely for variougiscrepancy with the experimental val[i].
atoms and ions, and at present the measurement of the  The self-energy correction to the Zeeman effect, which is
factor in hydrogenlike carbon serves as the best determingf order o®ugB, vanishes foiS states, as was found by Heg-
tion of the electron mag$]. We aim here to recall the theory strom in Ref.[16]. The self-energy correction beyond the
for light few-electron atoms or ions. It has been first inves-anomalous magnetic moment does not vanish only for states
tigated by Perl and Hughes in R¢f4] and Van Vleck and  with nonzero angular momentum and is of nonrelativistic
co-workers in Ref[15]. A detailed derivation was presented origin. The nonrelativistic Hamiltonian for the helium atom

by Hegstrom in Ref[16], and evaluated numerically for sev- in the presence of an electromagnetic field in the length
eral states of helium by Lewis and Hughes in REf7],  gauge is

Anthony and Sebastian in Rdfl8], and more recently Yan
in Ref. [19]. The leading relativistic and also radiative cor- _ Cat B_ar F
rections can be derived frok, . This Hamiltonian is simi- H=Ho+Hy—er-E-er-E. (33)
lar to that derived by Hegstrof16], but is more general. In ¢ self-energy correction obtained from E83) is
fact we rederive in this section his results, as a simple veri-
fication of H . 2 o (€

In the nonrelativistic limit, the interaction with a constant AE=- —f do ®(¢| (FL+7>)
magnetic field is given by 3mlo

Hu =2 pg [La+ (1 +) G4] B, (31)

Ho+ HM -E+w
X(My+ 1) |4). (34)

We assume here thap is an eigenstate oHy+H,, with
where ug=-e/(2 m). Relativistic corrections can be easily energyE. Integration with respect ta leads to
obtained for an arbitrary light atom and arbitrary state by

taking all the terms which are linear B from Eq. (30), AE=- Q<¢|(F1 +7,) (Ho+Hy = E)3In|Hg + Hy, - E|
37
6
SHy =2 H;, X(FL+ 1)), (35

i=1
where the polynomial terms ie and the logarithmic term
- - In € do not contribute tdB field dependence, and thus are
H __2 _HB 2 L.+4.)-B . . . .
1= > mzpa( at 0l B, omitted. This formula is equivalent to the one presented
a by Hegstrom in Ref[16]. We now expand Eq(35) in-
cluding E in Hy, next neglect nonlogarithmic terms,

H,= S “e 1+ ZK)Z—:[(Fa X 6.)(Fa X B), which do not contribute, and obtain
a 4m ra
2a I
oE=- §T<¢|(r1+ F2)(Hy = (Hw)(Ho = E)*3 In[Ho ~ E|
MB& - N =
Hy=- 2 (1+26)[(G X Fa) (T X B) -
TS ame, : X (FL+1)[¢)
- . R > 2a0 L
(02 X Tao) (Fa X B)] =~ 550l (B1+ Bo) (Hy ~ (Hy)3 InlHo~ E
HBa e a2 -
Hy== 3 0251+ 06 X Far) (F, X B) X(P+ Pl ). (36)
b b
“ h . If we assume that the statehas specified value of magnetic
—(0p X Fap) (M X B)], quantum numberey andmg, then(Hy—(Hw))| #)=0 and
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(Hw = (Hw)) (Br+ P2 [#) =[Hy = (Hw), Py + P | ) o —0=[10.719 291 348.9) +0.032 742 41)] X 10°®
= ugBlid (Pl + pd|e). (37 =10.752 0337 &) x 10°°, (43)
After using this commutation relatio®E becomes where we followed notation from Ref17], gi=1-m/my

and the uncalculated higher-order terms are not included in

2« i ik i the error estimate. The experimental regflt g,=4.92.9)
oE=- RNBB i€"(my| (py + o) x 1076 [21] differs by two standard deviations from that in
Eq. (43). Before going any further in the calculation of
XIn[Ho = E| (py + p2)* [my). (38)  higher-order corrections ta factor, this experimental

It is convenient to express the Zeeman effect in terms of thvalue should be confirmed and improved.

orbital g; factor, which is defined bf=g B m g VI. RELATIVISTIC CORRECTIONS TO TRANSITION

| RATES
__ 2 gy 3 D i
9=~ szle I+ D2 1+1) =, m(my (p1 +p2) The long-wavelength Hamiltoniand,,, is particularly
" convenient for determination of relativistic corrections to
XIn[Ho = E| (py + p2)* [m). (39)  atomic transition rates. The one-photon transition rétee-

tween two atomic states is
This is a general expression which is valid for any state. We

turn now to the particular case of*P states(I=1) of he- dedy k'k
i ; ; ; A= 2a|o| T 7|6 - ,
lium, and convert this expression to a more convenient form.

The factorm, under the sum is replaced by |m)=L35 |m).

The resulting sum can be expressed in the Cartesian basis where w= |k| If the given atom can be treated in the nonrel-

(44)

states|i) as follows: ativistic approximation, then the transition operafois ob-
tained from the Schrddinger-Pauli Hamiltonian
my|Qmy) =32, (i|Qli) 40 - OB R
m|2_1< I|Q| I> 2 < |Q| ( ) T= <¢ %ék-r + E]O- X kelk-r l//> (45)

with nonstandard normalizatiofi|j)='/3. The third com- o heayy atoms and ions, various relativistic approaches are
ponent of the gnguﬁr-momen"[um operator acts on s$iate peing used, such as RCI, RMBPT, or MCDF and one-photon
according tolglj)=ie” |k). In this way one obtains the final transition rates are obtained from the matrix element of
expression fowy a €XT. As it was pointed out by Johnson in R¢R5], the
so-called negative-energy states can play a significant role

89, = Lmz(‘sinéki = 8 ) (N|(p1+p2)' In[Hy~ E| for rates of some forbidden transitions, and it is not clear to
77 which extend the commonly used MCDF approach includes
X(pg + pz)k|j>_ (41 them. For light systems one can obtain all relativistic correc-

tions including these negative-energy contributions in a sys-
For the numerical calculation we use exponential basis set aématic approach and derive effective operators which gov-
functions ¢p=e"* "1"F 27 "2 times the angular momentum ern a given transition. The Hamiltonia# , serves for these
factor in Cartesian coordinat¢82]. The expression in Eq. purposes. We derive complete relativistic correcti@is?)
(41) involves implicit sums over the states with positive to E1,M1, andE2 transitions and include anomalous mag-
parity and angular momenta equal to 0,1,2. We follownetic moment foE1 transitions. This section is based on two
here the method for the calculation of Bethe logarithms informer works, Refs[26,10. The transition energy(fre-
helium presented in Ref22] and more recently in Ref. quency w is

[23], and obtain the result
, o =(p|Ho+ 8H| ) = (YHo + SH|y), (46)

59, = i0_264 7061) = 0.032 742 41) X 10°6. (42 wheredH is defined after Eq(29). The transition currentin
™ the nonrelativistic theory, acquires various relativistic cor-
rectionsj=jy+ dj. The transition amplitudg€™ due to photon

This was the last unknown correction to t)dactor of order emission or absorption is then

a2 for helium 2°3P state. This self-energy correction has
been analyzed in Reff18,24]. Authors of Ref[18] present ‘ y ; 1

two numerical results, 0.017® versus 0.023®), and au- T =(¢l |9 +(| Jom&'ﬂlﬁ)
thors of Ref.[24] identified a term omitted in Ref[18] v o
which is equal to half of either of these two previous num-

bers. The result in Eq42) is complete and accurate to all (¢l 5H(E -H )’JOW> (47)
digits shown. However, it is too small and of opposite sign to

explain the following discrepancy. The theoretical refi®] | is obtained from the Hamiltoniai, as a coefficient of
is the photon polarization vectar from the vector potentiah
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> R _'.,__w 2
A(F) = eglr et (48) Frirke = (Frirke)@ + r_[5ij(rkrl)(2)+ SK(rI@ + 5 (ripk)@
N 7
Consistently with thisg andB fields are + SN @ 4§11 @) 4 $K(ri1) @] 4 (ririrkr)O
E=i wee'kr ot (49) (58)

3= ik X edkriot, (50)  The spin-dependent terms have already been derived from
Hgp in Ref. [10]. Here we include the spin-independent

For theEL1 transition one obtains terms, and present the result in a simpler but equivalent

. K2 r2 ik - R form. It is interesting to note thgi, in the above can be
Je=ik | 2 Fa( 30a) + En(l'a X Fa+TaX Ly expressed in terms of one-electron operators only.
a For M1 transition one obtainé=0)
iki }
+—— X 0, |, (51 -
4m - ik I
. 1= X X (0 Ta+ Ta+ T 0), (59)
where we denote bk=|k|=w and we used the following m a
decomposition into irreducible parts:
2 2 2
ArP = (Frr9® + (g 4l g psiy 52 _ 1, Kp, P 1Za L
(rrey =5 2 P A T b%a om0

It is a remarkable fact that relativistic effects cancel out for

fEl, with the exception for the presence of the anomalous -
. . . .. 2,2 2

magnetic momenk. Obviouslyk is not a complete radiative T La(l _ ks _ Pa ) + o

correction. There are radiative corrections to energies, wave a 10 2m? bbra 4M rgb

functions, and the vertex. The complete treatment has re-

cently been performed for hydrogenic atoms in R&f7], X (1 Fa X P+ Fa X Faplap - Po). (61)

where authors observed a strong cancellations between vari-

ous radiative corrections. A similar approach can be applied

for few electron atoms when precise values for transition _j; _ k2 [

i = Lo 2 E [
rates become available. a~ " 9 rara gm2 ara 4mr§ b ab ab
For E2 transition one obtainé«=0) -
i 2, 2 + LS r2+ pa Za (62)
] J i ~ -
L= _k_k(r rl_g ) (1_k )+Lki 3| 202" gn? 4mra bb;&,34mrab
T 2 3 28 ) 48m
L ik where we used the identity,
X[ry(fa X LYl +ri(fa X L)'+ H.c ]+ ——K Y
48m
| o ok k2rirk — [Ho,[Ho,rril]
X[ (F, X o)l +1) (Fy X a,)' ]+ K . o
[Fa (Fax 0o +15 (Fa X 0] 16 m? 2 . o 2Zarirh afrirh
ST T e T 2w, T )
. L 2 . L~ a b+a ab ab
X (O’Ia LL+al L, - 55” Oy La), (53 63
where we used the following decomposition into irreducible -~
parts: to simplify the results foiT) and T,. ju. has already been
ik (i i@ o« K 2 ki 2 skTi 2 sk o si{rk presented in the literature. The scalar partvas derived by
FrQT= (rrQY™ + €T + 5T + 5T/ + T+ 59T, Feinberg and Sucher in Rdi28], the vectorT, and tensor

(54)  TU parts together with the scalar one were derived by us
usingHgp in Ref.[10], however with one mistake. The third
Ti=1[r(Fx Qi+ FxQ), (55)  term forT, in Eq. (61) had the factor 1/2 instead of 1/4 as
in the above. These formulas can be used for the calculations
of relativistic corrections to transition rates. They are particu-

T'=1@'F-Q-r2Q), (56)  Jarly suited for forbidden transitions, where nonrelativistic
matrix elements are exactly equal to zero. Let us investigate
Ti= %(Zeri —rif. 6), (57) in more dgtails thg historically importaM1: 23S, -1 1S,
transition in atomic helium. We closely follow here the
and former work in Ref.[26]. The transition currenjy; is
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g 2 2 > ed .
FMIZEKX& (k ra+ p_az‘ 1Za+ iﬁ) D=%0'. (69

a 12 3M° 6Mr, s 6Mryy,

i~ (¢ 02){ In the following we neglect the anapole momenand also
~—kX ———= —( - r2) 2(pl p2) neglect theg? dependence of form factors, so we have

m 2 12 3m =1 andF,=k, the anomalous magnetic moment. The Dirac

1 (za zaﬂ Hamiltonian that includes andd is
em\r, 1,/ ] (64) L

oo ek . .
H=a-77+,3m+eAO+—K(I,8a-E—,BE-B)
and theM1 23S, — 1 1S, transition rate is 2m

ed. . - - -
ko - En(lﬁa’ -B+ BE : E) (70)

KK »
AM]_— 2akf 4 (5” - ?)(JII\/I1><JI\/]I1> (65)

i We are interested in the nonrelativistic expansion of an in-
teraction of a dipole moment with the electromagnetic field
(23> 22 12) 4 —(p2- ) and peffo_rm two transformati_ons. Th_e first one, due to Schiff
1281 ¥ g PP [32], eliminates the leading interaction of a dipole moment

with the electric field

4
=—ak®
3

— i Q _ Z_a 1 lS 66 . .
omir, 1, )t (66) H' =S (H—-ig) eS=H+[iSH-i4],  (71)
The matrix element was evaluated in the exponential ba5|\évhere
set with the result d -
S=-—p> . (72
2m
@8 (r 1)+ (- pd) - (222 g
172 m2 P~ P 6m\ ry ry We have assumed thdtis small, so quadratic and higher-
orders term ird are neglected. The transformed Hamiltonian
=?0.318 985 2, 60 s g

which together withk=0.728 494 998 &in a.u) leads to a L o ek - - - .d
transition rate ofAy,=4 2RO 2ma? k¥ (0.318985%  H'=a-m+pm+e+ o (ia-E-p2-B)-i_py'r
=1.272 426<10* s, where physical constants are from g g
Ref. [29]. Li8d o o ek o . = = L
i—pBa-B+ —— "E+E-
2m’3a 2m2m[y5(77 ™

VIl. ELECTRODYNAMICS OF EDM +ia - (FXE+EX @) -3 - (#XB-Bx m]. (73

An interesting issue in electrodynamics is the treatment offhe second transformation is a Foldy-Wouthuysen transfor-
elementary particles possessing electric dipole momentgation modified by presence af. We calculate only the
(EDM). It can be treated almost in the same way as th@eading terms which are proportional tord, and use stan-
anomalous magnetic moment. Let us briefly introduce aldard decomposition of the Hamiltonian into odd and even
possible coupling to electromagnetic fields which preserveyarts
Lorentz invariance. The electromagnetic current of a spin
1/2 particle can be expressed in terms of four Lorentz in- H =8m+0+¢. (74)

variants . )
The second transformation 8=-ig ®/(2m), and the new

(qz) HamiltonianH” becomes

j#zmp'{ i)~ 5 Fa@ora, + 25

H”:£®2+5:i+er—e(1+K)6’.,§+ed(l:K)
2m 2m om Ta?
< (e~ ) ¥~ S g3 u(p). (68 I

X(7X G-B+B-7 X d). (75

The a form factor is the anapole mome[®0], and breaks The interaction of a dipole moment with the electric field is
invariance under spatial inversios d is a dimensionless eliminated, and only the interaction with the magnetic field
electric dipole momenit31] which breaks both parity and  remains. This is the modified version of the shielding theo-
time reversall invariance. While we do not discuss here therem by Schiff[32]. We assume now that the atomic nucleus
origin of d, we investigate the electromagnetic interaction ofhas a nonvanishing EDM, and change notation accordingly
a charged particle of spin 1/2 having electric dipole momene_, -7 e m—M,5/2—1. The Hamiltonian Hy of the

D nucleus is(l = 1/2)

052502-8
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Ze(l+k)- - Zedl+
S0y g zedlti
2M

(76)

We aim now to derive a PT-odd electron-nucleus interaction,

which results from Eq(76), in the same way ablgp was
derived in Eq.(15). The Pauli termZ e (1+«)/MI-B leads
to the interaction Hamiltonian, which is analogousstd,, in
Eq. (14)

Zaf, X 7Ta >
PEREDS —

a

(1+K) |: W O'a7753(l’a)+

-

a

rrJ

2
a

Zala-J

o r3 7

r

PHYSICAL REVIEW A69, 052502(2004)

E d(1+ k) Za

OHp+=
PT M

{ [prI O'a7753( ra)

ab
+7T§3(ra)§br-5'a]+|: X Pa) - (PBp X r)
+ (B x 1) 3'°a)]
1 .
—5[(Pb><|)' ( )
i\ ol N
<5u 3rr2>r3(b w]}, (78)

where we set external field to 0, 35— p, and the momen-
tum of nucleusp— -2 pp. This Hamiltonian describes the
leading relativistic effects which prevent complete shielding
of the nuclear electric dipole for light atoms. The atomic
EDM can be obtained in the second order of perturbation
calculus

D= 2e<¢|2 Far=——— OHprl ). (79

(E- H)’

The PT-odd interaction Hamiltonian can be obtained from

Eq. (77) by the replacemerft-ée—d/(ZM) (X |.B+B-7
X 1), so one obtains

eZedZa(l + k)

-

“amw 2T

For atomic states with total angular momentw 0 and
total spin S=0 only the second term idHp; contributes.
This term has been originally derived by Schiff in REg2],

(P2 X fa)

>

=1oM 3mm E)'ab

|

.. (axp
3 Xpb"'pbxa—ga) b (80)
r3 r

It is interesting to note that inspite of this agreement, themagnetic momeni,=-2.127 497 72@5) 1y (nuclear mag-

original derivation by Schiff relied implicitly on the assump-
tion that there is no relativistic correction to the electron-

neton [29]. In a similar approach atomic EDM can be
calculated for other light atoms. However, for heavy at-

nucleus interaction coming from the nuclear EDM on theoms the more significant effect comes from tifedepen-

level of Breit-Pauli Hamiltonian. So, it was neglected the
coupling of EDM to magnetic field in Eq.70), which gives
such a correction. Moreover, it was omitted the commutato
of —d/(2 m)a-p with the spin-independent electron-nucleus
magnetic interaction.

Following Schiff, we summarize this section by the nu-
merical evaluation of atomic EDM for ground state %fe.
The second-order matrix element in E@9) is calculated
using the exponential basis s¢P2], with the result
(¢|"-|$p)=m « 15.32091). Using this result, one obtains for

the atomic EDM of*He
Zed| [ ze1+ K)}

Sl

= oDy, X 1.575 441) X 1077,

ma? 2
-15.320 91
e 3 91)

-
>

=0

(81)

dence ofd(g?) and F;(g?), which can be expressed in
terms of the so-called Schiff mome[&1]. Although EDM

has not yet been observed, precise measurem&8k
have put strong upper limits on it. Moreover new experi-
ments are planned, for example, for the radium atom
[34,35, due to a few enhancements such as accidental
degeneracy of two atomic states and the large nuclear
charge[36].

VIlIl. SUMMARY

We have presented an approach to quantum electrody-
namics of light few-electron atoms which explores different
scales of electron-electron interactions and interaction with
the quantum or external electromagnetic fields. We obtain a
nonrelativistic expansion using a sequence of transforma-

where the term in the first square brackets is the helion EDMions which lead to the long-wavelength Hamiltonibiny,.
Dy, and the term in the second square brackets is the helioAs an application of this approach we considered three cases:

05250
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relativistic and radiative corrections to magnetic momentsmagnetic moments, polarizabilities, and transition rates. The
relativistic corrections to shielding of the electric dipole mo- current experimental precision for helium fine structure of
ment, and relativistic corrections to transition rates. Eacl® 3P, [40] levels or 23S, -2 3P, [41] transition frequency is
case is summarized by an example of numerical calculationsnuch larger than theoretical predictions. What is lacking are
Other possible applications involve dynamic polarizability corrections of ordem «', which have been calculated only
and related relativistic corrections to the Casimir-Polder pofor hydrogenlike systems. We think the approach presented
tential. For light closed shell atoms, such as helium, the inhere can be used to systematically derive QED corrections.
teraction potential can be derived from the Hamiltonian ob-Apart from developing QED, one has to be able to calculate
tained fromH, in Eq. (30) by neglecting spin-dependent and accurate nonrelativistic wave functions. For this purpose cor-

higher-order terms related basis sets such as Hylleraas, Gaussians, and exponen-
5 tial are being developed for few-electron atoms, and several
H, ~ E —eFa-é— E(ri - _r2) E - Erzri E. promising results have been obtained recently, for example,
a 2\ 7% 38 7 gora calculations of Lamb shift for heliurfg,7], lithium [42,43,

e &2 and beryllium atom$44].

- G—m(L'arla+ riLL)B + ﬁ(ra X B)?. (82
. . ACKNOWLEDGMENTS

The most recent treatments in the literatyB¥—39 are

rather incomplete and do not include, for example, the fourth | wish to thank Bogumit Jeziorski and Andrzej Veitia for

term in Eq.(82). The main motivation for developing QED interesting discussions. This work was supported by the Eu-

is the precise calculation of higher-order corrections in ongopean Commission under Contract No. HPRI-CT-2001-

and few-electron atoms to properties such as energy level50034.

[1] E. A. Power and S. Zienau, Philos. Trans. R. Soc. London, Seff23] K. Pachucki and J. Sapirstein, J. Phys.3B, 5297(2000.

A 251, 427(1959. _ [24] I. Gonzalo and E. Santos, Phys. Rev.58, 3576(1997.
[2] C. ltzykson and J. B. ZubeQuantum Field TheoryMcGraw—  [25] A. Derevianko, I. M. Savukov, and W. R. Johnson, Phys. Rev.
Hill, New York, 1990). A 58, 4453(1998.

3] W. E. Caswelland G. P. Lepage, Phys. Lat67B 437(1988. |56 G pach and K. Pachucki, Phys. Rev. @4, 042510(2001).

4] H. B. G. Casimir and D. Polder, Phys. Rei3, 360,(1948. [27] J. Sapirstein, K. Pachucki, and K. T. Cheng, Phys. Re®9%

(3]
(4]
[5] T. Beieret al, Phys. Rev. Lett.88, 011603(2002.
(6]
[7]

5
6] K. Pachucki, Phys. Rev. LetB4, 4561(2000). 022113(2004.
7] V. I. Korobov and A. Yelkhovsky, Phys. Rev. Le®7, 193003 28] G. Feinberg and J. Sucher, Phys. Rev. L@, 681 (1971).
(2009. [29] P. J. Mohr and B. N. Taylor, Rev. Mod. Phy82, 351(2000.
[8] G. Drake, Can. J. Phys80, 1 (2002. [30] I. B. Khriplovich, Parity Nonconservation in Atomic Phenom-
[9] K. Pachucki and J. Sapirstein, J. Phys.3B, 803 (2003. ena(Gordon and Breach, London, 1991
[10] K. Pachucki, Phys. Rev. A&7, 012504(2003. [31] I. B. Khriplovich and S. K. LamoreawCP Violation Without
[11] U. D. Jentschura and K. Pachucki, Phys. Rev.54, 1853 Strangeness: Electric Dipole Moments of Particles, Atoms and
(1996. Molecules(Springer-Verlag, Berlin, 1997
[12] H. A. Bethe and E. E. SalpeteQuantum Mechanics Of One- [32] L. I. Schiff, Phys. Rev.132 2194(1963.
And Two-Electron Atom&lenum, New York, 1977 [33] M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson,
[13] K. Pachucki, J. Phys. B31, 5123(1998). Phys. Rev. Lett.86, 2502(2001.
[14] W. Perl and V. W. Hughes, Phys. Re®1, 842(1953. [34] K. Jungmann and L. Willmantprivate communication
[15] A. Abragam and J. H. Van Vleck, Phys. Re32, 1448(1953); [35] R. Holt (unpublishedl
K. Kambe and J. H. Van Vleckbid. 96, 66 (1954). [36] J. S.M. Ginges and V. V. Flambaum, e-print physics/0309054.
[16] R. A. Hegstrom, Phys. Rev. A, 451(1973. [37] E. A. Power and T. Thirunamachandran, Phys. Rev53
[17] S. A. Lewis, F. M.J. Pichanick, and V. W. Hughes, Phys. Rev. 1567(1996.
A 2, 86(1970. [38] M.-K. Chen and K. T. Chung, Phys. Rev. B3, 1439(1996).
[18] J. M. Anthony and K. J. Sebastian, Phys. Rev.48 3792 [39] A. Salam and T. Thirunamachandran, J. Chem. PH\&4,
(1993. 5094 (1996.
[19] Z.-C. Yan and G. W.F. Drake, Phys. Rev.30, R1980(1994). [40] M. C. George, L. D. Lombardi, and E. A. Hessels, Phys. Rev.
[20] Z.-C. Yan, Phys. Rev. A66, 022502(2002). Lett. 87, 173002(2001).

[21] M. L. Lewis and V. W. Hughes, Phys. Rev. 8, 2845(1973); [41] P. C. Pastoet al, Phys. Rev. Lett.92, 023001(2004).
C. Lhuillier, J. P. Faroux, and N. Billy, J. Phy$ariy 37, 335 [42] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Leftl, 113004

(1976. (2003.
[22] V. I. Korobov and S. V. Korobov, Phys. Rev. A9, 3394 [43] K. Pachucki and J. Komasa, Phys. Rev68, 042507(2003.
(1999. [44] K. Pachucki and J. Komasa, Phys. Rev. Lgti.be publishef

052502-10



