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I. INTRODUCTION

The aim of this work is the reformulation of quantum
electrodynamic theory for the description, including relativ-
istic effects, of the interaction of light atomic systems with
slowly varying electromagnetic fields with characteristic
wavelengthsl much larger than the atomic size. We obtain
this in several steps. The first step is the Foldy-Wouthuysen
transformation of a Dirac Hamiltonian including the anoma-
lous magnetic moment. The second step is the inclusion of
the electron-electron interaction in an external electromag-
netic field which leads to a generalized Breit-Pauli Hamil-
tonianHBP. The third step is the Power-Zienau[1] transfor-
mation, followed by an additional transformation of theHBP
Hamiltonian of an atom in an external time-varying electro-
magnetic field, which leads toHLW. These unitary transfor-
mations lead to equivalent Hamiltonians, in the sense that
matrix elements with asymptotic states are the same. How-
ever finite time evolution usually leads to gauge dependent,
ill-defined matrix elements and this issue is not studied here.

The second quantization of the electromagnetic field in-
teracting with the atom is performed using Feynman integra-
tions by paths[2]. This way of quantization allows for great
flexibility in using any transformation of fields, as long as the
Jacobian is 1. This approach resembles the Lagrangian of
nonrelativistic quantum electrodynamics(NRQED), first in-
troduced by Caswell and Lepage[3] in the calculation of
higher-order QED corrections to positronium hyperfine split-
ting. We use this approach for investigation of three related
problems: relativistic and radiative corrections to the mag-
netic moment of a bound electron, relativistic corrections to
transition rates, and relativistic corrections to shielding of the
electric dipole moment. We obtain here known and even old
results, but present their derivation in a simple and unified
way. We obtain also several new results, apart fromHLW,
such as self-energy corrections tog-factors of 23PJ state of
helium, and relativistic corrections to some transition rates.
This approach, we think, can be used for the calculation of
relativistic corrections to the Casimir-Polder potential[4],
calculation of two-loop radiative corrections to the bound-
electrong factor [5], and of higher-order self-energy correc-
tions in few electron atoms, for example, to helium Lamb

shift [6,7] and fine structure[8,9], which currently are of
primary interest in high-precision tests of QED and funda-
mental constants determinations.

II. FOLDY-WOUTHUYSEN TRANSFORMATION

The Foldy-Wouthuysen transformation[2] is the nonrela-
tivistic expansion of the Dirac Hamiltonian in an external
electromagnetic field. While it is well described in many
textbooks, we present here a slightly different and simpler
version. Moreover, we include the anomalous magnetic mo-
ment and include some higher-order terms in this expansion
for further applications. In this section we closely follow the
former work in Ref.[10]. The Dirac Hamiltonian for a spin
1/2 particle[2] interacting with an external electromagnetic
field including the anomalous magnetic momentk is [for
electronsk<a / s2pd]

H = aW · pW + bm+ eA0 +
ek

2m
sibaW ·EW − bSW ·BW d, s1d

wherepW =pW −eAW . The Foldy-WouthuysensFWd transforma-
tion S f2g leads to a new Hamiltonian

HFW = eiS sH − i]tde−iS, s2d

which does not couple upper and lower components of the
Dirac wave function up to a specified order in the 1/m ex-
pansion, namely 1/m3. The FW operatorS is a sum of two
terms, S=S0+dS, where the second one includes an addi-
tional transformation required by the presence of the anoma-
lous magnetic moment. These terms are

S0 = −
i

2m
HbaW · pW −

1

3m2bsaW · pW d3 +
1

2m
faW · pW ;eA0 − i]tgJ ,

dS= −
i

2m
H ek

2m
iaW ·EW −

ek

4m2faW · pW ;bSW ·BW gJ . s3d

The FW Hamiltonian is expanded in a power series inS*Email address: krp@fuw.edu.pl; www.fuw.edu.pl/˜krp
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HFW = H + fiS;H − i]tg +
1

2!
†iS;fiS;H − i]tg‡

+
1

3!
†iS;fiS;siS;H − i]tdg‡

+
1

4!
†iS;hiS;fiS;siS;H − i]tdgj‡ + ¯ , s4d

and higher-order terms in this expansion, denoted by dots,
will not play a role. As a result of these multiple commuta-
tions one obtains a nonrelativistic expansion of the Dirac
HamiltonianH, namely

HFW =
pW 2

2m
+ eA0 −

e

2m
s1 + kdsW ·BW −

pW 4

8m3 −
e

8m2s1 + 2kd

3f= ·EW + sW · sEW 3 pW − pW 3 EW dg +
e

8m3hsW ·BW pW 2

+ pW 2sW ·BW + kfpW ·BW pW · sW + pW · sW pW ·BW gj. s5d

The Foldy-Wouthuysen transformation, apart for determina-
tion of leading relativistic effects, was found to be very con-
venient in the calculation of higher-order corrections to the
Lamb shift in hydrogenic systemsf11g.

III. THE GENERALIZED BREIT-PAULI HAMILTONIAN

Since the one-particle HamiltonianHFW represents the
complete interaction of a charged particle with the electro-
magnetic field, it allows one to obtain the few-electron,
Breit-Pauli HamiltonianHBP [12]. HBP includes a sum of
HFW for all electrons, static Coulomb interactions, and cor-
rections to the electric as well as magnetic interactions be-
tween electrons and the nucleus. Corrections to the electron-

nucleus interaction are easily accounted for by settingEW

=−ZarW / r3 in Eq. (5) and we assume for simplicity that the
nucleus is static and spinless. The derivation of electron-
electron interactions is as follows. In the nonrelativistic limit,
the few electron Hamiltonian is

H0 = o
a
S pWa

2

2 m
−

Z a

ra
D + o

a.b

a

rab
. s6d

This Hamiltonian determines the nonrelativistic equal-time
two-particle propagator. In quantum field theoretical ap-
proach one is able to calculate various corrections to propa-
gators, which inverse leads to some effective Hamiltonian
dH. The relativistic correctiondHab to interaction between
particlesa andb is obtained from the one-photon exchange
amplitude

kfudHabufl = e2E d4k

s2 pd4 i
GmnskdHkfuJa

mskdeikW·rWa
1

Ef − H0 − k0 + i e
Jb

ns− kde−ikW·rWbufl

+ kfuJb
mskd eikW·rWb

1

Ef − H0 + k0 + ie
Ja

ns− kd e−ikW·rWa uflJ , s7d

where f is an eigenstate ofH0, Ja
m is an electromagnetic

current operator for particlea, andGmn is the photon propa-
gator, for convenience in the Coulomb gauge

Gmnskd =5
1

kW2
, m = n = 0

1

k0
2 − kW2 + ie

Sdi j −
kikj

kW2 D , m = i, n = j .

s8d

Since we aim here to derive only leading relativistic correc-
tions, we perform nonretardation approximation, namely set
k0=0 in the photon propagatorGmnskd and skd. Without this
approximation Eq.s8d would include higher-order terms in-
cluding Lamb shift, see for details Ref.f13g. The integration
with respect tok0 in Eq. s7d, after symmetrizationk0↔−k0,
leads to

kfudHabufl = e2E d3k

s2pd3GmnskWd kfuJa
mskWdeikW·srWa−rWbd

3Jb
ns− kWdufl. s9d

It is convenient at this point to recall the Fourier transform of

GskWd in the nonretardation approximation

GmnsrWd =E d3k

s2pd3GmnskWd = 4p 3 5
1

r

−
1

2r
Sdi j +

r ir j

rW 2 D .

s10d

The first term is responsible for the Coulomb interaction and
the second one for the magnetic interaction. The electromag-
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netic current operatorJmskd is defined as a coefficient in
front of eAmskd in HFW. TheJ0 component,

J0skWd = 1 +
is1 + 2kd

4m
sW ·kW 3 pW −

1 + 2k

8m2 kW 2, s11d

gives relativistic corrections of the form

dHab = −
pa

m2 s1 + 2kdd3srabd +
a

4m2rab
3 s1 + 2kd

3ssW b · rWab 3 pW b − sW a · rWab 3 pW ad. s12d

The JW component,

JW skWd =
pW

m
+

is1 + kd
2m

sW 3 kW , s13d

gives the following corrections:

dHab = −
a

2m2pa
i S di j

rab
+

rab
i rab

j

rab
3 D pb

j −
2pa

3m2

3s1 + kd2 sW a · sW bd3srabd +
a

4m2s1 + kd2sa
i sb

j

rab
3

3Sdi j − 3
rab

i rab
j

rab
2 D +

a

4 m2 rab
3 2 s1 + kd

3ssW a · rWab 3 pW b − sW b · rWab 3 pW ad. s14d

The sum of HFW for each electron, the electron-nucleus
terms, electric and magnetic electron-electron interactions
forms the generalized Breit-Pauli HamiltonianHBP

HBP = o
a

Ha + o
a.b

Hab, s15d

Ha =
pW a

2

2m
−

Z a

ra
+ e Aa

0 −
e

2m
s1 + kd sW a ·BW a −

pW a
4

8m3

+
p Z a

2m2 s1 + 2kd d3srad +
Z a

4m2s1 + 2kd sW a ·
rWa

ra
3 3 pW a

−
e

8m2s1 + 2kdf= ·EW a + sW a sEW a 3 pW a − pW a 3 EW adg

+
e

8m3hsW a ·BW apW a
2 + pW a

2sW a ·BW a + k fpW a ·BW apW a · sW a

+ pW a · sW apW a ·BW agj, s16d

Hab =
a

rab
−

p a

m2 s1 + 2kd d3srabd −
a

2m2pa
i

3S di j

rab
+

rab
i rab

j

rab
3 Dpb

j −
2pa

3m2 s1 + kd2 sW a · sW bd3srabd

+
a

4m2s1 + kd2sa
i sb

j

rab
3 Sdi j − 3

rab
i rab

j

rab
2 D +

a

4m2 rab
3

3f2s1 + kd ssW a · rWab 3 pW b − sW b · rWab 3 pW ad

+ s1 + 2kd ssW b · rWab 3 pW b − sW a · rWab 3 pW adg. s17d

The A,E,B fields are assumed here to be slowly varying
along the atomic size. They could represent, for example,
external magnetic and electric fields or the field of an emit-
ted or absorbed photon. Let us recall that the Breit-Pauli
Hamiltonian can be extended to higher orders of perturbation
calculus. It leads however to singular operators, which can
be regularized with some cutoff parameters. Within this ap-
proach one has obtained energy levels of orderm a6 for
helium atomf6,7g.

IV. POWER-ZIENAU TRANSFORMATION

The Power-Zienau transformation[1] explores the long
wavelength of electromagnetic field and is defined by

H8 = e−i f Hei f + ]tf, s18d

with phasef given by

f = eE
0

1

durW ·AW surWd. s19d

The assumption that theA field is slowly varying allows one
to perform a Taylor expansion,

AmsrW,td = Ams0,td + r iA,i
ms0,td +

1

2!
r ir j A,i j

m s0,td

+
1

3!
r ir jrkA,i jk

m s0,td + ¯ , s20d

and express derivatives ofA in the Hamiltonian in terms of

fields EW andBW . The phasef takes the form

f = eFr iAi +
1

2!
r ir jA,j

i +
1

3!
r ir jrkA,jk

i +
1

4!
r ir jrkr lA,jkl

i + ¯G .

s21d

The potentialeA0 and]tf combines to

eA0 + ]tf = − eFrW ·EW +
1

2!
r ir jE,j

i +
1

3!
r ir jrkE,jk

i + ¯G ,

s22d

and the transformation ofpW is

e−if p jei f = pj +
e

2!
srW 3 BW d j +

e

3!
r lrmse jlkB,m

k + e jmkB,l
kd

+
e

4!
r lrmrnse jlkB,mn

k + e jmkB,ln
k + e jnkB,lm

k d.

s23d

In the many electron case, the phasef is a sum over all
electrons

f = o
a

eE
0

1

du rWa ·AW surWad. s24d

and the Power-Zienau HamiltonianHPZ being a sum of the
transformed HamiltoniansHa8 andHab8 becomes
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HPZ = o
a

Ha8 + o
a.b

Hab8 , s25d

Ha8 =
pWa

2

2m
−

Za

ra
−

pWa
4

8m3 +
pZa

2m2 s1 + 2kdd3srad +
Za

4m2s1 + 2kd
sW a ·LWa

ra
3 − erWa ·EW −

e

2m
fLWa + s1 + kdsW ag ·BW −

e

2
ra

i ra
j E,j

i +
e2

8m
srW 3 BW d2

−
e

6m
sLa

i ra
j + ra

j La
i dB,j

i −
e

2m
s1 + kdsa

i ra
j B,j

i −
e

4m2s1 + 2kdsW a ·EW 3 pWa +
e

4m3pWa
2sLWa + sW ad ·BW +

ek

4m3spWa · sW adspWa ·BW d

−
es1 + 2kd

8m2

Za

ra
3 srWa 3 sW adsrWa 3 BW d −

e2s1 + 2kd
8m2 ssW a 3 EW dsrWa 3 BW d −

e

6
ra

i ra
j ra

kE,jk
i −

e

16m
sLa

kra
i ra

j + ra
i ra

j La
kdB,i j

k

−
es1 + kd

4m
sa

kra
i ra

j B,i j
k +

es1 + 2kd
8m2 fra

i ssW a 3 pWad j + ssW a 3 pWad jra
i g E,i

j −
e

4!
ra

i ra
j ra

kra
l E,jkl

i , s26d

Hab8 =
a

rab
−

pa

m2 s1 + 2kd d3srabd −
a

2m2pa
i S di j

rab
+

rab
i rab

j

rab
3 D pb

j −
2pa

3m2 s1 + kd2 sW a · sW b d3srabd +
a

4m2s1 + kd2sa
i sb

j

rab
3 Sdi j − 3

rab
i rab

j

rab
2 D

+
a

4m2rab
3 3 f2s1 + kd ssW a · rWab 3 pWb − sW b · rWab 3 pWad + s1 + 2kd ssW b · rWab 3 pWb − sW a · rWab 3 pWadg

−
ea

4m2fsrWa 3 BW dipb
j + pa

i srWb 3 BW d jg S di j

rab
+

rab
i rab

j

rab
3 D +

ea

8m2rab
3 h2s1 + kdfssW a 3 rWabd srWb 3 BW d − ssW b 3 rWabdsrWa 3 BW dg

+ s1 + 2kdfssW b 3 rWabdsrWb 3 BW d − ssW a 3 rWabdsrWa 3 BW dgj, s27d

whereEW =EW s0d andBW =BW s0d. We have neglectedE,i
i and higher-order quadratic terms inBW . The HamiltonianHPZ in Eq. s25d

is equivalent to the generalized Breit-Pauli HamiltonianHBP under the assumption that the electromagnetic field is slowly
varying on the scale of atomic size. We perform now the next transformation which leads toHLW, a Hamiltonian in the form
most convenient for the calculation of various relativistic effects. This transformation is defined by Eq.s18d with

f = o
a

es1 + 2 kd
4 m2 E

0

1

dt sW a ·EW st rWad 3 rWa = o
a

es1 + 2 kd
4 m2 sW a SEW 3 rWa +

ra
i

2
EW ,i 3 rWa + ¯D . s28d

The transformed HamiltonianHLW is decomposed into three parts

HLW = H0 + dH + HI , s29d

whereH0 is a Schrödinger Hamiltonian of a few electron atom in Eq.s6d, dH is a relativistic correction obtained fromHBP by
neglecting the electromagnetic field, andHI is an interaction with the electromagnetic field

HI = o
a
H− erWa ·EW −

e

2m
fLWa + s1 + kdsW ag ·BW −

e

2
ra

i ra
j E,j

i +
e2

8m
srWa 3 BW d2 −

e

6m
sLa

i ra
j + ra

j La
i dB,j

i −
e

2m
s1 + kdsa

i ra
j B,j

i

+
es1 + 2kd

8m3 sa
i La

kE,i
k +

e

4m3pWa
2sLWa + sW ad ·BW +

ek

4m3spWa · sW adspWa ·BW d −
es1 + 2kd

8m2

Za

ra
3 srWa 3 sW adsrWa 3 BW d −

e2s1 + 2kd
8m2 ssW a 3 EW d

3srWa 3 BW d −
e

6
ra

i ra
j ra

kE,jk
i −

e

16m
sLa

kra
i ra

j + ra
i ra

j La
kdB,i j

k −
es1 + kd

4m
sa

kra
i ra

j B,i j
k +

es1 + 2kd
4m2 sW a ·EẆ 3 rWa +

es1 + 2kd
8m2 ei jksa

i ra
l E,l

j ra
k

−
e

4!
ra

i ra
j ra

kra
l E,jkl

i J + o
a.b

H−
ea

4m2fsrWa 3 BW dipb
j + pa

i srWb 3 BW d jgS di j

rab
+

rab
i rab

j

rab
3 D +

ea

8m2rab
3 h2s1 + kdfssW a 3 rWabd srWb 3 BW d − ssW b

3 rWabdsrWa 3 BW dg + s1 + 2kdfssW b 3 rWabd srWb 3 BW d − ssW a 3 rWabdsrWa 3 BW dgjJ . s30d
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This classical electromagnetic field can now be quantized
using the Feynman integration by pathsf2g, by expressing
radiative corrections in terms of Green functions. As a test
we have verified the equivalence of the nonrelativistic one-
loop, as well as two-loop self-energy in hydrogenic systems
as derived fromHFW andHLW. The difference is proportional
to the linear and quadratic terms in the cutoffL, which are
eliminated by matching with the contribution coming from
high-frequency photons.

V. RELATIVISTIC AND RADIATIVE CORRECTIONS TO
THE ZEEMAN EFFECT

One of the interesting applications ofHLW is the deriva-
tion of relativistic corrections to the Zeeman effect. The Zee-
man splitting has been measured very precisely for various
atoms and ions, and at present the measurement of theg
factor in hydrogenlike carbon serves as the best determina-
tion of the electron mass[5]. We aim here to recall the theory
for light few-electron atoms or ions. It has been first inves-
tigated by Perl and Hughes in Ref.[14] and Van Vleck and
co-workers in Ref.[15]. A detailed derivation was presented
by Hegstrom in Ref.[16], and evaluated numerically for sev-
eral states of helium by Lewis and Hughes in Ref.[17],
Anthony and Sebastian in Ref.[18], and more recently Yan
in Ref. [19]. The leading relativistic and also radiative cor-
rections can be derived fromHLW. This Hamiltonian is simi-
lar to that derived by Hegstrom[16], but is more general. In
fact we rederive in this section his results, as a simple veri-
fication of HLW.

In the nonrelativistic limit, the interaction with a constant
magnetic field is given by

HM = o
a

mB fLWa + s1 + kd sW ag ·BW , s31d

where mB=−e/ s2 md. Relativistic corrections can be easily
obtained for an arbitrary light atom and arbitrary state by

taking all the terms which are linear inBW from Eq. s30d,

dHM = o
i=1

6

Hi ,

H1 = − o
a

mB

2 m2pWa
2 sLWa + sW ad ·BW ,

H2 = o
a

mB s1 + 2kd
4 m

Z a

ra
3 srWa 3 sW adsrWa 3 BW d,

H3 = − o
a.b

mBa

4mrab
3 s1 + 2kdfssW b 3 rWabdsrWb 3 BW d

− ssW a 3 rWabd srWa 3 BW dg,

H4 = − o
a.b

mBa

2mrab
3 s1 + kdfssW a 3 rWabdsrWb 3 BW d

− ssW b 3 rWabd srWa 3 BW dg,

H5 = o
a.b

mBa

2m
fsrWa 3 BW di pb

j + pa
i srWb 3 BW d jg S di j

rab
+

rab
i rab

j

rab
3 D ,

H6 = − o
a

mB k

2 m2 spWa · sW ad spWa ·BW d. s32d

These terms agree with the former work of Hegstrom in Ref.
[16]. They were the basis for precise numerical calculations
of g factors for low-lying states of lithium performed by Yan
in Ref. [20]. We have not considered here recoil and relativ-
istic recoil corrections, which were studied in Refs.[16,18].
However, we obtain below radiative corrections of ordera3

for 2 3PJ states of helium, with the aim of explaining the
discrepancy with the experimental value[21].

The self-energy correction to the Zeeman effect, which is
of ordera3mBB, vanishes forS states, as was found by Heg-
strom in Ref.[16]. The self-energy correction beyond the
anomalous magnetic moment does not vanish only for states
with nonzero angular momentum and is of nonrelativistic
origin. The nonrelativistic Hamiltonian for the helium atom
in the presence of an electromagnetic field in the length
gauge is

H = H0 + HM − erW1 ·EW − erW2 ·EW . s33d

The self-energy correction obtained from Eq.s33d is

DE = −
2 a

3 p
E

0

e

dv v3 kfu srW1 + rW2d
1

H0 + HM − E + v

3srW1 + rW2d ufl. s34d

We assume here thatf is an eigenstate ofH0+HM with
energyE. Integration with respect tov leads to

DE = −
2a

3p
kfusrW1 + rW2d sH0 + HM − Ed3 lnuH0 + HM − Eu

3srW1 + rW2dufl, s35d

where the polynomial terms ine and the logarithmic term
ln e do not contribute toB field dependence, and thus are
omitted. This formula is equivalent to the one presented
by Hegstrom in Ref.f16g. We now expand Eq.s35d in-
cluding E in HM, next neglect nonlogarithmic terms,
which do not contribute, and obtain

dE = −
2a

3p
kfusrW1 + rW2dsHM − kHMldsH0 − Ed23 lnuH0 − Eu

3srW1 + rW2dufl

= −
2a

3pm2kfu spW1 + pW2d sHM − kHMld3 lnuH0 − Eu

3spW1 + pW2dufl. s36d

If we assume that the statef has specified value of magnetic
quantum numbersml andms, thensHM −kHMld ufl=0 and
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sHM − kHMld spW1 + pW2d ufl = fHM − kHMl,pW1 + pW2g ufl

= mBBjie jiksp1
k + p2

kdufl. s37d

After using this commutation relation,dE becomes

dE = −
2a

pm2mBBjie jikkmlu sp1 + p2di

3lnuH0 − Eu sp1 + p2dk umll. s38d

It is convenient to express the Zeeman effect in terms of the
orbital gl factor, which is defined byE=mB B ml gl

dgl = −
2a

pm2ie3ik 3

lsl + 1ds2 l + 1d o
ml=−l

l

mlkmlu sp1 + p2di

3lnuH0 − Eu sp1 + p2dk umll. s39d

This is a general expression which is valid for any state. We
turn now to the particular case of 23P statessl =1d of he-
lium, and convert this expression to a more convenient form.
The factorml under the sum is replaced byml umll=L3 umll.
The resulting sum can be expressed in the Cartesian basis of
statesuil as follows:

o
ml=−1

1

kmluQ̂umll = 3o
i=1

3

ki uQ̂uil, s40d

with nonstandard normalizationki u jl=di j /3. The third com-
ponent of the angular-momentum operator acts on stateuil
according toL3u jl= ie3jk ukl. In this way one obtains the final
expression fordgl

dgl =
a3

p m2sdindkj − di jdknd knusp1 + p2di lnuH0 − Eu

3sp1 + p2dku jl. s41d

For the numerical calculation we use exponential basis set of
functions f=e−a r1−b r2−g r12 times the angular momentum
factor in Cartesian coordinatesf22g. The expression in Eq.
s41d involves implicit sums over the states with positive
parity and angular momenta equal to 0,1,2. We follow
here the method for the calculation of Bethe logarithms in
helium presented in Ref.f22g and more recently in Ref.
f23g, and obtain the result

dgl =
a3

p
0.264 706s1d = 0.032 742 4s1d 3 10−6. s42d

This was the last unknown correction to thegl factor of order
a3 for helium 2 3P state. This self-energy correction has
been analyzed in Refs.f18,24g. Authors of Ref.f18g present
two numerical results, 0.0179s9d versus 0.0239s9d, and au-
thors of Ref. f24g identified a term omitted in Ref.f18g
which is equal to half of either of these two previous num-
bers. The result in Eq.s42d is complete and accurate to all
digits shown. However, it is too small and of opposite sign to
explain the following discrepancy. The theoretical resultf19g
is

gl8 − gl = f10.719 291 348s19d + 0.032 742 4s1dg 3 10−6

= 10.752 0337 5s1d 3 10−6, s43d

where we followed notation from Ref.f17g, gl =1−m/mN
and the uncalculated higher-order terms are not included in
the error estimate. The experimental resultgl8−gl =4.9s2.9d
310−6 f21g differs by two standard deviations from that in
Eq. s43d. Before going any further in the calculation of
higher-order corrections togl factor, this experimental
value should be confirmed and improved.

VI. RELATIVISTIC CORRECTIONS TO TRANSITION
RATES

The long-wavelength HamiltonianHLW is particularly
convenient for determination of relativistic corrections to
atomic transition rates. The one-photon transition rateA be-
tween two atomic states is

A = 2auvuE dVk

4 p
T i T * j Sdi j −

kikj

k2 D , s44d

wherev= ukWu. If the given atom can be treated in the nonrel-
ativistic approximation, then the transition operatorT is ob-
tained from the Schrödinger-Pauli Hamiltonian

TW =KfU pW

m
eikW·rW +

i

2m
sW 3 kWeikW·rWUcL . s45d

For heavy atoms and ions, various relativistic approaches are
being used, such as RCI, RMBPT, or MCDF and one-photon
transition rates are obtained from the matrix element of

a eikW·rW. As it was pointed out by Johnson in Ref.f25g, the
so-called negative-energy states can play a significant role
for rates of some forbidden transitions, and it is not clear to
which extend the commonly used MCDF approach includes
them. For light systems one can obtain all relativistic correc-
tions including these negative-energy contributions in a sys-
tematic approach and derive effective operators which gov-
ern a given transition. The HamiltonianHLW serves for these
purposes. We derive complete relativistic correctionsOsa2d
to E1,M1, andE2 transitions and include anomalous mag-
netic moment forE1 transitions. This section is based on two
former works, Refs.f26,10g. The transition energysfre-
quencyd v is

v = kfuH0 + dHufl − kcuH0 + dHucl, s46d

wheredH is defined after Eq.s29d. The transition currentj in
the nonrelativistic theoryj0 acquires various relativistic cor-
rectionsj = j0+d j . The transition amplitudeTi due to photon
emission or absorption is then

T i = kfud j iucl + kfu j0
i 1

sEc − H0d8
dHucl

+ kfu dH
1

sEf − H0d8
j0
i ucl. s47d

jW is obtained from the HamiltonianHLW as a coefficient of

the photon polarization vectoreW from the vector potentialAW
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AW srWd = eWeikW·rW−ivt. s48d

Consistently with this,EW andBW fields are

EW = i veWeikW·rW−ivt, s49d

BW = ikW 3 eWeikW·rW−ivt. s50d

For theE1 transition one obtains

jWE1 = ik Fo
a

rWaS1 −
k2 ra

2

30
D +

ik

12m
sLWa 3 rWa + rWa 3 LWad

+
ikk

4m
rWa 3 sW aG , s51d

where we denote byk= ukWu;v and we used the following
decomposition into irreducible parts:

r ir jrk = sr ir jrkds3d +
r2

5
sr id jk + r jdik + rkdi jd. s52d

It is a remarkable fact that relativistic effects cancel out for
jWE1, with the exception for the presence of the anomalous
magnetic momentk. Obviouslyk is not a complete radiative
correction. There are radiative corrections to energies, wave
functions, and the vertex. The complete treatment has re-
cently been performed for hydrogenic atoms in Ref.f27g,
where authors observed a strong cancellations between vari-
ous radiative corrections. A similar approach can be applied
for few electron atoms when precise values for transition
rates become available.

For E2 transition one obtainssk=0d

jE2
i = o

a

−
kkj

2
Sra

i ra
j −

di j

3
ra

2D S1 −
k2ra

2

28
D +

ik2

48m
kj

3fra
i srWa 3 LWad j + ra

j srWa 3 LWadi + H.c.g +
ik2

48m
kj

3fra
i srWa 3 sW ad j + ra

j srWa 3 sW adig +
k

16 m2kj

3Ssa
i La

j + sa
j La

i −
2

3
di j sW a ·LWaD , s53d

where we used the following decomposition into irreducible
parts:

r ir jQk = sr ir jQkds3d + eiklTlj + e jklTli + dikTj + d jkTi + d i jT8k,

s54d

Tij = 1
6 fr isrW 3 QW d j + r j srW 3 QW dig, s55d

Ti = 1
10 s3r irW ·QW − r2 Qid, s56d

T8i = 1
5s2r2Qi − r irW ·QW d, s57d

and

r ir jrkr l = sr ir jrkr lds4d +
r2

7
fd i jsrkr lds2d + d iksr jr lds2d + d ilsr jrkds2d

+ d jksr ir lds2d + d jlsr irkds2d + d klsr ir jds2dg + sr ir jrkr lds0d.

s58d

The spin-dependent terms have already been derived from
HBP in Ref. f10g. Here we include the spin-independent
terms, and present the result in a simpler but equivalent
form. It is interesting to note thatjE2 in the above can be
expressed in terms of one-electron operators only.

For M1 transition one obtainssk=0d

jWM1 =
ikW

m
3 o

a

ssW a Ta + TWa + T̂a · sW ad, s59d

Ta = −
1

2
+

k2

12
ra

2 +
pa

2

3m2 −
1

6m

Z a

ra
+ o

b,bÞa

1

6m

a

rab
, s60d

TWa = −
LWa

2
S1 −

k2ra
2

10
−

pa
2

2m2D + o
b,bÞa

a

4m rab
3

3srab
2 rWa 3 pWb + rWa 3 rWabrWab · pWbd, s61d

Ta
ij = −

k2

20
ra

i ra
j −

1

8m2pa
i pa

j +
Za

4mra
3ra

i ra
j − o

b,bÞa

a

4m rab
3 rab

i rab
j

+
di j

3 F k2

20
ra

2 +
pa

2

8m2 −
Za

4mra
+ o

b,bÞa

a

4mrab
G , s62d

where we used the identity,

k2ra
i ra

j → †H0,fH0,ra
i ra

j g‡

= −
2

m2pa
i pa

j −
2Za

m

ra
i ra

j

ra
3 − o

bÞa

a

m
S rab

i ra
j

rab
3 +

rab
j ra

i

rab
3 D ,

s63d

to simplify the results forTa
ij and Ta. jM1 has already been

presented in the literature. The scalar partTa was derived by

Feinberg and Sucher in Ref.f28g, the vectorTWa and tensor
Ta

ij parts together with the scalar one were derived by us
usingHBP in Ref. f10g, however with one mistake. The third

term for TWa in Eq. s61d had the factor 1/2 instead of 1/4 as
in the above. These formulas can be used for the calculations
of relativistic corrections to transition rates. They are particu-
larly suited for forbidden transitions, where nonrelativistic
matrix elements are exactly equal to zero. Let us investigate
in more details the historically importantM1: 2 3S1→1 1S0
transition in atomic helium. We closely follow here the
former work in Ref.f26g. The transition currentjM1 is
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jWM1 = o
a

ikW

m
3 sW a S k2

12
ra

2 +
pa

2

3m2 −
1

6m

Za

ra
+ o

b,bÞa

1

6m

a

rab
D

<
i

m
kW 3

ssW 1 − sW 2d
2

F k2

12
sr1

2 − r2
2d +

1

3m2sp1
2 − p2

2d

−
1

6m
SZa

r1
−

Za

r2
DG , s64d

and theM1 2 3S1→1 1S0 transition rate is

AM1 = 2akE dVk

4p
Sdi j −

ki kj

k2 Dk jM1
i lk jM1

* j l s65d

=
4

3
ak3Uk2 3Su

k2

12
sr1

2 − r2
2d +

1

3m2sp1
2 − p2

2d

−
1

6m
SZa

r1
−

Za

r2
Du1 1SlU2

. s66d

The matrix element was evaluated in the exponential basis
set with the result

k2 3Su
k2

12
sr1

2 − r2
2d +

1

3m2sp1
2 − p2

2d −
1

6m
SZ a

r1
−

Z a

r2
Du1 1Sl

= a2 0.318 985 2, s67d

which together withk=0.728 494 998 8sin a.u.d leads to a
transition rate ofAM1= 4

3 s2 R cd 2 p a9 k3 s0.318 985 2d2

=1.272 426310−4 s−1, where physical constants are from
Ref. f29g.

VII. ELECTRODYNAMICS OF EDM

An interesting issue in electrodynamics is the treatment of
elementary particles possessing electric dipole moments
(EDM). It can be treated almost in the same way as the
anomalous magnetic moment. Let us briefly introduce all
possible coupling to electromagnetic fields which preserve
Lorentz invariance. The electromagnetic current of a spin
1/2 particle can be expressed in terms of four Lorentz in-
variants

jm = ūsp8dHF1sq2dgm −
i

2m
F2sq2dsmnqn +

asq2d
m2

3sq”qm − q2gmd g5 −
dsq2d
2 M

smnqng5J uspd. s68d

The a form factor is the anapole momentf30g, and breaks
invariance under spatial inversionsP. d is a dimensionless
electric dipole momentf31g which breaks both parityP and
time reversalT invariance. While we do not discuss here the
origin of d, we investigate the electromagnetic interaction of
a charged particle of spin 1/2 having electric dipole moment

DW

DW =
ed

2m
sW . s69d

In the following we neglect the anapole momenta and also
neglect theq2 dependence of form factors, so we haveF1
=1 andF2=k, the anomalous magnetic moment. The Dirac
Hamiltonian that includesk andd is

H = aW · pW + bm+ eA0 +
ek

2m
sibaW ·EW − bSW ·BW d

−
ed

2m
sibaW ·BW + bSW ·EW d. s70d

We are interested in the nonrelativistic expansion of an in-
teraction of a dipole moment with the electromagnetic field
and perform two transformations. The first one, due to Schiff
f32g, eliminates the leading interaction of a dipole moment
with the electric field

H8 = eiS sH − i]td e−iS = H + fiS,H − i]tg, s71d

where

S= −
d

2m
bSW · pW . s72d

We have assumed thatd is small, so quadratic and higher-
orders term ind are neglected. The transformed Hamiltonian
H8 is

H8 = aW · pW + bm+ eA0 +
ek

2m
sibaW ·EW − bSW ·BW d − i

d

m
bg5p2

+ i
ed

2m
baW ·BW +

d

2m

ek

2m
fg5spW ·EW + EW · pW d

+ iaW · spW 3 EW + EW 3 pW d − SW · spW 3 BW − BW 3 pW dg. s73d

The second transformation is a Foldy-Wouthuysen transfor-
mation modified by presence ofd. We calculate only the
leading terms which are proportional to 1/m2, and use stan-
dard decomposition of the Hamiltonian into odd and even
parts

H8 = bm+ Q + E. s74d

The second transformation isS=−ib Q / s2md, and the new
HamiltonianH9 becomes

H9 =
b

2m
Q2 + E =

p2

2m
+ eA0 −

es1 + kd
2m

sW ·BW +
ed s1 + kd

4m2

3spW 3 sW ·BW + BW · pW 3 sW d. s75d

The interaction of a dipole moment with the electric field is
eliminated, and only the interaction with the magnetic field
remains. This is the modified version of the shielding theo-
rem by Schifff32g. We assume now that the atomic nucleus
has a nonvanishing EDM, and change notation accordingly

e→−Z e,m→M ,sW /2→ IW. The Hamiltonian HN of the
nucleus issI =1/2d
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HN =
p2

2M
+ eA0 +

Ze s1 + kd
M

IW ·BW −
Zeds1 + kd

2M2

3spW 3 IW ·BW + BW · pW 3 IWd. s76d

We aim now to derive a PT-odd electron-nucleus interaction,
which results from Eq.s76d, in the same way asHBP was

derived in Eq.s15d. The Pauli termZ e s1+kd /MIW·BW leads
to the interaction Hamiltonian, which is analogous todHab in
Eq. s14d

dHhfs = o
a

m

M
s1 + kd F4

3

Za

m2 IW · sW a p d3srad +
Za

m2

rWa 3 pW a

ra
3 · IW

−
Za

2m2

I isa
j

ra
3 Sdi j − 3

ra
i ra

j

ra
2 DG . s77d

The PT-odd interaction Hamiltonian can be obtained from

Eq. s77d by the replacementIW·BW →−d/ s2Md spW 3 IW·BW +BW ·pW

3 IWd, so one obtains

dHPT = o
a,b

ds1 + kd
2M

Za

mM
H4

3
fpWb 3 IW · sW apd3srad

+ pd3sradpWbIW · sW ag + F srWa 3 pWad
ra

3 · spWb 3 IWd

+ spWb 3 IWd ·
srWa 3 pWad

ra
3 G

−
1

2
FspWb 3 IWdi sa

j

ra
3 Sdi j − 3

ra
i ra

j

ra
2 D

+ Sd i j − 3
ra

i ra
j

ra
2 Dsa

j

ra
3 spWb 3 IWdiGJ , s78d

where we set external field to 0, sopa→pa and the momen-
tum of nucleusp→−ob pb. This Hamiltonian describes the
leading relativistic effects which prevent complete shielding
of the nuclear electric dipole for light atoms. The atomic
EDM can be obtained in the second order of perturbation
calculus

DW = 2ekfuo
a

rWa
1

sE − Hd8
dHPTufl. s79d

For atomic states with total angular momentumL=0 and
total spin S=0 only the second term indHPT contributes.
This term has been originally derived by Schiff in Ref.f32g,

DW = IW
Zed

2M

2as1 + kd
3mM

kfuo
c

rWc
1

sH0 − Ed8oa,b
F spWa 3 rWad

ra
3 3 pWb + pWb 3

srWa 3 pWad
ra

3 Gufl. s80d

It is interesting to note that inspite of this agreement, the
original derivation by Schiff relied implicitly on the assump-
tion that there is no relativistic correction to the electron-
nucleus interaction coming from the nuclear EDM on the
level of Breit-Pauli Hamiltonian. So, it was neglected the
coupling of EDM to magnetic field in Eq.s70d, which gives
such a correction. Moreover, it was omitted the commutator
of −d/ s2 mdsW ·pW with the spin-independent electron-nucleus
magnetic interaction.

Following Schiff, we summarize this section by the nu-
merical evaluation of atomic EDM for ground state of3He.
The second-order matrix element in Eq.(79) is calculated
using the exponential basis set[22], with the result
kfu¯ ufl=m a 15.3209s1d. Using this result, one obtains for
the atomic EDM of3He

DW = sWF−
Zed

2M
G F−

Zes1 + kd
2M

Gma2

Ze

2

3
15.320 9s1d

= sWDh 3 1.575 44s1d 3 10−7, s81d

where the term in the first square brackets is the helion EDM
Dh, and the term in the second square brackets is the helion

magnetic momentmh=−2.127 497 723s25dmN snuclear mag-
netond f29g. In a similar approach atomic EDM can be
calculated for other light atoms. However, for heavy at-
oms the more significant effect comes from theq2 depen-
dence of dsq2d and F1sq2d, which can be expressed in
terms of the so-called Schiff momentf31g. Although EDM
has not yet been observed, precise measurementsf33g
have put strong upper limits on it. Moreover new experi-
ments are planned, for example, for the radium atom
f34,35g, due to a few enhancements such as accidental
degeneracy of two atomic states and the large nuclear
chargef36g.

VIII. SUMMARY

We have presented an approach to quantum electrody-
namics of light few-electron atoms which explores different
scales of electron-electron interactions and interaction with
the quantum or external electromagnetic fields. We obtain a
nonrelativistic expansion using a sequence of transforma-
tions which lead to the long-wavelength HamiltonianHLW.
As an application of this approach we considered three cases:
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relativistic and radiative corrections to magnetic moments,
relativistic corrections to shielding of the electric dipole mo-
ment, and relativistic corrections to transition rates. Each
case is summarized by an example of numerical calculations.
Other possible applications involve dynamic polarizability
and related relativistic corrections to the Casimir-Polder po-
tential. For light closed shell atoms, such as helium, the in-
teraction potential can be derived from the Hamiltonian ob-
tained fromHI in Eq. (30) by neglecting spin-dependent and
higher-order terms

HI < o
a

− erWa ·EW −
e

2
Sra

i ra
j −

di j

3
ra

2D E,j
i −

e

30
ra

2ra
i E,j j

i

−
e

6m
sLa

i ra
j + ra

j La
i dB,j

i +
e2

8m2srWa 3 BW d2. s82d

The most recent treatments in the literaturef37–39g are
rather incomplete and do not include, for example, the fourth
term in Eq.s82d. The main motivation for developing QED
is the precise calculation of higher-order corrections in one
and few-electron atoms to properties such as energy levels,

magnetic moments, polarizabilities, and transition rates. The
current experimental precision for helium fine structure of
2 3PJ f40g levels or 23S1−2 3PJ f41g transition frequency is
much larger than theoretical predictions. What is lacking are
corrections of orderm a7, which have been calculated only
for hydrogenlike systems. We think the approach presented
here can be used to systematically derive QED corrections.
Apart from developing QED, one has to be able to calculate
accurate nonrelativistic wave functions. For this purpose cor-
related basis sets such as Hylleraas, Gaussians, and exponen-
tial are being developed for few-electron atoms, and several
promising results have been obtained recently, for example,
calculations of Lamb shift for heliumf6,7g, lithium f42,43g,
and beryllium atomsf44g.
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