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We investigate the average bipartite entanglement, over all possible divisions of a multipartite system, as a
useful measure of multipartite entanglement. We expose a connection between such measures and quantum-
error-correcting codes by deriving a formula relating the weight distribution of the code to the average en-
tanglement of encoded states. The multipartite entangling power of quantum evolutions is also investigated.
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I. INTRODUCTION mula. Such formulas are relevant to current studies in the

. entangling capabilities of chaotic systerf—39. An ex-
The phenomenon of entanglemdat-3] is a remarkable mple treated in this article is the quantum kicked rotor.

feature of quantum physics that has been identified as a ke%/ The paper is oraanized as follows. In the next section we
ingredient in many areas of quantum information theory in-, pap g X

cluding quantum key distributiopt], superdense coding] mtroduc_e the Meyer-WaIIach_ entanglement measure and its
and teleportatiori6]. However the'general problem of h’ow generalizations. The connection between these measures and
to quantify[1] the Iével of enta’mglement in an arbitrary mul- guantum-error-correcting codes is discussed in Sec. lll. This

tpatte system remans unresohed. There has been sorffSUCTShR s rher stengihened b Sec. I et we de.
progress towards a solutidii—17], but the task at hand is g 9 pace.

generally considered a difficult one and may never be coml-n Sec. Vwe de_nve a fo_rmula f_or the_ multipartite entangling
ower of an arbitrary unitary. Finally in Sec. VI we conclude

pleted. We are thus led to consider simple computable mea- . i
sures of entanglemeritl8,19 that although cannot fully y applying our results to the quantum kicked rotor.
characterize the multipartite nature of the correlations, may
nevertheless still provide a useful gauge of their levels. Il. CLASS OF MULTIPARTITE ENTANGLEMENT
In this article we investigate the average bipartite en- MEASURES
tanglement, over all possible divisions of a multipartite sys-
tem, as a useful measure of multipartite entanglement. Such It is generally accepted that when a bipartite quantum
measures might be considered the least sophisticated &fstem is in an overall pure state, there is an essentially
choices; however, their simplicity allows theoretical calcula-unique resource-based measure of entanglement between the
tions to be exercised with ease. We will restrict our study totwo subsystems. This measure is given by the von Neumann
pure-state entanglement where the subsystem linear entrogytropy of the marginal density operatda0,41. To ease
is a clear choice for the bipartite measure. It was recentlyheoretical calculations, one often replaces the von Neumann
shown by Brenneri20] that an entanglement measure pro-entropy with its linearized version, the linear entropy. For a
posed by Meyer and Walladi9] is of the above-described bipartite system in an overall pure stay e C°A® CPs, the
form, and hence, the multipartite entanglement measuresubsystem linear entropy defined as
considered in this paper may be viewed as generalizations of
the Meyer-Wallach measure. Our measures may also be S () = 91 —tpa?), pa=trglXi, (1)
viewed as variations of those considered by Pope and Mil-
burn[21] where instead the minimum bipartite entanglementwhere the normalization factorp=D/(D-1), with D
was considered. =min(D,,Dg), is chosen such that®S <1. The state is
We show that the average bipartite entanglement electseparable if and only i =0 and maximally entangled when

self-dual quantum-error-correcting codes to the status of =1.
maximally entangled states. The connection between en- |n general, as the number of subsystems increases, an ex-
tanglement and quantum-error-correcting codes has begjbnential number of independent measures is needed to
highlighted elsewherge.g., [22]); however, we make this quantify fully the amount entanglement in a multipartite sys-
relationship explicit by expressing the average entanglemenRém. Consequently, the following entanglement measures
of encoded states in terms of the weight distribution of th%annot be thought of as unique_ Different measures will cap-
code. We also investigate the multipartite entangling powetyre different aspects of multipartite entanglement.
of quantum evolutions. A simple extension of the work of  The Meyer-Wallach measufd9] Q(y), which can only
Zanardiet al. [23] allows the derivation of an explicit for- pe applied to multiqubit pure statég) e (C2)®", is defined

as follows. For each=1, ... ,n andb {0, 1}, we define the

linear mapy;(b): (C3)*"— (C2)®™ through its action on the

*Electronic address: ascott@phys.unm.edu product basis:
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yb)x) ® -+ ® [xo) 1
o ” == " @)
= 5bxj|X1> ® @ X)) @ [XeD) ® - @ [X), (2 VD j=o
wherex; € {0, 1}. The Meyer-Wallach entanglement measureln general,
is then -
D™-1
40 QuiN=1-"Fm_ 1 (8
Q) = =2 D(4(0)|), (L)), (3
Nj=1 and hence the entangled statgs do not saturate the upper
where bound form> 1. We have not, however, established whether

or not there eveexiststates which saturate the upper bound.
D(|),|#)) = (AN Bl B) - [ )2 (4) Define anm-uniform mulnqudlt state to be. a state with the
property that after tracing out all bumh qudits we are left
Meyer and Wallach showed th&} is invariant under local with the maximally mixed state, for any-tuple of qudits.
unitary transformations and that0Q<1, with Q(¢)=0 if ~ Thus, all information about the system is lost upon the re-
and only if|) is a product state. moval of n—m or more parties.
Recently, it was shown by Brenng¢R0] that Q is simply Proposition 2: Q(y)=1 iff Ps:trs'|¢><¢\:D_mi when-
the average subsystem linear entropy of the constituent Aver|S=m; i.e., |#) is m-uniform.

bits: Obviously, if |#) is m-uniform then it is alsqdm-1) uni-
10 form, and henc&,(¥) =10 Q,-1(#)=1. However, note that
Q(y) = 2(1 -=> trpk2>, (5) the measure®,, do not obey any ordering. For example, in
Ni=1 the case of qubits, consider the generaliY¢dtates
wherep, is the density operator for tHeh qubit after tracing 10 _ _
out the rest. This simplification is easily understddd] by lwy==2 10" ® |1) ® [0y, (9)
first showing thaD(¢(0)[¢),(1)|#)) is unchanged by a lo- VNj=1

cal unitary applied to th¢th qubit(a fact already proven by one can calculate

Meyer and Wallachand, hence, invariant under a change in

the qubit’s fiducial basis. Consequently, a judicious choice of _ 2™ (n-m)m
the Schmidt basis givesD(4(0)]y), y(1)|#)=AA2=(1 Qnlw) =72
~trp;?)/2, where\| and \? are the Schmidt coefficients in

the decomposition between thth qubit and the remainder ) -
of the system. The measure®,, also do not preserve the partial ordering of

Brennen's simplification immediately allows the generali- €Nt@ngled states; i.eQq () <Qny(¢) does not necessarily
zation of Q to multiqudit State$¢/) c (CD)@:H, and by consid- imply that Q,(¢) < Q,(¢) for otherm. These facts might be

ering all other possible bipartite divisions, we can now definefonsidered as unlucky properties Qf,. However they do
a class of related multipartite entanglement measures in thed99est that the extremal entanglement meagyyg does

(10

and hence, fom=6 say, Q;=5/9<Q3=4/7<Q,=16/27.

obvious manner: not necessarily tell the entire story; differe@t, capture dif-
ferent aspects of multipartite entanglement. The original
D™ m! (n—m)! ) Meyer-Wallach measur®, is the average entanglement be-
Qi) = D"—1 1- nl ‘Szmtfps ' tween individual qudits and the rest, whereas, on increasing

m, Q,, measures the average entanglement between blocks of
qudits, of an increasing size, and the rest. Consequenthy, as
m=1,...|n/2|, (6)  increases, we expect th@, will be sensitive to correlations
of an increasingly global nature.

Proposition 2 implies that the task of finding states which
saturate the the upper bound 1 @f, is equivalent to the
construction ofm-uniform multiqudit states. We now show
in the next section how quantum-error-correcting codes
(QECC’9 producem-uniform multiqudit states. An example
is the six-qubit hexacode stafid), which arises as the code

ubspace of the self-dual qubit stabilizer cof&,0,4]]. In

This caseQ;(H)=Q,(H)=Qy(H)=1.

whereSC{1, ... n} andps=trg|#){¢| is the density operator
for the quditsS after tracing out the rest anll| denotes the
integer part ok. Note thatQ,,, reduces to the original Meyer-
Wallach measure whem=1 andD=2. The above “multi-
partite” entanglement measures are merely averages over t
well-established bipartite measure. Conseque@ly,is in-
variant under local unitary transformations, nonincreasing o
average under local quantum operations and classic
communication—i.e.,Q,, is an entanglement monotone
[43]—and 0<Q,,=<1. The lower bound is only reached for
product states.

< . l1l. MULTIPARTITE ENTANGLEMENT AND QECC’
Proposition 1: Q,(y)=0 iff [)=®].|) for some Q S

l) e CP; e, |¢) is a product state. The idea behind quantum error correctif#®,44—49 is
Whenm=1 the upper bound is reached by the generalizedo encode quantum states into qudits in such a way that a
Greenberger-Horne-ZeilingéGHZ) states small number of errors affecting the individual qudits can be
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measured and corrected to perfectly restore the original en-  D(u,»)"=D(- u,— ») =™ ***P)D(D - u,D - v),
coded state. The encoding oKadimensional quantum state 17)
into n qudits is simply a linear map frori to a subspac@

of (CP)®". The subspace itself is referred to as toeleand _

is orientated in such a way that errors on the qudits move D(u,v)D(a, B) = @™ #APD (o, BD(1s, v)
encoded states in a direction perpendicular to the code. = gm0 mBOD (1 + a, v+ ),  (18)

A. General QECC's

An error operator Eis a linear operator acting dit.°)". ) ) )
The error is said to bdetectableby the quantum cod@ if ~ and thus form an orthonormal basis for all single-qudit op-

tr[D(w,»)'D(@, B)]=D8,,48,, (19

erators:
(UE[p) =(S[E|#) (11 -1
1
for all normalized|y),|#) € Q. Equivalently, ifQ is spanned A= By > t[D(u, »)'AID (1, v). (20)
by an orthonormalogical basis{|j )|j=0, ... K—1}, then an pv=0

error E is detectable if and only if Similarly, the operators

(LEiy=CE) g (12 D(p,v) = Dy pgy vy V)
for all 0=<i,j=<K-1 where the constar@(E) depends only =D(uy,v) ® -+ ® D(up ),
onE. Itis a general theorem of QECC'’s that a set of erérs
can becorrected by a code Q, if and only if for each
E..E; €&, the errorEJE, is detectable byd.

A local error operatorhas the form form an orthonormaITbasis for the set of alfudit operators:
_ A=DT"Z, t[D(m,v)"A]D(pm,v). The weight of D(u,v) is

E=M. & ® My, (13 simply tr’:e number of pair§u, v,) different from(0,0). We
where eachM; acts onCP. The weightof a local error op- are now in a position to make a more explicit definition of
eratorE, denoted by WE), is the number of element®);,  what we mean by af(n,K,d)), QECC.
which are not scalar multiples of the identity. A quantum  Definition: Let Q be aK-dimensional subspace ¢fP)®"
code@ has aminimum distancef at leastd if and only ifall ~ spanned by the orthonormal logical bagig)|j=0,... K
local error operators of weight less therare detectable by -1}, Then Q is called an ((n,K,d))p quantum-error-
Q. A code with minimum distancel=2t+1 allows the cor-  correcting codeif
rection of arbitrary errors affecting up tayudits. In the case
of qubits, such codes are denoted by the triphgK,d)). We (D, w)li) = C(u,w) 5 (22
will use the notation((n,K,d))p for the general case of qu-
dits [50]. An ((n,K,d))p code is calledpure if (/E|¢) for all D(u,v) with wi{D(u,v)]<d and O<i,j<sK-1. If
=D™"tr E for all |¢) e Q whenever WE) <d. When consid-  C(u,%)=6,06,0, the code is callegure.An ((n,1,d))p code
ering self-dual code$K=1), we adopt the convention that must be pure by convention.
the notation((n,1,d))p refers only to pure codes since the  An ((n,K,d))p QECC can detect and recover all errors
condition on the minimum distance is otherwise trivial. ~ acting on<d/2 qudits. Itis now evident how quantum codes

There is a continuum of possible errors in a single qudit;produce maximally entangled states.

however, due to the phenomenon of measurement collapse, Proposition 3: Q) =1 iff [¢) is a (purg) ((n,1,m
the correction of an arbitrary single-qudit error only requires+1))p quantum-error-correcting code.
an ability to correcD? different types, each correspondingto ~ Proof: If Qu(#)=1 then|) is m-uniform and, conse-
an orthonormal basis element for single-qudit operationsquently,

One choice for anice error basig51-53 is thedisplacement
operator basis WD, v)|gh) = tr [[ (YD (p,v)] (23

D(u,v) = €™Pxrz" O0<puv<D-1, (14

0= w,»n=D-1, (21)

=D"tr[D(p, v)] (Whenever WitD(u, v)] < m)
where the Weyl operatorX and Z are defined on a basis (24)
{j=0, ... D-1} for CP through the equations

X|jy=lj +1modD), Zj)=€""Plj). (15 = 9u0%u0 (25)
The displacement operators reduce to the Pauli matrices f&iven that the displacement operators are traceless for all
qubits, satisfy the relations (1,v)#(0,0). Thus,|#) is an((n,1,m+1)), QECC.

‘ _ Conversely, if|y) is an ((n,1,m+1))p QECC, then re-
D(u,v) =€™D(u+D,v) =€™D(u,v+D), (16)  writing |¢)(y] in the displacement operator basis
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D)yl =1 + > CuD(p,v) B (Po) =A/(Pg) [Bi(Pg) =Ai(Po)] (34

=Dl J=m for all 0<i=n. In general, the weight enumerators satisfy

+ > CwD(pw),  (26) [54
m+1<swt[D(u,v)]<n ’ ’
N B/(Pg) =A/(Pg) =0 [Bi(Pg) =Ai(Pg) =0] (39
we see that the coefficients,,=(4|D(u,v)|¢)) are nonzero for all 0<i<n

gp{ly :)r]: ;{E: Zf;cﬁggeijg:{t a:)ntl?aetz(r)\fse, given the traceless prop- Theorem [54]:Let Q be a quantum code with associated
y P P ' projectorPy. ThenQ has minimum distance of at leasiff

ps=trg|Y)(yl =DM (27)  Byy(Po)=Ay4(Py) [Bi(Po)=A(Py)forall0<i<d]

wheneverl§=m. Thus|¢) is m-uniform andQ(#)=1. O (36)

Note that any statg)) e Q, where@ is a pure((n,K,m and is pure iff

+1))p QECC, is itself an((n,1,m+1))p QECC. Conse-
X . Dl—dn|

quently, purg(n,K,m+1))p codes define entire subspaces of B} ,(Po) = A} ,(Po) = :
maximally entangled states. The connection between quan- a1t e S d=-1)!'(n=-d+1)!
tum codes and entanglement is noted2@2] and alluded to
elsewhere[17,4q; however, We'cite the work of Rair{$4] [Bi(Pg) =A(Pg)=0forall0<i<d]. (37
for a rigorous proof of the relationship even though no men- N ) ) _ )
tion of entanglement can be found in the paper. Here quarf?roposition 3 is now immediately apparent since
tum weight enumerators were studied extensively. It will

I d sit Rains K in th D™ m!(n-m)!
ater prove advantageous to now revisit Rains’ work in the Qn(¥) = o K " AL
current article.
Defining P, as the projector onto the code subspaze 1 ™ (n—i)
with dimensionK, the Shor-Laflamme enumerators of a =1-——> — —A(p(M). (38
guantum code args5] D™-1;5 nl(m-i)!
Noting thatK A/ =B;_;, one can use the above theorem to
A(Pg)=— E |tr[D(;u,v)PQ]|2, (28 derive bounds on the minimum distance for general quantum
WD () =i codes. In the case ¢fn,1,d)); QECC's the following con-
ditions must hold:
1 .
Bi(Pg) =~ X  t[D(u,»)PD(p,»)'Pgl, (29 A=Ay, O<isn, (39
W{D(p,) =i
wherei=0, ... n. Rains[54] defined two new enumerators Ao=1, (40)
) 1 A=0, 0<i<d, (41)
A(Po) =13 > trdtrg[Poll, (30
5= A=0, d=i=n. (42)
, 1 When d=|n/2]+1, these equations uniquely specify the
Bi (Pg) = Rga trg[trd PoI7], (3)  weight distribution{A}. Solving Eqs(39)—(41), we obtain
=i
i Nisim2i-n
related to the Shor-Laflamme enumerators via the equations A= nt (D701 d<i<n, (43

S-S jra-pr

m —i)
AL(Pg) = D™, (_n—l)'Ai(PQ), (32) and under the conditiod\,;=0, we find that we at least
iz (M=i)! (n—m)! require

=

=

{Z(D2 -1) if nis even,
(44)

2D(D+1)-1 ifnisodd,

for an ((n,1,[n/2]+1))p QECC to exist. Consequently,
This relationship was only given in the qubit case where theQ»(#) <1 for all |/) whenever Eq(44) is not satisfied. For
displacement operators reduce to Hermitian Pauli matricesl<|n/2] we must resort to linear programming techniques
However, the proof extends easily to qudits with the the helpn Egs.(39—(42) to prove the nonexistence ¢fn,1,d))p
of Eq. (17). It is easy to see that the weight enumeratorsQECC'’s. However, tighter bounds could be obtained by us-
satisfy the normalization condition Ag(Pgo)=B}(Po) ing the generalized quantum shadow enumerafb€s57.
=Ao(Pg)=By(Pg)=1, and for self-dual codek=1) We make no attempt at this task in the current article, but

, — (n—i)! |
B/(Po)=D g—(m_i)!(n_m)!s,(%). (33)
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instead specialize to qubits where many examples of 1 00 1w w
QECC'’s are already known. 010 0 1 o
0 01 wowl

. : , — (46)
B. Stabilizer qubit QECC's o 00 v v o
An important class of quantum codes is composed of the 0 w0 f f @
so-calledadditive or stabilizer codes[44,45. A stabilizer 00 0wooow

codeis defined as ajojr_n eigenspace of an Abelian subgrou%ives the quantum hexacod@6,0,4]] mentioned previ-
S ((_:aklllgd the stabilizen of the error group & gy The rows of the generator matrix define a basisler
={xe™PD(u,v)|0< e, »,N<D-1}. WhenD is prime,  aqgition for the classical cod€ and, with the above corre-
these codes can be described by(mnk) X n stabilizer ma-  spondence, define generatéup to a phasgfor the stabilizer
trix over GRD?) and are examples ¢fn,D¥,d))p QECC's.  Sin the quantum version. Another example is ff2,0,7]]
The notation[[n,k,d]]p is then used or simply[n,k,d]] qubit code generated by

whenD=2.
A classicaladditive code oveiGF4) of length nis an {1 1] (47)
additive subgrou of GH4)". In the case of qubits, stabi- 0

lizer Coqes_ correspond to classical a.dditive codes OVQEBF In this case the quantum code is an Einstein-Podolsky-Rosen
[44]. This S shown as follows. Letting GH={0,1,»,0}  EpR state—e.g, (|00)+|11)/\2. We can obtain a
wherew=w"=1+w, we define theconjugateof xe GH4), 15 ¢, 3] qubit code by deleting the first row and column of

denotedk, by the mappin®=0,1=1, andw=w. Nextzde:\ﬁne the hexacode generator matiiEq. (46)]. This process is
the trace map Tr : GR4) —GF2) by Tr(x)=x+x*—i.e., called shortening[60]. A [[3,0,2]] code
Tr(0)=Tr(1)=0 and Tfw)=Tr(w)=1— and thetrace inner

productof two vectorsx=x;...x, andy=y;...y, in GH4)" 110
as 0w 0 (48)
1 01
n _ is obtained bylengtheningthe[[2,0,2]] code.
XKky= E Tr(xy) € GH2). (45) The four codes of lengthe=2,3,5, and 6mentioned
=1 thus far all produce quantum stabilizer codes with the prop-

The weight wt(x) of x e GF(4)" is the number of nonzero €My Quz(¥)=1. Unfortunately, known bounds on such
components ok, and theminimum weighbf a codeC is the ~ codes prevent this from being the case for other lengths. An
smallest weight of any nonzero codeword Gn Next, by additive self-dual code is calldgipe Il if all codewords have
defining the mappingd:GF4)"—& by ®(x)=D(¢ (x))  €ven weight andype | otherwise. It can be shown that all
where ¢(u,v)=wp+wr, we can associate elements of type-Il codes hay(_a even length. df, d, is the minimum
GF(4) with Pauli matrices(w— X,@—Z,1—iXZ,0—1), welght of an additive self-dual type-I, type-Il code, respec-
addition of vectors over GB)" with multiplication of opera- tively, of lengthn>1, then[58-60

tors in& (neglecting phasgsand the trace inner product on 2n/6]+1 ifn=0mod86,

GH4)" with the commutator oif.

If C is an additive code, itsual is the additive code™ d<|2An6]+3 ifn=5mod6, (49)
={x e GH4)"|x*c=0 0 ceC}. The codeC is called self- 2n/6]+2 otherwise,
orthogonalif CCC* and self-dualif C=C*. The following
theorem now applie$44]: SupposeC is a self-orthogonal d, < 2n/6]+2. (50

additive subgroup of G@)", containing 27 vectors, such
that there are no vectors of weightd in C+\C. Then any
joint eigenspace of(C) is an[[n,k,d]] QECC.

We say thatC is pure if there are no nonzero vectors of
weight <d in C*. The associated QECC is then pure if and
only if C is pure. By convention, afin,0,d]] QECC corre-
sponds to a self-dual additive codewith minimum weight
d. Consequentlyj[n,0,d]] QECC's are always pure and are
examples of(n,1,d)) QECC's which saturate the entangle-
ment measure®, _ . A = [{x e C|wt(x) =i}, (51)

The advantage of making the above correspondence is
that a wealth of classical coding theory immediately be-is also the weight distribution for the corresponding quantum
comes available. Indeed the classical self-dual additesea-  stabilizer code, and thus, the entanglement of the stabilized
codewith generator matrix state is easily calculated through formB). We can see

If a code meets the appropriate bound, it is cadigttemal A
code is calledoptimal when it is not extremal and no code
can exist with a larger minimum weight. The above bounds
imply that [[n,0,|n/2|+1]] stabilizer codes may exist only
whenn=2, 3,5, 6, and 7. Howevef[7,0,3]] codes are
known to be optimal and we are left with the remaining four
cases.

The weight distributionof an additive code,
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TABLE |. The weight distributions®; and corresponding entanglemepy, for extremal(or optimal forn=7 and 13 additive self-dual
codes. In all but the cases=10 and 13 these are the only possible weight distributions.

n d Ay AL A As Au As As Av Ag Ay Ap A A Az Q1 Q@ Qs Q4 Qs Qe

2 2 1 0 3 1

3 21 0 3 4 1

4 2 1 0 6 0 9 1 2/3

4 2 1 0 2 8 5 1 8/9

5 3 1 0 0 10 15 6 1 1

6 4 1 0 O 0 45 0 18 1 1 1

7 3 1 0 0 7 21 42 42 15 1 1 34/35

7 3 1 0 0 3 29 42 34 19 1 1 242/245

8 4 1 0 O 0 42 0 168 O 45 1 1 1 24/25

8 4 1 0 0O 0 26 64 72 64 29 1 1 1 512/525

9 4 1 0 0O 0 26 48 136 160 93 48 1 1 1 932/945

9 4 1 0 0O 0 18 72 120 144 117 40 1 1 1 104/105

10 4 1 0 O O 30 0O 300 0O 585 0 108 1 1 1 104/105 212/217

11 5 1 0 0 O 0 66 198 330 495 550 330 78 1 1 1 1 216/217

12 6 1 0 0 O O O 39% 01485 0 1980 0 234 1 1 1 1 1 146/147
135 1 0 0 0 0 15 236 356 1197 1530 2012 1956 650 239 1 1 1 1 13294/13299 26938/27027

this by noting that for stabilizer codes, the projection o@o ((6,1,4)p code belongs to a class of optimal codes called
is given by[49] maximum distance separab{®DS) codes which saturate
the quantum Singleton bourf#0]—i.e., K=D""2"*2, Quan-
tum MDS codes must be pure and, thus, define subspaces of
Po= iz AE)IE, (52) hmaximall_y enta}ng_led states. Sgl_f—dual guantum MDS c_odes
Erst ave weight dlstrlbuthns specified by E@3). Other ex
amples of MDS codes include thgs, 2, 3]]p and[[7,3,3]]p
stabilizer codes which exist for all prim@ [65]. More re-

whereS is the stabilizer and (E) is the eigenvalue associ- cently, the existence of some families of q_uanturr_l MDS
ated withE—i.e., E|¢)=\(E)|s) for all |¢) € Q. We remark codes was _prove@66]. For example, wherD is a prime
that the quantum weight distributioB; corresponds to the power anch is even, a self-dual(n, 1,n/2+1))p code exists
classical weight distribution of the dual codé. for all 3=<n=D.

In Table | the weight distributions for extremedr opti-
mal for n=7 and 13 additive self-dual codes are collected
[61,63. In all but the cases=10 and 13 these are the only
possible weight distributions. The weight distribution is

lrmlqu?“}‘ic;lr ex;rfr:zall %pe'” fcordt(re]s. Alson;caraulatgd is the cor- Using Lubkin's formula[67] for the average subsystem
espo g entanglemef, for the quantum code. purity, one can easily calculate the mean entanglement for

Although the bounds mentioned aboyEgs. (49) and . A X
(50)] werg given in the context of stabilizgrﬁgodt(as )they alsorandom pure states sampled according to the unitarily invari-

apply to general QECC’§56]. Consequently, for qubits, ant Haar measurdu [Jdu(y) =1

there exist state§y) with Qz(¥)=1 only in the cases

=2,3,5,6, andpossibly whenn=7 where a nonadditive

((7,1,4) code might still exist. It is not known what the (Qm(¥)y= fdﬂ(¢)Qm(¢) =1-

supremum ofQ,(#) is in general; however, given the ex-

amples in Table I, we expect it to be very close to 1 when

is large. It is interesting that the mean@f,(y) (given inthe  This shows that when the overall dimensibfi is large, a

next sectioi seems unaffected by the erratic behavior in thetypical state has nearly maximal entanglement. One could

supremum. also consider the average entanglement over a subgpace
For the most part, quantum coding theorists have primadetermined by the projectd?,.

rily studied qubit codes. Some work on qudit codes exists

[50,63—-66, but there are very few known examples. One

exception is the generalization of the hexacode. (Qum(¥)) ye EJ dun () Q). (54)
A ((6,1,9)p code is known to exist for alD [50]. The mey V Y "

IV. MULTIPARTITE ENTANGLEMENT OVER SUBSPACES

m

1 59
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Proposition 4: 1 Mo (n—iy
=1- ' —[KA(P) +Bi(Po)].
D™ mt (n-m! <, , <Dm—1><»<+1>§ a1 (m-p AP+ BiPo]
= 1- trdtrg| P
Q¥ yey D"_1 NTK(K + 1)\S=m( dtrg[Py]7] 63)
5 Such formulas make explicit the importance of entanglement
+trg[trd Pyl7]) ¢, (55 as a resource for quantum error correction. Pure coBes
=A;=0,0<i<d) necessarily have high levels of entangle-
whereK =trP,,=dimV. ment, but impure codegB;=A,>0,0<i<d) need not.

Proof: Consider an arbitrary bipartite systemi=(P»  However, the most compact codésastn) all seem to be
® (P5 and define the swap operatdis (L<i<j<4) which ~ Pure [55]. The relationship between entanglement and
transpose théth andjth factors of ®2. Using the identity QECC'S remains relatively unexplored in the literature. We
t(A® B)T]=trAB], whereT is the swap, we first rewrite d0 Nnot, however, pursue this line of research any further in

; the current article. Elements of the proof of proposition 4
the subsystem purity of a st ‘H as
4 purtty ae) were borrowed from the work of Zanardt al. [23] where
trpa2 = te | ) ¥ 2T 4], (56)  the concept of entangling power was defined. In the next
section we investigate multipartite entangling power with re-
wherep=trg|y)(i)|. Now consider the operator spect to the measur€y,.
= f de('/’)|¢><¢/’|®2 (57) V. MULTIPARTITE ENTANGLING POWER
%

Following the work of Zanardet al. [23], we define the
multipartite entangling powerof the unitary operatoiJ
e U(D") acting on(CP)®" as simply the average entangle-
ment generated over all product states:

supported on the totally symmetric subspd®e®?, where
the projectorP=(1+T,3T,4)/2. If we choosedu, to be the
unitarily invariant Haar measure i then[U®?, w]=0 for

all unitary operatord) e U(D5Dg). And since the group el-
ementsU®? act irreducibly orPV#2, by Schur’s lemmé468], e(U) = fdﬂn(¢1v o UREUlY) ® - @ [gh),
w is simply a scalar multiple of the identitpon PV®2).
Hence, (64)
where|y;) e CP. The measureélu, is chosen to be the prod-
®= LPV@’ZP (58)  uctofnindependent Haar measures over the constituent sub-
K(K+1) systemsCP. Consequently, the entangling power is invariant

under the action of local unitariesg,(U;® - ®U, UV,
® - ®Vy)=ey,U) for all U;,V; e U(D). If we now restrict
our attention to the entanglement measutes),, the cal-
culation ofe, is facilitated by a simple formula.

tr[PL®%(1 + T13T24) Tyl (59) Proposition 5:

on H®?, where the constant factor is found through the nor-
malization condition tw=1. Thus

1
2_
fv du(trpa”= K(K+1)

eSm<U>=Dn?T1(1-m!(:!_m)! > Rs<U>), (65)

S=m
= ————(r[P),*?T 3] + tr P, 2T, 60
K(K + 1)( [Py Tag] + [Py Tad]) - (60) where the average subsystem purities

_ 2 " ®2 i . t®2 -
(trpa2 + tpg?), 6 U= ( D(D + 1)) t{u (f{ P"“”)U (iEl—IST"““)] '
(66)

1
TK(K+1)

wherepa=trg P, andpg=tr, P,. We have derived the aver- o )

age purity over a subspace for an arbitrary bipartite systenfh® swap operator$;;(1<i<j=2n) transpose théth and

Given that the measure,, are simply averages over bipar- ith factors of(C?)#", andP;; = (1+T;)/2.

tite puritieS, one can now deduce the final result. Proof: The derivation of this formula is similar to that for
In particular, for a QECQQ, one can now explicitly de- Proposition 4 and follows Zanaret al. [23]. We first rewrite

termine the average entanglement of encoded states in terrf subsystem purity of a sta@) e (C°)“" as

of the weight distribution of the code. For example,

trps? = tr(| W )W [*2] ] T ja). (67)
D" 1_m!(n—m)! KA (P ies
Qulveo=pm 711" s g (KANP) By choosing¥)=Ulyy) @ - @ |ys) we have
+ Br/n(PQ)]} (62 Rg(U) = Jd,U«n(l/fla o Ptrps (68)
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FIG. 1. (a) Phase-space portraits of the classical kicked rotorkfe®,0.2,1, and §from top to bottom and (b) the corresponding

entangling power in the quantum case. A Hilbert space of six qubits was chosen, allowing investigation of the multipartite entanglement

measure®),, for m=1 (dotted ling, 2 (dashed ling, and 3(solid line).
tones.

:tr(U®2 Q UT@ZH Ti,i+n) y
ieS

(69)
where

Q= Jdun(%, ) (Y] @ - @ [ (i) 2.
(70)

Now, considering the operato®= [du,()|){(H4*? sup-

ported on the totally symmetric subspaeg,(CP)®2, where
P1,=(1+T45)/2, we know from previous resultsee proof
of proposition 4 that w=2/D(D+1)P;,0n(CP)®2. Finally,

given that() factorizes into the product af independent
averages of the forrw, we have

ool

and our final result. O
Given our definition of the entangling powgEqg. (64)],

the (Haar measuneaverage ofe,(U) over UD") is equiva-

lent to the average entanglement found in random states:

2

D(D+1) 7D

n n
[1Pin

i=1

The average entanglement for random states is shown in the lighter

m

(€2n(U))y = (Qui)y=1 - = (72

D"+1°
Thus, typical unitaries generate nearly maximal entangle-
ment when the overall dimensidd" is large.

VI. APPLICATION AND CONCLUSION

An immediate application of proposition(&nd[23]) oc-
curs in the study of the entangling capabilities of chaotic
systems[24—-39. Consider a classical map of the toroidal
phase spacf0, 1)?. A quantized version may be constructed
in a Hilbert space of dimensioN spanned by the position
states |q;), where g;=(j+1/2/N and j=0,... N-1. By
choosingN=D", we can map our Hilbert space onto the
tensor-product spadé:®)®" through the correspondence

n
9 =[x @ =+ @ [xy), j=>%xD"", xe{0,...D-1},
i=1

(73

and hence use the measuf@g to investigate the quantum
map’s multipartite entangling power. The different constitu-
ent quditsx, address the coargsmall i) and fine(largei)
scales of position. Consequently, for chaotic maps where
phenomena such as mixing and exponential sensitivity are

052330-8
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generic, we expect high levels of entanglement generatiolAn alternative interpretation may be that quantized chaotic
This was noted if36] where the entangling power of the maps produce unitaries whose powers are typical in the

quantum baker’'s mafg9-73 was investigated. space of all unitaries. This follows from E(72).
For example, consider the kicked rof@r standard map In conclusion, we have shown that the average bipartite
[74] entanglemeniQ,, is a useful measure of multipartite en-
tanglement, presenting a relationship between these mea-
On+1= 0O * Ppssmod 1, (74)  sures and quantum-error-correcting codes. This was done by

deriving an explicit formula relating the weight distribution

of the code to the average entanglement of encoded states.

We have also extended the work of Zanaedlial. (23) on

entangling power to the multipartite case. Although the en-

The entangling power of the quantum versigi] tanglement measures considered in this paper provide little
intellectual gratification, their simplicity allows perhaps
more important attributes such as computability and applica-
bility. We must stress, however, that in defining such simple
measures we offer no progress towards a deeper understand-

(76) ing of the nature of entanglement in the multipartite case.

k
Pr+1= Pn+ Z—Sin 27rq, mod 1. (75
2

N-1

U|q,-> = g (kN2m)cos qujE (N1 - j)2|q|> (N even
1=0

constructed in a Hilbert space of 6 qubits=2°) is plotted
in Fig. 1(b). Here we choose the parameter values
=0,0.2,1, and gfrom top to botton), corresponding to the The author would like to thank Carlton Caves and Bryan
classical phase spaces drawn in Figa)1As expected, the Eastin for helpful discussions. This work was supported in
entanglement saturates at a value predicted for random statgart by ONR Grant No. N00014-00-1-0578 and by ARO
[Eq. (53)] upon the appearance of chaos in the classical magGrant No. DAAD19-01-1-0648.
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