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We investigate the average bipartite entanglement, over all possible divisions of a multipartite system, as a
useful measure of multipartite entanglement. We expose a connection between such measures and quantum-
error-correcting codes by deriving a formula relating the weight distribution of the code to the average en-
tanglement of encoded states. The multipartite entangling power of quantum evolutions is also investigated.
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I. INTRODUCTION

The phenomenon of entanglement[1–3] is a remarkable
feature of quantum physics that has been identified as a key
ingredient in many areas of quantum information theory in-
cluding quantum key distribution[4], superdense coding[5],
and teleportation[6]. However, the general problem of how
to quantify[1] the level of entanglement in an arbitrary mul-
tipartite system remains unresolved. There has been some
progress towards a solution[7–17], but the task at hand is
generally considered a difficult one and may never be com-
pleted. We are thus led to consider simple computable mea-
sures of entanglement[18,19] that although cannot fully
characterize the multipartite nature of the correlations, may
nevertheless still provide a useful gauge of their levels.

In this article we investigate the average bipartite en-
tanglement, over all possible divisions of a multipartite sys-
tem, as a useful measure of multipartite entanglement. Such
measures might be considered the least sophisticated of
choices; however, their simplicity allows theoretical calcula-
tions to be exercised with ease. We will restrict our study to
pure-state entanglement where the subsystem linear entropy
is a clear choice for the bipartite measure. It was recently
shown by Brennen[20] that an entanglement measure pro-
posed by Meyer and Wallach[19] is of the above-described
form, and hence, the multipartite entanglement measures
considered in this paper may be viewed as generalizations of
the Meyer-Wallach measure. Our measures may also be
viewed as variations of those considered by Pope and Mil-
burn [21] where instead the minimum bipartite entanglement
was considered.

We show that the average bipartite entanglement elects
self-dual quantum-error-correcting codes to the status of
maximally entangled states. The connection between en-
tanglement and quantum-error-correcting codes has been
highlighted elsewhere(e.g., [22]); however, we make this
relationship explicit by expressing the average entanglement
of encoded states in terms of the weight distribution of the
code. We also investigate the multipartite entangling power
of quantum evolutions. A simple extension of the work of
Zanardiet al. [23] allows the derivation of an explicit for-

mula. Such formulas are relevant to current studies in the
entangling capabilities of chaotic systems[24–39]. An ex-
ample treated in this article is the quantum kicked rotor.

The paper is organized as follows. In the next section we
introduce the Meyer-Wallach entanglement measure and its
generalizations. The connection between these measures and
quantum-error-correcting codes is discussed in Sec. III. This
relationship is further strengthened in Sec. IV where we de-
rive a formula for the average entanglement over a subspace.
In Sec. V we derive a formula for the multipartite entangling
power of an arbitrary unitary. Finally in Sec. VI we conclude
by applying our results to the quantum kicked rotor.

II. CLASS OF MULTIPARTITE ENTANGLEMENT
MEASURES

It is generally accepted that when a bipartite quantum
system is in an overall pure state, there is an essentially
unique resource-based measure of entanglement between the
two subsystems. This measure is given by the von Neumann
entropy of the marginal density operators[40,41]. To ease
theoretical calculations, one often replaces the von Neumann
entropy with its linearized version, the linear entropy. For a
bipartite system in an overall pure stateuclPCDA ^ CDB, the
subsystem linear entropyis defined as

SLscd ; hs1 − trrA
2d, rA = trBuclkcu, s1d

where the normalization factorh=D / sD−1d, with D
=minsDA,DBd, is chosen such that 0øSLø1. The state is
separable if and only ifSL=0 and maximally entangled when
SL=1.

In general, as the number of subsystems increases, an ex-
ponential number of independent measures is needed to
quantify fully the amount entanglement in a multipartite sys-
tem. Consequently, the following entanglement measures
cannot be thought of as unique. Different measures will cap-
ture different aspects of multipartite entanglement.

The Meyer-Wallach measure[19] Qscd, which can only
be applied to multiqubit pure statesuclP sC2d^n, is defined
as follows. For eachj =1, . . . ,n andbP h0,1j, we define the
linear mapi jsbd : sC2d^n→ sC2d^n−1 through its action on the
product basis:*Electronic address: ascott@phys.unm.edu
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i jsbdux1l ^ ¯ ^ uxnl

= dbxj
ux1l ^ ¯ ^ uxj−1l ^ uxj+1l ^ ¯ ^ uxnl, s2d

wherexi P h0,1j. The Meyer-Wallach entanglement measure
is then

Qscd ;
4

n
o
j=1

n

D„i js0ducl,i js1ducl…, s3d

where

Dsucl,ufld = kcuclkfufl − ukcuflu2. s4d

Meyer and Wallach showed thatQ is invariant under local
unitary transformations and that 0øQø1, with Qscd=0 if
and only if ucl is a product state.

Recently, it was shown by Brennen[20] that Q is simply
the average subsystem linear entropy of the constituent qu-
bits:

Qscd = 2S1 −
1

n
o
k=1

n

trrk
2D , s5d

whererk is the density operator for thekth qubit after tracing
out the rest. This simplification is easily understood[42] by
first showing thatD(i js0ducl ,i js1ducl) is unchanged by a lo-
cal unitary applied to thej th qubit (a fact already proven by
Meyer and Wallach) and, hence, invariant under a change in
the qubit’s fiducial basis. Consequently, a judicious choice of
the Schmidt basis givesD(i js0ducl ,i js1ducl)=l j

1l j
2=s1

−trr j
2d /2, wherel j

1 and l j
2 are the Schmidt coefficients in

the decomposition between thej th qubit and the remainder
of the system.

Brennen’s simplification immediately allows the generali-
zation ofQ to multiqudit statesuclP sCDd^n, and by consid-
ering all other possible bipartite divisions, we can now define
a class of related multipartite entanglement measures in the
obvious manner:

Qmscd ;
Dm

Dm − 1S1 −
m ! sn − md!

n! o
uSu=m

trrS
2D ,

m= 1, . . . ,bn/2c, s6d

whereS, h1, . . . ,nj andrS=trS8uclkcu is the density operator
for the quditsS after tracing out the rest andbkc denotes the
integer part ofk. Note thatQm reduces to the original Meyer-
Wallach measure whenm=1 andD=2. The above “multi-
partite” entanglement measures are merely averages over the
well-established bipartite measure. Consequently,Qm is in-
variant under local unitary transformations, nonincreasing on
average under local quantum operations and classical
communication—i.e.,Qm is an entanglement monotone
[43]—and 0øQmø1. The lower bound is only reached for
product states.

Proposition 1: Qmscd=0 iff ucl= ^ j=1
n uc jl for some

uc jlPCD ; i.e., ucl is a product state.
Whenm=1 the upper bound is reached by the generalized

Greenberger-Horne-Zeilinger(GHZ) states

ugl =
1

ÎD
o
j=0

D−1

u jl^n. s7d

In general,

Qmsgd = 1 −
Dm−1 − 1

Dm − 1
, s8d

and hence the entangled statesugl do not saturate the upper
bound form.1. We have not, however, established whether
or not there evenexiststates which saturate the upper bound.

Define anm-uniformmultiqudit state to be a state with the
property that after tracing out all butm qudits we are left
with the maximally mixed state, for anym-tuple of qudits.
Thus, all information about the system is lost upon the re-
moval of n−m or more parties.

Proposition 2: Qmscd=1 iff rS=trS8uclkcu=D−m1̂ when-
ever uSu=m; i.e., ucl is m-uniform.

Obviously, if ucl is m-uniform then it is alsosm−1d uni-
form, and henceQmscd=1⇒Qm−1scd=1. However, note that
the measuresQm do not obey any ordering. For example, in
the case of qubits, consider the generalizedW states

uvl =
1
În

o
j=1

n

u0l^ j−1
^ u1l ^ u0l^n−j . s9d

One can calculate

Qmsvd =
2m+1

2m − 1

sn − mdm
n2 s10d

and hence, forn=6 say, Q1=5/9,Q3=4/7,Q2=16/27.
The measuresQm also do not preserve the partial ordering of
entangled states; i.e.,Qm8scdøQm8sfd does not necessarily
imply thatQmscdøQmsfd for otherm. These facts might be
considered as unlucky properties ofQm. However they do
suggest that the extremal entanglement measureQbn/2c does
not necessarily tell the entire story; differentQm capture dif-
ferent aspects of multipartite entanglement. The original
Meyer-Wallach measureQ1 is the average entanglement be-
tween individual qudits and the rest, whereas, on increasing
m, Qm measures the average entanglement between blocks of
qudits, of an increasing size, and the rest. Consequently, asm
increases, we expect thatQm will be sensitive to correlations
of an increasingly global nature.

Proposition 2 implies that the task of finding states which
saturate the the upper bound 1 ofQm is equivalent to the
construction ofm-uniform multiqudit states. We now show
in the next section how quantum-error-correcting codes
(QECC’s) producem-uniform multiqudit states. An example
is the six-qubit hexacode stateuHl, which arises as the code
subspace of the self-dual qubit stabilizer codeff6,0,4gg. In
this caseQ1sHd=Q2sHd=Q3sHd=1.

III. MULTIPARTITE ENTANGLEMENT AND QECC’s

The idea behind quantum error correction[22,44–49] is
to encode quantum states into qudits in such a way that a
small number of errors affecting the individual qudits can be
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measured and corrected to perfectly restore the original en-
coded state. The encoding of aK-dimensional quantum state
into n qudits is simply a linear map fromCK to a subspaceQ
of sCDd^n. The subspace itself is referred to as thecodeand
is orientated in such a way that errors on the qudits move
encoded states in a direction perpendicular to the code.

A. General QECC’s

An error operator Eis a linear operator acting onsCDd^n.
The error is said to bedetectableby the quantum codeQ if

kcuEucl = kfuEufl s11d

for all normalizeducl , uflPQ. Equivalently, ifQ is spanned
by an orthonormallogical basishu jLlu j =0, . . . ,K−1j, then an
error E is detectable if and only if

k jLuEuiLl = CsEddi j s12d

for all 0ø i , j øK−1 where the constantCsEd depends only
on E. It is a general theorem of QECC’s that a set of errorsE
can be corrected by a codeQ, if and only if for each
E1,E2PE, the errorE2

†E1 is detectable byQ.
A local error operatorhas the form

E = M1 ^ ¯ ^ Mn, s13d

where eachMi acts onCD. The weight of a local error op-
eratorE, denoted by wtsEd, is the number of elements,Mi,
which are not scalar multiples of the identity. A quantum
codeQ has aminimum distanceof at leastd if and only if all
local error operators of weight less thand are detectable by
Q. A code with minimum distanced=2t+1 allows the cor-
rection of arbitrary errors affecting up tot qudits. In the case
of qubits, such codes are denoted by the triplessn,K ,ddd. We
will use the notationssn,K ,dddD for the general case of qu-
dits [50]. An ssn,K ,dddD code is calledpure if kcuEucl
=D−n tr E for all uclPQ whenever wtsEd,d. When consid-
ering self-dual codessK=1d, we adopt the convention that
the notationssn,1 ,dddD refers only to pure codes since the
condition on the minimum distance is otherwise trivial.

There is a continuum of possible errors in a single qudit;
however, due to the phenomenon of measurement collapse,
the correction of an arbitrary single-qudit error only requires
an ability to correctD2 different types, each corresponding to
an orthonormal basis element for single-qudit operations.
One choice for anice error basis[51–53] is thedisplacement
operator basis

Dsm,nd ; eipmn/DXmZn, 0 ø m,n ø D − 1, s14d

where the Weyl operatorsX and Z are defined on a basis
hu jlu j =0, . . . ,D−1j for CD through the equations

Xu jl = u j + 1 modDl, Zu jl = e2pi j /Du jl. s15d

The displacement operators reduce to the Pauli matrices for
qubits, satisfy the relations

Dsm,nd = eipnDsm + D,nd = eipmDsm,n + Dd, s16d

Dsm,nd† = Ds− m,− nd = eipsm+n+DdDsD − m,D − nd,

s17d

Dsm,ndDsa,bd = e2pisna−mbd/DDsa,bdDsm,nd

= episna−mbd/DDsm + a,n + bd, s18d

trfDsm,nd†Dsa,bdg = Ddmadnb, s19d

and thus form an orthonormal basis for all single-qudit op-
erators:

A =
1

D
o

m,n=0

D−1

trfDsm,nd†AgDsm,nd. s20d

Similarly, the operators

Dsm,nd ; Dsm1 ¯ mn,n1 ¯ nnd

; Dsm1,n1d ^ ¯ ^ Dsmn,nnd,

0 ø mk,nk ø D − 1, s21d

form an orthonormal basis for the set of alln-qudit operators:
A=D−nom,ntrfDsm ,nd†AgDsm ,nd. The weight ofDsm ,nd is
simply the number of pairssmk,nkd different froms0,0d. We
are now in a position to make a more explicit definition of
what we mean by anssn,K ,dddD QECC.

Definition: Let Q be aK-dimensional subspace ofsCDd^n

spanned by the orthonormal logical basishu jLlu j =0, . . . ,K
−1j. Then Q is called an ssn,K ,dddD quantum-error-
correcting codeif

k jLuDsm,nduiLl = Csm,nddi j s22d

for all Dsm ,nd with wtfDsm ,ndg,d and 0ø i , j øK−1. If
Csm ,nd=dm0dn0, the code is calledpure.An ssn,1 ,dddD code
must be pure by convention.

An ssn,K ,dddD QECC can detect and recover all errors
acting on,d/2 qudits. It is now evident how quantum codes
produce maximally entangled states.

Proposition 3: Qmscd=1 iff ucl is a (pure) ssn,1 ,m
+1ddD quantum-error-correcting code.

Proof: If Qmscd=1 then ucl is m-uniform and, conse-
quently,

kcuDsm,nducl = tr fuclkcuDsm,ndg s23d

=D−ntrfDsm,ndg „whenever wtfDsm,ndg ø m…

s24d

=dm0dn0 s25d

given that the displacement operators are traceless for all
sm ,ndÞ s0,0d. Thus,ucl is an ssn,1 ,m+1ddD QECC.

Conversely, if ucl is an ssn,1 ,m+1ddD QECC, then re-
writing uclkcu in the displacement operator basis
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Dnuclkcu = 1̂ + o
1øwtfDsm,ndgøm

cmnDsm,nd

+ o
m+1øwtfDsm,ndgøn

cmnDsm,nd, s26d

we see that the coefficientscmn=kcuDsm ,nducl are nonzero
only in the second sum, and hence, given the traceless prop-
erty of the displacement operators,

rS= trS8uclkcu = D−m1̂ s27d

wheneveruSu=m. Thus ucl is m-uniform andQmscd=1. h

Note that any stateuclPQ, whereQ is a puressn,K ,m
+1ddD QECC, is itself anssn,1 ,m+1ddD QECC. Conse-
quently, puressn,K ,m+1ddD codes define entire subspaces of
maximally entangled states. The connection between quan-
tum codes and entanglement is noted in[22] and alluded to
elsewhere[17,46]; however, we cite the work of Rains[54]
for a rigorous proof of the relationship even though no men-
tion of entanglement can be found in the paper. Here quan-
tum weight enumerators were studied extensively. It will
later prove advantageous to now revisit Rains’ work in the
current article.

Defining PQ as the projector onto the code subspaceQ
with dimension K, the Shor-Laflamme enumerators of a
quantum code are[55]

AisPQd =
1

K2 o
wtfDsm,ndg=i

utrfDsm,ndPQgu2, s28d

BisPQd =
1

K
o

wtfDsm,ndg=i

trfDsm,ndPQDsm,nd†PQg, s29d

wherei =0, . . . ,n. Rains[54] defined two new enumerators

Ai8sPQd =
1

K2 o
uSu=i

trS†trS8fPQg2
‡, s30d

Bi8sPQd =
1

K
o
uSu=i

trS8†trSfPQg2
‡, s31d

related to the Shor-Laflamme enumerators via the equations

Am8 sPQd = D−mo
i=0

m
sn − id!

sm− id ! sn − md!
AisPQd, s32d

Bm8 sPQd = D−mo
i=0

m
sn − id!

sm− id ! sn − md!
BisPQd. s33d

This relationship was only given in the qubit case where the
displacement operators reduce to Hermitian Pauli matrices.
However, the proof extends easily to qudits with the the help
of Eq. (17). It is easy to see that the weight enumerators
satisfy the normalization condition A08sPQd=B08sPQd
=A0sPQd=B0sPQd=1, and for self-dual codessK=1d

Bi8sPQd = Ai8sPQd fBisPQd = AisPQdg s34d

for all 0ø i øn. In general, the weight enumerators satisfy
[54]

Bi8sPQd ù Ai8sPQd ù 0 fBisPQd ù AisPQd ù 0g s35d

for all 0ø i øn
Theorem [54]:Let Q be a quantum code with associated

projectorPQ. ThenQ has minimum distance of at leastd iff

Bd−18 sPQd = Ad−18 sPQd fBisPQd = AisPQd for all 0 , i , dg
s36d

and is pure iff

Bd−18 sPQd = Ad−18 sPQd =
D1−dn!

sd − 1d ! sn − d + 1d!

fBisPQd = AisPQd = 0 for all 0, i , dg. s37d

Proposition 3 is now immediately apparent since

Qmscd =
Dm

Dm − 1
F1 −

m ! sn − md!
n!

Am8 suclkcudG
= 1 −

1

Dm − 1o
i=1

m
m ! sn − id!
n ! sm− id!

Aisuclkcud. s38d

Noting that K Ai8=Bn−i8 , one can use the above theorem to
derive bounds on the minimum distance for general quantum
codes. In the case ofssn,1 ,dddD QECC’s the following con-
ditions must hold:

Ai8 = An−i8 , 0 ø i ø n, s39d

A0 = 1, s40d

Ai = 0, 0, i , d, s41d

Ai ù 0, d ø i ø n. s42d

When d= bn/2c+1, these equations uniquely specify the
weight distributionhAij. Solving Eqs.(39)–(41), we obtain

Ai =
n!

sn − id! oj=d

i
s− 1di−jsD2j−n − 1d

j ! si − jd!
, d ø i ø n, s43d

and under the conditionAd+1ù0, we find that we at least
require

n ø H2sD2 − 1d if n is even,

2DsD + 1d − 1 if n is odd,
s44d

for an ssn,1 ,bn/2c+1ddD QECC to exist. Consequently,
Qbn/2cscd,1 for all ucl whenever Eq.(44) is not satisfied. For
dø bn/2c we must resort to linear programming techniques
on Eqs.(39)–(42) to prove the nonexistence ofssn,1 ,dddD

QECC’s. However, tighter bounds could be obtained by us-
ing the generalized quantum shadow enumerators[56,57].
We make no attempt at this task in the current article, but
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instead specialize to qubits where many examples of
QECC’s are already known.

B. Stabilizer qubit QECC’s

An important class of quantum codes is composed of the
so-calledadditive or stabilizer codes[44,45]. A stabilizer
codeis defined as a joint eigenspace of an Abelian subgroup
S (called the stabilizer) of the error group E
=h±eipl/DDsm ,nd u0ømk,nk,løD−1j. When D is prime,
these codes can be described by ansn−kd3n stabilizer ma-
trix over GFsD2d and are examples ofssn,Dk,dddD QECC’s.
The notationffn,k,dggD is then used or simplyffn,k,dgg
whenD=2.

A classicaladditive code overGFs4d of length n is an
additive subgroupC of GFs4dn. In the case of qubits, stabi-
lizer codes correspond to classical additive codes over GFs4d
[44]. This is shown as follows. Letting GFs4d=h0,1,v ,vj
wherev=v2=1+v, we define theconjugateof xPGFs4d,
denotedx, by the mapping0=0,1=1, andv%=v. Next define
the trace map Tr : GFs4d→GFs2d by Trsxd=x+x2—i.e.,
Trs0d=Trs1d=0 and Trsvd=Trsvd=1— and thetrace inner
productof two vectorsx=x1. . .xn andy=y1. . .yn in GFs4dn

as

x . y = o
i=1

n

Trsxiyid P GFs2d. s45d

The weight wtsxd of xPGFs4dn is the number of nonzero
components ofx, and theminimum weightof a codeC is the
smallest weight of any nonzero codeword inC. Next, by
defining the mappingF :GFs4dn→« by Fsxd=D(f−1sxd)
where fsm ,nd=vm+vn, we can associate elements of
GFs4d with Pauli matricessv→X,v→Z,1→ iXZ,0→ Id,
addition of vectors over GFs4dn with multiplication of opera-
tors in E (neglecting phases), and the trace inner product on
GFs4dn with the commutator onE.

If C is an additive code, itsdual is the additive codeC'

=hxPGFs4dnux.c=0 ∀ cPCj. The codeC is called self-
orthogonal if C#C' and self-dual if C=C'. The following
theorem now applies[44]: SupposeC is a self-orthogonal
additive subgroup of GFs4dn, containing 2n−k vectors, such
that there are no vectors of weight,d in C' \C. Then any
joint eigenspace ofFsCd is an ffn,k,dgg QECC.

We say thatC is pure if there are no nonzero vectors of
weight ,d in C'. The associated QECC is then pure if and
only if C is pure. By convention, anffn,0 ,dgg QECC corre-
sponds to a self-dual additive codeC with minimum weight
d. Consequently,ffn,0 ,dgg QECC’s are always pure and are
examples ofssn,1 ,ddd QECC’s which saturate the entangle-
ment measuresQm.

The advantage of making the above correspondence is
that a wealth of classical coding theory immediately be-
comes available. Indeed the classical self-dual additivehexa-
codewith generator matrix

3
1 0 0 1 v v

0 1 0 v 1 v

0 0 1 v v 1

v 0 0 v v v

0 v 0 v v v

0 0 v v v v

4 s46d

gives the quantum hexacodeff6,0,4gg mentioned previ-
ously. The rows of the generator matrix define a basis(under
addition) for the classical codeC and, with the above corre-
spondence, define generators(up to a phase) for the stabilizer
S in the quantum version. Another example is theff2,0,2gg
qubit code generated by

F1 1

v v
G s47d

In this case the quantum code is an Einstein-Podolsky-Rosen
(EPR) state—e.g., su00l+ u11ld /Î2. We can obtain a
ff5,0,3gg qubit code by deleting the first row and column of
the hexacode generator matrix[Eq. (46)]. This process is
calledshortening[60]. A ff3,0,2gg code

31 1 0

v v v

1 0 1
4 s48d

is obtained bylengtheningthe ff2,0,2gg code.
The four codes of lengthsn=2,3,5, and 6mentioned

thus far all produce quantum stabilizer codes with the prop-
erty Qbn/2cscd=1. Unfortunately, known bounds on such
codes prevent this from being the case for other lengths. An
additive self-dual code is calledtype II if all codewords have
even weight andtype I otherwise. It can be shown that all
type-II codes have even length. IfdI, dII is the minimum
weight of an additive self-dual type-I, type-II code, respec-
tively, of lengthn.1, then[58–60]

dI ø 52bn/6c + 1 if n ; 0 mod 6,

2bn/6c + 3 if n ; 5 mod 6,

2bn/6c + 2 otherwise,

s49d

dII ø 2bn/6c + 2. s50d

If a code meets the appropriate bound, it is calledextremal.A
code is calledoptimal when it is not extremal and no code
can exist with a larger minimum weight. The above bounds
imply that ffn,0 ,bn/2c+1gg stabilizer codes may exist only
when n=2, 3, 5, 6, and 7. However,ff7,0,3gg codes are
known to be optimal and we are left with the remaining four
cases.

The weight distributionof an additive codeC,

Ai ; uhx P Cu wtsxd = iju, s51d

is also the weight distribution for the corresponding quantum
stabilizer code, and thus, the entanglement of the stabilized
state is easily calculated through formula(38). We can see
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this by noting that for stabilizer codes, the projection ontoQ
is given by[49]

PQ =
1

uSu oEPS

lsEd−1E, s52d

whereS is the stabilizer andlsEd is the eigenvalue associ-
ated withE—i.e., Eucl=lsEducl for all uclPQ. We remark
that the quantum weight distributionBi corresponds to the
classical weight distribution of the dual codeC'.

In Table I the weight distributions for extremal(or opti-
mal for n=7 and 13) additive self-dual codes are collected
[61,62]. In all but the casesn=10 and 13 these are the only
possible weight distributions. The weight distribution is
unique for extremal type-II codes. Also tabulated is the cor-
responding entanglementQm for the quantum code.

Although the bounds mentioned above[Eqs. (49) and
(50)] were given in the context of stabilizer codes, they also
apply to general QECC’s[56]. Consequently, for qubits,
there exist statesucl with Qbn/2cscd=1 only in the casesn
=2,3,5,6, andpossibly whenn=7 where a nonadditive
ss7,1,4dd code might still exist. It is not known what the
supremum ofQmscd is in general; however, given the ex-
amples in Table I, we expect it to be very close to 1 whenn
is large. It is interesting that the mean ofQmscd (given in the
next section) seems unaffected by the erratic behavior in the
supremum.

For the most part, quantum coding theorists have prima-
rily studied qubit codes. Some work on qudit codes exists
[50,63–66], but there are very few known examples. One
exception is the generalization of the hexacode.
A ss6,1,4ddD code is known to exist for allD [50]. The

ss6,1,4ddD code belongs to a class of optimal codes called
maximum distance separable(MDS) codes which saturate
the quantum Singleton bound[50]—i.e., K=Dn−2d+2. Quan-
tum MDS codes must be pure and, thus, define subspaces of
maximally entangled states. Self-dual quantum MDS codes
have weight distributions specified by Eq.(43). Other ex-
amples of MDS codes include theff6,2,3ggD andff7,3,3ggD

stabilizer codes which exist for all primeD [65]. More re-
cently, the existence of some families of quantum MDS
codes was proved[66]. For example, whenD is a prime
power andn is even, a self-dualssn,1 ,n/2+1ddD code exists
for all 3ønøD.

IV. MULTIPARTITE ENTANGLEMENT OVER SUBSPACES

Using Lubkin’s formula[67] for the average subsystem
purity, one can easily calculate the mean entanglement for
random pure states sampled according to the unitarily invari-
ant Haar measuredm fedmscd=1g:

kQmscdlc ; E dmscdQmscd = 1 −
Dm + 1

Dn + 1
. s53d

This shows that when the overall dimensionDn is large, a
typical state has nearly maximal entanglement. One could
also consider the average entanglement over a subspaceV
determined by the projectorPV:

kQmscdlcPV ; E
V

dmVscdQmscd. s54d

TABLE I. The weight distributionsAi and corresponding entanglementQm for extremal(or optimal forn=7 and 13) additive self-dual
codes. In all but the casesn=10 and 13 these are the only possible weight distributions.

n d A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 Q1 Q2 Q3 Q4 Q5 Q6

2 2 1 0 3 1

3 2 1 0 3 4 1

4 2 1 0 6 0 9 1 2/3

4 2 1 0 2 8 5 1 8/9

5 3 1 0 0 10 15 6 1 1

6 4 1 0 0 0 45 0 18 1 1 1

7 3 1 0 0 7 21 42 42 15 1 1 34/35

7 3 1 0 0 3 29 42 34 19 1 1 242/245

8 4 1 0 0 0 42 0 168 0 45 1 1 1 24/25

8 4 1 0 0 0 26 64 72 64 29 1 1 1 512/525

9 4 1 0 0 0 26 48 136 160 93 48 1 1 1 932/945

9 4 1 0 0 0 18 72 120 144 117 40 1 1 1 104/105

10 4 1 0 0 0 30 0 300 0 585 0 108 1 1 1 104/105 212/217

11 5 1 0 0 0 0 66 198 330 495 550 330 78 1 1 1 1 216/217

12 6 1 0 0 0 0 0 396 0 1485 0 1980 0 234 1 1 1 1 1 146/147

13 5 1 0 0 0 0 15 236 356 1197 1530 2012 1956 650 239 1 1 1 1 13294/13299 26938/27027
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Proposition 4:

kQmscdlcPV =
Dm

Dm − 1H1 −
m ! sn − md!
n ! KsK + 1d o

uSu=m

strS†trS8fPVg2
‡

+ trS8ftrSfPVg2gdJ , s55d

whereK=trPV=dimV.
Proof: Consider an arbitrary bipartite systemH=CDA

^ CDB and define the swap operatorsTij s1ø i , j ø4d which
transpose theith and j th factors ofH^2. Using the identity
trfsA^ BdTg=trfABg, whereT is the swap, we first rewrite
the subsystem purity of a stateuclPH as

trrA
2 = trfuclkcu^2T13g, s56d

whererA=trBuclkcu. Now consider the operator

v ; E
V

dmVscduclkcu^2 s57d

supported on the totally symmetric subspacePV^2, where
the projectorP=s1+T13T24d /2. If we choosedmV to be the
unitarily invariant Haar measure onV, thenfU^2,vg=0 for
all unitary operatorsUPUsDADBd. And since the group el-
ementsU^2 act irreducibly onPV^2, by Schur’s lemma[68],
v is simply a scalar multiple of the identity(on PV^2).
Hence,

v =
2

KsK + 1d
PV^2P s58d

on H^2, where the constant factor is found through the nor-
malization condition trv=1. Thus

E
V

dmVscdtrrA
2 =

1

KsK + 1d
trfPV^2s1 + T13T24dT13g s59d

=
1

KsK + 1d
strfPV^2T13g + trfPV^2T24gd s60d

=
1

KsK + 1d
strr̃A

2 + trr̃B
2d, s61d

wherer̃A=trB PV and r̃B=trA PV. We have derived the aver-
age purity over a subspace for an arbitrary bipartite system.
Given that the measuresQm are simply averages over bipar-
tite purities, one can now deduce the final result.h

In particular, for a QECCQ, one can now explicitly de-
termine the average entanglement of encoded states in terms
of the weight distribution of the code. For example,

kQmscdlcPQ =
Dm

Dm − 1
H1 −

m ! sn − md!
n ! sK + 1d

fKAm8 sPQd

+ Bm8 sPQdgJ s62d

=1 −
1

sDm − 1dsK + 1doi=1

m
m ! sn − id!
n ! sm− id!

fKAisPQd + BisPQdg.

s63d

Such formulas make explicit the importance of entanglement
as a resource for quantum error correction. Pure codessBi

=Ai =0,0, i ,dd necessarily have high levels of entangle-
ment, but impure codessBi =Ai .0,0, i ,dd need not.
However, the most compact codes(leastn) all seem to be
pure [55]. The relationship between entanglement and
QECC’s remains relatively unexplored in the literature. We
do not, however, pursue this line of research any further in
the current article. Elements of the proof of proposition 4
were borrowed from the work of Zanardiet al. [23] where
the concept of entangling power was defined. In the next
section we investigate multipartite entangling power with re-
spect to the measuresQm.

V. MULTIPARTITE ENTANGLING POWER

Following the work of Zanardiet al. [23], we define the
multipartite entangling powerof the unitary operatorU
PUsDnd acting onsCDd^n as simply the average entangle-
ment generated over all product states:

epsUd ; E dmnsc1, . . . ,cndEsUuc1l ^ ¯ ^ ucnld,

s64d

whereucilPCD. The measuredmn is chosen to be the prod-
uct of n independent Haar measures over the constituent sub-
systemsCD. Consequently, the entangling power is invariant
under the action of local unitaries:epsU1 ^ ¯ ^ UnUV1

^ ¯ ^ Vnd=epsUd for all Ui ,Vi PUsDd. If we now restrict
our attention to the entanglement measuresE=Qm, the cal-
culation ofep is facilitated by a simple formula.

Proposition 5:

ep
QmsUd =

Dm

Dm − 1S1 −
m ! sn − md!

n! o
uSu=m

RSsUdD , s65d

where the average subsystem purities

RSsUd = S 2

DsD + 1dD
n

trFU^2Sp
i=1

n

Pi,i+nDU†^2Sp
iPS

Ti,i+nDG ,

s66d

the swap operatorsTijs1ø i , j ø2nd transpose theith and
j th factors ofsCDd^2n, andPij ;s1+Tijd /2.

Proof: The derivation of this formula is similar to that for
proposition 4 and follows Zanardiet al. [23]. We first rewrite
the subsystem purity of a stateuC lP sCDd^n as

trrS
2 = trsu C lkC u^2p

iPS

Ti,i+nd. s67d

By choosinguC l=Uuc1l ^ ¯ ^ ucnl we have

RSsUd ; E dmnsc1, . . . ,cndtrrS
2 s68d

MULTIPARTITE ENTANGLEMENT, QUANTUM-ERROR-… PHYSICAL REVIEW A 69, 052330(2004)

052330-7



=trsU^2 V U†^2p
iPS

Ti,i+nd, s69d

where

V ; E dmnsc1, . . . ,cndsuc1lkc1u ^ ¯ ^ ucnlkcnud^2.

s70d

Now, considering the operatorv;edm1scduclkcu^2 sup-
ported on the totally symmetric subspaceP12sCDd^2, where
P12=s1+T12d /2, we know from previous results(see proof
of proposition 4) that v=2/DsD+1dP12 on sCDd^2. Finally,
given thatV factorizes into the product ofn independent
averages of the formv, we have

V = S 2

DsD + 1dD
n

p
i=1

n

Pi,i+n s71d

and our final result. h
Given our definition of the entangling power[Eq. (64)],

the (Haar measure) average ofepsUd over UsDnd is equiva-
lent to the average entanglement found in random states:

kep
QmsUdlU = kQmscdlc = 1 −

Dm + 1

Dn + 1
. s72d

Thus, typical unitaries generate nearly maximal entangle-
ment when the overall dimensionDn is large.

VI. APPLICATION AND CONCLUSION

An immediate application of proposition 5(and[23]) oc-
curs in the study of the entangling capabilities of chaotic
systems[24–39]. Consider a classical map of the toroidal
phase spacef0,1d2. A quantized version may be constructed
in a Hilbert space of dimensionN spanned by the position
states uqjl, where qj =s j +1/2d /N and j =0, . . . ,N−1. By
choosingN=Dn, we can map our Hilbert space onto the
tensor-product spacesCDd^n through the correspondence

uqjl = ux1l ^ ¯ ^ uxnl, j = o
i=1

n

xiD
n−i, xi P h0, . . . ,D − 1j,

s73d

and hence use the measuresQm to investigate the quantum
map’s multipartite entangling power. The different constitu-
ent quditsxi address the coarse(small i) and fine(large i)
scales of position. Consequently, for chaotic maps where
phenomena such as mixing and exponential sensitivity are

FIG. 1. (a) Phase-space portraits of the classical kicked rotor fork=0,0.2,1, and 6(from top to bottom) and (b) the corresponding
entangling power in the quantum case. A Hilbert space of six qubits was chosen, allowing investigation of the multipartite entanglement
measuresQm for m=1 sdotted lined ,2 sdashed lined , and 3ssolid lined. The average entanglement for random states is shown in the lighter
tones.
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generic, we expect high levels of entanglement generation.
This was noted in[36] where the entangling power of the
quantum baker’s map[69–73] was investigated.

For example, consider the kicked rotor(or standard map)
[74]

qn+1 = qn + pn+1 mod 1, s74d

pn+1 = pn +
k

2p
sin 2pqn mod 1. s75d

The entangling power of the quantum version[75]

Uuqjl = eiskN/2pdcos 2pqj o
l=0

N−1

eisp/Ndsl − jd2uqll sN evend

s76d

constructed in a Hilbert space of 6 qubitssN=26d is plotted
in Fig. 1(b). Here we choose the parameter valuesk
=0,0.2,1, and 6(from top to bottom), corresponding to the
classical phase spaces drawn in Fig. 1(a). As expected, the
entanglement saturates at a value predicted for random states
[Eq. (53)] upon the appearance of chaos in the classical map.

An alternative interpretation may be that quantized chaotic
maps produce unitaries whose powers are typical in the
space of all unitaries. This follows from Eq.(72).

In conclusion, we have shown that the average bipartite
entanglementQm is a useful measure of multipartite en-
tanglement, presenting a relationship between these mea-
sures and quantum-error-correcting codes. This was done by
deriving an explicit formula relating the weight distribution
of the code to the average entanglement of encoded states.
We have also extended the work of Zanardiet al. (23) on
entangling power to the multipartite case. Although the en-
tanglement measures considered in this paper provide little
intellectual gratification, their simplicity allows perhaps
more important attributes such as computability and applica-
bility. We must stress, however, that in defining such simple
measures we offer no progress towards a deeper understand-
ing of the nature of entanglement in the multipartite case.
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