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Quantum-information theory predicts that when the transmission resource is doubled in quantum channels,
the amount of information transmitted can be increased more than twice by quantum-channel coding technique,
whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive
guantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum
decoding which requires a collective quantum measurement. Recently, an experimental demonstration was
reported[M. Fujiwaraet al, Phys. Rev. Lett90, 167906(2003]. The purpose of this paper is to describe our
experiment in detail. Particularly, a design strategy of quantum-collective decoding in physical quantum cir-
cuits is emphasized. We also address the practical implication of the gain on communication performance by
introducing thequantum-classical hybrid codingcheme. We show how the superadditive quantum-coding
gain, even in a small code length, can boost the communication performance of conventional coding

techniques.
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I. INTRODUCTION ters 0 and 1, respectively, are represented by the coherent

statespy=|a){a| and p;=|-a)(-al, respectively. For weak

A fundamental problem in information science is what iscoherent pulses, the state overlép|—«) becomes non-
the most efficient way of transmitting information with a neg|igib|e' i_e.,ﬁ,o and 2’1 are noncommuting_ According to
minimum of transmission resources. The amount of informathe uncertainty principle, noncommuting density matrices
tion transmissible through a communications channel is decan never be distinguished perfectly. This imposes an inevi-
termined by the noise characteristics of the channel and bgable error in signal detection even in an ideal communica-
the quantities of available transmission resources. In classicéibns systen{10]. Actually, when|a|?><3, p, and p, cannot
communication theoryl-3], the amount of transmissible in- be distinguished at a bit error rate of less than®1&hich is
formation can be increased twice at most when the transmisa typical error-free criterion in deep space communications.
sion resourcge.g., the code length, the signal power, the Historically, an extension of communication theory into
bandwidth is doubled, for the fixed noise characteristics ofthe quantum domain including this aspect of ambiguity has
the channel. In quantum-communication theory, howeverbeen explored since the 196($1-14. In 1973, Holevo
this is not true in general, that is, the amount of informationderived the quantity that bounds the upper limit of the capac-
transmitted can be increased even more than twice. This fedy of @ quantum-communications chanrf@H]. It was re-
ture is called thesuperadditivityof the capacity of the quan- cently shown tha_t this so-called Holevo .bound is an achley-
tum channe[4—9]. able rate, that is, the exact expression of the capacity

The superadditivity becomes essential in any transmissiohlS_ilﬂl' Clas?l:/c;]alrcotrﬁmuinlr(]:altlonrthei?/[ygﬂ des;:nrlrgeﬁr':he den-
of signals at the quantum level where ambiguity among sig—SpeC al case wnere Ihe signais are given by commuting de

nals is a matter of noncommutativity of the densit matricesSity matrices. The distinctive characteristics of quantum
RN Y . y theory of capacity is its great emphasis on the quantum-
l.€., pop1 # p1po, rather than any classical noises such as theryg . 4ing process to extract information from block se-
mal noise. One typ|cal_example IS de;ep space optical (_:OWtiuences of noncommuting density matrices. The essence of
munications. Intersatellite optical link is expected to achievgy,q optimal decoding is the use of a process of entangling

a high transmission rate that cannot be achieved by the radigsiter states constituting code words prior to measurement to
or microwave links, e.g., to realize data transmission from &nhance the distinguishability of signals. Such a process is a
space telescope with billion pixels or real time communicaquantum computation on code word states. This so-called
tions over the planets. In a deep space optical link, the sendeuantum-collective decoding is a new aspect, not found in
prepares coherent state signals with as large amplitude @®nventional coding techniques, and leads to a larger capac-
possible allowed by a limited power supply. Such signals areity. This is called thesuperadditive quantum-coding gain
however, extremely weakened at the receiving end, typicallySQCQG [4-9] in a quantum channel since the lengtquan-

less than a few photons per pulse, due to the beam divetum coding makes capacity more thartimes larger from
gence and energy loss. Since the energy quantum of carrietise capacity achievable only by conventional coding. Taking
is greater than that of thermal noise in optical domain, i.e.jt into account, the capacity is defined as the maximum rate
hw>kgT, physical states of carriers can be described byf the mutual information for @quantum code of lengthn

pure quantum states in good approximation. For exampladivided by the lengtm in the limit of n— « for asymptotic

the binary phase shift keyed signals to convey classical leterror-free transmission.
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The theory of capacity, however, generally gives no guid-atter is defined for a quantum channel with the help of any
ance on how to construct codes that approach the capacity. &lowed quantum operations at the sen@grantum encod-
practical problem is then to find good codes to attain a largéng) and the receivefquantum decoding but without any
SQCG in a small block length. This must be an importantprior source sharing. Both schemes assume multiple uses of
issue in any communications and information-processinghe channel, that is, coding, and the capacity is defined as the
systems when they work at the quantum level, which is exmaximum amount of transmissible information per channel
pected in a few decades considering recent exponentialse. It should be noted that shared entanglement is not re-
growth of infocommunication demands. However, little at- garded as the transmission resources in the definition of the
tention has been paid to this topic so far. Only several codingntanglement-assisted capadly. This type of classification
schemes have been proposed to exhibit SQ&@)] and the  can simplify the study of several distinct capacities and their
first experimental demonstration has recently been reporteclation, including the quantum capacitig?].
by the authorg18]. The purpose of the present paper is to From a practical point of view, on the other hand, it is not
give detailed information that was abbreviated or omitted inrealistic to expect the assistance wiflimited external re-
our previous letter. Attention is particularly paid to describesources. To predict the highest transmission rate in realistic
the strategy of how to implement the quantum measurementstuations, all the physical entities used for transmission,
used in our experiments by logical and physical quantunsuch as the shared entanglement, must be included in the
circuits. We also describe the detailed discussion of the imelements constituting a communications channel. In this situ-
plications of SQCG in small code length on practical com-ation, the ordinary capacit¢ is appropriate to evaluate the
munication performances. communication performance of the channel since it imposes

The paper is organized as follows. In Sec. Il, we remindthe power constraint condition of thtotal physical re-
readers of several capacities of quantum channels studied sources.
date, and explain our scenario. In Sec. lll, the basic notion Keeping such backgrounds in mind, we restrict our dis-
for capacity theorem and SQCG are briefly explained. Incussion to the following protocol. The sender transmits a
Sec. IV, we discuss how we designed logical and physicatlassical alphabet in a classically encoded format, i.e., in
quantum circuits for our SQCG experiment, which was omit-separable tensor product statesde word statgsnade up of
ted in our previous letter. Section V describes in detail oura given set ofletter states and these code word states are
experiment of SQCG reported in R¢L8]. We also show the still separable at the receiving end. No prior entanglement is
experimental results about the separable quantum measurgiared between the sender and the receiver. The receiver may
ments attaining the single-shot capacity and the accessiblpply any quantum operations to the received code word
information for comparison. In Sec. VI, we discuss howstates. In fact, it is known that, in effective quantum coding,
SQCG, even the small gain demonstrated in length two codthe receiver entangles the letter states prior to detection. This
ing, can boost a communication performance attained bys called quantum decoding and contributes to SQCG, which
conventional coding technique. The idea is based orfs never observed in any classical coding. Such a scenario is
quantum-classical hybrid codinCHC), which was briefly  within the framework of the ordinary capaci§; and exactly
mentioned in our previous lett¢i8]. Theoretical details on the case that the capacity theories of REf&—-17 concern.
the methodology of QCHC are given. Section VIl is for con- The reasons for choosing such a protocol and for excluding
cluding remarks. quantum encoding and prior entanglement sharing (&ye

concrete quantum—coding schemes are known only for such
a protocol at present, an@) it fits better to practical moti-
Il. CAPACITIES FOR QUANTUM CHANNELS vations introduced in Sec. | since it does not necessarily

Since Shannon’s capacity theory was extended into ger_equir_e at_ransmissign of nonclassical state signal; The main
neric quantum states in Refd5-17, the capacity theory is task in this paper is, therefore, the demonstration of the
further extended to include new auxiliary resources of enfuantum-decoding process.
tangled particles, new quantum protocols, and a new object
to be transmitted, i.e., intact quantum stgt8]. The notion IIl. SUPERADDITIVE CODING GAIN
of the capacity for quantum channels is now classified into
two categories(1) the classical capacity for transmitting A practical mean for effective communications is coding,
Conventionatdassica] a|phabet’ an@) the guantum capac- that is, representing alphabet by sequences of Simple letters
ity for transmitting quantum alphabetinknown quantum such ag0, 1}. Alphabets to be transmitted are represented by
state. For both categories entanglement-assisted protocokode words, which are sequences of a given set of letters
may be considered, namely, superdense cod2@ and {Xo,....X_-1} such as the binary sd0,1}. The transmitter
quantum teleportatiof21], respectively. Our concern is the modulates a signal carrier into one lofstates{po, ... ,p -1}
first category, i.e., thelassical capacity according to the input letter. If the letter sta{gs, ... ,p 1}

Depending on whether additional entanglement resourceappear as orthogonal states at the receiving end, then they
are brought into play or not, the classical capacity is classiean be distinguished perfectly and jag bits of information,
fied into two kinds, namely, the entanglement-assisted capagvhich is the maximum Shannon entropy of the set
ity Ce and the ordinary capaci@. The former is defined for {xg.....X -1}, can be faithfully retrieved per letter. This is,

a quantum channel with the help of unlimited prior entangle-however, not the case in general. A channel is usually subject
ment sharing between the sender and the recé®&r The to various types of noise disturbances. In order to transmit
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information reliably through a channel with finite errors, oneto be sought for the best quantum measurement. A quantum-
must introduce some redundancy in code word representaneasurement process can mathematically be described by a

tion prior to transmission so as to allow the correction ofggt of non-negative Hermitian operatdﬁy} satisfying the

errors at the receiving end. This entails adding some redun'robability conservation relatioh, 1, =1, the so-called posi-

ldant Ietter_s fo the code \_/vords and hence increasing the ve operator valued measuiffOVM). The channel matrix is
ength. This ischannel coding

First, the source encoder converts the original messagt(ra1en given by

into a sequence of the letters in the given gt ... X -1}, P
and then the channel encoder divides it into blocks of length Py = Tr(ypy). )

k (message bloclksEach block is supplemented by an addi- and now one can define the maximum extractable informa-
tional block(redundant blockof n—k (n>Kk) letters to com-  tjgn

pose a channel code wof#}:

message block redundant block |ACC = rfla)d (XY)’ (6)
0.0, 0 O O .. 0 o
K= xz. U Tt which is called the accessible information. More generally,
(for i=1,2,...,L5). (1)  the quantity further maximized with respect to the prior
. probability,

Note that although there até' possible sequences of length
n in total, only part of them, i.eL¥ sequences, are used as C, = maxmax (X:Y), (7)
code words. This redundancy, together with appropriate en- {POO} i)

coding and decoding, allows us to recover possible errors in
transmission. The amount of information conveyed by thespecifies the classical limit of the capacity when the given
above code words K=k log, L bits. The transmission rate initial channel{P(y|x)} is used with classical channel coding
is then defined byR=K/n=(k/n)log, L bits/letter. For a [23]. It is this quantity that limits the performance of all
channel with a capacitfC bits/letter, it is possiblg1-3] modern communications systems. This is, however, not the
within the rateR=K/n<C to reproduce th& bits of mes- ultimate capacity allowed by quantum mechanics.
sages with an error probability as small as desired by appro- The code wordgx} are now conveyed by the quantum
priate encoding and decoding in the limit- c. states in a tensor product of the letter stateB,

A mathematical model of a channel is specified by a set of:;,xl@; -+ ®py . To decode them, one may design the best
possible outputy; from the channel and a channel matrix in quantum measurement allowed by quantum mechanics. This
which each matrix element is given by the conditional prob-iS described by the POVI‘{/l:[y} on the extended space where

ability P(y[x) of havingy given the inpu. Each input letter {y} are decoded code words. The channel matrix for this
X is used witha priori probability P(x). The probability of extended channel is given by

havingy is then given by
Py = 3 PYRPK. @ POybo = Tr(Tl, ¥, ®

One may then define the mutual information for this ex-

To define the capacity, Shannon introduced the mutual inforténded channel by
mation [1]. This is defined between the input variabte

={x;P(x)} and the output variabl¥={y;P(y)} as I(X™YM = > P(x)>, P(y|x)log, P :
P(yiX) Xy 2 P(x)P(y|x")
106Y) = 3 PO Pylogy| <———— . (3 :
x oy > P(X)P(y[X) 9

X
Further, one can define the quantity

In classical information theory, one considers coding for a

given and fixed channel mod@P(y|x)}. The decoding error Cn= maxmax (X™Y"), (10)
of code words{x, ... Xk} can be calculated based on the (PO} 11y

probability distributions{P(x)} and {P(y)x)}. The capacity which we refer to the capacity of order The superadditivity
(for a memoryless channeis defined as the maximum mu- ¢ quantum channel is then expressed as

tual information with respect to the prior distribution of the

letters P(x), C,>nC;,. (11)
C=max(XY). (4) The capacity of the quantum channel as the maximum rate of
{POJ} error-free transmission is defined by
In the quantum context, however, only the input variable
X and the corresponding set of quantum states at the receiv- C=lim &_ (12)
er's hand denoted d$,} are given. The output variabi¢is noo N
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The property of Eq(11) was first predicted by Holevo [Wa2) [W11)

[Woo)

based on the random coding techniddg¢ Peres and Woot- » [2) o) \ o
ters conjectured that s U
2.2 . g |¢1>ﬁ) )
[(X%:Y9) > 2max (X:Y) (13 l1) & [o) ; 0
{f[y} » v1)
by using the ternary symmetric states of quiaiL In these (a) (b) (©)

works, the importance of using quantum-collective measure-

ment on a block sequence of code word states was empha- |G, 1. Geometrical representation of several sets of quantum-
sized. The first rigorous example of the superadditivity wasstate vectors and measurement vectesThe ternary symmetric
given by Sasaket al. for the binary pure letter statd§],  |etter states(qubit trine. (b) The letter (dotted arrows and the
where the quantum channel showing measuremengsolid arrows state vectors to attain th@,. (c) The
code word(dotted arrowsand decodingsolid arrows state vectors
I(XS:Ys) >3C, (14) represengd in a real th):ee-dimensiogal space. ?
was explicitly demonstrated. Since then several examples of
quantum-code construction with the superadditivity wereword is equald=2) to show the gain described in E@.4).
clarified [6-9]. In this case, the maximum gain was predicted to be
The important observation of the superadditivity is thatgx 1073 bits. Although the gain is bigger than that in the
the property length two coding, entangling three qubits for the quantum-
collective decoding requires more than ten steps of quantum
PIYX) # Plyslxy) - Plynlo) (15) gating, which seems to be difficult to realize.
generally holds when an appropriate collective POVM is Therefore, we consider the second simplest case, the qubit
chosen. This is a kind of memory effect of the extendedrine signals. The qubit trine consists of the ternary symmet-
channel. When the measurement is made by projection ontic letter states of a qubifjy),|yn), |y} It is this model
separable bases, such a memory effect never takes plaaehich we use to demonstrate our experimental steps toward
Projection onto appropriate entangled bases induces quantuBQCG in the next section. It should be noted that the dimen-
interferences among the code word states to reduce the arsionality (2-dim.) is essential here. If the ternary states are
biguity among the signals. The memory effect is a directdefined in a higher dimensional space than three, such as the
consequence of this quantum interference of block codedifted trine, we do not know the exact value 6f. In addi-
that is, exactly the effect of the entanglement. Realization ofion, according to our numerical studies, SQCG in terms of
such a quantum-collective decoding generally requires quarthe mutual information appears smaller compared to that in
tum computation to entangle the letter stqi24]. the qubit trine case. The qubit trine is defined by the letter

state set|o).[¢1), |42} with
IV. MODEL FOR PROOF-OF-PRINCIPLE |¢>: |0> (163
DEMONSTRATION: QUBIT TRINE 0 '
Quantum-collective decoding on quantum particles, that 1 3
is, entangling quantum particles, is something very hard to lyn) = - =|0) - \‘—|1>, (16b)
realize at present even for two particles. In addition, the 2 2
gains predicted for short length codes are very small. Here
we consider how one can demonstrate the principle of 1 3
quantum-collective decoding. We deal with the noiseless |¢2>=_§|o>+\?|1>, (160

channel model in which only the noncommutativity of the
signals causes the transmission error.

The simplest set of letters is the binary set of purewhere{|0),|1)} is the orthonormal basis set. They are repre-
states {|¢o),|#1)}, where the overlap between the sented in Fig. ().
letters is (yo|¢n)=«. For this set only, the classical _The acces_sible inforr_ne_ttion, defined by K@), for this s_et
capacity limit C; is known with a rigorous mathematical With equal prior probabilities is found to Bg..=0.5850 bits
proof [25-27. The very first step is the length two With & rigorous proof28]. The optimal measurement strat-
coding. We have four possible tensor product sequence?dy is described by the nonorthogonal basis set
{9 [0l ), || [9)| )} Bucket al. [8] showed ~ {lwo).[@),|wz)} of
that, by choosing three of them as code word states, the
channel exhibits the superadditivity depending on the over-
lap . Unfortunately, the predicted maximum SQCG was
only 1,/2-C;=5.2X 10" bits and it seems too small to be
observed experimentally. In the length three codiég the

(17a

|wo) = - sin—yg°°|1>,

four code words were picked up from eight possible se-
quences so that the Hamming distance between each code
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YAcc |H22> = b|\I,OO> + b|\1,11> + a|‘P22>, (220)

|wy) = %|O> + %COSTH.), (170
V2 v2 where a=(4+\s’§)/3v’§ and b:—(2—\§2)/3\s§, These bases
where y, is defined by are entangled states and the measurement described by the
POVM {|II,,XI1,|} is a typical example of quantum-
Yace _ T collective decoding. The ternay code word std{ds,)} can
COST - COtZ ' (18) be described by the real vectors in a three-dimensional space
o _ _ spanned by{|0)|0),|0)|1)+|1)|0),|1)|1)}, as seen from Eq.
This is a typical example of generalized quantum measurg(). This ternary set is called the lifted trine, and provides
ment, and was demonstrated in the laboratory for a polarizapieresting insights into quantum-measurement problems as
tion qubit of a photon in Ref429,3Q. The functional mean- iscussed by Shoi31,32. The measurement basﬁﬂ"lyy>}
ing of this quantityl . is as follows: If the receiver applies  ¢,1s another orthonormal basis set in the three-dimensional
this detectionseparatelyon each letter statéseparable de- space{|¥ )} and {|Hyy>} are geometrically depicted in Fig.

coding, and encoding is made such that each letter stat T, o
occurs with equal probabilities in the set of code words, thef(c)' The code word§ W)} are distinguished by the projec

the maximum transmission rate for error-free transmission i 'g(n |;;)] -e|?19[h |$c X>t|hzeis Ziar;iggé)'aghe channel matrix
| acc=0.5850 bits/letter. Y I=[Cyy %% p

One may further optimize the quantity besides the detec- r ]

tion strategy. For the ternary s&; has been carefully stud- co2? }Sinzl’ }szl’
ied and evaluated to be 0.6454 bi&r,3]]. This is attained 2 2 2 2
by discarding one of the three letters and using only two of 1 Ly y 1 Ly
them, say{|o),|#41)}, with equal probability 1/2 and apply- [P(y|x) = Esmza 00525 Esmza . (23
ing the measurement described by the orthonormal basis,
— — }sinzz Esinzz cog?
V2 ++43 V2-+43 2 2 2 2 2
|vo) = R o) + 3 |4, (193 - -
v v where
l2 -3 +43 2+
=2+ 28 ey cosl =221, (243
V3 V3 2 \6
This is schematically illustrated in Fig(H). _
Now we construct the length two coding. For the qubit oy N2-1
trine letters, there are nine possible sequences. Peres and s, = /6 (24b)
Wootters showed5] that if one uses only three of them, ‘
which are

In this noiseless model the channel is essentially a measure-

1 1 ment channel whose ambiguity is due to nonorthogonality of
(W00 =[5 ® [1h) = =(1 + c085)[0)]0) + Ssings([0)[1) +[1)  the code word states.

2 2 While the square-root measurement is simply expressed

1 by the von Neumann measurement in the three-dimensional

x|0)) + 5(1 - cosp)|D|1), (20)  real space in terms of Eq22), this mathematical expression

informs us of nothing special about physical implementa-

where ¢,=2mx/3 (x=0,1,2, as the code word states with tions of the decoder. There may be many possible ways to
equal probability, and decodes them by the square-root me&galize effectively the measurement channel matrix of Eg.

surement defined mathematically by (24). One systematic and straightforward way is to express
the original measurement basis as a simple separable basis
_ -1/ lus an additional unitary transformation, and to convert the
) = [ W)W W), 21y PU initary .'
[Ty (zx: ¥ XX') [¥yy (2) unitary transformation into a quantum circiit,24. Along

this line, we derive a quantum circuit realizil{lg]yy>}.
then!(X2:Y2)=1.3690 bits of information can be retrieved in  Let us rewrite the POVM|TI,,XI1,,/} as
principle. This is larger than twice o€,(=0.6459. The

SQCG isl,/2-C;=0.0391, which is expected to be acces- —Ot
sible in laboratory. o0 = U']0}(0), (259
The measurement basis EG1) is explicitly written as
-0t
Mo =al¥e + bW +bl¥), (224 My = U0, (250
ITp) = b|Woo) +a| Wy + bWy, (22b) 19 =0"1)/0), (250)
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) Q(=Z)—Ry(—) AR |0) or [1) coding gain. Even if we rely on other, not flying, qubit sys-
4 HR’yl T 4 l_D;:n Neumann tems such as trapped ion or molecules in NMR for which
W’x) l ~

D_'“TS;”;""‘;')“ quantum gating has been demonstrated to date, it still seems
formidable to run a five-step gating operation with the re-
FIG. 2. Quantum circuit to realize the quantum-collective de-qulred precision. . .
coding by the square-root measurem@tﬁtyy>}. A received code Therefore,_ we can|der the length tV_VO coding based on
word state is first transformed by the five controlled gates, and thef’® tWO physically different kinds of qubits, namely, the po-
is detected by a standard von Neumann measurement on each lett@fization and location qubits of a single photon. The first
separately. Nomenclature of the controlled gates is based on Re?gnd Seclor;:j letttert Statis 0‘; EtthOdeIWC')rdt'are drzwn Tromt'the
34]. Q( ) is the unitary operator defined 613( ):ﬁ( )o,. The ern_ary etier stale Sets o € po arization and a oc_a lon
([)pgn cirf:le notation ingica}::es conditioning or(fthey“((:PontZroI" qubit qu'tS’{|¢X>P} and {|¢X>L}’ respectively. Then the collective
being set to zero. decoding can be realized by an optical circuit consisting only
of linear passive components, and a sufficiently high gating
- precision can be attained. In fact, by using the same
) = UT|1)|1), (25d)  polarization-location encoding formf86—39, several quan-

= _ ~ tum algorithms have been demonstrated experimentally
where|S)=(|0)|1)—|1)|0))/\2. The unitary operatdd can be [39,40.

given by the matrix representation

In the following subsections, we first describe the physi-
cal implementation based on the polarization-location for-
mat. Then we discuss three kinds of experiments on quantum
measurement of the accessible information, the single-shot

o

o

2.

>
I

cos?
2

cy 1 1 Y capacity, and SQCG attained by the second order mutual
TR 55 T 5005 information. Th h tructured io of
R 2772 2 2 V272 information. These schemes are on a structured scenario o
U= , (26) the capacity theory as described in Sec. Ill. They also corre-
0 i_ _ i_ 0 spond to the most typical measurements for the same qubit
V2 V2 trine in the framework of quantum-measurement theory, i.e.,
1 .y 1 1 1 y the von Neumann measurement, the single-shot generalized

-—=sin; -=- —-= - -—=C0S_ measurement, and the collective measurement.

V2 2 2 2 V2o 2
with respect to the separable basis A. Preparation of optical qubit states

{|0>|0>,|0>|1>’|l>|0>’|1>|1>}'_CirCUit (.:onstruction.fOr this uni- The polarization qubit consists of the horizon{@)p
tary operator can be .carru?d .out.m the fqllowmq way. With =|H) and the vertical1)p=|V) polarization states of a single
the help of the Gaussian elimination algorltI[@S], Ucanbe photon and prepared by a half waveplétsVP) which acts

decomposed into a product bf(2) operatorsTy;;; as as
0= %[2,1]%[3,1] . %[4'2]%[4’3], 27) |H) — - cos Z|H) + sin 26|V), (283
where:l'[j,i] represents the two-dimensional rotation operators |V) — sin 26|H) + cos |V}, (28b)

between theth andjth basis vectors. Each operafifjiS  \yhere g is the angle of the fast axis from the vertical axis.
then converted into a quantum circuit by using the formulasthe elements of the ternary set of the polarization qubit
established by Barencet al. [34]. The quantum circuit de- |y, |4)p,| ) can be prepared from the input of th@p
rived along this line consists of so many two bit basic gatesstate by settingg=0, #/6, 7/3 (rad), respectively.

and is generally not in the minimal form. We further com-  The ternary set of the location quHitj), } can be pre-

piled the circuit into a much simpler version in a heuristic pared by guiding the polarization letter states into two optical
way. The final, and possibly the simplest, quantum circuit forpaths through a polarizing beam splitteBS. It reflects the

U is shown in Fig. 2. It consists of five controlled-unitary vertical polarization and transmits the horizontal polarization
gates. as

|H)A ® [vacuumig— |H), ® [vacuumyg, (29a)
V. IMPLEMENTATION

A favorable qubit trine is made of a flying qubit of pho- [VIa® [vacuumg — ilvacuum, @ Vs, (29D

tons. It would be natural to construct code words by the pairgyhere A and B are the labels for the two different optical
of photons in the same linear polarization states. The quargaths.
tum circuit of Fig. 2 then requires photon-photon gates. Al The |ength two coding can be realized in the Hilbert space

though the principle of such photon-photon gates have beeghanned by the orthonormal bagas—39,
demonstrated experimental85], its precision is still far

below the level required to access the small superadditive |00) = |0)p ® |0), =|H)s ® |[vacuung, (309
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HWP2 0, héz) Q%) QED—10) or )
B A von Neumann
|[vacuum) - l l measurement
A |0} O O [D—10) or |1)
|H) > 5 . | |
PBS FIG. 4. Quantum circuit to realize the optimal POVM for the
HWP1 HWP3 accessible informatiofiw,)(w,|} given in Eq.(17). The nomencla-
90 92 ture of the gates is the same as in Fig. 2.

FIG. 3. Optical circuit for polarization-location encoding. HWP, trolled unitary gates. This one seems to be almost the sim-
half waveplate; and PBS, polarizing beam splitter. plest circuit. As discussed in the previous subsection, such a
guantum circuit can be translated into an optical circuit con-
101) =|0)p ® |1), = [vacuum, ® |H)g, (30b) sist_ing 01_‘ Iin_ear eIemen'Fs. Figures{a& and_ gb) sh_ow_the
optical circuits for polarization and location qubit signals,
respectively.
The actual experimental setups for the polarization and
location qubit trines are depicted in Figgapand &b), re-
112) = |L)p ® [1) = [vacuuma ® [V)g. (30d  spectively. In both setups, the left and right of the dashed

In this space the encodings can be performed by the Opticéaertical .Iine cor_respond to th(_a circuits fqr generating and
circuit shown in Fig. 3, which consists of a PBS and thregM€asuring the signals, respectively. The signal states are gen-

HWPs. With an input photon initially in the stafe0), the erated by varying the angle of HWP1 with=2x/3 (x

110) =[1)p ® [0} = V)4 ® |[vacuume, (309

output of this encoder is given by =0,1,2. It should be noted that, for practical reasons, the
original circuits in Figs. ) and §b) are modified by using
[W) = cos X, cos 29,|00) - sin 24, sin 26,/01) the 50:50 beam splittefBS) instead of the PBS, and the
— COS X, sin 26,|10) + sin 24, cos 2,|11), initial state of the ancillary qubit is set to the state.

The experimental procedures and techniques are basically

(3D the same as those in RéB0]. The whole circuit in Fig. 6
where 6, 6;, and 6, are the angles of the three HWPs. B _consists of a polarizf'ition Mac_h-Zehnder interferometer and
controlling these angles appropriately, polarization qubitS controlled by a piezoelectric transdud@ZT). The cw
states|y,)p®|0),, location qubit statef0)p® [, and the I|gh§ from a He-Ne Iase(Spectra—Physms,.model 11yAp- _
length two code word statéss)e® |, can be prepared. erating at the wavelength of. 632.8 nm with 1 mW pov;/éer is

Thus in our coding format, doubling the transmission re-Strongly attenuated by ND filters with a factor ox3.0"

source is realized by doubling tispatial resourcenstead of ~ Such that about 18 photons exist on average in the whole
by using two polarized photons. From the viewpoint of Com_cwcu[t. The attenuated light is purlfled_ to the horlzqn.tally
munication theory, this can be regarded as a kind of puls@olarized state by a Glan-Thompson prism and then injected

position coding which is often used when the signal powefl© the interferometer. The HWP in the encodBiwP1) is
available is severely limited. driven by a stepping motor to generate the signal state

{lrplx=0,1,2 or{|i |x=0,1,2 sequentially. After pass-
B. Accessible information r N PD

The POVM for the accessible informatidp.. generally O PBS PBS 8
. . . A B A n
consists of overcomplete nonorthogonal states, which is a U D-pp
0 Kay K
u
HWP

typical example of generalized measurement. It is well

known that such a POVM can be implemented by a von D-Po
Neumann measurement in an extended Hilbert space, which wp JAcc

is called the Naimark extensiofi28]. The experiments 4

[29,30 of such a measurement were already performed by (a)

using polarization qubits. We have performed such experi-

ments again for both polarization and location qubits. We A O PBS o
also show the logical quantum circuit of such a POVM. D-rp
The Naimark extension of the POVKw,)(w,|} given in B O n n A

Eqg. (17) can be implemented by introducing an ancillary U= —u U D-po
qubit with that in the initial stat¢0), and by constructing the HWP = Hwp A HWP

. S e 4 4 8
orthonormal basis whose projection onto the original plane @ o
becomeg|w,)}. The orthonormal bases are then decomposed (b)

into the unitary transformation and the von Neumann mea-

surement by two qubit separable bases. The schematic of this FIG. 5. Optical implementation of the circuit for the accessible
process is shown in Fig. 4, where the unitary operation isnformation in Fig. 4 for(a) polarization qubit andb) location
described by the quantum circuit consisting of four con-qubit. PD: photodetector.
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attenuator
(electrically switched)

He-Ne

laser
mode matching

lenses

FIG. 6. Experimental setups

(a) for the accessible information for
() polarization qubit andb) loca-
tion qubit. Here ¢,=2mx/3+ pys

|¢:D>L (x=0,1,2 with the offset angle

* dor- HWP, half waveplate; PBS,

polarizing beam splitter; BS,

50:50 beam splitter; and PZT, pi-

ezoelectric transducer.

attenuator
(electrically switched)

He-Ne
laser

B

Glan-Thompson

(b)

ing through the circuit, the signal photons are guided into theations of sending and detecting photons ipuse state one
silicon avalanche photodiodd&G & G, SPCM-AQ-141- by one through a noiseless channel even when a photon
FC), APD0-2, whose quantum efficiency and darkcount aresource with random arrival timegll] and photodetectors
typically 70% and 100 counts/s, respectively, throught awith imperfect efficiencies are used. The channel character-
multimode optical fiber with coupling efficiency of about istics are then limited only by the noncommutativity of the
80%. The interferometer is enclosed in a darkened boxsignal states, imperfect alignment of the whole interferom-
There are, however, background photons which amount teter, deviation from the lock points, and the darkcount of the
about 300 counts/s even if no laser light is injected. APDs.

The mutual information is evaluated by constructing the  The relative path length of the interferometer is adjusted
33 channel matri{P(y|x) =|(w,| 5[] from a statistical to be a proper operating point by using a bright reference
data of single photon events detected by either of the threbeam and the PZT. The visibility of the interferometer better
avalanche photodiod€8PDs) conditioned on the input state than 98% is obtained. To circumvent injecting voltage noise
|. The mutual information thus obtained measures the rafrom electronics, we simply used a low noise voltage source
tio of the number of bits retrieved per number of total photonfor adjusting and fixing mirror positions, whereas an electri-
counts. This event selection allows us to simulate communieal feedback system was used in R&0]. Once the circuit
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__ 080 8]
D o055 oo\ PD A g ) PD
= 050} : \ : PRSP0 )
s . vz) p D— UL PD
< R VAIE L e G —> 2
< N () wl) (b))
= 035
He* t
030 (a) (b)
~30 20 10 0 10 20 30
0 [deg] FIG. 8. Optical circuits for theC; detection.(a) Polarization
o qubit, (b) location qubit.
(a)
three letters with 1/2 probabilities and a von Neumann mea-
0.60 : . ) :
— surement in two-dimensional spag€ig. 1(b)]. The corre-
D 055 g . . . . . . " .
B / .\ sponding decoding circuits in the polarization and location
% 050 . qubits are shown in Figs.(& and &b). For the polarization
= gasb e e N ] qubit [Fig. 8a)], the polarization of the received photon is
> o40b /o N ] rotated by the HWP withr/12 radians, and then is discrimi-
x s ;N nated by the PBS followed by APDs. Detection of the loca-
~ 035« L& tion qubit is straightforward, i.e., just detecting a photon at
03055~ 96"20" 30 each optical path. The measured valueCis=0.644+0.001

bits/letter for both the polarization and location qubits.

¢ [deg]
(b) D. Length two coding

The length two code word staté®,,) = )p® i), are

FIG. 7. Measuredfilled diamond$ and theoreticalsolid curve encoded by the optical circuit of Fig. 3. The angles of HWPs

accessible information fofa) the polarization qubit signal angb)

the location qubit signal as a function of the offset anglg. The are set as
dashed curve is the mutual information obtainable by a standard 1 H\W
von Neumann measuremei30]. 0y = -arctam /| ——,
2 1+ cosd¢y

is adjusted, the reference beam is shut off. The signal light is .
then guided into the whole circuit. Photon counts are mea- 6, = larctar<Ln¢x>, (32
sured for a 5 s duration. This procedure is repeated for each 2 1+ cosd¢y
letter state, composing a full sequence of measuring the
channel matrix. The temporal stability corresponds to the 1 = Sin ¢y
change of the relative path length within 3 nm for at least 02= Yarcta 1-cosd,)’

. . . X
more than 200 s, which causes the error in mutual informa-
tion to be +0.005 bits at most. where ¢,=2mx/3 (x=0,1,2 corresponds to the encoding

Figures Ta) and 1b) show the mutual information mea- parameter in Eqg(20).
sured for the polarization and location qubits, respectively. Figure 9 shows the optical circuit that corresponds to the
The offset angle of the horizontal axis is defined by the rela<collective decoding circuit in Fig. 2. It is further simplified
tive angleg,; between the signal and measurement state sefer practical convenience, and the whole experimental setup
(see Fig. 6 and its captipnThe accessible information is including encoder is shown in Fig. 10. It includes a polariza-
measured at the zero offset angles for both the polarizatiotion and normal interferometers in Mach-Zehnder arrange-
and the location qubits, and the results are 0.560+0.005 anments. Each interferometer is aligned independently to
0.557+0.007 bits/letter, respectively. The average visibilitiesachieve a visibility better than 98%. Received code words
at these points are evaluated to be 99.16% and 99.05%, rere decided to be either p¥ o), |¥14), or |¥,,) according to
spectively. The difference between the data points and the
ideal curve is mainly attributed to the imperfection of the HWP
PBSs. The result for the polarization qubit can be directly A O PBS B -m/8 PBS ,
compared to the previous experimef29,30d and certifies E D- PD
that the quality of our interferometer is improved from those O % [I_&D

B A n B
u

previous results. D. PD

HWP HWP HWP
C. ¢, limit 0 /4 /8 Pep
The classical limit of the capacity C; FIG. 9. Optical circuit for the collective decoding described by

(=0.6454 bits/letter is obtained by sending only two of the square-root measurement.
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[Yz) p ® [z) L,
A

attenuator

He-Ne (electrically switched)
laser FIG. 10. Experimental setup
HWP, half waveplate; PBS, polar-
izing beam splitter; BS, 50:50
beam splitter; and PZT, piezoelec-
tric transducer. The HWP angles

0y-6> are given in the text.

mode matching
lenses

the reception of the photon by APDO, APD1, and APD2,PBSs and also to the relative difference of the polarization
respectively. Other procedures and conditions are the sanaxis between two interferometers. The obtained mutual infor-
as those of the experiment for the accessible informatiomation, 0656+0.003 bits/letter, exceeds the theoretical limit
extraction. of the classical capacityC,;=0.6454 bits/letter. Classical
Figure 11 shows a typical experimental data that correlength two coding corresponds to the use of polarization and
sponds to the unnormalized value of each element of théocation channels at a time in a separable decoding circuit
channel matri{ P(yy|xx)]. Ideally, the ratio of the diagonal construction, which does not include any entangling opera-
and off-diagonal elements must be 0.9714 and 0.0143, rdion. Then the retrievable information can never exce€d 2
spectively. The total events counted for 1 s is of the orde©Our result, therefore, clearly shows the experimental evi-
10°, while the average count for the off-diagonal elements igdence of the superadditivity, that is, the increase of informa-
about 1.9< 10* including the darkcounts of the three APDs. tion more than twice obtained by inserting an appropriate
The total background count is 2% of the average count foguantum circuit to entangle two letter states.
the off-diagonal elements. The mutual information is evalu-
ated asl(X?:Y?)=1.312+0.005 bits. The averaged visibility
of the whole system is evaluated to be 98.48%, which is VI. QUANTUM-CLASSICAL HYBRID CODING
slightly worse than the result fdry... This degradation is
mainly due to the relative difference of the polarization axis The SQCG in small blocks is not only of proof-of-
between two interferometers. principle demonstration but also of practical importance in
For experimental clarity, we measured the variation of thequantum-limited communications. Even a two-qubit quan-
mutual information when the code word state §8t,,)} is ~ tum circuit like that in Fig. 2 is useful in boosting the per-
rotated relative to the decoder state §ét,,)} around the formance of a classical decoder. In this section, using the
vertical axis in Fig. {c). The rotation is achieved by adding €2S€ Of the ternary letter state set of ELf), we show how
an offset anglepy to ¢, in Eq. (32). Figure 12 shows the the two-qubit quantum decoder can be combined with a clas-
result in which the experimental data of the collective decod-
ing (filled diamond$ are compared to its ideal curysolid

curve). The experimental and ideal values®©f and| 5. are /01
also shown. The difference between the data points and the 1 Mhoe
ideal curve is attributed again to the imperfection of the
B P(yy[xx)
0 A
g, ™
§ 1x108 — —
2, - ] I 20
@ 8x109
S 6x105 —
o
O 4x105H — FIG. 12. Measured(filled diamond$ and theoretical(solid
S ox 1051 n curve mutual information as a function of the offset angle of the
E X code word state s¢f¥,,)} from the decoder state sgtl,,)} around
o . == : the vertical axis in Fig. &). The dotted curve is a guide for the

0
yy=00 11 22 \OO 11 2,2 0o 11 22 eyes. The experimental and theoreti€alare shown by the square
xX=00 xx=11 XX=22 and the dashed line, respectively. The accessible informagign
experimentally observed for polarization and location qubit, and
FIG. 11. Histogram of photon counts for the channel matrixtheoretically predicted are shown by the open diamond, open circle,
elementsP(yy|xx) =|(IL,y| ¥,/ (unnormalizegt and one-dotted line, respectively.
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Encoder

Codeword state Claceical Clacsioal 10° ez
) } ; ] O 107
W[ EPlea] T 9] s _decodimg & 10N _—
I:E J"g : |Message g 103} s i
L DY —-Y; 5 10 A
—{ 1 2 10% / Vo
Separable J 105 2 v
measurement 107} . Y PR
@ p A S
a 9 H H H H h
Encod 10100 100 1F 160 10t 10°
ncoder
Codeword states Classical Classical Length n
K[ EpTlv] | ) Ssset G
g jn " FIG. 14. Decoding error probabilities with finite code length for
; .2 H @ H }—fs;jage the QCHC(solid lineg and the all classical codin@glashed lines
:‘ )".71
Quantum Let us denote the functiof, (R) for the classical decoding
collective decoding scheme a€£S(RC). As for the definition ofE,(R) and the
(b) expression ofES(RC), see Appendix. We now consider, as

examples, two cases where transmission rates are(RSw
FIG. 13. (a) Classical channel coding systerth) Quantum- =0.1=0.15<C;) and high(RC:0.62:O.96< C,). In these
classical hybrid channel coding system with the two letter quantumegses, we obtainErC(O.l):5.218>< 104 and ErC(O.62)
collective decoding. =0.3150, respectively, and the asymptotic behaviors of the
decoding error probabilities are shown in Fig.(lde dashed
sical decoder to improve the total communication perfor-curves. This is a typical error performance obtained by av-
mance. eraging over all possible classical codes. It means that there
Let us start with a classical channel coding of length Must exist at least one cpde that exhibits a performance su-
whose schematic is shown in Fig.(&8 We assume that the Perior to that shown in Fig. 14. _ _
letter states are the ternary symmetric states given by linear W& now turn to the other scheme, in which the above
polarizations of a single photon. A code word is then physi-classical coding is combined with quantum-channel coding.
cally represented by a sequence of optical pulses of a sing(lge refer to such a gomb|nat|on of two coding schemes as
photon, which is a tensor product of each letter state. At th&2CHC- In the following, we show the power of QCHC by
receiving side, each optical pulse enters a photodiode, and dslsc_ussmg the QCHC s_cheme W't.h thg length two quantum
converted into, an electric pulse, namely, a classical ’signa 0ding. Its schematic is shown in Fig. (b Given the
. ; PR ’ ength n (assumed to be an even numpewre consider a
This optoelectric conversion 1S mgde on each letter statg,sgjcq) coding of lengtm/2 with the composite letters
separately. The classical electric signals are then process

b lectric circui lassical decodet fruct ,11,22. In decoding, the received code word state is first
y an electric circuita classical decodpto reconstruct an processed by the two-qubit quantum circuit shown in Fig. 2,
output message.

.and then is detected by two photodiodes. This is the
auantum—collective decoding consisting of the square-root
measurement. The resulting'2 electric pulses are finally
J)rocessed by a classical decoder.

given by the quantityC,. As discussed in Sec. IMZ;
(=0.6454 bits/letter is attained by making the code words

from only two letter states instead of using all three, and by 1o channel model of this scheme is equivalent to a clas-

performing thg binary measurement, In o_ther words, the‘sical coding of lengtm/2 based on the ternary symmetric
channel is equivalent to the binary symmetric channel Whos‘éhannel given by Eq(23). The transmission rate for this

error probability is characterized by channel is now defined bRR°=(k/n)log, 3 and it can be

— raised up to the mutual information of this channel,
_ _ _1 oo 27V3 [(X?:Y?)=1.3690. It means that the ratén can be raised up
€= P(LO) = PO1) = 5 (& =V1 =[Wal)l) = = to 1(X2:Y?)/log, 3=0.8637.
(33) Let us denote the functiork,(R) for the QCHC as

EQYRQC). The expression oEQ(RR) is also given in the

The transmission rate for this channel is defined Rfy Appendné. To compare the performance Bf(RY) with
=k/n. So if R°< C,=0.6454, one must be able to find codesthat of E; (R®), the ratek/n should be fixed. For the same
for which the decoding error approaches zero in the limit rates as beforek/n=0.1 andk/n=0.62, the transmission
oo, rates are given byR¢=0.1585 andR*¢=0.9827, respec-

In practice, however, one wants to know the decodingivew. The functionE?C(RQC) at these rates are evaluated to
error for finite lengtm. According to the theory of reliability be E?%(0.1585=0.8415 andER(0.9827=9.753x 102, re-
function [2], there exists a length (classical coding attain-  spectively. The upper bound of the error probability is then
ing Pe<2"&(®, whereE,(R) is the lower bound of the re- given by P,=22Er", The error probabilities for these ex-
liability function. The functionE(R) is useful to investigate amples are shown by the solid curves in Fig. 14.
the maximum communication performance of channels for a As seen in this figure, at the rate kfn=0.62, the decod-
given code length. ing error starts to decrease rapidly over 10000 in the
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classical coding scheme. In the QCHC scheme, the errdical pulses with respect to the degrees of freedom of phase
starts to decrease from~ 100, and reaches the standard and/or amplitude. Heavily attenuated coherent signals can be
error-free criterion 10 aroundn~ 600(300 composite letter approximated by superpositions of zero and one photon
pairs. With this code length, it is impossible to transmit any states asq,)=|0)+ o |1). It means that the proposals of qu-
information reliably by the classical coding scherf#]. bit gating may be applicable to our problem.
This improvement can be achieved just by inserting the two- Quantum-gating operation at single photon levels has
qubit quantum decoder in front of the classical decoder. Tdeen investigated by many authors, but still remains a chal-
achieve the standard error-free criterion by classical codingenging topic. One scenario suggested in R&f.is to trans-
one must use code words of length-57 300. fer the information in an optical field to a multilevel single
As codes get longer, the complexity of the decoder, suctatom inside a high-finesse optical cavity in order to perform
as the total number of arithmetic operatiop®), increases gating operations by Raman process. Another possible way is
and eventually limits the effective transmission speed. Thdo use an atomic system as a nonlinear medium with the idea
total decoding time per letter by the device with finite speedof electromagnetically induced transpareriéy]. Finally, a
70 S/step is given byx(n)/n]7, s/letter. Presumably, this is recent proposal suggests the possibility of an optical quan-
a limiting factor and thus we can define the effective transtum circuit based on linear opticgt5]. As single photon
mission speed aR.4=R[n/ x(n) 7] bits/s. For some asymp- on-demand sourcgd6] and highly efficient photon detectors
totically good codes, the total number of arithmetic operapecome available, small scale quantum-gating circuits for
tions is typically of order y(n)=0((n log n)?) [43]. coherent state signals can be realized, in principle, with only
Therefore, the effective transmission speed behaveR.as linear optics.
«R/n(log n)2. Then the reduction of code length brought by ~ From the viewpoint of coding theory, on the other hand, it
QCHC will be practically significant in the trade-off between iS Still open to find asymptotically good quantum-channel
performance and complexity. In our example, even in thecodes. In the case of pure state channels, Ré. tells us
lower rate, the decoding error of the QCHC around the stanthat the problem is essentially the selection of appropriate

dard error-free criterion is two figures smaller than that of theSequences for code words, and the square-root measurement
classical coding with the same code length. does the decoding. It is also important to establish a system-

atic theory to synthesize a quantum circuit for intermediate

scale collective decoding.
VII. CONCLUDING REMARKS

In this paper, we have detailed the experimental demon- ApPpPENDIX: LOWER BOUND OF THE RELIABILITY
stration of the SQCG. The superadditive quantum coding FUNCTION

becomes essential in the region where the noncommutativity
of signal states is the main ambiguity among signals. As a In this Appendix, we give the definition of reliability
typical example, we have mentioned deep space optical confUnction and its lower boundz,(R). The latter is applied to
munications in Sec. |, where we have to extract as mucfihe channels describing the classical coding and the QCHC
information as possible from the sequences of heavily atwith the length two quantum coding, respectively, for the
tenuated signals. Apparently, it is not realistic in such a situgubit-trine signal.
ation to transmit nonclassical states or to install quantum The reliability function is defined a2]
repeaters. Therefore, only quantum decoding can be the core |

. . : i - log,P(n,R)
technology to achieve the ultimate performance in future E(R) = lim sup—————,
long-haul optical communications. n—

QCHC is then a promising approach. We have shown ifyhere p (n,R) is the minimum error probability over all

n,R) codes. Although the truE(R) for any R has not been
hance the effective transmission speed when it is used to((: ) S "g UB(R) for any S

gether with large scale classical coding. Thus the QCHC al—-Iarlfled yet, itis known that its lower bound is given by
lows one to extend conventional optical communications E/(R) = maxmax Ey(p) - pR], (A2)
technology to the quantum limit in a straightforward way. p APX}

This may be contrasted to the fact that other known quantunyphere

algorithms exhibit the advantage over their classical counter-

parts only when a large scale quantum computer is available.  Ey(p,P(x)) = - log, >, (E P(x) p(y|x)1/<1+/3>)(1+p),

For the QCHC applications, the communication performance y \ x

of QCHC gets better as the available scale of quantum com- (A3)
puters gets larger.

Finally, we mention the challenges to be overcome towith 0<p<1. The functionE(R) yields the upper bound of
bring a QCHC system into reality. Although our results an average error probability,, for the code with givem
clearly demonstrated the principle of SQCG, the physicaBndR by P,<2"&(®R. We also note that, for any symmetric
scheme used in our experiment is still not suitable for reathannelsE (R) is maximized when all the signals are given
applications, i.e., is not applicable to weak coherent signalsby the equal prior probability distributiof2].

To implement a quantum-collective decoder for weak coher- As discussed in Sec. VI, the channel matrix attaining the
ent signals, one must be able to entangle weak coherent opapacity of the classical coding for the qubit-trine signal is

(A1)
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given by the binary symmetric channel with the channel ma-

trix

l1-€
[P<y|x>]=[ . 11], (A%)

where € is given in Eq.(33). The analytic expression of
E,(R) for this channel can easily be derived. First we define

the quantities,

H(1+p)
€= L) 1 (1 — ) ML) (AS)
and
Ro=1-H(ey), (AB)
where
H(e,) =—€,100; €,— (1 —€,)l0gy(1 - €,). (A7)

After maximizingEqy(p, P(x)) over P(x) andp, if R<R,, we
obtain

ES(R)=1-2 log(Ve+1-€) -R, (A8)
and if Ry<R<C;,
c € 1- €,
E/(R) =€, log, Tt (1-¢,)log, - (A9)

wherep” is the solution of

PHYSICAL REVIEW A 69, 052329(2004)

R=1-H(e,). (A10)

The channel matrix for the QCHC discussed in Sec. VI is
given in Eq.(23), which is a ternary symmetric channel. The
expression of,(R) for a ternary symmetric channel can also

be derived with the quantities

: 1/(1+p)
2
I =

P71 (1) (L)
—(2 co§z) +<sin22>
2 2 2

(A11)

and
RO = |ng 3 _Fl - H(Fl) . (A12)

Then if R<R,,
QC(R) = Y. 5y
E~"(R) =log,3-2 log 0052 + v25|n§ ,  (A13)

and if Ry<R<1(X2:Y?),
. 1-T+

ERYR) =T+ log,—"— + (1 -T'»)log,—,
sinzg

(A14)
wherep” is the solution of

R=log,3-T,-H(T,). (A15)
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