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Quantum-information theory predicts that when the transmission resource is doubled in quantum channels,
the amount of information transmitted can be increased more than twice by quantum-channel coding technique,
whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive
quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum
decoding which requires a collective quantum measurement. Recently, an experimental demonstration was
reported[M. Fujiwaraet al., Phys. Rev. Lett.90, 167906(2003)]. The purpose of this paper is to describe our
experiment in detail. Particularly, a design strategy of quantum-collective decoding in physical quantum cir-
cuits is emphasized. We also address the practical implication of the gain on communication performance by
introducing thequantum-classical hybrid codingscheme. We show how the superadditive quantum-coding
gain, even in a small code length, can boost the communication performance of conventional coding
techniques.
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I. INTRODUCTION

A fundamental problem in information science is what is
the most efficient way of transmitting information with a
minimum of transmission resources. The amount of informa-
tion transmissible through a communications channel is de-
termined by the noise characteristics of the channel and by
the quantities of available transmission resources. In classical
communication theory[1–3], the amount of transmissible in-
formation can be increased twice at most when the transmis-
sion resource(e.g., the code length, the signal power, the
bandwidth) is doubled, for the fixed noise characteristics of
the channel. In quantum-communication theory, however,
this is not true in general, that is, the amount of information
transmitted can be increased even more than twice. This fea-
ture is called thesuperadditivityof the capacity of the quan-
tum channel[4–9].

The superadditivity becomes essential in any transmission
of signals at the quantum level where ambiguity among sig-
nals is a matter of noncommutativity of the density matrices,
i.e., r̂0r̂1Þ r̂1r̂0, rather than any classical noises such as ther-
mal noise. One typical example is deep space optical com-
munications. Intersatellite optical link is expected to achieve
a high transmission rate that cannot be achieved by the radio-
or microwave links, e.g., to realize data transmission from a
space telescope with billion pixels or real time communica-
tions over the planets. In a deep space optical link, the sender
prepares coherent state signals with as large amplitude as
possible allowed by a limited power supply. Such signals are,
however, extremely weakened at the receiving end, typically
less than a few photons per pulse, due to the beam diver-
gence and energy loss. Since the energy quantum of carriers
is greater than that of thermal noise in optical domain, i.e.,
"v.kBT, physical states of carriers can be described by
pure quantum states in good approximation. For example,
the binary phase shift keyed signals to convey classical let-

ters 0 and 1, respectively, are represented by the coherent
statesr̂0= ualkau and r̂1= u−alk−au, respectively. For weak
coherent pulses, the state overlapka u−al becomes non-
negligible, i.e.,r̂0 and r̂1 are noncommuting. According to
the uncertainty principle, noncommuting density matrices
can never be distinguished perfectly. This imposes an inevi-
table error in signal detection even in an ideal communica-
tions system[10]. Actually, whenuau2ø3, r̂0 and r̂1 cannot
be distinguished at a bit error rate of less than 10−6, which is
a typical error-free criterion in deep space communications.

Historically, an extension of communication theory into
the quantum domain including this aspect of ambiguity has
been explored since the 1960’s[11–14]. In 1973, Holevo
derived the quantity that bounds the upper limit of the capac-
ity of a quantum-communications channel[14]. It was re-
cently shown that this so-called Holevo bound is an achiev-
able rate, that is, the exact expression of the capacity
[15–17]. Classical communication theory[1–3] describes the
special case where the signals are given by commuting den-
sity matrices. The distinctive characteristics of quantum
theory of capacity is its great emphasis on the quantum-
decoding process to extract information from block se-
quences of noncommuting density matrices. The essence of
the optimal decoding is the use of a process of entangling
letter states constituting code words prior to measurement to
enhance the distinguishability of signals. Such a process is a
quantum computation on code word states. This so-called
quantum-collective decoding is a new aspect, not found in
conventional coding techniques, and leads to a larger capac-
ity. This is called thesuperadditive quantum-coding gain
(SQCG) [4–9] in a quantum channel since the lengthn quan-
tum coding makes capacity more thann times larger from
the capacity achievable only by conventional coding. Taking
it into account, the capacity is defined as the maximum rate
of the mutual information for a(quantum) code of lengthn
divided by the lengthn in the limit of n→` for asymptotic
error-free transmission.
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The theory of capacity, however, generally gives no guid-
ance on how to construct codes that approach the capacity. A
practical problem is then to find good codes to attain a large
SQCG in a small block length. This must be an important
issue in any communications and information-processing
systems when they work at the quantum level, which is ex-
pected in a few decades considering recent exponential
growth of infocommunication demands. However, little at-
tention has been paid to this topic so far. Only several coding
schemes have been proposed to exhibit SQCG[5–9] and the
first experimental demonstration has recently been reported
by the authors[18]. The purpose of the present paper is to
give detailed information that was abbreviated or omitted in
our previous letter. Attention is particularly paid to describe
the strategy of how to implement the quantum measurements
used in our experiments by logical and physical quantum
circuits. We also describe the detailed discussion of the im-
plications of SQCG in small code length on practical com-
munication performances.

The paper is organized as follows. In Sec. II, we remind
readers of several capacities of quantum channels studied to
date, and explain our scenario. In Sec. III, the basic notion
for capacity theorem and SQCG are briefly explained. In
Sec. IV, we discuss how we designed logical and physical
quantum circuits for our SQCG experiment, which was omit-
ted in our previous letter. Section V describes in detail our
experiment of SQCG reported in Ref.[18]. We also show the
experimental results about the separable quantum measure-
ments attaining the single-shot capacity and the accessible
information for comparison. In Sec. VI, we discuss how
SQCG, even the small gain demonstrated in length two cod-
ing, can boost a communication performance attained by
conventional coding technique. The idea is based on
quantum-classical hybrid coding(QCHC), which was briefly
mentioned in our previous letter[18]. Theoretical details on
the methodology of QCHC are given. Section VII is for con-
cluding remarks.

II. CAPACITIES FOR QUANTUM CHANNELS

Since Shannon’s capacity theory was extended into ge-
neric quantum states in Refs.[15–17], the capacity theory is
further extended to include new auxiliary resources of en-
tangled particles, new quantum protocols, and a new object
to be transmitted, i.e., intact quantum state[19]. The notion
of the capacity for quantum channels is now classified into
two categories:(1) the classical capacity for transmitting
conventional(classical) alphabet, and(2) the quantum capac-
ity for transmitting quantum alphabet(unknown quantum
states). For both categories entanglement-assisted protocols
may be considered, namely, superdense coding[20] and
quantum teleportation[21], respectively. Our concern is the
first category, i.e., theclassical capacity.

Depending on whether additional entanglement resources
are brought into play or not, the classical capacity is classi-
fied into two kinds, namely, the entanglement-assisted capac-
ity CE and the ordinary capacityC. The former is defined for
a quantum channel with the help of unlimited prior entangle-
ment sharing between the sender and the receiver[22]. The

latter is defined for a quantum channel with the help of any
allowed quantum operations at the sender(quantum encod-
ing) and the receiver(quantum decoding), but without any
prior source sharing. Both schemes assume multiple uses of
the channel, that is, coding, and the capacity is defined as the
maximum amount of transmissible information per channel
use. It should be noted that shared entanglement is not re-
garded as the transmission resources in the definition of the
entanglement-assisted capacityCE. This type of classification
can simplify the study of several distinct capacities and their
relation, including the quantum capacities[22].

From a practical point of view, on the other hand, it is not
realistic to expect the assistance ofunlimited external re-
sources. To predict the highest transmission rate in realistic
situations, all the physical entities used for transmission,
such as the shared entanglement, must be included in the
elements constituting a communications channel. In this situ-
ation, the ordinary capacityC is appropriate to evaluate the
communication performance of the channel since it imposes
the power constraint condition of thetotal physical re-
sources.

Keeping such backgrounds in mind, we restrict our dis-
cussion to the following protocol. The sender transmits a
classical alphabet in a classically encoded format, i.e., in
separable tensor product states(code word states) made up of
a given set ofletter states, and these code word states are
still separable at the receiving end. No prior entanglement is
shared between the sender and the receiver. The receiver may
apply any quantum operations to the received code word
states. In fact, it is known that, in effective quantum coding,
the receiver entangles the letter states prior to detection. This
is called quantum decoding and contributes to SQCG, which
is never observed in any classical coding. Such a scenario is
within the framework of the ordinary capacityC, and exactly
the case that the capacity theories of Refs.[15–17] concern.
The reasons for choosing such a protocol and for excluding
quantum encoding and prior entanglement sharing are(1)
concrete quantum–coding schemes are known only for such
a protocol at present, and(2) it fits better to practical moti-
vations introduced in Sec. I since it does not necessarily
require a transmission of nonclassical state signals. The main
task in this paper is, therefore, the demonstration of the
quantum-decoding process.

III. SUPERADDITIVE CODING GAIN

A practical mean for effective communications is coding,
that is, representing alphabet by sequences of simple letters
such ash0,1j. Alphabets to be transmitted are represented by
code words, which are sequences of a given set of letters
hx0, . . . ,xL−1j such as the binary seth0,1j. The transmitter
modulates a signal carrier into one ofL stateshr̂0, . . . ,r̂L−1j
according to the input letter. If the letter stateshr̂0, . . . ,r̂L−1j
appear as orthogonal states at the receiving end, then they
can be distinguished perfectly and log2 L bits of information,
which is the maximum Shannon entropy of the set
hx0, . . . ,xL−1j, can be faithfully retrieved per letter. This is,
however, not the case in general. A channel is usually subject
to various types of noise disturbances. In order to transmit
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information reliably through a channel with finite errors, one
must introduce some redundancy in code word representa-
tion prior to transmission so as to allow the correction of
errors at the receiving end. This entails adding some redun-
dant letters to the code words and hence increasing their
length. This ischannel coding.

First, the source encoder converts the original message
into a sequence of the letters in the given sethx0, . . . ,xL−1j,
and then the channel encoder divides it into blocks of length
k (message blocks). Each block is supplemented by an addi-
tional block(redundant block) of n−k (n.k) letters to com-
pose a channel code wordhxij:

s1d

Note that although there areLn possible sequences of length
n in total, only part of them, i.e.,Lk sequences, are used as
code words. This redundancy, together with appropriate en-
coding and decoding, allows us to recover possible errors in
transmission. The amount of information conveyed by the
above code words isK=k log2 L bits. The transmission rate
is then defined byR=K /n=sk/ndlog2 L bits/letter. For a
channel with a capacityC bits/letter, it is possible[1–3]
within the rateR=K /n,C to reproduce theK bits of mes-
sages with an error probability as small as desired by appro-
priate encoding and decoding in the limitn→`.

A mathematical model of a channel is specified by a set of
possible outputshyj from the channel and a channel matrix in
which each matrix element is given by the conditional prob-
ability Psyuxd of havingy given the inputx. Each input letter
x is used witha priori probability Psxd. The probability of
havingy is then given by

Psyd ; o
x

PsyuxdPsxd. s2d

To define the capacity, Shannon introduced the mutual infor-
mation [1]. This is defined between the input variableX
=hx;Psxdj and the output variableY=hy;Psydj as

IsX:Yd = o
x

Psxdo
y

Psyuxdlog23 Psyuxd

o
x8

Psx8dPsyux8d4 . s3d

In classical information theory, one considers coding for a
given and fixed channel modelhPsyuxdj. The decoding error
of code wordshx1, . . . ,xLkj can be calculated based on the
probability distributionshPsxdj and hPsyuxdj. The capacity
(for a memoryless channel) is defined as the maximum mu-
tual information with respect to the prior distribution of the
lettersPsxd,

C = max
hPsxdj

IsX:Yd. s4d

In the quantum context, however, only the input variable
X and the corresponding set of quantum states at the receiv-
er’s hand denoted ashr̂xj are given. The output variableY is

to be sought for the best quantum measurement. A quantum-
measurement process can mathematically be described by a

set of non-negative Hermitian operatorshP̂yj satisfying the

probability conservation relationoyP̂y= Î, the so-called posi-
tive operator valued measure(POVM). The channel matrix is
then given by

Psyuxd ; TrsP̂yr̂xd, s5d

and now one can define the maximum extractable informa-
tion

IAcc = max
hP̂yj

IsX:Yd, s6d

which is called the accessible information. More generally,
the quantity further maximized with respect to the prior
probability,

C1 = max
hPsxdj

max
hP̂yj

IsX:Yd, s7d

specifies the classical limit of the capacity when the given
initial channelhPsyuxdj is used with classical channel coding
[23]. It is this quantity that limits the performance of all
modern communications systems. This is, however, not the
ultimate capacity allowed by quantum mechanics.

The code wordshxj are now conveyed by the quantum

states in a tensor product of the letter states,Ĉx
= r̂x1

^ ¯ ^ r̂xn
. To decode them, one may design the best

quantum measurement allowed by quantum mechanics. This

is described by the POVMhP̂yj on the extended space where
hyj are decoded code words. The channel matrix for this
extended channel is given by

Psyuxd ; TrsP̂yĈxd. s8d

One may then define the mutual information for this ex-
tended channel by

IsXn:Ynd = o
x

Psxdo
y

Psyuxdlog23 Psyuxd

o
x8

Psx8dPsyux8d4 .

s9d

Further, one can define the quantity

Cn = max
hPsxdj

max
hP̂yj

IsXn:Ynd, s10d

which we refer to the capacity of ordern. The superadditivity
of quantum channel is then expressed as

Cn . nC1. s11d

The capacity of the quantum channel as the maximum rate of
error-free transmission is defined by

C = lim
n→`

Cn

n
. s12d
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The property of Eq.(11) was first predicted by Holevo
based on the random coding technique[4]. Peres and Woot-
ters conjectured that

IsX2:Y2d . 2max
hP̂yj

IsX:Yd s13d

by using the ternary symmetric states of qubit[5]. In these
works, the importance of using quantum-collective measure-
ment on a block sequence of code word states was empha-
sized. The first rigorous example of the superadditivity was
given by Sasakiet al. for the binary pure letter states[6],
where the quantum channel showing

IsX3:Y3d . 3C1 s14d

was explicitly demonstrated. Since then several examples of
quantum-code construction with the superadditivity were
clarified [6–9].

The important observation of the superadditivity is that
the property

Psyuxd Þ Psy1ux1d ¯ Psynuxnd s15d

generally holds when an appropriate collective POVM is
chosen. This is a kind of memory effect of the extended
channel. When the measurement is made by projection onto
separable bases, such a memory effect never takes place.
Projection onto appropriate entangled bases induces quantum
interferences among the code word states to reduce the am-
biguity among the signals. The memory effect is a direct
consequence of this quantum interference of block codes,
that is, exactly the effect of the entanglement. Realization of
such a quantum-collective decoding generally requires quan-
tum computation to entangle the letter states[24].

IV. MODEL FOR PROOF-OF-PRINCIPLE
DEMONSTRATION: QUBIT TRINE

Quantum-collective decoding on quantum particles, that
is, entangling quantum particles, is something very hard to
realize at present even for two particles. In addition, the
gains predicted for short length codes are very small. Here
we consider how one can demonstrate the principle of
quantum-collective decoding. We deal with the noiseless
channel model in which only the noncommutativity of the
signals causes the transmission error.

The simplest set of letters is the binary set of pure
states huc0l , uc1lj, where the overlap between the
letters is kc0uc1l=k. For this set only, the classical
capacity limit C1 is known with a rigorous mathematical
proof [25–27]. The very first step is the length two
coding. We have four possible tensor product sequences
huc0luc0l , uc0luc1l , uc1luc0l , uc1luc1lj. Buck et al. [8] showed
that, by choosing three of them as code word states, the
channel exhibits the superadditivity depending on the over-
lap k. Unfortunately, the predicted maximum SQCG was
only I2/2−C1=5.2310−4 bits and it seems too small to be
observed experimentally. In the length three coding[6], the
four code words were picked up from eight possible se-
quences so that the Hamming distance between each code

word is equalsd=2d to show the gain described in Eq.(14).
In this case, the maximum gain was predicted to be
9310−3 bits. Although the gain is bigger than that in the
length two coding, entangling three qubits for the quantum-
collective decoding requires more than ten steps of quantum
gating, which seems to be difficult to realize.

Therefore, we consider the second simplest case, the qubit
trine signals. The qubit trine consists of the ternary symmet-
ric letter states of a qubithuc0l , uc1l , uc2lj. It is this model
which we use to demonstrate our experimental steps toward
SQCG in the next section. It should be noted that the dimen-
sionality (2-dim.) is essential here. If the ternary states are
defined in a higher dimensional space than three, such as the
lifted trine, we do not know the exact value ofC1. In addi-
tion, according to our numerical studies, SQCG in terms of
the mutual information appears smaller compared to that in
the qubit trine case. The qubit trine is defined by the letter
state sethuc0l , uc1l , uc2lj with

uc0l = u0l, s16ad

uc1l = −
1

2
u0l −

Î3

2
u1l, s16bd

uc2l = −
1

2
u0l +

Î3

2
u1l, s16cd

wherehu0l , u1lj is the orthonormal basis set. They are repre-
sented in Fig. 1(a).

The accessible information, defined by Eq.(6), for this set
with equal prior probabilities is found to beIAcc=0.5850 bits
with a rigorous proof[28]. The optimal measurement strat-
egy is described by the nonorthogonal basis set
huv0l , uv1l , uv2lj of

uv0l = − sin
gAcc

2
u1l, s17ad

uv1l = −
1
Î2

u0l +
1
Î2

cos
gAcc

2
u1l, s17bd

FIG. 1. Geometrical representation of several sets of quantum-
state vectors and measurement vectors.(a) The ternary symmetric
letter states(qubit trine). (b) The letter (dotted arrows) and the
measurement(solid arrows) state vectors to attain theC1. (c) The
code word(dotted arrows) and decoding(solid arrows) state vectors
represented in a real three-dimensional space.
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uv2l =
1
Î2

u0l +
1
Î2

cos
gAcc

2
u1l, s17cd

wheregAcc is defined by

cos
gAcc

2
= cot

p

2
. s18d

This is a typical example of generalized quantum measure-
ment, and was demonstrated in the laboratory for a polariza-
tion qubit of a photon in Refs.[29,30]. The functional mean-
ing of this quantityIAcc is as follows: If the receiver applies
this detectionseparatelyon each letter state(separable de-
coding), and encoding is made such that each letter state
occurs with equal probabilities in the set of code words, then
the maximum transmission rate for error-free transmission is
IAcc=0.5850 bits/letter.

One may further optimize the quantity besides the detec-
tion strategy. For the ternary set,C1 has been carefully stud-
ied and evaluated to be 0.6454 bits[27,31]. This is attained
by discarding one of the three letters and using only two of
them, sayhuc0l , uc1lj, with equal probability 1/2 and apply-
ing the measurement described by the orthonormal basis,

un0l =
Î2 +Î3

Î3
uc0l +

Î2 −Î3
Î3

uc1l, s19ad

un1l =
Î2 −Î3

Î3
uc0l +

Î2 +Î3
Î3

uc1l. s19bd

This is schematically illustrated in Fig. 1(b).
Now we construct the length two coding. For the qubit

trine letters, there are nine possible sequences. Peres and
Wootters showed[5] that if one uses only three of them,
which are

uCxxl = ucxl ^ ucxl =
1

2
s1 + cosfxdu0lu0l +

1

2
sinfxsu0lu1l + u1l

3u0ld +
1

2
s1 − cosfxdu1lu1l, s20d

wherefx=2px/3 sx=0,1,2d, as the code word states with
equal probability, and decodes them by the square-root mea-
surement defined mathematically by

uPyyl ; So
x

uCxxlkCxxuD−1/2
uCyyl, s21d

thenIsX2:Y2d=1.3690 bits of information can be retrieved in
principle. This is larger than twice ofC1s=0.6454d. The
SQCG isI2/2−C1=0.0391, which is expected to be acces-
sible in laboratory.

The measurement basis Eq.(21) is explicitly written as

uP00l = auC00l + buC11l + buC22l, s22ad

uP11l = buC00l + auC11l + buC22l, s22bd

uP22l = buC00l + buC11l + auC22l, s22cd

where a=s4+Î2d /3Î3 and b=−s2−Î2d /3Î3. These bases
are entangled states and the measurement described by the
POVM huPyylkPyyuj is a typical example of quantum-
collective decoding. The ternay code word stateshuCxxlj can
be described by the real vectors in a three-dimensional space
spanned byhu0lu0l , u0lu1l+ u1lu0l , u1lu1lj, as seen from Eq.
(20). This ternary set is called the lifted trine, and provides
interesting insights into quantum-measurement problems as
discussed by Shor[31,32]. The measurement basishuPyylj
forms another orthonormal basis set in the three-dimensional
space.huCxxlj and huPyylj are geometrically depicted in Fig.
1(c). The code wordshuCxxlj are distinguished by the projec-
tion to each of the nearestuPyyl. The channel matrix
fPsyuxdg= ukPyyuCxxlu2 is expressed as

fPsyuxd = 3
cos2

g

2

1

2
sin2g

2

1

2
sin2g

2

1

2
sin2g

2
cos2

g

2

1

2
sin2g

2

1

2
sin2g

2

1

2
sin2g

2
cos2

g

2

4 . s23d

where

cos
g

2
=

Î2 + 1
Î6

, s24ad

sin
g

2
=

Î2 − 1
Î6

. s24bd

In this noiseless model the channel is essentially a measure-
ment channel whose ambiguity is due to nonorthogonality of
the code word states.

While the square-root measurement is simply expressed
by the von Neumann measurement in the three-dimensional
real space in terms of Eqs.(22), this mathematical expression
informs us of nothing special about physical implementa-
tions of the decoder. There may be many possible ways to
realize effectively the measurement channel matrix of Eq.
(24). One systematic and straightforward way is to express
the original measurement basis as a simple separable basis
plus an additional unitary transformation, and to convert the
unitary transformation into a quantum circuit[7,24]. Along
this line, we derive a quantum circuit realizinghuPyylj.

Let us rewrite the POVMhuPyylkPyyuj as

uP00l = Û†u0lu0l, s25ad

uP11l = Û†u0lu1l, s25bd

uSl = Û†u1lu0l, s25cd
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uP22l = Û†u1lu1l, s25dd

whereuSl=su0lu1l− u1lu0ld /Î2. The unitary operatorÛ can be
given by the matrix representation

Û = 3
cos

g

2
0 0 sin

g

2

−
1
Î2

sin
g

2

1

2

1

2
−

1
Î2

cos
g

2

0
1
Î2

−
1
Î2

0

−
1
Î2

sin
g

2
−

1

2
−

1

2
−

1
Î2

cos
g

2

4 , s26d

with respect to the separable basis
hu0lu0l , u0lu1l , u1lu0l , u1lu1lj. Circuit construction for this uni-
tary operator can be carried out in the following way. With

the help of the Gaussian elimination algorithm[33], Û can be

decomposed into a product ofUs2d operatorsT̂f j ,ig as

Û = T̂f2,1gT̂f3,1g ¯ T̂f4,2gT̂f4,3g, s27d

whereT̂f j ,ig represents the two-dimensional rotation operators

between theith and j th basis vectors. Each operatorT̂f j ,ig is
then converted into a quantum circuit by using the formulas
established by Barencoet al. [34]. The quantum circuit de-
rived along this line consists of so many two bit basic gates,
and is generally not in the minimal form. We further com-
piled the circuit into a much simpler version in a heuristic
way. The final, and possibly the simplest, quantum circuit for

Û is shown in Fig. 2. It consists of five controlled-unitary
gates.

V. IMPLEMENTATION

A favorable qubit trine is made of a flying qubit of pho-
tons. It would be natural to construct code words by the pairs
of photons in the same linear polarization states. The quan-
tum circuit of Fig. 2 then requires photon-photon gates. Al-
though the principle of such photon-photon gates have been
demonstrated experimentally[35], its precision is still far
below the level required to access the small superadditive

coding gain. Even if we rely on other, not flying, qubit sys-
tems such as trapped ion or molecules in NMR for which
quantum gating has been demonstrated to date, it still seems
formidable to run a five-step gating operation with the re-
quired precision.

Therefore, we consider the length two coding based on
the two physically different kinds of qubits, namely, the po-
larization and location qubits of a single photon. The first
and second letter states of a code word are drawn from the
ternary letter state sets of the polarization and a location
qubits, hucxlPj and hucxlLj, respectively. Then the collective
decoding can be realized by an optical circuit consisting only
of linear passive components, and a sufficiently high gating
precision can be attained. In fact, by using the same
polarization-location encoding format[36–38], several quan-
tum algorithms have been demonstrated experimentally
[39,40].

In the following subsections, we first describe the physi-
cal implementation based on the polarization-location for-
mat. Then we discuss three kinds of experiments on quantum
measurement of the accessible information, the single-shot
capacity, and SQCG attained by the second order mutual
information. These schemes are on a structured scenario of
the capacity theory as described in Sec. III. They also corre-
spond to the most typical measurements for the same qubit
trine in the framework of quantum-measurement theory, i.e.,
the von Neumann measurement, the single-shot generalized
measurement, and the collective measurement.

A. Preparation of optical qubit states

The polarization qubit consists of the horizontalu0lP
= uHl and the verticalu1lP= uVl polarization states of a single
photon and prepared by a half waveplate(HWP) which acts
as

uHl ° − cos 2uuHl + sin 2uuVl, s28ad

uVl ° sin 2uuHl + cos 2uuVl, s28bd

whereu is the angle of the fast axis from the vertical axis.
The elements of the ternary set of the polarization qubit
uc0lP,uc1lP,uc2lP can be prepared from the input of theu0lP
state by settingu=0, p /6, p /3 (rad), respectively.

The ternary set of the location qubithucxlLj can be pre-
pared by guiding the polarization letter states into two optical
paths through a polarizing beam splitter(PBS). It reflects the
vertical polarization and transmits the horizontal polarization
as

uHlA ^ uvacuumlB ° uHlA ^ uvacuumlB, s29ad

uVlA ^ uvacuumlB ° i uvacuumlA ^ uVlB, s29bd

where A and B are the labels for the two different optical
paths.

The length two coding can be realized in the Hilbert space
spanned by the orthonormal bases[36–38],

u00l = u0lP ^ u0lL = uHlA ^ uvacuumlB, s30ad

FIG. 2. Quantum circuit to realize the quantum-collective de-
coding by the square-root measurementhuPyylj. A received code
word state is first transformed by the five controlled gates, and then
is detected by a standard von Neumann measurement on each letter
separately. Nomenclature of the controlled gates is based on Ref.

[34]. Q̂swd is the unitary operator defined asQ̂swd=R̂yswdŝz. The
open circle notation indicates conditioning on the “control” qubit
being set to zero.
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u01l = u0lP ^ u1lL = uvacuumlA ^ uHlB, s30bd

u10l = u1lP ^ u0lL = uVlA ^ uvacuumlB, s30cd

u11l = u1lP ^ u1lL = uvacuumlA ^ uVlB. s30dd

In this space the encodings can be performed by the optical
circuit shown in Fig. 3, which consists of a PBS and three
HWPs. With an input photon initially in the stateu00l, the
output of this encoder is given by

uCl = cos 2u0 cos 2u1u00l − sin 2u0 sin 2u2u01l

− cos 2u0 sin 2u1u10l + sin 2u0 cos 2u2u11l,

s31d

whereu0, u1, andu2 are the angles of the three HWPs. By
controlling these angles appropriately, polarization qubit
statesucxlP ^ u0lL, location qubit statesu0lP ^ ucxlL, and the
length two code word statesucxlP ^ ucxlL can be prepared.

Thus in our coding format, doubling the transmission re-
source is realized by doubling thespatial resourceinstead of
by using two polarized photons. From the viewpoint of com-
munication theory, this can be regarded as a kind of pulse
position coding which is often used when the signal power
available is severely limited.

B. Accessible information

The POVM for the accessible informationIAcc generally
consists of overcomplete nonorthogonal states, which is a
typical example of generalized measurement. It is well
known that such a POVM can be implemented by a von
Neumann measurement in an extended Hilbert space, which
is called the Naimark extension[28]. The experiments
[29,30] of such a measurement were already performed by
using polarization qubits. We have performed such experi-
ments again for both polarization and location qubits. We
also show the logical quantum circuit of such a POVM.

The Naimark extension of the POVMhuvylkvyuj given in
Eq. (17) can be implemented by introducing an ancillary
qubit with that in the initial stateu0l, and by constructing the
orthonormal basis whose projection onto the original plane
becomeshuvylj. The orthonormal bases are then decomposed
into the unitary transformation and the von Neumann mea-
surement by two qubit separable bases. The schematic of this
process is shown in Fig. 4, where the unitary operation is
described by the quantum circuit consisting of four con-

trolled unitary gates. This one seems to be almost the sim-
plest circuit. As discussed in the previous subsection, such a
quantum circuit can be translated into an optical circuit con-
sisting of linear elements. Figures 5(a) and 5(b) show the
optical circuits for polarization and location qubit signals,
respectively.

The actual experimental setups for the polarization and
location qubit trines are depicted in Figs. 6(a) and 6(b), re-
spectively. In both setups, the left and right of the dashed
vertical line correspond to the circuits for generating and
measuring the signals, respectively. The signal states are gen-
erated by varying the angle of HWP1 withfx=2px/3 sx
=0,1,2d. It should be noted that, for practical reasons, the
original circuits in Figs. 5(a) and 5(b) are modified by using
the 50:50 beam splitter(BS) instead of the PBS, and the
initial state of the ancillary qubit is set to the stateu1l.

The experimental procedures and techniques are basically
the same as those in Ref.[30]. The whole circuit in Fig. 6
consists of a polarization Mach-Zehnder interferometer and
is controlled by a piezoelectric transducer(PZT). The cw
light from a He-Ne laser(Spectra-Physics, model 117A) op-
erating at the wavelength of 632.8 nm with 1 mW power is
strongly attenuated by ND filters with a factor of 5310−10

such that about 10−2 photons exist on average in the whole
circuit. The attenuated light is purified to the horizontally
polarized state by a Glan-Thompson prism and then injected
to the interferometer. The HWP in the encoder(HWP1) is
driven by a stepping motor to generate the signal state
hucxlPux=0,1,2j or hucxlLux=0,1,2j sequentially. After pass-

FIG. 3. Optical circuit for polarization-location encoding. HWP,
half waveplate; and PBS, polarizing beam splitter.

FIG. 4. Quantum circuit to realize the optimal POVM for the
accessible informationhuvylkvyuj given in Eq.(17). The nomencla-
ture of the gates is the same as in Fig. 2.

FIG. 5. Optical implementation of the circuit for the accessible
information in Fig. 4 for (a) polarization qubit and(b) location
qubit. PD: photodetector.
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ing through the circuit, the signal photons are guided into the
silicon avalanche photodiodes(EG & G, SPCM-AQ-141-
FC), APD0–2, whose quantum efficiency and darkcount are
typically 70% and 100 counts/s, respectively, throught a
multimode optical fiber with coupling efficiency of about
80%. The interferometer is enclosed in a darkened box.
There are, however, background photons which amount to
about 300 counts/s even if no laser light is injected.

The mutual information is evaluated by constructing the
333 channel matrixfPsyuxd;ukvy ucxlu2g from a statistical
data of single photon events detected by either of the three
avalanche photodiodes(APDs) conditioned on the input state
ucxl. The mutual information thus obtained measures the ra-
tio of the number of bits retrieved per number of total photon
counts. This event selection allows us to simulate communi-

cations of sending and detecting photons in apure state one
by one through a noiseless channel even when a photon
source with random arrival times[41] and photodetectors
with imperfect efficiencies are used. The channel character-
istics are then limited only by the noncommutativity of the
signal states, imperfect alignment of the whole interferom-
eter, deviation from the lock points, and the darkcount of the
APDs.

The relative path length of the interferometer is adjusted
to be a proper operating point by using a bright reference
beam and the PZT. The visibility of the interferometer better
than 98% is obtained. To circumvent injecting voltage noise
from electronics, we simply used a low noise voltage source
for adjusting and fixing mirror positions, whereas an electri-
cal feedback system was used in Ref.[30]. Once the circuit

FIG. 6. Experimental setups
for the accessible information for
(a) polarization qubit and(b) loca-
tion qubit. Herefx=2px/3+foff

sx=0,1,2d with the offset angle
foff. HWP, half waveplate; PBS,
polarizing beam splitter; BS,
50:50 beam splitter; and PZT, pi-
ezoelectric transducer.
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is adjusted, the reference beam is shut off. The signal light is
then guided into the whole circuit. Photon counts are mea-
sured for a 5 s duration. This procedure is repeated for each
letter state, composing a full sequence of measuring the
channel matrix. The temporal stability corresponds to the
change of the relative path length within 3 nm for at least
more than 200 s, which causes the error in mutual informa-
tion to be ±0.005 bits at most.

Figures 7(a) and 7(b) show the mutual information mea-
sured for the polarization and location qubits, respectively.
The offset angle of the horizontal axis is defined by the rela-
tive anglefoff between the signal and measurement state sets
(see Fig. 6 and its caption). The accessible information is
measured at the zero offset angles for both the polarization
and the location qubits, and the results are 0.560±0.005 and
0.557±0.007 bits/letter, respectively. The average visibilities
at these points are evaluated to be 99.16% and 99.05%, re-
spectively. The difference between the data points and the
ideal curve is mainly attributed to the imperfection of the
PBSs. The result for the polarization qubit can be directly
compared to the previous experiments[29,30] and certifies
that the quality of our interferometer is improved from those
previous results.

C. C1 limit

The classical limit of the capacity C1
s=0.6454 bits/ letterd is obtained by sending only two of

three letters with 1/2 probabilities and a von Neumann mea-
surement in two-dimensional space[Fig. 1(b)]. The corre-
sponding decoding circuits in the polarization and location
qubits are shown in Figs. 8(a) and 8(b). For the polarization
qubit [Fig. 8(a)], the polarization of the received photon is
rotated by the HWP withp /12 radians, and then is discrimi-
nated by the PBS followed by APDs. Detection of the loca-
tion qubit is straightforward, i.e., just detecting a photon at
each optical path. The measured value isC1=0.644±0.001
bits/letter for both the polarization and location qubits.

D. Length two coding

The length two code word statesuCxxl;ucxlP ^ ucxlL are
encoded by the optical circuit of Fig. 3. The angles of HWPs
are set as

u0 =
1

2
arctanÎ1 − cosfx

1 + cosfx
,

u1 =
1

2
arctanS − sin fx

1 + cosfx
D , s32d

u2 =
1

2
arctanS − sin fx

1 − cosfx
D ,

where fx=2px/3 sx=0,1,2d corresponds to the encoding
parameter in Eq.(20).

Figure 9 shows the optical circuit that corresponds to the
collective decoding circuit in Fig. 2. It is further simplified
for practical convenience, and the whole experimental setup
including encoder is shown in Fig. 10. It includes a polariza-
tion and normal interferometers in Mach-Zehnder arrange-
ments. Each interferometer is aligned independently to
achieve a visibility better than 98%. Received code words
are decided to be either ofuC00l, uC11l, or uC22l according to

FIG. 7. Measured(filled diamonds) and theoretical(solid curve)
accessible information for(a) the polarization qubit signal and(b)
the location qubit signal as a function of the offset anglefoff. The
dashed curve is the mutual information obtainable by a standard
von Neumann measurement[30].

FIG. 8. Optical circuits for theC1 detection.(a) Polarization
qubit, (b) location qubit.

FIG. 9. Optical circuit for the collective decoding described by
the square-root measurement.
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the reception of the photon by APD0, APD1, and APD2,
respectively. Other procedures and conditions are the same
as those of the experiment for the accessible information
extraction.

Figure 11 shows a typical experimental data that corre-
sponds to the unnormalized value of each element of the
channel matrixfPsyyuxxdg. Ideally, the ratio of the diagonal
and off-diagonal elements must be 0.9714 and 0.0143, re-
spectively. The total events counted for 1 s is of the order
106, while the average count for the off-diagonal elements is
about 1.93104 including the darkcounts of the three APDs.
The total background count is 2% of the average count for
the off-diagonal elements. The mutual information is evalu-
ated asIsX2:Y2d=1.312±0.005 bits. The averaged visibility
of the whole system is evaluated to be 98.48%, which is
slightly worse than the result forIAcc. This degradation is
mainly due to the relative difference of the polarization axis
between two interferometers.

For experimental clarity, we measured the variation of the
mutual information when the code word state sethuCxxlj is
rotated relative to the decoder state sethuPyylj around the
vertical axis in Fig. 1(c). The rotation is achieved by adding
an offset anglefoff to fx in Eq. (32). Figure 12 shows the
result in which the experimental data of the collective decod-
ing (filled diamonds) are compared to its ideal curve(solid
curve). The experimental and ideal values ofC1 andIAcc are
also shown. The difference between the data points and the
ideal curve is attributed again to the imperfection of the

PBSs and also to the relative difference of the polarization
axis between two interferometers. The obtained mutual infor-
mation, 0656±0.003 bits/letter, exceeds the theoretical limit
of the classical capacityC1=0.6454 bits/letter. Classical
length two coding corresponds to the use of polarization and
location channels at a time in a separable decoding circuit
construction, which does not include any entangling opera-
tion. Then the retrievable information can never exceed 2C1.
Our result, therefore, clearly shows the experimental evi-
dence of the superadditivity, that is, the increase of informa-
tion more than twice obtained by inserting an appropriate
quantum circuit to entangle two letter states.

VI. QUANTUM-CLASSICAL HYBRID CODING

The SQCG in small blocks is not only of proof-of-
principle demonstration but also of practical importance in
quantum-limited communications. Even a two-qubit quan-
tum circuit like that in Fig. 2 is useful in boosting the per-
formance of a classical decoder. In this section, using the
case of the ternary letter state set of Eq.(16), we show how
the two-qubit quantum decoder can be combined with a clas-

FIG. 10. Experimental setup
HWP, half waveplate; PBS, polar-
izing beam splitter; BS, 50:50
beam splitter; and PZT, piezoelec-
tric transducer. The HWP angles
u0-u2 are given in the text.

FIG. 11. Histogram of photon counts for the channel matrix
elementsPsyyuxxd= ukPyyuCxxlu2 (unnormalized).

FIG. 12. Measured(filled diamonds) and theoretical(solid
curve) mutual information as a function of the offset angle of the
code word state sethuCxxlj from the decoder state sethuPyylj around
the vertical axis in Fig. 1(c). The dotted curve is a guide for the
eyes. The experimental and theoreticalC1 are shown by the square
and the dashed line, respectively. The accessible informationIAcc

experimentally observed for polarization and location qubit, and
theoretically predicted are shown by the open diamond, open circle,
and one-dotted line, respectively.
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sical decoder to improve the total communication perfor-
mance.

Let us start with a classical channel coding of lengthn,
whose schematic is shown in Fig. 13(a). We assume that the
letter states are the ternary symmetric states given by linear
polarizations of a single photon. A code word is then physi-
cally represented by a sequence of optical pulses of a single
photon, which is a tensor product of each letter state. At the
receiving side, each optical pulse enters a photodiode, and is
converted into an electric pulse, namely, a classical signal.
This optoelectric conversion is made on each letter state
separately. The classical electric signals are then processed
by an electric circuit(a classical decoder) to reconstruct an
output message.

The capacity attained by this classical coding scheme is
given by the quantityC1. As discussed in Sec. IV,C1
s=0.6454 bits/ letterd is attained by making the code words
from only two letter states instead of using all three, and by
performing the binary measurement. In other words, the
channel is equivalent to the binary symmetric channel whose
error probability is characterized by

e ; Ps1u0d = Ps0u1d =
1

2
s1 −Î1 − ukc0uc1lu2d =

2 −Î3

4
.

s33d

The transmission rate for this channel is defined byRC

=k/n. So if RC,C1=0.6454, one must be able to find codes
for which the decoding error approaches zero in the limitn
→`.

In practice, however, one wants to know the decoding
error for finite lengthn. According to the theory of reliability
function [2], there exists a lengthn (classical) coding attain-
ing Peø2−nErsRd, whereErsRd is the lower bound of the re-
liability function. The functionErsRd is useful to investigate
the maximum communication performance of channels for a
given code length.

Let us denote the functionErsRd for the classical decoding
scheme asEr

CsRCd. As for the definition ofErsRd and the
expression ofEr

CsRCd, see Appendix. We now consider, as
examples, two cases where transmission rates are lowsRC

=0.1=0.153C1d and high sRC=0.62=0.963C1d. In these
cases, we obtainEr

Cs0.1d=5.218310−4 and Er
Cs0.62d

=0.3150, respectively, and the asymptotic behaviors of the
decoding error probabilities are shown in Fig. 14(the dashed
curves). This is a typical error performance obtained by av-
eraging over all possible classical codes. It means that there
must exist at least one code that exhibits a performance su-
perior to that shown in Fig. 14.

We now turn to the other scheme, in which the above
classical coding is combined with quantum-channel coding.
We refer to such a combination of two coding schemes as
QCHC. In the following, we show the power of QCHC by
discussing the QCHC scheme with the length two quantum
coding. Its schematic is shown in Fig. 13(b). Given the
length n (assumed to be an even number), we consider a
classical coding of lengthn/2 with the composite letters
h00,11,22j. In decoding, the received code word state is first
processed by the two-qubit quantum circuit shown in Fig. 2,
and then is detected by two photodiodes. This is the
quantum-collective decoding consisting of the square-root
measurement. The resultingn/2 electric pulses are finally
processed by a classical decoder.

The channel model of this scheme is equivalent to a clas-
sical coding of lengthn/2 based on the ternary symmetric
channel given by Eq.(23). The transmission rate for this
channel is now defined byRQC=sk/ndlog2 3 and it can be
raised up to the mutual information of this channel,
IsX2:Y2d=1.3690. It means that the ratek/n can be raised up
to IsX2:Y2d / log2 3=0.8637.

Let us denote the functionErsRd for the QCHC as
Er

QCsRQCd. The expression ofEr
QCsRQCd is also given in the

Appendix. To compare the performance ofEr
QCsRQCd with

that of Er
CsRCd, the ratek/n should be fixed. For the same

rates as before,k/n=0.1 andk/n=0.62, the transmission
rates are given byRQC=0.1585 andRQC=0.9827, respec-
tively. The functionEr

QCsRQCd at these rates are evaluated to
be Er

QCs0.1585d=0.8415 andEr
QCs0.9827d=9.753310−2, re-

spectively. The upper bound of the error probability is then

given by Pe=2−sn/2dEr
QC

. The error probabilities for these ex-
amples are shown by the solid curves in Fig. 14.

As seen in this figure, at the rate ofk/n=0.62, the decod-
ing error starts to decrease rapidly overn,10000 in the

FIG. 13. (a) Classical channel coding system.(b) Quantum-
classical hybrid channel coding system with the two letter quantum-
collective decoding.

FIG. 14. Decoding error probabilities with finite code length for
the QCHC(solid lines) and the all classical coding(dashed lines).
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classical coding scheme. In the QCHC scheme, the error
starts to decrease fromn,100, and reaches the standard
error-free criterion 10−9 aroundn,600(300 composite letter
pairs). With this code length, it is impossible to transmit any
information reliably by the classical coding scheme[42].
This improvement can be achieved just by inserting the two-
qubit quantum decoder in front of the classical decoder. To
achieve the standard error-free criterion by classical coding,
one must use code words of lengthn,57 300.

As codes get longer, the complexity of the decoder, such
as the total number of arithmetic operationsxsnd, increases
and eventually limits the effective transmission speed. The
total decoding time per letter by the device with finite speed
t0 s /step is given byfxsnd /ngt0 s / letter. Presumably, this is
a limiting factor and thus we can define the effective trans-
mission speed asReff=Rfn/xsndt0g bits/s. For some asymp-
totically good codes, the total number of arithmetic opera-
tions is typically of order xsnd=O(sn log nd2) [43].
Therefore, the effective transmission speed behaves asReff
~R/nslog nd2. Then the reduction of code length brought by
QCHC will be practically significant in the trade-off between
performance and complexity. In our example, even in the
lower rate, the decoding error of the QCHC around the stan-
dard error-free criterion is two figures smaller than that of the
classical coding with the same code length.

VII. CONCLUDING REMARKS

In this paper, we have detailed the experimental demon-
stration of the SQCG. The superadditive quantum coding
becomes essential in the region where the noncommutativity
of signal states is the main ambiguity among signals. As a
typical example, we have mentioned deep space optical com-
munications in Sec. I, where we have to extract as much
information as possible from the sequences of heavily at-
tenuated signals. Apparently, it is not realistic in such a situ-
ation to transmit nonclassical states or to install quantum
repeaters. Therefore, only quantum decoding can be the core
technology to achieve the ultimate performance in future
long-haul optical communications.

QCHC is then a promising approach. We have shown in
Sec. VI that evena small scale quantum computingcan en-
hance the effective transmission speed when it is used to-
gether with large scale classical coding. Thus the QCHC al-
lows one to extend conventional optical communications
technology to the quantum limit in a straightforward way.
This may be contrasted to the fact that other known quantum
algorithms exhibit the advantage over their classical counter-
parts only when a large scale quantum computer is available.
For the QCHC applications, the communication performance
of QCHC gets better as the available scale of quantum com-
puters gets larger.

Finally, we mention the challenges to be overcome to
bring a QCHC system into reality. Although our results
clearly demonstrated the principle of SQCG, the physical
scheme used in our experiment is still not suitable for real
applications, i.e., is not applicable to weak coherent signals.
To implement a quantum-collective decoder for weak coher-
ent signals, one must be able to entangle weak coherent op-

tical pulses with respect to the degrees of freedom of phase
and/or amplitude. Heavily attenuated coherent signals can be
approximated by superpositions of zero and one photon
states asuakl<u0l+aku1l. It means that the proposals of qu-
bit gating may be applicable to our problem.

Quantum-gating operation at single photon levels has
been investigated by many authors, but still remains a chal-
lenging topic. One scenario suggested in Ref.[8] is to trans-
fer the information in an optical field to a multilevel single
atom inside a high-finesse optical cavity in order to perform
gating operations by Raman process. Another possible way is
to use an atomic system as a nonlinear medium with the idea
of electromagnetically induced transparency[44]. Finally, a
recent proposal suggests the possibility of an optical quan-
tum circuit based on linear optics[45]. As single photon
on-demand sources[46] and highly efficient photon detectors
become available, small scale quantum-gating circuits for
coherent state signals can be realized, in principle, with only
linear optics.

From the viewpoint of coding theory, on the other hand, it
is still open to find asymptotically good quantum-channel
codes. In the case of pure state channels, Ref.[15] tells us
that the problem is essentially the selection of appropriate
sequences for code words, and the square-root measurement
does the decoding. It is also important to establish a system-
atic theory to synthesize a quantum circuit for intermediate
scale collective decoding.

APPENDIX: LOWER BOUND OF THE RELIABILITY
FUNCTION

In this Appendix, we give the definition of reliability
function and its lower bound,ErsRd. The latter is applied to
the channels describing the classical coding and the QCHC
with the length two quantum coding, respectively, for the
qubit-trine signal.

The reliability function is defined as[2]

EsRd = lim
n→`

sup
− log2Pesn,Rd

n
, sA1d

where Pesn,Rd is the minimum error probability over all
sn,Rd codes. Although the trueEsRd for any R has not been
clarified yet, it is known that its lower bound is given by

ErsRd = max
r

max
hPsxdj

fE0srd − rRg, sA2d

where

E0„r,Psxd… = − log2o
y
So

x

PsxdPsyuxd1/s1+rdDs1+rd
,

sA3d

with 0,rø1. The functionErsRd yields the upper bound of
an average error probability,Pe, for the code with givenn
andR by Peø2−nErsRd. We also note that, for any symmetric
channels,ErsRd is maximized when all the signals are given
by the equal prior probability distribution[2].

As discussed in Sec. VI, the channel matrix attaining the
capacity of the classical coding for the qubit-trine signal is
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given by the binary symmetric channel with the channel ma-
trix

fPsyuxdg = F1 − e e

e 1 − e
G , sA4d

where e is given in Eq. (33). The analytic expression of
ErsRd for this channel can easily be derived. First we define
the quantities,

er ;
e1/s1+rd

e1/s1+rd + s1 − ed1/s1+rd sA5d

and

R0 ; 1 − Hse1d, sA6d

where

Hserd ; − er log2 er − s1 − erdlog2s1 − erd. sA7d

After maximizingE0(r ,Psxd) over Psxd andr, if R,R0, we
obtain

Er
CsRd = 1 − 2 log2sÎe + Î1 − ed − R, sA8d

and if R0,R,C1,

Er
CsRd = er* log2

er*

e
+ s1 − er*dlog2

1 − er*

1 − e
, sA9d

wherer* is the solution of

R= 1 −Hserd. sA10d

The channel matrix for the QCHC discussed in Sec. VI is
given in Eq.(23), which is a ternary symmetric channel. The
expression ofErsRd for a ternary symmetric channel can also
be derived with the quantities

Gr =
Ssin2g

2
D1/s1+rd

1

2
S2 cos2

g

2
D1/s1+rd

+ Ssin2g

2
D1/s1+rd , sA11d

and

R0 ; log2 3 − G1 − HsG1d. sA12d

Then if R,R0,

Er
QCsRd = log2 3 − 2 log2Scos

g

2
+ Î2sin

g

2
D , sA13d

and if R0,R, IsX2:Y2d,

Er
QCsRd = Gr* log2

Gr*

sin2g

2

+ s1 − Gr*dlog2

1 − Gr*

cos2
g

2

,

sA14d

wherer* is the solution of

R= log2 3 − Gr − HsGrd. sA15d
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